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Abstract
Purpose This paper addresses the lack of ecotoxicity characterization factors (CFs) for persistent and mobile (PM) chemicals 
in life cycle assessment. The specific aims are (1) to provide CFs for 64 selected chemicals and benchmark them against the 
USEtox database, (2) to propose an ecotoxicity data harmonization strategy, and (3) to analyze the influence of ecotoxicity 
data sources and data harmonization strategies.
Methods Sixty-four per- and polyfluoroalkyl substances (PFAS), triazines, and triazoles were selected. An ecotoxicity 
data harmonization strategy was developed to ensure data consistency. A screening strategy for including transformation 
products was also developed. Existing CFs in the USEtox organic substances database (version 2.01) were identified, and 
new CFs were calculated based on available data sources. The USEtox model (version 2.13) was used for calculations, and 
the collected ecotoxicity data from different sources were varied to test their influence.
Results and discussion The ecotoxicity data harmonization strategy excluded a considerable amount of incompatible data. 
To the list of 64 chemicals, 3 transformation products were added. Out of the 67 chemicals, experimental ecotoxicity data 
were available for 47, leading to the use of in silico tools and average values to fill data gaps for 20 chemicals. CFs for 67 
chemicals could thus be provided. Comparing CFs calculated based on experimental and estimated ecotoxicity data reveals 
that the estimated data leads to considerably different CF values.
Conclusions The paper provides strategies for ecotoxicity data harmonization and the inclusion of transformation products. 
The limited availability of experimental ecotoxicity data and differing results of the applied estimation methods highlight the 
need for further development of estimation methods. In addition, further development in including transformation products 
is recommended, which is particularly relevant for PM chemicals.

Keywords Ecotoxicity · USEtox · Characterization factor · PFAS · Triazines · Triazoles

1 Introduction

Persistent and mobile (PM) chemicals are long-lived in the 
environment and exhibit considerable mobility in aquatic 
ecosystems (Neumann and Schliebner 2019). In a recent lit-
erature review of PM chemicals by Hale and Kalantzi et al. 

(2022), 64 specific PM chemicals were identified as poten-
tial threats to drinking water due to their chemical prop-
erties and widespread use in Europe (Arp & Hale 2022; 
Hale et al. 2022; Jin et al. 2020). These chemicals belong 
to the groups per- and polyfluoroalkyl substance (PFAS), 
triazines, and triazoles, which are used in products such as 
textile impregnation, fire-fighting foam, ammunition, arti-
ficial turf, fungicides, and herbicides (Glüge et al. 2020; 
Masís-Mora et al. 2019). PFAS are substances containing 
fluorinated aliphatic carbons (ECHA 2023), such as pol-
ytetrafluoroethylene, also known as Teflon. Triazines are 
nitrogen-containing organic compounds, including the her-
bicide atrazine. Triazoles are heterocyclic compounds with 
a five-membered aromatic ring of two carbon atoms and 
three nitrogen atoms, like the antifungal agent voriconazole 
(Sahu et al. 2013). When released along the life cycles of 
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products, these PM chemicals might cause, in addition to 
drinking water contamination, ecotoxicity impacts, and form 
toxic degradation products. In this paper, we seek to enable 
the assessment of the life cycle ecotoxicity impacts of these 
64 chemicals.

For this, USEtox is an open-source life cycle impact 
assessment (LCIA) method for calculating ecotoxicity (and 
human toxicity, albeit not covered further herein) CFs that 
hold official endorsement from the UNEP/SETAC Life 
Cycle Initiative, the European Commission, the World 
Business Council for Sustainable Development, and the 
United States Environmental Protection Agency (Fantke 
et al. 2017). However, calculating CFs with USEtox is data 
intensive, requiring 18 different parameters for each chemi-
cal. Also, USEtox CFs are applied to the emitted compound, 
potentially neglecting the impact of transformation prod-
ucts (Rosenbaum et al. 2008; Schulze et al. 2001). These 
degradation products may be highly persistent, mobile, and 
toxic and should therefore preferably be considered in an 
LCA along with the parent chemicals (Fenner et al. 2000; 
Schenker et al. 2007; Van Zelm et al. 2010). Otherwise, 
the impacts of an emission of the parent chemicals may 
be underestimated (Boxall et al. 2004). The importance of 
including ecotoxicity impacts in life cycle assessment (LCA) 
has been demonstrated (Larsen et al. 2009) and is increas-
ingly done in LCA practice (Rosenbaum 2015).

The ultimate aim of this paper is to provide a practical 
approach for calculating a medium-large set of ecotoxic-
ity CFs, applied to the selected 64 chemicals. In doing so, 
the influence of different ecotoxicity data sources and data 
harmonization strategies on the CFs is explored, including 
in silico methods to fill data gaps. An ecotoxicity data har-
monization strategy and a screening strategy for including 
the most relevant transformation products are developed. 
Finally, the calculated CFs are benchmarked against avail-
able pre-calculated CFs in the USEtox organic substances 
database, highlighting differences and similarities stemming 
from ecotoxicity data selection.

2  Methods

2.1  Overview

The 64 chemicals identified as a potential threat to Euro-
pean drinking water comprised 24 PFAS, 17 triazines, and 
23 triazoles are listed in Table S1 in the Supplementary 
Information (SI). First, the study evaluated the coverage of 
these chemicals in the USEtox organic substances database 
(version 2.01). To calculate freshwater ecotoxicity CFs 
for the chemicals (both those covered and those not cov-
ered), the USEtox model (version 2.13) was used (Fantke 
et al. 2017; Rosenbaum et al. 2008). In USEtox, freshwater 

ecotoxicity CFs [PAF.m3.d/kgemitted] are calculated as the 
product of three factors in a matrix system of fate factors 
(FF) in kg.kg−1.d−1, environmental exposure factors (XF) 
are unitless, and freshwater ecotoxicological effect factors 
(EF) in PAF.m3.kg−1:

Data for FF, XF, and EF were collected from a range of 
publicly accessible sources. Experimental ecotoxicity data 
were retrieved from CompTox Version 2.1.1, having toxicity 
data from ToxValDB v9.1.1 (CompTox 2022; Williams et al. 
2017). In total, 5002 ecotoxicity data points were retrieved, 
covering 15 PFAS, 12 triazines, and 21 triazoles. These 
data points were subjected to the developed harmonization 
strategy described in Sect. 2.3. Estimated ecotoxicity data 
were retrieved from different quantitative structure–activity  
relationships (QSARs), including ECOSAR™ Version 
1.11 [n = 39] accessed through EPI Suite v4.11 (U.S.EPA 
2023b), US EPA TEST [n = 44] (U.S.EPA 2020), VEGA 
[n = 5] (VEGA HUB 2022), and Danish (Q)SAR database  
[n = 50] (Danish (Q)SAR 2022) with aquatic toxicity from 
DTU-developed models (Battery, Leadscope and SciQSAR). 
Physio-chemical data was retrieved from different sources, such 
as molecular weight (MW) through Chemspider (Chemspi-
der 2022); pKa chemical class (neutral, acid, base, and ampho-
ter), pKa.gain, and pKa.loss through Chemaxon (Chemaxon 
2022); and  KOW,  KOC, KH25C, Pvap25, Sol25, kdegA, kdegW, 
kdegSd, and kdegSl through EPI Suite v4.11(U.S.EPA 2023b).

In a recent publication, Owsianiak et al. (2023) pro-
vide new recommendations for ecotoxicity characteriza-
tion, stemming from collaborative efforts by the Eco-
toxicity Task Force and the SETAC Pellston Workshop. 
These recommendations include applying EC10 equiva-
lents to calculate EFs instead of EC50 values as in the 
original USEtox framework. However, as these recom-
mendations are not adopted by USEtox yet, this study 
uses USEtox (version 2.13). In addition, a PFAS-adapted 
USEtox model was previously developed by Holmquist 
et al. (2020) based on USEtox (version 2.1) to address 
the limitations of USEtox for calculating CFs for PFAS 
(Owsianiak et al. 2023). While this PFAS-adapted model 
can be expected to calculate more relevant CFs for PFAS 
in general, it also requires more input data (31 items as 
compared to 18 in the original model), which are dif-
ficult to obtain. To quantify the influence of this model 
adaptation, both the PFAS-adapted model and USEtox 
(version 2.13) were applied to calculate CFs for three 
PFAS compounds for which data were available in the 
PFAS-adapted model: perfluorooctanoic acid (PFOA), 
perf luorohexanoic acid (PFHxA), and perf luorobu-
tanesulfonic acid (PFBS) discharged to the freshwater 
compartment (disregarding the species richness and 

(1)CF = FF × XF × EF
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groundwater recirculation). The results revealed an 
average change in CFs of only 2.5% (ranging from 0 to 
7%), showing that the PFAS-adapted model and USEtox 
(version 2.13) provide similar CFs for these three PFAS. 
The potential to generalize conclusions is limited since 
only three substances were included in the comparison. 
However, considering these modest differences and the 
substantial additional data requirement of the PFAS-
adopted model, we conclude that using USEtox version 
2.13 without PFAS adaptations is justified in this work.

2.2  Transformation product screening strategy

Including every possible transformation byproduct from 
the 64 chemicals is infeasible. Therefore, a simplified 
in silico screening strategy was adopted to select the 
most relevant transformation products in terms of per-
sistence and ecotoxicity. First, potential transformation 
products were predicted for each parent chemical using 
two prediction tools: the United States Environmental 
Protection Agency’s Chemical Transformation Simulator 
(CTS) (Wolfe et al. 2016; Yuan et al. 2021) and enviPath 
(enviPath 2022; Wicker et al. 2016). Then, a persistence 
check was conducted by comparing the half-life of the 
parent chemical and three generations of its transfor-
mation products in water to exclude all transformation 
products that were less persistent than their respective 
primary chemical. The EPI Suite level III fugacity model 
with a fixed temperature of 25 °C was used to estimate 
the half-life in water (Aronson et  al. 2006; U.S.EPA 
2023b). The remaining transformation products were 
subjected to an ecotoxicity check by comparing predicted 
concentration that is lethal to 50% of the test species 
(LC50) for the fathead minnow for an exposure duration 
of 96 h of the parent and its respective transformation 
products, to exclude all the transformation products that 
were less toxic than their respective parent. To estimate 
ecotoxicity, the EPA Toxicity Estimation Software Tool 
(TEST) was applied (U.S.EPA 2020). Transformation 
products with greater or equal persistence and toxicity 
than their respective parent were added to the list of the 
64 chemicals. This procedure is described in more detail 
in Sheet S7 in the SI.

An alternative approach to including relevant trans-
formation products as separate chemicals would be to 
increase the parent compound CFs in proportion to the 
CFs of its transformation products as proposed by Van 
Zelm et al. (2010), acknowledging that the net impact of 
a chemical will be the sum of its impact and the impact of 
its transformation products. However, this is not done in 
this study since the estimation of transformation products 
here is not quantitatively stoichiometric.

2.3  Data harmonization strategy

For ecotoxicological effect data, a data harmonization 
strategy was developed since CFs have been shown to be 
particularly sensitive to this parameter (Holmquist et al. 
2020; Roos et al. 2017). The steps of this strategy are pro-
vided below in brief and explained in more detail in Sheet 
S6 in the SI:

 1. Chemical identifiers: Chemical Abstracts Service 
(CAS) registration numbers were matched with the 
respective reported chemical

 2. Ecosystem type: Freshwater data points were included, 
excluding data points referring to other ecosystems

 3. Data point qualifiers: Data points with numeric quali-
fiers such as >, ≥, <, and ≤ were excluded

 4. Data point unit: Units of all data points were con-
verted into mg/L, excluding data points unconvertible 
to this unit

 5. Endpoint classification: Data points endpoints were 
classified into NOEC eq, EC10 eq, EC50 eq, and 
LOEC eq, excluding data points referring to other 
endpoints

 6. Test species name: Tested species were assigned 
common species names as per US EPA ECOTOX 
(U.S.EPA 2023a)

 7. Species grouping: Data points of the tested species 
were classified into seven species groups: (i) algae and 
cyanobacteria, (ii) aquatic plants (other than algae), (iii) 
bacteria, (iv) fish, (v) crustacean invertebrates, (vi) other 
invertebrates, and (vii) vertebrates (Aurisano et al. 2019)

 8. Exposure duration: Exposure duration units of the 
data points were converted into days

 9. Acute/chronic exposure duration threshold: The 
chronic exposure duration threshold considered was 
1 day for algae, cyanobacteria, bacteria, and fungi; 
4 days for crustacean invertebrates; and 7 days for 
fish, other invertebrates, vertebrates, and aquatic plants 
other than algae (Aurisano et al. 2019; Payet 2004)

 10. Acute/chronic based on exposure duration: Data points  
were categorized as either acute or chronic by com-
paring their exposure duration with their respective 
chronic exposure duration threshold

 11. Species life stages and sensitivity: Test species’ life 
stages were categorized as either sensitive or non- 
sensitive. It was also noted whether the test was report-
edly chronic (e.g., chronic reproduction and chronic 
development)

 12. Acute/chronic based on life stages combined with risk 
assessment class: Data points categorized as acute  
based on their respective exposure duration threshold  
were considered. All acute data points from reportedly 
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chronic tests with sensitive life stages were categorized  
as chronic, as a precautionary approach

 13. Source availability: Data points with unavailable origi- 
nal sources were excluded

 14. Data type: Each data point was classified as either 
experimental or estimated. Estimated data points con-
sisting of QSAR generated results, expert judgment, 
and read-across data were excluded from the experi-
mental dataset

 15. Study reliability: The Klimisch score of the included 
data points was either 1 (reliable without restriction) 
or 2 (reliable with restrictions). Higher scores were 
excluded (Klimisch et al. 1997). In the absence of a 
Klimisch score, expert judgment was used to evaluate 
the reliability

 16. Endpoint harmonization: Endpoints were converted 
into chronic EC50

 17. Ecologically relevant effects: The relevance of the 
effects for aquatic ecosystems was checked, excluding 
data points with unclear relevance

 18. Most sensitive effect: Data points with the most sensi-
tive effect per study, per chemical, and per test spe-
cies were identified and included, excluding other data 
points

 19. Duplicate removal: Duplicate data points per chemical 
were removed

2.4  Benchmarking of characterization factors

To understand the relative freshwater ecotoxicity poten-
tial of the chemicals in this study compared to all the other 
chemicals in the USEtox 2.01 organic substances database, 
the harmonized datasets for PFAS, triazines, and triazoles 
are ranked against the USEtox 2.01 dataset. The study also 
examines correlations between being in a particular group 
of PM chemicals, such as PFAS, triazines, and triazoles, and 
related toxicity potential. Additionally, the calculated EFs 
of the 18 chemicals already covered in the database were 
compared to their pre-calculated USEtox EFs in the USEtox 
organic substances database. The robustness of the relation-
ship between our calculated EFs and pre-calculated USEtox 
EFs was determined through the coefficient of determination 
(R2) of log-transformed fit regression analysis.

2.5  Alternative data harmonization strategies

In our baseline strategy, all steps proposed in the data har-
monizing strategy were followed. However, in strategy 1, 
all data points with unacceptable numeric qualifiers, such 
as >, ≥, <, and ≤, were included, as done by other authors 
(Aurisano et al. 2023). All such qualifiers were then inter-
preted as “ = ”. In strategy 2, all data points were assumed 
to be acute and extrapolated to a chronic equivalent (a 

conservative approach). In strategy 3, step 18 of the harmo-
nizing scheme was removed, assuming all effects and end-
points as equally sensitive and relevant, respectively. Then, 
the correlation between the calculated EFs from the alterna-
tive strategies and the EFs from the baseline harmonizing 
strategy was assessed using the R2 of log-transformed fit 
regression analysis. These alternative strategies were imple-
mented to investigate the influence of disregarding certain 
data- and time-intensive steps on the results. The purpose 
of strategies 1 and 3 was to examine the influence of a more 
data-inclusive curation process. Strategy 2 removed the need 
to classify data as acute or chronic.

3  Results and discussion

This section first describes the identification of transfor-
mation products added to the list of chemicals. Second, it 
outlines the outcome of the ecotoxicity data collection and 
harmonization. Third, it details the coverage and calculation 
of CFs along with a comparative benchmarking against the 
USEtox database. Fourth, the section presents the outcome 
of applying alternative data harmonization strategies, fol-
lowed by a final comparison of estimated versus experimen-
tal data.

3.1  Identified transformation products

Three hundred twenty-two transformation products were 
identified; 166 from CTS and 156 from enviPath. In the 
persistency check, EPI Suite calculated half-lives for  
384 out of 386 chemicals, resulting in 78 transformation  
products being equally persistent and 242 being less  
persistent than their parent compounds. Only one compound 
(2-[(4-chlorophenyl)methyl]-5-(2-hydroxypropan-2-yl)-
1-[(1H-1,2,4-triazol-1-yl)methyl]cyclopentan-1-ol) was 
more persistent than its parent (ipconazole). In the toxicity 
check, TEST estimated the ecotoxicity of 162 out of 386 
chemicals, resulting in eight transformation products being 
more toxic and 109 being less toxic than their respective  
parent. However, for 19 parents (one PFAS, nine triazines, 
and nine triazoles), TEST could not estimate a toxicity value. 
Out of the 79 transformation products identified as having 
equal or greater persistence, only three were more toxic: 
difenoconazole-ketone, 1-(2,4-dichlorophenyl)-2-(1H-1,2,4-
triazol-1-yl)ethenone, and 1-[(2Z)-3-(2-Chlorophenyl)-2-(4-
fluorophenyl)prop-2-en-1-yl]-1H-1,2,4-triazole. These three 
were thus added to the list for data collection. However, as 
no experimental data were available for these chemicals, 
only estimated values from ECOSAR™ Version 1.11 [n = 3] 
accessed through EPI Suite v4.11 (U.S.EPA 2023b) and  
US EPA TEST [n = 3] (U.S.EPA 2020) were included in 
calculating their CFs. As this study departs from a list of 
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water supply-relevant contaminants, which already includes 
several transformation products alongside parent chemicals, 
the addition of chemicals to this list was relatively limited 
and this procedure is expected to have additional relevance 
in assessments of PM chemicals in commercial products.

3.2  Data collection and harmonization results

The data harmonization strategy in Sect. 2.3 was applied to 
the ecotoxicity data retrieved from CompTox Version 2.1.1. 
In total, 5002 experimental ecotoxicity data points were 
retrieved, covering 600 data points for 15 PFAS, 2586 data 
points for 12 triazines, and 1816 data points for 21 triazoles. 
The number of data points available per chemical ranges 
from only 1 for 1H,1H,2H,2H-perfluorohexanesulphonic 
acid to 1540 for atrazine. Data points availability per chemi-
cal for different chemical groups also vary, with an average 
and standard deviation of 40 and 61 for PFAS, 216 and 365 
for triazines, and 86 and 88 for triazoles.

No data point was excluded at step 1, but step 2 
resulted in exclusion of 2160 data points related to 
the terrestrial ecosystem. Step 3 resulted in the exclu-
sion of 250 data points with uncertain numeric quali-
fiers: > [n = 208], ≥ [n = 3], < [n = 37], and ≤ [n = 2]. The 
remaining data points [n = 2495] were checked for consist-
ent units of mg/L in step 4, resulting in the exclusion of 96 
data points with unconvertible units (g/ha, mg/kg-day, mg/kg 
bdwt, mg/kg food, etc.). In step 5, data points were classified 
under four predefined effect endpoints (NOEC eq; EC10 eq; 
EC50 eq; and LOEC eq), resulting in the exclusion of 203 
data points with unclassified endpoints (EC25, EC90, IC25, 
LC90, NR-LETH, etc.). From step 6 to 14, only one data 
point was excluded at step 8. Step 15 resulted in the exclu-
sion of 22 data points with Klimisch score of 3 or 4. Steps 
16 and 17 resulted in no exclusions but in step 18, 1080 
data points with either less sensitive effects or less relevant 
endpoints (in individual comparisons within the dataset of 
single studies) were excluded. At step 19, there were no 
duplicates remaining, resulting in no exclusion.

After harmonization, the final set contained 1189 data points; 
174 points for 14 PFAS, 668 points for 12 triazines, and 347 
points for 21 triazoles. There was a loss of one PFAS chemical, 
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoic acid, hav-
ing initially seven data points, but five were excluded at step 2 
(belonging to the terrestrial ecosystem) and two were excluded 
at step 3 with uncertain numeric qualifiers “ > ”. Harmonized 
data point availability per chemical ranged from one for per-
fluorohexanesulfonic acid, perfluoroheptanoic acid, 2,2,3-Trif-
luoro-3-(1,1,2,2,3,3-hexafluoro-3-(trifluoromethoxy)propoxy)
propanoic acid, and 1H,1H,2H,2H-Perfluorohexanesulphonic 
acid, to 487 for atrazine. Data point availability per chemical 
also varied, with an average and standard deviation of 12 and 18 
for PFAS, 54 and 116 for triazines, and 16 and 21 for triazoles.

In terms of the number of species and species groups, the 
final experimental harmonized dataset includes an average of 
10 species and three species groups per chemical, with an aver-
age of five species and two species groups for the 14 PFAS 
compounds, 20 species and four species groups for the 12 
triazines, and nine species and four species groups for the 21 
triazoles. The number of species per chemical ranges from one 
for five PFAS compounds and one triazine to 140 for atrazine. 
Additionally, the number of species groups also varies, ranging 
from one for six PFAS compounds and one triazine to seven 
for tebuconazole.

The data encompasses a wide temporal range, spanning 
from 1965 to 2020. The harmonized dataset includes data 
points distributed as follows: 58% after 2004 and 35% after 
2010. The year 2004 is significant because it was the cut-off 
year for most of the data included in the current USEtox data-
base. The distribution varies for different chemical groups. For 
PFAS, the distribution is 90% after 2004 and 77% after 2010, 
indicating that a significant portion of the data for PFAS was 
produced in the last decade. For triazines, the distribution is 
44% after 2004 and 22% after 2010, so most of that data is 
older than two decades. For triazoles, the distribution shows 
69% after 2004 and 39% after 2010, so most of that data was 
produced within the last two decades.

To investigate the variability of QSAR estimates in CF 
calculations and to fill experimental data gaps, the combined 
estimated ecotoxicity data retrieved from ECOSAR™ Ver-
sion 1.11 [n = 39], US EPA TEST [n = 44], and Danish (Q)
SAR database [n = 50] (Danish (Q)SAR Database 2022) were 
harmonized according to the proposed harmonizing scheme 
in Sect. 2.3. VEGA data within applicability range are only 
available for 5 chemicals so not used in this study. ECOSAR™ 
Version 1.11 covers the species fish, daphnid, and green algae, 
US EPA TEST covers daphnia and fathead minnow, and the 
Danish (Q)SAR database covers daphnia magna, fathead min-
now, and Pseudokirchneriella subcapitata. The final estimated 
harmonized data contained 524 data points covering 161 data 
points for 21 PFAS, 158 data points for 17 triazines, and 205 
data points for 21 triazoles. In terms of the number of species 
and species groups, the overall average was four species and 
three species groups per chemical, with an average of three 
species and two species groups for the 21 PFAS, five species 
and four species groups for the 17 triazines, and four species 
and four species groups for the 21 triazoles. All data can be 
found in the SI, Table S5.

3.3  Characterization factor calculation 
and benchmarking

This study evaluated the coverage of the 67 chemicals in the 
USEtox organic substances database (version 2.01), showing 
that USEtox currently covers none of the 24 PFAS, 10/17 
triazines, and 8/23 triazoles, resulting in an overall coverage 
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of 30% (18/64). This finding indicates a lack of CFs for PM 
substances relevant for drinking water systems especially 
PFAS. The 67 CFs calculated are shown in Fig. 1 and listed 
in Table S2 in the SI. As can be seen, they range almost six 
orders of magnitude. Nearly 70% of the CFs (47/67) were 
calculated using experimental data (14 PFAS, 12 triazines, 
and 21 triazoles), implying an experimental data gap of 30%. 
To address this data gap, estimated ecotoxicity data from 
QSARs were obtained for an additional 17 chemicals (8 
PFAS, five triazines, one triazole, and three transformation 
products). Then, a data gap remained for three chemicals 
(two PFAS and one triazole). To fill those data gaps for the 
two PFAS, a simplified regression analysis was explored 
as explained in Table S4 in the SI, relating the number of 
perfluorinated carbons to the calculated CFs as shown in 
Figure S1. However, as the correlation was low, these values 
were not used in this study. Instead, the average of the other 
22 PFAS was used to fill the data gaps for the two last PFAS. 
For the single remaining triazole, a CF was also calculated 
using the average CF of the other 22 triazoles.

The CFs of the transformation products of difenocona-
zole-ketone, 1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-
1-yl) ethenone, and 1-[(2Z)-3-(2-chlorophenyl)-2-(4-fluo-
rophenyl)prop-2-en-1-yl]-1H-1,2,4-triazole are 9%, 7%, and 
13% of their respective parent chemicals. One might have 
expected the transformation product CFs would be larger 
given the initial assessment that identified them as more 
persistent and toxic, but the more comprehensive calculation 
after full data curation for these three chemicals means that 

additional ecotoxicity data for three species were included 
in the calculation, rather than the single species (fathead 
minnow) considered in the initial assessment. Nevertheless, 
in absolute terms, the CFs for these three range from 3 ×  103 
to 4 ×  104 PAF.m3.d.kg−1, which places them in the center 
of the range in Fig. 1.

The calculated CFs were benchmarked against the pre-
calculated CFs in the USEtox organic substances database 
(version 2.01) [n = 2499]. To illustrate this variability, box 
plots depicting the range of CFs for different PM chemi-
cal groups and the USEtox organic substances database are 
presented in Figure S4 in Sheet S8 in the SI. These plots 
provide a visual representation of the distribution of CFs, 
highlighting the wide range of values for each chemical 
group and that all chemicals considered here are within the 
range of CFs in the USEtox database.

In this study, EFs were calculated with experimental data 
for 18 chemicals that were already present in the USEtox 
database. These EFs were compared to the original EFs from 
the USEtox organic substances database (version 2.01), as 
shown in Fig. 2. The regression analysis yielded an R2 of 
0.63, indicating a moderate correlation. The corresponding 
regression analysis for CFs yielded an R2 of 0.69, also indi-
cating a moderate correlation. Nevertheless, when exclu-
sively altering the ecotoxicity values of chemicals shared 
between this study and the original USEtox dataset (keep-
ing all other fate and exposure-related data constant), the R2 
notably improved to 0.99. This observation implies that the 
fluctuations in CFs are predominantly related to differences 
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Fig. 1  Calculated freshwater ecotoxicity CFs for 67 chemicals (24 PFAS, 17 triazines, 23 triazoles, and 3 transformation products). Forty-seven 
CFs were calculated using experimental data, 17 with QSAR data, and 3 with group averages
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in ecotoxicity values rather than other input data, aligning 
with previous findings (Holmquist 2020; Roos et al. 2017).

The original USEtox ecotoxicity factors were calculated 
based on two databases with only EC50 values, namely, 
acute EC50 values from the e-toxBase database of the 
National Institute for Public Health and the Environment 
(RIVM), accessed through van Zelm et  al. (2009) and 
Zelm et al. (2007). Furthermore, chronic and acute EC50 
data from ECOTOX and IUCLID accessed through Payet 
(2004) were included, applying an acute-to-chronic ratio to 
derive the chronic values (Fantke et al. 2015). Therefore, 
benchmarking the CFs calculated in this study against the 
pre-calculated USEtox CFs serves as a temporal sensitivity 
test, considering the addition of new ecotoxicity data. For 
18 chemicals, 51% data points were obtained since 2005 and 
28% since 2011. This highlights that including new ecotox-
icity data can notably influence CFs due to the dominant 
influence of EFs in the CF calculations. The original USE-
tox factors were published with ecotoxicity data sets that 
are now more than a decade old, and the new data generated 
since then, incorporated in the CFs calculated herein, has 
contributed to changing the CFs. Furthermore, since an EF 
is based on an average ecotoxicity among species, adding 
data for more species should make the EF more representa-
tive of a range of species.

3.4  Influence of data sources and harmonization

In the baseline data harmonization strategy, the final harmo-
nized data consisted of 1189 data points. After harmoniza-
tion, strategy 1 included 1336 points for 48 substances (198 
points for 15 PFAS, 747 points for 12 triazines, and 391 
points for 21 triazoles). Strategy 2 included 1215 points for 
47 substances (180 points for 14 PFAS, 687 points for 12 

triazines, and 348 points for 21 triazoles). The increase in 
data points compared to the baseline strategy stems from 
step 18, where the preferred order was modified to EC50 eq 
acute > EC10 eq acute > LOEC eq acute > NOEC eq acute 
in the absence of chronic data. As availability of acute data 
tends to be higher than chronic data, this modification 
resulted in more data inclusions compared to the baseline 
strategy. Strategy 3 included 2214 data points for 47 sub-
stances (342 data points for 14 PFAS, 1246 data points for 
12 triazines, and 626 data points for 21 triazoles).

The calculated EFs [n = 47] from different strategies were 
correlated with EFs calculated using the baseline harmoniz-
ing strategy. In strategy 1, the R2 value was 0.94, indicating a 
strong correlation as shown in Fig. 3. This suggests that the 
removal of unacceptable numeric qualifiers had low influ-
ence on most of the EFs in this study that may not be valid 
always. In strategy 2, the R2 was 0.99, indicating a strong 
correlation. This suggests that the classification of acute and 
chronic effects did not notably affect most EFs (note that this 
could be different if the data harmonization scheme would 
only include chronic data). In strategy 3, the R2 was 0.94, 
again indicating a strong correlation. This suggests that con-
sidering only sensitive effects and relevant endpoints does 
not have a notable influence on most of the EFs.

The final harmonized dataset consisted of 42% chronic 
and 58% acute data points. The acute data were extrapolated 
to chronic equivalents as per step 16 before calculating CFs. 
The distribution varied across different chemical groups, 
with PFAS having 60% acute and 40% chronic data, tria-
zines having 55% acute and 45% chronic data, and triazoles 
having 62% acute and 38% chronic data. Thus, the majority 
of experimental data was based on acute tests. This was not 
surprising as chemical hazard testing almost always starts 
with acute tests, which are then followed up with chronic 

Fig. 2  Log-transformed fit 
regression analysis of pre-
calculated USEtox version 2.13 
database EFs versus calculated 
EFs with experimental ecotoxic-
ity data from this study (n = 18, 
 R2 = 0.63)
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effect testing. However, extrapolation from acute to chronic 
effects adds uncertainty to the CF.

3.5  Comparing QSAR models with experimental data

To compare EFs based on experimental versus combined 
estimated ecotoxicity data, a regression was made between 
the EFs calculated with experimental data and EFs based on 
ecotoxicity data estimated by combining the results of the 
five QSARs [n = 45]. The resulting R2 was 0.37, as shown 
in Fig. 4, indicating a weak correlation. The calculation sug-
gested that the QSARs-derived EFs are within two orders 
of magnitude of the experimental values for most of the 
chemicals. Furthermore, the R2 varies notably for different 
chemical groups. For PFAS [n = 13], the R2 was 0.0006, 
indicating no correlation. In contrast, for triazines [n = 12], 
the R2 was 0.31, indicating only weak correlation. Lastly, 
for triazoles [n = 20], the R2 was 0.50, indicating moderate 
correlation. These findings reflect the relatively low ability 

of the QSARs to provide accurate ecotoxicity data to the CF 
calculations in this study.

To assess the relative reliability of EFs derived from 
different QSAR models, the EFs calculated with the two 
QSARs that correlated best with the experimental EFs were 
considered individually. (Results for all five QSARs are pro-
vided in Table S1 in SI). For the ECOSAR QSAR of EPI 
Suite [n = 33], the resulting R2 value was 0.36, as shown in 
Fig. 5. This indicates a weak correlation between the cal-
culated EFs and the experimental EFs from ECOSAR. For 
different chemical groups, the R2 varied considerably. The 
R2 cannot be calculated for PFAS due to a low number of 
data points [n = 2]. For triazines [n = 12], the R2 was 0.14, 
indicating a very weak correlation. For triazoles [n = 19], the 
R2 was 0.46, suggesting a moderate correlation.

For the TEST QSAR [n = 33], the R2 was 0.53, indicating 
a better correlation between the EFs calculated with esti-
mated data and those based on experimental data compared 
to ECOSAR. The R2 was 0.29 for PFAS [n = 12] and 0.66 
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Fig. 3  Log-transformed fit regression analysis of calculated EFs for 
three harmonization strategies (strategy 1: including data points with 
unacceptable numeric qualifiers, strategy 2: assuming all data points 
to be acute and extrapolated to a chronic equivalent, and strategy 3: 

assuming all effects and endpoints as sensitive and relevant) against 
the baseline strategy using all current data revealing a strong correla-
tion in strategy 1 (n = 47,  R2 = 0.94), strategy 2 (n = 47,  R2 = 0.99), 
and strategy 3 (n = 47,  R2 = 0.94)

Fig. 4  Log-transformed fit 
regression analysis of calculated 
EFs based on estimated versus 
experimental ecotoxicity data 
(n = 45,  R2 = 0.37). For different 
chemical groups, there is no 
correlation for PFAS (n = 13, 
 R2 = 0.0006), weak correlation 
for triazines (n = 12,  R2 = 0.31), 
and a moderate correlation for 
triazoles (n = 20,  R2 = 0.50). 
Dashed lines show 95% confi-
dence intervals

0.1

1

10

100

0.1 10
EFs from experimental data [PAF.m3.kg-1]

Chemical_group
PFAS
Triazine
Triazole



The International Journal of Life Cycle Assessment 

1 3

for triazoles [n = 13]. These regression results suggest that 
TEST offers greater reliability for calculating EFs for the 
selected chemicals than the other QSARs examined.

A “species selection bias” might arise due to the lim-
ited number of species covered by QSAR models (algae, 
daphnid, and fish for ECOSAR (not further specified); fat-
head minnow and Daphnia magna for US EPA TEST, pseu-
dokirchneriella green algae for the Danish (Q)SAR). Differ-
ences in coverage also include both type of endpoints and 
test duration. Considering these differences in the coverage 
of species and effects, the low correlation obtained between 
experimental and estimated EFs might not reflect the general 
performance of the QSARs.

4  Conclusions

In this paper, we followed an approach through which eco-
toxicity CFs for 67 chemicals could be provided, including 
49 previously not characterized. The benchmarking with 
pre-calculated CFs from the USEtox database demonstrates 
that these CFs fall within the range of CFs currently pre-
sent in the USEtox database. Additionally, comparing CFs 
for chemicals present in the original USEtox database with 
new calculations in this study demonstrates the influence 
of including up-to-date toxicity data. The new data influ-
enced the CFs notably and underscore the importance of 
continuous toxicological research and updating of toxicity 
data in databases to ensure more reliable ecotoxicity CFs. 
When comparing EFs based on experimental and estimated 
ecotoxicity data, a weak correlation emerged. This implies a 
modest ability of the QSARs to provide accurate ecotoxicity 
data to the CF calculations in this study. Further develop-
ment of QSAR methods that can provide ecotoxicological 
data relevant for CF calculations is therefore required.

This paper’s focus on ecotoxicity led to the develop-
ment of an ecotoxicity data harmonization strategy to 

ensure consistency and transparency during CF calcula-
tions. Ecotoxicity data are a critical input parameter, but 
even after obtaining such data, harmonizing it to the USE-
tox format can be difficult. Such data are collected for 
different purposes, such as chemical risk assessment, lead-
ing to variations in endpoints, units, and effects. Unless 
harmonized, inconsistencies in underlying ecotoxicity data 
can propagate into the calculated CFs, or data gaps can 
arise if inconsistent data are omitted instead of harmo-
nized. Alternative data harmonization strategies were con-
sidered in this study, involving the inclusion and exclusion 
of numeric qualifiers, classification of acute or chronic 
exposure durations, and the classification of effects and 
endpoints as sensitive and relevant. The results obtained 
from these different harmonization strategies show a high 
correlation, indicating that the details of the harmonization 
strategy do not alter the relative ranking of CFs notably.

We also developed a screening strategy to include the 
most important transformation products from the original 
64 chemicals. Since several of the parent chemicals con-
sidered are already transformation products, few additional 
transformation products with higher persistence and toxic-
ity were identified in the screening. However, if the screen-
ing strategy would be applied to PM substances released 
from commercial products, we expect a larger number of 
identified transformation products. Nevertheless, LCIA 
requires further development regarding the inclusion of 
transformation products along with their parent chemicals. 
This is particularly relevant for PM chemicals considering 
how these compounds can persist in the environment long 
after the total degradation of their parent compounds.
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