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Building energy forecasting facilitates optimizing daily operation scheduling and long-term energy planning. 
Many studies have demonstrated the potential of data-driven approaches in producing point forecasts of energy 
use. Despite this, little work has been undertaken to understand uncertainty in energy forecasts. However, many 
decision-making scenarios require information from a full conditional distribution of forecasts. In addition, recent 
advances in deep learning have not been fully exploited for building energy forecasting. Motivated by these 
research gaps, this study contributes in two aspects. First, this study has adapted and applied state-of-the-art 
deep learning architectures to address the problem of multi-horizon building energy forecasting. Eight different 
methods, including seven deep learning-based ones, were investigated to develop models to perform both point 
and probabilistic forecasts. Second, a comprehensive case study was conducted in two public historic buildings 
with different operating modes, namely the City Museum and the City Theatre, in Norrköping, Sweden. The 
performance of the developed models was evaluated, and the predictability of different scenarios of energy 
consumption was studied. The results show that incorporating future information on exogenous factors that 
determine energy use is critical for making accurate multi-horizon predictions. Furthermore, changes in the 
operating mode and activities held in a building bring more uncertainty in energy use and deteriorate the 
prediction accuracy of models. The temporal fusion transformer (TFT) model exhibited strong competitiveness 
in performing both point and probabilistic forecasts. As assessed by the coefficient of variance of the root mean 
square error (CV-RMSE), the TFT model outperformed other models in making point forecasts of both types of 
energy use of the City Museum (CV-RMSE 29.7% for electricity consumption and CV-RMSE 8.7% for heating 
load). When making probabilistic predictions, the TFT model performed best to capture the central tendency and 
upper distribution of heating load of the City Museum as well as both types of energy use of the City Theatre. 
The predictive models developed in this study can be integrated into digital twin models of buildings to discover 
areas where energy use can be reduced, optimize building operations, and improve overall sustainability and 
efficiency.
1. Introduction

Building energy forecasting is essential for energy efficiency, lower-
ing energy use and greenhouse gas emissions. For example, short-term 
energy forecasting (for the next several hours or a few days) gives 
valuable references to facility managers. Maintainers can thus opti-
mize daily operation scheduling [1] and design cost-effective energy-
saving methods [2] while still ensuring the functions of a building. 
Medium- and long-term forecasting are useful for renovating build-
ings, e.g., examining a design during an early phase [3], as well as 
government policy-making for energy planning [4]. In addition to the 
demand side, building energy forecasting is also critical to the sup-
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ply side. For instance, because of the rising energy demand (in 2021, 
30% of the world’s total energy use was attributed to the operation of 
buildings [5]), energy companies must manage energy production more 
efficiently [6]. Accurate demand forecasting enables these companies to 
obtain sustainable production plans. Energy forecasting models can fur-
ther be integrated into a digital twin model of the energy system of a 
building or a digital twin model of the entire building. Creating a dig-
ital twin of a building can combine information and communication 
technologies, such as Internet of Things, cloud computing, and ontol-
ogy [7], to model its critical functional areas. By integrating predictive 
models, the digital twin can simulate energy use in different operating 
modes and conditions. This can be used to optimize building operations 
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and ultimately result in cost savings, improved human comfort, and a 
more sustainable built environment.

Accurate and reliable building energy forecasting also has several 
challenges. On one hand, energy systems of a building or a cluster 
of buildings can be complex and dynamic due to trend, seasonality 
and irregularity [4]. On the other hand, exogenous factors, such as 
outdoor climate, thermal characteristics of a building envelope, and 
occupants’ energy use habits, can affect the energy consumption of a 
building [8,9]. For example, thermal characteristics of a building enve-
lope, e.g., insulation levels, determine the amount of heat gained or lost 
through the envelope, which affects the energy required to maintain a 
comfortable indoor temperature.

Methods for building energy forecasting can be broadly classified 
into three categories: physical, data-driven, and hybrid approaches that 
integrate physical and data-driven approaches. Physical approaches 
adopt thermodynamic rules for precise energy modeling and analysis. 
They often rely on building energy simulation software, e.g., Energy-
Plus [10], to calculate the energy consumption of a building based on 
characteristics of the building structure, design specifications of heat-
ing, ventilation, and air-conditioning (HVAC) systems and lighting sys-
tems, operation schedules, as well as indoor or outdoor climate [8]. 
Physical approaches have benefits in interpreting results and are excel-
lent at simulating energy consumption during the design phase [11]. 
However, the dependency on building characteristics limits the appli-
cation scenario of physical approaches since many historic buildings 
lack such data, and it is labor-intensive to obtain these data or even 
not allowed to obtain them due to regulations concerning preservation. 
In contrast to physical approaches, detailed physical characteristics of 
building structures are not necessary for data-driven approaches [12]. 
Data-driven approaches leverage historical energy consumption and 
other data to develop predictive models. These data are becoming more 
readily available with the digital transformation in buildings, for exam-
ple, deploying monitoring systems [13] through integration of Internet 
of Things devices and cloud computing [14,15]. Therefore, it is neces-
sary to fully utilize the accumulated data to create advanced data-driven 
energy forecasting models for optimizing building operations.

Deep learning methods have emerged among data-driven ap-
proaches in recent years due to their enhanced ability to address 
massive volumes of data, extract features, and model nonlinear pro-
cesses [1]. Open-source frameworks like PyTorch [16] have also dra-
matically simplified network implementation and model training. There 
have been many studies using deep learning techniques, such as re-
current neural network (RNN) and its variants [2,17–19], temporal 
convolutional network (TCN) [6], and attention mechanism-based net-
work [20,21], for one-step-ahead or multi-horizon building energy 
forecasting. Nevertheless, most studies focused on point forecast, that 
is, forecasting the conditional mean or median of future values of the 
target energy consumption. Only limited cases [22] studied probabilis-
tic forecast.

Recently, probabilistic forecasting has grown in popularity because 
it can extract deeper information from historical data and better cap-
ture future uncertainty [23]. Many decision-making scenarios require 
more information from a probabilistic forecasting model that returns 
the full conditional distribution rather than a point forecasting model 
that merely forecasts the conditional mean [24]. In addition, limited 
work [19] adopted the operational data, such as opening hours and 
occupancy, of buildings as features for making multi-horizon predic-
tions. On the one hand, this may be related to the building type of the 
case study. On the other hand, data collection is also tricky. Neverthe-
less, scheduling, such as opening hours and activity arrangements, is 
critical for public buildings because it determines public access and en-
ergy consumption. Moreover, in terms of predicted energy use, most 
deep learning-based studies only predict total energy consumption or 
one particular type. Further comparisons of the predictability of var-
ious types of energy use are needed. Furthermore, previous research 
2

mainly selected three types of buildings for case studies: residential, of-
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fice, and educational. Limited work chose public historic buildings as 
case studies. However, energy forecasting is equally important for these 
buildings to optimize daily operations while maintaining functionality 
and preserving heritage values [25].

This study aims to use state-of-the-art deep learning architectures 
to address the problem of multi-horizon building energy forecasting. In 
addition to performing point forecasts, we involve probabilistic fore-
casts to measure and interpret the uncertainties in forecasts. Moreover, 
we propose to incorporate future information on exogenous factors, es-
pecially the operational data of a building, to improve the accuracy of 
multi-horizon forecasting. The main contributions of the paper are:

• In addition to linear regression, we adapted and applied seven deep 
learning architectures, including hierarchical interpolation for time 
series forecasting (N-HiTS), TCN, Transformer (TF), NLinear, long 
short-term memory (LSTM), gated recurrent unit (GRU), and tem-
poral fusion transformer (TFT), to the field of multi-horizon build-
ing energy forecasting. Among them, N-HiTS and NLinear were 
improved to support performing probabilistic forecasts based on 
quantile regression.

• A comprehensive case study was conducted in two public historic 
buildings with different operating modes to evaluate the perfor-
mance of developed models. The obtained results provide insights 
for subsequent studies of public historic buildings with similar op-
erating modes. The findings indicate that involving strong influenc-
ing factors makes energy consumption more predictable. Moreover, 
incorporating future information on exogenous factors that deter-
mine energy use is critical for enhancing multi-horizon building 
energy forecasting. The TFT model shows competitiveness in both 
point and probabilistic forecasts. Furthermore, involving building 
operational data, such as opening hours, can improve the predic-
tion accuracy of models.

The remainder of this paper is organized as follows. After discussing 
related work in Section 2, the detailed methodology for conducting this 
study is described in Section 3. Then, a case study, including a detailed 
description of the dataset and experimental setup, is given in Section 4. 
After that, Section 5 presents and discusses the obtained results. The 
last section concludes the paper.

2. Related work

Energy consumption of a building is a form of time series, a se-
quence of values recorded over time (typically at constant intervals) 
and organized chronologically [26]. Therefore, this section starts with 
foundational deep learning methods and recent architectures for time 
series forecasting. Then, studies on deep learning-based building energy 
forecasting are presented.

2.1. Foundational deep learning methods for time series forecasting

Fully connected networks, like artificial neural networks (ANNs) and 
deep neural networks (DNNs), have limitations in extracting temporal 
dependencies of a time series. As a result, more specialized deep learn-
ing architectures, such as RNNs, convolutional neural networks (CNNs), 
and attention mechanism-based networks, began gaining prominence in 
time series forecasting. Vanilla RNN has a hidden state that serves as a 
concise summary of previous inputs in a sequence. The hidden state is 
recursively updated at each time step after processing new inputs. How-
ever, the vanishing and expanding gradient problems limit the learning 
ability of vanilla RNNs. Two variants of RNNs, namely LSTM [27] and 
GRU [28], address the gradient problems. LSTM employs three gates to 
retain long-standing essential information while discarding nonessential 
information. GRU simplifies LSTM and is computationally faster than 

LSTM since it only has two gates.
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Fig. 1. Selected key research milestones within deep learning architectures for 
time series forecasting.

Recent research suggests that specific CNNs can achieve state-of-
the-art accuracy in various application domains of sequence modeling, 
such as audio synthesis and autonomous driving [29,30]. CNNs are built 
with convolution, pooling, and fully connected layers [31]. The convo-
lution layers learn features from input data by filters with a predefined 
size. Then, pooling layers process the convolution results by average 
or maximum pooling. Finally, the flattened features produced by the 
convolutional and pooling layers provide the input for fully connected 
layers to perform the forecasting. Parallelism is an essential advantage 
of CNNs, as convolutions can be performed in parallel because the same 
filter is used in each layer.

There is a growing interest in understanding how and why a model 
makes a particular prediction. Based on a better understanding of tem-
poral dynamics and the rationale behind a forecast, decision-makers can 
improve their actions further. Attention mechanism [32] has become 
an intrinsic part of sequence modeling in various tasks. The attention 
mechanism is a key-value lookup technique depending on a provided 
query. For time series modeling, the output of the attention layer can 
be interpreted as a weighted average across temporal features. An anal-
ysis of attention weights can thus determine the relative importance of 
features at each time step [33].

2.2. Recent deep learning architectures for time series forecasting

Recent competitive deep learning architectures for time series fore-
casting, as summarized in Fig. 1, are mainly built on previous advances. 
RNN (and its variants)-based architectures include MQ-RNN [24] and 
DeepAR [34]. Both MQ-RNN and DeepAR aim to handle the challenge 
of large-scale time series forecasting. Rather than predicting each time 
series individually, they learn a global model from historical data for 
all time series in a dataset. Meanwhile, they both employ an LSTM for 
encoding all historical information into hidden states. Unlike DeepAR 
uses an LSTM as the recursive decoder when generating forecasts, MQ-
RNN adopts two multilayer perceptron branches. In addition, while 
DeepAR is trained using maximum likelihood and teacher forcing (feed-
ing ground truth recursively in training) [34], MQ-RNN uses a more ef-
ficient training technique and generates quantile forecasts directly [24].

Convolution-based architectures include MQ-CNN [24], TCN [35], 
and DeepTCN [23]. MQ-CNN has a similar architecture with MQ-RNN 
by just replacing the encoder with a stack of dilated causal 1D con-
volution layers [36]. Bai et al. [35] built TCN by condensing dilated 
and causal convolution. In addition, TCN employs a generic residual 
module [37] for stabilization. Based on TCN, Chen et al. [23] proposed 
DeepTCN as a non-autoregressive probabilistic forecasting framework 
for large-scale related time series. Like MQ-CNN, DeepTCN follows an 
3

encoder-decoder design.
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A representative of attention-based architectures is Transformer 
(TF) [38]. While the attention mechanisms are used together with RNN 
in many cases, Vaswani et al. [38] proposed the TF, which relies entirely 
on attention mechanisms to draw global dependencies between input 
and output. Self-attention enables linking different positions in the se-
quence, while multi-head attention enables the model to attend to infor-
mation from distinct representation subspaces at different points [38]. 
Based on TF, FEDformer [39] further incorporates classical time series 
analysis techniques like frequency processing through Fourier trans-
formation. Lim et al. [40] created TFT using canonical components, 
such as gated residual network, LSTM, and multi-head attention. Gat-
ing mechanisms enable TFT to skip over any unused components of 
the architecture, providing adaptive depth and network complexity to 
accommodate a wide range of datasets and scenarios. Some studies 
questioned the validity of Transformer-based solutions for long-term 
time series forecasting tasks. For example, Zeng et al. [41] proposed a 
simple direct multi-step model through a linear temporal layer named 
LTSF-Linear. In many cases, it outperforms FEDformer [39] on multi-
horizon forecasting of multivariate time series.

Some architectures are based on a deep stack of fully connected 
layers, such as N-BEATS [49] and its improved version N-HiTS [50]. 
Oreshkin et al. [49] proposed N-BEATS, an architecture built on back-
ward and forward residual links and a very deep stack of fully connected 
layers. Challu et al. [50] enhanced the N-BEATS architecture by improv-
ing its input decomposition through multi-rate data sampling and its 
output synthesizer through multi-scale interpolation. N-HiTS adds sub-
sampling layers before fully-connected blocks in N-BEATS. This modi-
fication dramatically decreased the required computation and memory 
usage while retaining the capacity to capture long-term dependencies.

2.3. Deep learning-based building energy forecasting

Many studies have employed deep learning to predict the en-
ergy consumption of buildings. As shown in Table 1, the architec-
tures used include RNN and its variants [2,17–19,47,48], convolution-
based [6,48], attention-based [20,21], deep belief network (DBN) [43,
45], and hybrid models [9,42,44] that combine multiple architec-
tures. Both one-step ahead [3,17,18,42–45] and multi-horizon forecast-
ing [2,6,9,19–21,43,48] were investigated. However, most studies only 
performed point forecasts. Furthermore, there is a need for studies that 
apply cutting-edge competitive architectures, such as TFT and N-HiTS, 
to building energy forecasting and a thorough comparison of these most 
recent and older architectures.

Most studies used energy data from residential [3,17,21,46], educa-
tional [2,9,20,48], and office buildings [18,19,22,44,47]. Models were 
mainly developed using time granularity of hourly and sub-hourly data, 
and only a few [44] used daily data. The time span of data in most 
datasets was less than three years, and only a few studies employed 
datasets longer than three years [20,44]. For the type of predicted 
energy use, most studies only predicted one kind or total energy con-
sumption. Few studies used public historic buildings for case studies. 
However, energy forecasting is also critical for these buildings to opti-
mize daily operations while maintaining their functionalities and pre-
serving heritage values.

Outdoor weather and historical energy consumption were the most 
commonly used features for predicting energy consumption, regardless 
of building type. In contrast, data about occupants’ behavior [19] was 
rarely utilized. This preference for features is primarily due to more 
readily available outdoor weather data. Outdoor weather, for example, 
can be gathered from many public databases. However, privacy policies 
make obtaining features such as occupants’ behavior challenging [11]. 
Other used features include indoor environmental parameters, such as 
room temperature and relative humidity, as well as temporal features, 
e.g., the type of day (weekday, weekend, or holiday) and the type of 
hour (daytime or nighttime) [8]. Building operational data like opening 

hours and scheduling of HVAC systems were rarely used. Nevertheless, 
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Table 1

A summary of related work that employed deep learning to predict energy consumption of buildings. For comparison with 
previous studies, this work is also listed. Missing information is represented by a dash -.

Study Dataset Deep learning 
architecture

Forecast setup

Building type Predicted energy Time span Time granularity Horizon Type
[17] residential electricity 3 months 30 minutes LSTM 1 point
[20] educational electricity/ 

cooling/heating
36 months 1 hour TF 24 point

[3] residential total 12 months 1 year DNN 1 point
[9] educational electricity 12 months 15 minutes CNN/LSTM 4 point
[2] educational cooling 12 months 30 minutes RNN/ 

LSTM/GRU
48 point

[21] residential electricity 11 months 1 hour TFT 1/24 point
[42] industrial electricity 17 months 1 hour TCN 1 point
[6] infrastructure electricity 15 months 1 hour TCN 48 point
[43] non-residential electricity 4 months 1 hour DBN 1 point
[44] office electricity 36 months 1 day LSTM/TF 1 point
[19] office electricity 2 months 1 hour LSTM 24 point
[18] office cooling 5 months 1 hour LSTM/GRU 1 point
[45] - total 12 months 30 minutes DBN 1 point
[22] office hot water 3 months 1 hour ANN 1 probabilistic
[46] residential electricity 4.5 months 10 minutes CNN/GRU 1 point
[47] office electricity 12 months 1 hour LSTM/GRU 1 point
[48] educational/ 

commercial
electricity 12 months 1 hour CNN/RNN 1/24 point

This work public historic electricity/ 
heating

48 months 1 hour N-HiTS/TF/ 
TCN/NLinear/ 
LSTM/GRU/ 
TFT

24 point/ 
probabilistic
involving available operational data can potentially increase the predic-
tion accuracy of models, especially for public buildings where energy 
consumption is highly correlated with held activities.

2.4. Innovation of this study

In order to contribute to addressing aforementioned research gaps, 
this study adapted and applied state-of-the-art deep learning architec-
tures to multi-horizon building energy forecasting. While previous stud-
ies mainly focused on point forecasts, we also investigated probabilistic 
forecasts. Quantile regression was adopted to achieve a complete under-
standing of the distribution of energy consumption. A comprehensive 
case study was conducted in two public historic buildings to compare 
the performance of various models. Public historic building is a rare 
building type in previous research. Regarding features, we proposed in-
corporating future information on factors that determine energy use, 
especially data related to building operations. Involving operational 
data like scheduling of activities has the potential to improve predic-
tion accuracy of models since activities held in public historic buildings 
could considerably affect their energy consumption. Furthermore, the 
predictability of different types of energy consumption inside the same 
building and between buildings with different operating modes was 
studied. These efforts could bring inspiration to predicting energy use 
and optimizing energy efficiency of public buildings, especially historic 
buildings.

3. Methodology

This section begins by formulating the problem of multi-horizon 
building energy forecasting. Then, the encoder-decoder architecture is 
described. After that, seven deep learning architectures for comparison 
are given. Finally, the loss function for model training and metrics for 
evaluating model performance are introduced.

3.1. Problem formulation

This study considers the problem of multi-horizon forecasting for 
energy consumption of buildings. We denote a specific type of energy 
use, i.e., the target variable, as a non-negative real variable 𝑦 ∈ℝ+. Pre-
4

dictor variables that might affect the energy use are divided into two 
Fig. 2. An illustration of multi-horizon building energy forecasting. In this ex-
ample, black dots are observed values of a specific type of energy consumption 
over a lookback window (𝑠𝑖𝑧𝑒 = 10) in the past. Blue triangles are predicted 
values (conditional mean or median) of the energy consumption over a forecast 
horizon (𝑠𝑖𝑧𝑒 = 6) in the future. The shadow area represents a particular pre-
diction interval. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

parts: observable in the past (i.e., before (including) a forecast origin, 
see Fig. 2) and observable in the future (i.e., after the forecast origin). 
The former is denoted as a real row vector 𝐱𝐛 ∈ℝ𝑘 while the latter is de-
noted as a real row vector 𝐱𝐟 ∈ℝ𝑚. All target and predictor variables are 
assumed to be observed across time at constant intervals and organized 
chronologically. At time 𝑡, the observed value of the target variable 
is denoted as 𝑦𝑡. Similarly, observed values of predictor variables are 
denoted as 𝐱𝐛𝑡 = [𝑥𝑏1,𝑡, 𝑥𝑏2,𝑡, ..., 𝑥𝑏𝑘,𝑡] and 𝐱𝐟 𝑡 = [𝑥𝑓 1,𝑡, 𝑥𝑓 2,𝑡, ..., 𝑥𝑓 𝑚,𝑡], re-
spectively.

Then, a point energy forecasting model takes the form

�̂�𝑡+1∶𝑡+ℎ = 𝑓𝜃(𝑦𝑡−𝑤+1∶𝑡,𝐱𝐛𝑡−𝑤+1∶𝑡,𝐱𝐟 𝑡+1∶𝑡+ℎ), (1)

where �̂�𝑡+1∶𝑡+ℎ =
[
�̂�𝑡+1, �̂�𝑡+2, ..., �̂�𝑡+ℎ

]
∈ℝℎ+ are model forecasts for mean 

values of the target variable over a forecast horizon ℎ, 𝑦𝑡−𝑤+1∶𝑡 =
[𝑦𝑡−𝑤+1, 𝑦𝑡−𝑤+2, ..., 𝑦𝑡] ∈ℝ𝑤+ as well as 𝐱𝐛𝑡−𝑤+1∶𝑡 = {𝐱𝐛𝑡−𝑤+1, 𝐱𝐛𝑡−𝑤+2, ...,
𝐱𝐛𝑡} are observations of the target and predictor variables over a loop-
back window 𝑤, 𝐱𝐟 𝑡+1∶𝑡+ℎ = {𝐱𝐟 𝑡+1, 𝐱𝐟 𝑡+2, ..., 𝐱𝐟 𝑡+ℎ} are observations of 
predictor variables over the forecast horizon ℎ, and 𝑓𝜃(.) is the predic-

tion function learnt by the model.
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Fig. 3. A high-level illustration of the encoder-decoder architecture. The en-
coder takes observations of a target variable 𝑦 and predictor variables 𝐱𝐛 over 
the loopback window as input. At each time step in the lookback window, the 
observations of target and predictor variables are concatenated. The encoder 
outputs a representation of the information in 𝐳encoded . The decoder takes the 
representation as well as observations of predictor variables 𝐱𝐟 over the forecast 
horizon as input and outputs the quantile forecasts. At each time step during the 
forecast horizon, the decoder outputs a set of predetermined quantile forecasts.

For developing probabilistic forecasting models, we do not assume 
that energy consumption follows some distributions but develop models 
that generate interested quantiles directly. Quantile forecasts are per-
formed through quantile regression [51]. The 𝑝th quantile denotes the 
value where the cumulative distribution function crosses 𝑝 [52]. Thus, 
quantiles can specify any position of a distribution.

Given a predetermined set of quantiles  ⊂ (0, 1), a quantile energy 
forecasting model takes the form

�̂�
(𝑝)
𝑡+1∶𝑡+ℎ = 𝑔𝜃(𝑦𝑡−𝑤+1∶𝑡,𝐱𝐛𝑡−𝑤+1∶𝑡,𝐱𝐟 𝑡+1∶𝑡+ℎ), (2)

where 𝑝 is an element of the set , �̂�(𝑝)
𝑡+1∶𝑡+ℎ =

[
�̂�
(𝑝)
𝑡+1, �̂�

(𝑝)
𝑡+2, ..., �̂�

(𝑝)
𝑡+ℎ

]
∈ℝℎ+

are the model forecasts for the 𝑝th quantile of the target variable over 
a predicting horizon ℎ, 𝑦𝑡−𝑤+1∶𝑡, 𝐱𝐛𝑡−𝑤+1∶𝑡 and 𝐱𝐟 𝑡+1∶𝑡+ℎ have the same 
definition as in the point forecasting model, and 𝑔𝜃(.) is the prediction 
function learnt by the model.

3.2. The encoder-decoder architecture

Most competitive sequential transduction models employ an encoder-
decoder architecture [38]. This design decouples handling inputs and 
generating outputs into two separate stages and works much better. 
The encoder converts an input sequence to a sequence of representa-
tions called hidden states. Given hidden states, the decoder generates an 
output sequence of target variables. Specific to the problem of building 
energy forecasting, Fig. 3 illustrates a design that supports incorpo-
rating past and future information for predicting multi-horizon energy 
consumption. The encoder takes observations of the target and pre-
dictor variables over the loopback window as input. The target and 
predictor variables are concatenated as input at each time step in the 
look-back window. Then, the encoder outputs a summary of past infor-
mation. The decoder takes the summary and observations of predictor 
variables over the forecast horizon as input and outputs the quantile 
forecasts. At each time step during the forecast horizon, the decoder 
outputs a set of predetermined quantile forecasts. Point forecast adopts 
the same architecture, except it outputs only one predicted value (con-
ditional mean) at each time step during the forecast horizon.

3.3. Deep learning architectures for comparison

In addition to linear regression (LR), seven deep learning architec-
5

tures, namely N-HiTS [50], TCN [35], Transformer (TF) [38], NLin-
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ear [41], LSTM [27], GRU [28], and TFT [40], were investigated to 
develop predictive models and compare their performance in multi-
horizon building energy forecasting. For simplicity, this paper does not 
give the detailed design of these architectures. The LR model makes 
predictions based on a linear relationship between the target variable 
and past and future values of some predictor variables. Among the 
seven deep learning architectures, N-HiTS, TCN, and TF only support 
incorporating past values of target and predictor variables for making 
predictions. Other four architectures, NLinear, LSTM, GRU, and TFT, 
support incorporating past values of target variables and past and future 
values of predictor variables. Moreover, architectures, such as N-HiTS 
and NLinear, were improved to support producing probabilistic fore-
casts based on quantile regression.

Ensemble methods are not used in this study since any deep learn-
ing algorithm can profit from model averaging at the expense of extra 
computation and memory [53].

3.4. Loss function and evaluation metrics

Point forecasting models were trained on a training set to mini-
mize the total squared error, which leads to forecasts of the mean [54]. 
The training squared error for a set  = {(𝑦𝑡−𝑤+1∶𝑡, 𝐱𝐛𝑡−𝑤+1∶𝑡, 𝐱𝐟 𝑡+1∶𝑡+ℎ,
𝑦𝑡+1∶𝑡+ℎ)}𝑛+𝑤−1𝑡=𝑤 is denoted by 𝐿𝑠(𝜃), and

𝐿𝑠(𝜃) =
𝑛+𝑤−1∑
𝑡=𝑤

ℎ∑
𝑖=1

(
�̂�𝑡+𝑖 − 𝑦𝑡+𝑖

)2
, (3)

where 𝑛 denotes the number of training samples and definitions of other 
variables are as in Eq. (1).

Probabilistic forecasting models, i.e., quantile forecasting models in 
this study, were trained to minimize the total quantile loss. As in stud-
ies [24,40], the 𝑝th quantile loss for one prediction at one time step is 
calculated as

𝓁(�̂�, 𝑦, 𝑝) = (1 − 𝑝)(�̂�− 𝑦)+ + 𝑝(𝑦− �̂�)+, (4)

where (.)+ = 𝑚𝑎𝑥(0, .). Then, the training quantile loss for a set  =
{(𝑦𝑡−𝑤+1∶𝑡, 𝐱𝐛𝑡−𝑤+1∶𝑡, 𝐱𝐟 𝑡+1∶𝑡+ℎ, 𝑦𝑡+1∶𝑡+ℎ)}𝑛+𝑤−1𝑡=𝑤 is denoted by 𝐿𝑞(𝜃), and

𝐿𝑞(𝜃) =
𝑛+𝑤−1∑
𝑡=𝑤

||∑
𝑗=1

ℎ∑
𝑖=1

𝓁
(
�̂�
(𝑝𝑗 )
𝑡+𝑖 , 𝑦𝑡+𝑖, 𝑝𝑗

)
, (5)

where  denotes a predetermined set of quantiles and 𝑝𝑗 is an element 
of .

The performance of developed models was compared through two 
aspects: prediction accuracy and computational cost. The computa-
tional cost was expressed as the training time of each model in sec-
onds. As suggested by the ASHRAE Guideline 14-2014 [55], the pre-
diction accuracy of point forecasting models was evaluated by two 
scale-independent metrics, namely coefficient of variation of the root 
mean square error (CV-RMSE) and normalized mean bias error (NMBE), 
over the entire test set. They are calculated by Eq. (7) and (9).

𝑅𝑀𝑆𝐸 =

√√√√1
𝑛

𝑛∑
𝑡=1

(�̂�𝑡 − 𝑦𝑡)2, (6)

𝐶𝑉 -𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸
𝑦

× 100, (7)

𝑀𝐵𝐸 = 1
𝑛

𝑛∑
𝑡=1

(�̂�𝑡 − 𝑦𝑡), (8)

𝑁𝑀𝐵𝐸 = 𝑀𝐵𝐸
𝑦

× 100, (9)

where 𝑛 denotes the size of forecast horizon, 𝑦𝑡 is the actual value of a 
target variable at time 𝑡, �̂�𝑡 is the predicted value of the target variable 
at time 𝑡, and 𝑦 is the mean actual value of the target variable over the 

forecast horizon.
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The CV-RMSE measures the variation between the actual values and 
the predictions of a model [55]. NMBE normalizes the mean bias er-
ror and gives the global difference between the actual and predicted 
values [56]. A positive NMBE value means that the model over-predicts 
actual energy consumption, and a negative one means under-prediction. 
For both CV-RMSE and NMBE, a closer value to zero represents better 
prediction accuracy. When making comparisons, we mainly focused on 
the CV-RMSE if the NMBE of a model is within the required range. As 
suggested by the ASHRAE Guideline 14-2014 [55], an applicable pre-
dictive model for energy use of whole building should have a CV-RMSE 
≤ 30% and an NMBE within ±10% when using hourly data for training 
models.

As in studies [34,40], the 𝜌-risk, which normalizes quantile losses 
across the entire forecast horizon, was used for evaluating the per-
formance of probabilistic forecasting models. 𝜌-risk at 𝑝th quantile is 
calculated by

𝜌-𝑟𝑖𝑠𝑘(𝑝) =
2 ×

𝑛∑
𝑡=1

𝓁
(
�̂�
(𝑝)
𝑡
, 𝑦𝑡, 𝑝

)
𝑛∑
𝑡=1
𝑦𝑡

, (10)

where 𝑛 denotes the size of forecast horizon, 𝑦𝑡 is the actual value of a 
target variable at time 𝑡, �̂�(𝑝)

𝑡
denotes the predicted 𝑝th quantile value at 

time 𝑡, and 𝓁
(
�̂�
(𝑝)
𝑡
, 𝑦𝑡, 𝑝

)
is the 𝑝th quantile loss calculated by Eq. (4).

4. Case study

To verify the performance of different deep learning architectures, a 
case study was conducted to develop predictive models for the energy 
consumption of two public historic buildings. This section describes de-
tails of the used dataset and experimental setup. The obtained results 
and discussion will be presented in Section 5.

4.1. Dataset

The dataset consists of two parts. One is the historical energy con-
sumption data from two public historic buildings: the City Museum 
(Fig. 4a) and the City Theatre (Fig. 4b) in Norrköping, Sweden. The 
other is the meteorological data of Norrköping. The energy consump-
tion data are electricity use and heating load provided by the building 
maintainer. Heating energy comes from the district heating system. 
Both types of energy use data are of the entire building. The meteoro-
logical data include dry-bulb temperature, relative humidity, dew point 
temperature, precipitation, air pressure, wind speed, and global irradi-
ance. The meteorological data are obtained through open application 
programming interfaces (APIs) provided by the Swedish Meteorological 
and Hydrological Institute. The global irradiance is collected according 
to the latitude and longitude of the buildings, while other meteorologi-
cal data are from a weather station located ∼2 km away from the two 
buildings. All energy consumption and meteorological data range from 
01:00 on January 1, 2016 to 00:00 on January 1, 2020, with a time 
granularity of one hour. Hours appearing in this paper are expressed in 
24-hour format and are all in local time (Greenwich Mean Time (GMT) 
+1 for summer time and GMT +2 for winter time). The time span of the 
collected data is before the pandemic of COVID-19, which means that it 
excludes the impact of COVID-19 on public activities held in these two 
buildings.

These two public historic buildings have different operating modes. 
The normal operation of the City Museum is to maintain an appropri-
ate indoor climate for preservation of collections and human comfort 
of staff and visitors. As shown in Table 2, the City Museum has reg-
ular opening hours. For the City Theatre, the operation mainly serves 
the delivery of live shows to audiences. For example, sound and light 
equipment and the ventilation system should work during a show or 
6

rehearsal. The performed shows have some seasonality. Several shows 
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Fig. 4. A case study was conducted in two public historic buildings: (a) the City 
Museum and (b) the City Theatre in Nörrkping, Sweden.

Table 2

Opening hours of the City Museum. Normally, it 
is open for six days, from Tuesday to Sunday ev-
ery week. The opening hours will change in some 
holidays. On the day before Christmas Eve (Decem-
ber 23) and Epiphany (January 6), it opens from 
11:00 to 16:00. On Christmas Eve (December 24), 
Christmas Day (December 25), and New Year’s Day 
(January 1), it is closed.

June–August In other months
Monday closed closed
Tuesday 12:00–16:00 11:00–17:00
Wednesday 12:00–16:00 11:00–17:00
Thursday 12:00–20:00 11:00–20:00
Friday 12:00–16:00 11:00–17:00
Saturday 12:00–16:00 11:00–16:00
Sunday 12:00–16:00 11:00–16:00

of the same production are typically performed in adjacent 2–4 weeks. 
For example, 16 shows of the production Farmor och Vår Herre were 
performed during the period of February 24 to March 18, 2018. If a 
show is performed on one day, the start time is usually 19:00 on work-
ing days, 18:00 on Saturdays, and 16:00 on Sundays. Long shows last 
around three hours. In addition, shows are generally not performed on 
Mondays. The different operating modes of the two buildings could ver-
ify the adaptability of different predictive models to some extent.

4.2. Exploratory data analysis

Fig. 5 is time plot of hourly electricity consumption and heating load 
of the two buildings in the dataset. As revealed from the time plot, there 
is no notable trend in energy consumption for both buildings. No long-
term increase or decrease can be inspected from both type of energy 

consumption. Nevertheless, a yearly seasonality exists. Both electric-
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Fig. 5. Historical hourly (a) electricity consumption and (b) heating load of the City Museum, as well as (c) electricity consumption and (d) heating load of the City 
Theatre in Norrköping, Sweden from 01:00 on January 1, 2016 to 00:00 on January 1, 2020. Hours appearing in this paper are expressed in 24-hour format and are 

all in local time.

ity consumption and heating load are lower in summer and higher in 
winter. The distinctions in operating modes can be reflected in the elec-
tricity consumption of the two buildings. Due to regular opening hours, 
there is a strong yearly seasonality in electricity consumption of the 
City Museum (see Fig. 5a). However, the irregularity of show arrange-
ments makes electricity consumption of the City Theatre (see Fig. 5c) 
vary from year to year. Compared to the considerable dissimilarity in 
the pattern of electricity consumption, the pattern in heating load of the 
two buildings (see Fig. 5b and 5d) has a high similarity. This similar-
ity is mainly because both buildings employ adaptive district heating, 
which is driven by the difference between indoor and outdoor temper-
atures.

There is also a weekly seasonality in electricity consumption of the 
City Museum. As shown in Fig. 6, in each week, electricity consumption 
on weekdays is usually greater than on weekends. The electricity use on 
each day could basically reflect the opening hours on that day. Mean-
while, there are differences in electricity consumption between months. 
In winter months, the City Museum consumed more electricity than in 
summer months. In general, electricity consumption pattern of the City 
Museum is similar from year to year.

The yearly seasonality in electricity consumption of the City The-
atre, as depicted in Fig. 7, is weaker than that of the City Museum. 
Electricity consumption varies considerably from year to year. For ex-
ample, the electricity use during the shows held between October and 
December 2016 was greater than during shows held in other years. This 
dissimilarity in electricity consumption is because shows held in differ-
ent periods differed. Different shows have distinct durations, and the 
use of lighting and sound equipment is also diverse among shows. Nev-
ertheless, the electricity use can reflect how shows were scheduled. For 
instance, shows were typically not arranged on Mondays or in sum-
mer, and shows held on weekends began earlier than on weekdays. 
Therefore, incorporating show arrangements could help improve the 
prediction accuracy of electricity use of the City Theatre.

As both buildings employ adaptive district heating, there is a strong 
linear correlation between heating load and outdoor dry-bulb tempera-
ture (see Fig. 8). Lower outdoor temperatures result in higher heating 
loads to maintain a suitable indoor temperature for both buildings. 
7

However, when the dry-bulb temperature is less than −10 °C, the varia-
Fig. 6. The heat map of hourly electricity consumption of the City Museum 
from 00:00 on January 4, 2016 to 23:00 on December 29, 2019. Each row 
shows 168 data points, i.e., the energy consumption for each hour of one week 
from Monday (Mon) 00:00 to Sunday (Sun) 23:00. Date is represented as the 
format of YY-MM-DD. Electricity is abbreviated as El.

tion of heating load of the City Theatre (see Fig. 8b) is greater than that 
of the City Museum (see Fig. 8a). This larger variation might indicate 
that predicting heating load of the City Theatre is more difficult.

4.3. Data preprocessing

Data preprocessing aims to convert the raw data into a format that 

can be easily handled and understood by models. In this study, data pre-
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Fig. 7. The heat map of hourly electricity consumption of the City Theatre from 
00:00 on January 4, 2016 to 23:00 on December 29, 2019.

Fig. 8. The scatter plot of historical hourly heating load of (a) the City Museum 
and (b) the City Theatre versus outdoor dry-bulb temperature from 01:00 on 
January 1, 2016 to 00:00 on January 1, 2020.

processing includes data cleaning, dataset splitting, feature preparation, 
and data transformation.

4.3.1. Data cleaning and dataset splitting

First, missing values in meteorological data were interpolated lin-
early. Then, the dataset was divided into three subsets: a training set 
for learning the parameters of models, a validation set for tuning hy-
perparameters and preventing overfitting, and a test set for evaluating 
the performance of models. The dataset splitting roughly follows the 
empirical ratio of 80:10:10, where 38 months of data from January 1, 
2016 to February 28, 2019 are used as the training set, five months of 
data from March 1, 2019 to July 31, 2019 are used as the validation set, 
and five months of data from August 1, 2019 to December 31, 2019 are 
used as the test set. The three subsets do not overlap in time, avoiding 
information leakage from the future. We did not identify and address 
outliers in meteorological data since the provider has ensured their va-
lidity. For the energy data, only the training set was inspected to avoid 
information leakage from the test set. As shown in Fig. 9, many outliers 
in electricity consumption of both buildings and one outlier in heating 
8

load of the City Theatre are identified. After inspecting the occurrence 
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Fig. 9. The boxplot of hourly electricity consumption and heating load of the 
City Museum and the City Theatre from January 1, 2016 to February 28, 2019. 
Data points that are more than 1.5 box lengths from the edge of their box are 
classified as outliers, illustrated as diamond dots.

Fig. 10. The boxplot of electricity consumption per hour of (a) the City Museum 
and (b) the City Theatre from 00:00 on February 19 to 23:00 on March 18, 
2018.

of these outliers, they are kept in the training set as these outliers are 
high energy consumption due to activities held in the buildings and are 
not anomalies.

4.3.2. Feature preparation

Feature preparation includes extracting temporal features from 
timestamps, generating features from operating modes of buildings, and 
reducing redundant features. Four temporal features are extracted: two 
binary and two cyclical variables. The binary variables include one 
called is holiday to indicate if a day is a Sweden public holiday and 
another called is weekend to indicate if a day is a weekend. The cycli-
cal variables are hour (integer value from 0 to 23) and weekday (integer 
value from 0 to 6, each value represents a day in a week, starting from 
Monday). In addition to the temporal features, one feature called is open

with a binary value is added to reflect the occupancy of a building for 
a given hour. For the City Museum, is open indicates that if it is open 
to visitors. For the City Theatre, is open indicates that if there is a show 
performed.

These features could help predict energy use. For example, there is 
usually a daily seasonality for operating a building. Fig. 10 shows the 
distribution of electricity consumption per hour of the two buildings 
during four weeks of the training set. The electricity consumption of the 

City Museum (see Fig. 10a) was stable, and the distribution was narrow 
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Fig. 11. The boxplot of heating load per hour of (a) the City Museum and (b) 
the City Theatre from 00:00 on February 19 to 23:00 on March 18, 2018.

Table 3

Pearson correlation coefficient (𝑟) between variables for the 
City Museum in the training set. Electricity and Heating are 
target variables, while others are features. Temperature is 
abbreviated as temp. Except for the dry-bulb temperature, 
the coefficients between other features are not shown in the 
table because their |𝑟| < 0.7.

Electricity Heating Dry-bulb temp.
Dry-bulb temp. −0.466 −0.887 1.000
Relative humidity 0.088 0.384 −0.562
Dew point temp. −0.517 −0.843 0.861

Precipitation −0.005 −0.017 0.001
Air pressure 0.019 0.000 −0.020
Wind speed 0.152 0.081 0.055
Global irradiance 0.127 −0.332 0.547
Is holiday −0.090 0.035 −0.038
Is weekend −0.216 −0.025 −0.004
Is open 0.435 0.102 0.101

before 8:00 and after 20:00. Between 8:00 and 17:00, hourly electricity 
consumption rose significantly due to the work of staff and the opening 
to the public, and the data was distributed wider. Between 18:00 and 
20:00, although the median electricity consumption decreased, many 
outliers appeared because the City Museum remained open until 20:00 
on Thursdays. A similar phenomenon can be observed in the electricity 
consumption of the City Theatre. As depicted in Fig. 10b, the highest 
median electricity consumption is at 19:00 because shows performed on 
working days started at that time. During the show time, the distribu-
tion of electricity consumption also became wider. The heating load of 
the two buildings also has a similar correlation with the hour of a day 
(see Fig. 11), although it is not as strong as for the electricity consump-
tion. Therefore, extracting temporal features such as hour and weekday 
from timestamps helps predict energy consumption. Furthermore, open-
ing hours can also provide information for making predictions.

A filter method based on finding the correlation between variables 
was employed to select critical features and reduce redundant features. 
The Pearson correlation coefficient (𝑟) was used for measuring the lin-
ear relationship between two variables. As general rules of thumb, a 
threshold of |𝑟| ≥ 0.3 was employed to filter out critical features with at 
least moderate correlation with a target variable. To reduce redundant 
features, when two features are highly correlated (|𝑟| ≥ 0.7), the one 
holding larger |𝑟| with the target variable was kept to avoid duplicate 
information.

As coefficients shown in Table 3, to predict electricity consumption 
9

of the City Museum, dew point temperature, is open, and extracted tem-
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Table 4

Pearson correlation coefficient (𝑟) between variables for the 
City Theatre in the training set. Electricity and Heating are 
target variables, while others are features. Except for the dry-
bulb temperature, the coefficients between other features are 
not shown in the table because their |𝑟| < 0.7.

Electricity Heating Dry-bulb temp.
Dry-bulb temp. −0.102 −0.850 1.000
Relative humidity −0.057 0.336 −0.562
Dew point temp. −0.152 −0.826 0.861

Precipitation −0.011 −0.022 0.001
Air pressure 0.046 0.011 −0.020
Wind speed 0.155 0.087 0.055
Global irradiance 0.053 −0.309 0.547
Is holiday −0.090 0.041 −0.038
Is weekend −0.152 −0.037 −0.004
Is open 0.734 0.153 −0.066

Table 5

A summary of used features for predicting each target 
variable.

Target variable Features Observable in
The City Museum

Electricity electricity past

dew point temp. 
is open hour 
weekday

past and future

Heating heating past

dry-bulb temp. 
relative 
humidity global 
irradiance hour 
weekday

past and future

The City Theatre

Electricity electricity past

is open hour 
weekday

past and future

Heating heating past

dry-bulb temp. 
relative 
humidity global 
irradiance hour 
weekday

past and future

poral features hour and weekday were used. To predict heating load of 
the City Museum, dry-bulb temperature, relative humidity, global irradi-

ance, hour, and weekday were used. Similarly, according to coefficients 
shown in Table 4, to predict electricity consumption of the City The-
atre, is open, hour, and weekday were used. To predict heating load of 
the City Theatre, dry-bulb temperature, relative humidity, global irradiance, 
hour, and weekday were used.

The features that are used to predict the electricity use and heating 
load of the two buildings are summarized in Table 5. For predicting 
each target variable, past observations of itself, as well as past and 
future observations of predictor variables, are used. Given a forecast 
origin, temporal features in a forecast horizon such as hour and week-

day are naturally known in advance. Operational features like is open in 
the forecast horizon can be retrieved from APIs provided by the main-
tainer of a building. Values of meteorological features in the forecast 
horizon are also considered available, as short-term weather forecasts, 
i.e., for the next 24 hours, are highly accurate nowadays. Many organi-
zations provide APIs to access them. However, it is worth noting that 
this study used actual meteorological data to train and evaluate the 
model. Therefore, the prediction performance of models might have 
some degradation when these models are deployed in real applications 
due to the use of forecasted meteorological data.

4.3.3. Data transformation

Data transformation aims to change raw features into a more suit-

able representation for model learning. For observations of target vari-
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ables electricity and heating over the lookback window, as well as me-
teorological features such as dry-bulb temperature, relative humidity, 
global irradiance, and dew point temperature, a min-max normalization 
was performed to scale each of them to a range of [0, 1]. All min-max 
scalers were fitted on the training set, then used for transforming valida-
tion and test sets. Cyclical features hour and weekday were transformed 
into two dimensions using a sine-cosine transformation. Binary features 
like is open were not transformed.

4.4. Experimental setup

Models are developed for predicting hourly electricity consump-
tion and heating load of the City Museum and the City Theatre 24 
steps ahead. In other words, given a forecast origin, models should 
predict electricity consumption and heating load of the two build-
ings for each hour of the following 24 hours. The maximum lookback 
window size was determined by the partial autocorrelation function. 
Both electricity consumption and heating load of the two buildings 
on the training set are non-stationary as assessed by the Kwiatkowski–
Phillips–Schmidt–Shin test (𝑝 < .01). Consequently, we took a difference 
of lag 24 followed by a first difference for each target variable. The re-
sult suggested a maximum lookback window size of 168 hours, i.e., 
seven days, for all target variables. Therefore, given a forecast origin, 
we use the observed values of the target and predictor variables over 
the past 168 hours to predict the value of the target variable over the 
next 24 hours.

Based on the seasonal naïve (SN) method [54], two models, namely 
SN-24 and SN-168, were prepared as baselines because electricity con-
sumption and heating load are highly seasonal. SN-24 model aims to 
utilize daily seasonality, and each forecast of a target variable was set 
to be its value observed 24 hours ago. Similarly, for the SN-168 model, 
each forecast was set to be the value observed 168 hours ago to use 
weekly seasonality.

All models except for the two baseline models were trained accord-
ing to the following four cases:

• Case 1, point forecast: train the eight models (LR, N-HiTS, TCN, TF, 
NLinear, LSTM, GRU, and TFT) by only using past values (in the 
lookback window) of target and predictor variables (see Table 5).

• Case 2, point forecast: train the five models (LR, NLinear, LSTM, 
GRU, and TFT) by incorporating past values (in the lookback win-
dow) of target and predictor variables, as well as future values of 
predictor variables (in the forecast horizon).

• Case 3, probabilistic forecast: train the six models that achieved 
highest prediction accuracy in Cases 1 and 2 with all information 
they support using. The predefined set of quantiles is {0.1, 0.5, 0.9}.

• Case 4, point forecast: train the eight models with all information 
they support using except for the feature related to operating build-
ings.

Case 1 compares the performance of models in making multi-horizon 
predictions when only using past information. Case 2 looks into the 
impact of incorporating future information on model prediction accu-
racy. Case 3 is to investigate the performance of models in probabilistic 
forecast, and we are interested in evaluating 𝜌-risk on 0.5th and 0.9th 
quantiles. Case 4 is a sensitivity analysis to examine how operating 
mode-related features affect model prediction accuracy.

Models were trained by minimizing an appropriate loss function (as 
defined in Section 3.4) on the training set. A sliding window with a 
step size of one hour was used to generate training samples. All deep 
learning models were trained by a maximum of 100 epochs. An early-
stopping training technique was employed to avoid overfitting. This 
technique stops the training process when the resulting accuracy in the 
validation set stops rising after a specified number of iterations (30 
epochs in this study). For each deep learning architecture, the model 
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that has the lowest loss for the validation set was selected. Finally, the 
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Table 6

The prediction accuracy of point forecasts for dif-
ferent models on the test set when not incorpo-
rating future information (Case 1). For both CV-
RMSE and NMBE, a closer value to zero represents 
better prediction accuracy. Electricity is abbrevi-
ated as El.

The City Museum The City Theatre

El. Heating El. Heating
CV-RMSE (%)

SN-24 45.1 24.4 30.1 27.0
SN-168 55.3 41.2 31.2 46.2
N-HiTS 32.2 22.0 27.7 23.5
TCN 37.6 22.0 25.5 25.0
TF 40.3 23.0 32.2 29.6
LR 36.6 20.7 23.6 24.2
NLinear 33.8 29.1 30.6 22.9
LSTM 36.1 18.5 29.4 22.4
GRU 37.7 20.9 31.5 23.3
TFT 32.6 17.4 24.7 21.9

NMBE (%)

SN-24 −0.5 −1.1 −0.1 −1.2
SN-168 −4.9 −8.1 0.1 −8.9
N-HiTS −2.2 −0.4 −2.4 −5.9
TCN −4.7 −0.6 −6.0 −0.3
TF −10.0 0.1 −2.3 −3.3
LR −2.8 −0.3 −0.9 −0.8
NLinear 7.5 18.3 5.9 0.8
LSTM −6.4 −0.2 −6.0 0.8
GRU −5.3 −7.3 −2.0 0.6
TFT −1.3 2.1 −3.5 0.3

selected models were evaluated and compared by predefined metrics 
(see Section 3.4) on the test set. A sliding window with a step size of 
24 hours was used to generate all forecasts on the test set. Since the 
heating energy of both buildings is from the district heating system, the 
criterion recommended by the ASHRAE Guideline 14-2014 was applied 
separately to electricity use and heating load.

All experiments were conducted on a computer with Ubuntu 20.04 
operating system. The computer has an Intel Xeon W-2145 CPU, a total 
of 16 GB memory, and a graphics card NVIDIA GeForce GTX 1080. 
Models were implemented by Python (v3.8.16) programming language 
based on libraries PyTorch [16] (v1.12.0), darts [57] (v0.23.1), and 
scikit-learn [58] (v1.2.1).

5. Results and discussion

The presentation and discussion of results include three parts. First 
is the quantitative analysis of the results based on predefined metrics. 
Then, the results are qualitatively analyzed through the exploratory 
data analysis approach. Finally, a discussion about integrating the pre-
dictive models developed in this study into applying a digital twin 
model was given.

5.1. Quantitative analysis

The quantitative analysis is to analyze the predictability of various 
energy use and the performance of models under the four cases, includ-
ing both point and probabilistic forecasts.

5.1.1. Comparison of predictability of electricity and heating

Both electricity consumption and heating load of the two buildings 
exhibit a stronger daily seasonality than weekly seasonality as the SN-
24 model performed better than the SN-168 model on all metrics (see 
Table 6). Meanwhile, heating load has stronger daily seasonality than 
electricity consumption for both buildings since the SN-24 model ob-
tained a lower CV-RMSE on predictions of heating load than that of 
electricity consumption. Furthermore, prediction accuracy of the SN-

24 model suggests that electricity consumption is less predictable than 
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heating load for both buildings. Interestingly, the SN-24 model pro-
vides a strong baseline, especially for heating load of both buildings, 
as its performance on predicting heating loads has met the criterion 
(30% for CV-RMSE and ±10% for NMBE) of the ASHRAE Guideline 
14-2014 [55].

In addition to baseline models, the performance of the other eight 
models also indicates higher predictability in heating load. As shown 
in Table 6, except for the performance of the LR model on the City 
Theatre, the other seven models achieved a lower CV-RMSE on predic-
tions of heating load than electricity consumption. Moreover, all eight 
models have met the criterion of the ASHRAE Guideline 14-2014 in 
predicting heating load of the City Museum, while seven of the eight 
models (except for the NLinear model, which has an NMBE of 18.3%) 
have met the criterion in predicting heating load of the City Theatre. 
However, no model achieved a CV-RMSE ≤ 30% when predicting elec-
tricity consumption of the City Museum. This result indicates that it is 
difficult to make an accurate prediction of the hourly electricity con-
sumption of the City Museum for the next 24 hours by relying only on 
past information. The situation becomes better when predicting elec-
tricity consumption of the City Theatre, where five of the eight models 
obtained a CV-RMSE ≤ 30%. The higher predictability in heating load 
is attributed to the fact that the two buildings employ adaptive heating, 
which is driven by the difference between indoor and outdoor temper-
atures.

For the same type of energy consumption in different buildings, elec-
tricity consumption of the City Museum is less predictable than that of 
the City Theatre, while heating load is more predictable for the City 
Museum than the City Theatre. As shown in Table 6, all eight models 
achieved higher values of CV-RMSE on predictions of electricity con-
sumption of the City Museum than the City Theatre. At the same time, 
seven of the eight models (except for the NLinear model) achieved lower 
values of CV-RMSE on heating load of the City Museum than the City 
Theatre. This phenomenon is attributed to the arrangement of shows in 
the City Theatre as adjacent days typically performed shows of the same 
production. For example, 11 shows of the production Faust II were per-
formed during the period of September 28 to October 12, 2019. Such 
an arrangement leads to a high similarity in the operating mode of the 
City Theatre in neighboring days. However, gathering many audiences 
in a place for a long time also caused more considerable fluctuations in 
heating load as more audiences lead to higher internal heat gain [7].

However, most of the eight models did not obtain a remarkably im-
proved prediction accuracy, e.g., a decrease of 10% in CV-RMSE, over 
the baseline SN-24 model when not incorporating future information. 
For predicting electricity consumption, the N-HiTS model performed 
best for the City Museum (CV-RMSE 32.2%), and the LR model per-
formed best for the City Theatre (CV-RMSE 23.6%). The TFT model 
obtained the best performance on both buildings for predicting heat-
ing load (CV-RMSE 17.4% for the City Museum and CV-RMSE 21.9% 
for the City Theatre). Nevertheless, some models, such as the NLinear 
model for predicting the heating load of the City Museum and the TF 
model for predicting the electricity consumption of the City Theatre, 
cannot even outperform the SN-24 model.

5.1.2. The impact of incorporating future information

Including future values of predictor variables in the forecast horizon 
increases the prediction accuracy of models by providing information 
on factors that determine energy consumption. As shown in Table 7, all 
five models achieved improved performance on the CV-RMSE metric for 
predicting both types of energy consumption of the two buildings. Also, 
the improvements of most models (except for NLinear and GRU models 
on the City Theatre) in predicting heating load are more evident than in 
predicting electricity consumption. The TFT model performed best on 
both types of energy consumption of the City Museum (CV-RMSE 29.7% 
on electricity consumption and CV-RMSE 8.7% on heating load). For the 
11

City Theatre, the LR model performed best on electricity consumption 
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Table 7

The prediction accuracy of point forecasts for differ-
ent models on the test set after incorporating future 
information (Case 2). The values in brackets repre-
sent the change in corresponding performance com-
pared to Table 6, and negative values represent im-
provements.

The City Museum The City Theatre

El. Heating El. Heating
CV-RMSE (%)

LR 34.5 12.4 17.9 15.8
(−2.1) (−8.3) (−5.7) (−8.4)

NLinear 32.8 23.8 24.4 20.6
(−1.1) (−5.3) (−6.3) (−2.3)

LSTM 35.7 10.9 22.2 12.5

(−0.3) (−7.6) (−7.2) (−9.9)
GRU 32.6 9.8 21.4 13.5

(−5.1) (−11.1) (−10.1) (−9.8)
TFT 29.7 8.7 20.3 12.9

(−2.9) (−8.7) (−4.4) (−9.0)

NMBE (%)

LR −3.4 1.6 −0.2 −0.5
(+0.6) (+1.3) (−0.8) (−0.3)

NLinear −3.0 11.5 4.7 2.7
(−4.4) (−6.8) (−1.2) (+1.9)

LSTM −6.7 −2.4 0.8 −1.2
(+0.2) (+2.2) (−5.2) (+0.4)

GRU −6.6 −2.5 0.0 −3.8
(+1.3) (−4.8) (−2.0) (+3.2)

TFT −6.2 −0.1 −0.2 −1.8
(+4.9) (−2.0) (−3.3) (+1.5)

(CV-RMSE 17.9%), while the LSTM model performed best on heating 
load (CV-RMSE 12.5%).

The highest prediction accuracy achieved with the LR model for 
predicting electricity consumption of the City Theatre brings some in-
spiration. If there exist strong linear correlations between some predic-
tor variables and a specific type of energy consumption, a basic linear 
model might provide a strong baseline for energy forecasting. As illus-
trated in Table 4 of Section 4.3.2, a strong linear correlation (Pearson’s 
𝑟 = 0.734) exists between the operating mode-related feature is open and 
electricity consumption of the City Theatre. The LR model managed to 
extract this correlation and generate accurate predictions.

5.1.3. The performance of probabilistic forecast

Based on the results in Cases 1 and 2, the best six models for 
performing point forecasts are N-HiTS, LR, NLinear, LSTM, GRU, and 
TFT. Among the six models, the TFT model dominates the probabilistic 
forecast. It performed best to capture the central tendency and upper 
distribution of heating load of the City Museum as well as both en-
ergy consumption of the City Theatre as it achieved the lowest 𝜌-risk 
at the 0.5th and 0.9th quantiles as in Table 8. For predicting electric-
ity consumption of the City Museum, the GRU model performed best 
to capture the central tendency of the electricity consumption as it 
achieved the lowest 𝜌-risk at the 0.5th quantile (𝜌-risk(0.5) = 0.182). 
The N-HiTS model, on the other hand, performed best to capture the 
upper distribution of electricity consumption of the City Museum (𝜌-
risk(0.9) = 0.142) and might be useful for predicting extreme values or 
identifying outliers. Among all models, the LR model performed worst 
when producing probabilistic forecast. The authors speculated that it 
is because the LR model assumed that the residuals are normally dis-
tributed, which may not hold true when estimating quantiles, as the 
distribution of the residuals can be skewed.

The probabilistic forecasts also reflect that heating load has higher 
predictability than electricity consumption. Except for the NLinear 
model on heating load of the City Theatre and the LR model, other mod-
els achieved lower 𝜌-risk at 0.5th quantile when predicting heating load 
than electricity consumption for both buildings. Meanwhile, the uncer-

tainties in electricity consumption are larger than heating load since 
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Table 8

The 𝜌-risk at 0.5th and 0.9th quantiles of proba-
bilistic forecasts for different models on the test set 
(Case 3). For each metric, lower values represent 
better performance.

The City Museum The City Theatre

El. Heating El. Heating
𝜌-risk (0.5)

N-HiTS 0.199 0.133 0.199 0.164
LR 0.520 0.662 0.410 0.683
NLinear 0.241 0.177 0.187 0.197
LSTM 0.186 0.055 0.140 0.086
GRU 0.182 0.059 0.143 0.091
TFT 0.192 0.054 0.136 0.081

𝜌-risk (0.9)

N-HiTS 0.142 0.074 0.120 0.116
LR 0.266 0.296 0.210 0.268
NLinear 0.159 0.136 0.099 0.122
LSTM 0.143 0.029 0.072 0.058
GRU 0.148 0.027 0.074 0.067
TFT 0.165 0.027 0.070 0.056

Table 9

The computational cost of training different mod-
els in seconds. For point forecasting models, TCN, 
TF, and N-HiTS are from Case 1, while the other 
six models are from Case 2. Probabilistic forecast-
ing models are all from Case 3.

Training time (s)

The City Museum The City Theatre

El. Heating El. Heating
Point

TCN 664 620 575 590
TF 4646 4889 4714 4712
N-HiTS 1318 1222 1121 1170
LR 3 3 1 2

NLinear 688 603 676 451
LSTM 1353 2044 1617 1531
GRU 1314 1391 2355 1468
TFT 5757 6348 3274 3852

Probabilistic

N-HiTS 1389 1335 1150 1334
LR 144 180 119 175

NLinear 707 753 258 782
LSTM 1958 2901 2018 3668
GRU 2405 2440 1595 2709
TFT 5529 7220 3653 4602

these models also achieved higher 𝜌-risk at 0.9th quantile when pre-
dicting electricity consumption than heating load for the two buildings. 
Nevertheless, The uncertainty in predicting electricity consumption also 
implies that, on the one hand, it is favorable to enhance certainty by op-
timizing electricity usage while still ensuring the regular functionality 
of a building. On the other hand, additional operating model-related 
features that determine electricity use should be involved for a better 
forecast.

5.1.4. Computational cost

More complex models typically require more training time to extract 
patterns in data. As shown in Table 9, the basic LR model consumed far 
less training time than other deep learning models. Among deep learn-
ing models, the TCN and the NLinear models consumed less training 
time since they processed the entire data sequence in parallel. Recurrent 
models LSTM and GRU process temporal data sequentially, leading to 
a slower training process. The computational cost of the N-HiTS model 
is better than recurrent models. Models employing the self-attention 
mechanisms, such as TF and TFT, require quadratic time complexity 
concerning the length of the input sequence, making them less efficient 
12

than recurrent models for processing long sequences.
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Table 10

The change of prediction accuracy of point 
forecasts when not incorporating opening hours 
(Case 4). Values in brackets after each metric 
reflect the performance change (negative val-
ues represent improvements, and positive values 
represent deterioration) versus the model using 
opening hours. The N-HiTS, TCN, and TF models 
are compared with Table 6 while the other mod-
els are compared with Table 7.

The City Museum The City Theatre

Electricity Electricity
CV-RMSE (%)

N-HiTS 33.8 (+1.7) 26.1 (−1.6)
TCN 38.2 (+0.6) 25.0 (−0.5)
TF 38.0 (−2.3) 31.9 (−0.3)
LR 36.0 (+1.6) 23.4 (+5.5)
NLinear 35.3 (+2.5) 29.8 (+5.4)
LSTM 33.8 (−2.0) 30.4 (+8.2)
GRU 33.2 (+0.6) 28.1 (+6.7)
TFT 32.5 (+2.7) 31.4 (+11.1)

NMBE (%)

N-HiTS −9.0 (+6.8) −5.9 (+3.4)
TCN −6.6 (+1.9) −4.6 (−1.5)
TF −4.3 (−5.8) −2.0 (−0.2)
LR −3.3 (−0.1) −0.9 (+0.8)
NLinear 4.6 (+1.6) −5.2 (+0.5)
LSTM −1.1 (−5.6) −4.2 (+3.4)
GRU −2.8 (−3.8) −1.4 (+1.4)
TFT −7.5 (+1.3) −0.7 (+0.5)

It is worth the training time to develop recurrent models like LSTM 
and GRU, as well as the TFT model, which integrates LSTM and atten-
tion mechanisms. The three models exhibited better performance based 
on the findings of point and probabilistic forecasts. According to the 
prediction accuracy of point forecasts (Table 7), the TFT model outper-
formed other models in predicting both types of energy use of the City 
Museum (CV-RMSE 29.7% for electricity consumption and CV-RMSE 
8.7% for heating load) and the LSTM model performed best in predict-
ing heating load of the City Theatre (CV-RMSE 12.5%). For performing 
probabilistic forecasts (Table 8), LSTM, GRU, and TFT models obtained 
lower 𝜌-risks than other models.

5.1.5. Sensitivity analysis

Removing the operating mode-related feature, i.e., is open, has a 
greater impact on predicting electricity consumption of the City The-
atre than the City Museum. As shown in Table 10, all five models 
that support incorporating future information obtained a deteriorated 
CV-RMSE on forecasts of electricity consumption of the City Theatre. 
The performance of the TFT (CV-RMSE 31.4%) and LSTM (CV-RMSE 
30.4%) models failed to outperform the baseline SN-24 model (CV-
RMSE 30.4%). For the City Museum, the performance change of the 
models varied. Some increased and some decreased, but the overall 
change was smaller than that of the City Theatre. This is mainly be-
cause the linear correlation between the City Theatre and opening hours 
(Pearson’s 𝑟 = 0.734 as in Table 4) is greater than that between the City 
Museum and opening hours (Pearson’s 𝑟 = 0.435 as in Table 3).

No model met the criterion (30% for CV-RMSE) of the ASHRAE 
Guideline 14-2014 for predicting electricity consumption of the City 
Museum when not incorporating operational features. This suggests 
that more factors that determine electricity consumption, such as the 
scheduling of ventilation and lighting systems, should be involved to 
improve prediction accuracy.

5.2. Qualitative analysis

The qualitative analysis interprets the impact of operating modes 

and activities on energy use.
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Fig. 12. The actual and predicted hourly electricity consumption of the City Museum from November 26 to December 6, 2019. (a) Point forecasts of the best three 
models and (b) probabilistic forecast of the GRU model. The predicted median is P50, and the 80% prediction interval (PI) is from 0.1th to 0.9th quantile.
5.2.1. Changes in operating mode of the City Museum

Previous quantitative analysis suggested that electricity consump-
tion of the City Museum is less predictable than that of the City Theatre. 
The lower predictability was partly due to changes in the operating 
mode of the City Museum on some days in November and December 
2019. Fig. 12a shows such a change. During the five days, from Novem-
ber 29 to December 3, the hourly energy consumption in the nighttime 
was even higher than in the daytime of the previous days. Meanwhile, 
the operating mode in these five days was also different. Among them, 
the hourly electricity consumption in the daytime was relatively high 
on November 29, December 2, and December 3, while it was relatively 
low on November 30 and December 1. From December 4, the operating 
mode changed to the pattern before November 29.

The changes in operating mode degrade the prediction accuracy of 
models during these days. On November 29 (the first day when the op-
erating mode started to change), all three models believed the original 
operating mode would be maintained. Therefore, the forecasts followed 
the pattern in the previous operating mode (see Fig. 12a). The good 
news is that models adjusted their forecasts to adapt to the new op-
erating mode from November 30 (the second day that the operating 
mode changed). After the operating mode changed to the old pattern 
before November 29, the forecasts of models also adapted to the change. 
The changes also introduce more uncertainty into forecasts. As shown 
in Fig. 12b, the 80% prediction interval (from 0.1th quantile to 0.9th 
quantile) during the daytime of the five days from November 29 to De-
cember 3 was relatively higher than during the daytime of the days 
before the operating mode changed. Furthermore, the higher uncer-
tainty for forecasts during the daytime continued after the operating 
mode changed to the old pattern (see December 4 and 5).

Similar changes in the operating mode of the City Museum caused 
the prediction accuracy of models to deteriorate in November and De-
cember compared to the previous three months in the test set. As as-
sessed by inspecting the boxplot (see Fig. 13) of CV-RMSE per 24 hours 
of the best five models, the median CV-RMSE of most models increased 
in November and December, and the distribution became broader in the 
two months.

5.2.2. Uncertainty brought by performing shows in the City Theatre

Activities held in a building might bring some uncertainty to elec-
tricity consumption. Fig. 14 depicts the actual and predicted hourly 
electricity consumption of the City Theatre in four days of October 
2019. Each of the first three days had a show performed, and each show 
lasted for three hours. The hourly electricity consumption was higher 
13

during the show, and these predictive models can make good predic-
Fig. 13. The boxplot of the metric CV-RMSE per 24 hours of the best five models 
for predicted electricity consumption of the City Museum on the test set.

tions (Fig. 14a). However, there is more uncertainty in forecasts when 
there are shows performed (Fig. 14b). Interestingly, on October 7 (Mon-
day), the electricity consumption was expected to drop after 18:00, 
according to the probabilistic forecast (P50). However, it remained high 
until 23:00. Such information can be further investigated to better un-
derstand building energy use.

5.2.3. Heating is more predictable than electricity
Previous quantitative analysis indicates that heating load is more 

predictable than electricity consumption. On the one hand, higher pre-
dictability is attributed to strong influencing factors like dry-bulb tem-
perature being involved in making predictions. On the other hand, the 
heating load is less affected by the change in operating mode. As shown 
in Fig. 15a, even on November 29 and 30, the two days when the oper-
ating mode changed, the best three models still made good predictions. 
Similarly, the uncertainty in predictions was greater during the daytime 
than during the nighttime (see Fig. 15b). The authors speculated that 
higher uncertainty in the daytime is likely due to more heat exchange 
between the indoor and the outdoor environment brought by staff and 
visitors.

6. Conclusion

This study set out to adapt and apply state-of-the-art deep learning 
architectures to address the problem of multi-horizon building energy 

forecasting. Eight methods, including seven deep learning architectures, 
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Fig. 14. The actual and predicted hourly electricity consumption of the City 
Theatre from October 4 (Friday) to October 7 (Monday), 2019. (a) Point fore-
casts of the best three models and (b) probabilistic forecast of the TFT model. 
During the first three days, one show was performed each day. No show was 
performed on the last day.

Fig. 15. The actual and predicted hourly heating load of the City Museum from 
November 26 to November 30, 2019. (a) Point forecasts of the best three models 
and (b) probabilistic forecast of the TFT model.

were studied to develop models for point and probabilistic forecasts. 
A comprehensive case study was conducted on two public historic 
buildings in Norrköping, Sweden, to evaluate the performance of these 
models and investigate factors that affect the predictability of energy 
consumption.

The results show that incorporating future information that deter-
mines coming energy consumption is critical for making multi-horizon 
predictions. Moreover, changes in the operating mode of a building 
and activities held in a building bring more uncertainty in energy con-
sumption and deteriorate the performance of point forecasts. For point 
forecast, the TFT model performed best on both types of energy con-
sumption of the City Museum (CV-RMSE 29.7% on electricity consump-
tion and CV-RMSE 8.7% on heating load). The LR model performed best 
on electricity consumption of the City Theatre (CV-RMSE 17.9%), while 
the LSTM model performed best on heating load of the City Theatre 
14

(CV-RMSE 12.5%). The TFT model dominated the probabilistic forecast. 
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Meanwhile, recurrent models like LSTM and GRU can make competitive 
quantile forecasts.

For future work, more features, especially occupancy and building 
operational data, might be included to study their impact on prediction 
accuracy. Also, the predictive models developed in this study could be 
integrated into a digital twin model of a building to reduce energy use 
while keeping the expected functionalities of the building.
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Benheddi, C. Williamson, M. Kosinski, M. Petrik, G. Grosch, Darts: user-friendly 
modern machine learning for time series maxime dumonal †, J. Mach. Learn. Res. 
23 (2022) 1–6.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: machine learning in 
python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
15

https://doi.org/10.3390/s21165266
https://doi.org/10.3390/s21165266
https://doi.org/10.3390/s21165355
https://doi.org/10.3390/s21165355
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib438B03E2770DA01034A9A8CDBE700EA6s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib438B03E2770DA01034A9A8CDBE700EA6s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib438B03E2770DA01034A9A8CDBE700EA6s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib06637117DF80D6D94D391258B7B7CD47s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib06637117DF80D6D94D391258B7B7CD47s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib06637117DF80D6D94D391258B7B7CD47s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib06637117DF80D6D94D391258B7B7CD47s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib06637117DF80D6D94D391258B7B7CD47s1
https://doi.org/10.1109/TSG.2017.2753802
https://doi.org/10.1016/J.ENBUILD.2020.110301
https://doi.org/10.1016/J.ENBUILD.2020.110301
https://doi.org/10.1016/J.JOBE.2021.102577
https://doi.org/10.1109/TSG.2022.3166600
https://doi.org/10.1016/j.apenergy.2022.120281
https://doi.org/10.1016/j.apenergy.2022.120281
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib134925789195A56796EB0ADAAA77530Ds1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib134925789195A56796EB0ADAAA77530Ds1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib24EB86EE596D41AE3D9010B6B47BBB82s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib24EB86EE596D41AE3D9010B6B47BBB82s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib24EB86EE596D41AE3D9010B6B47BBB82s1
https://doi.org/10.48550/arxiv.1711.11053
https://doi.org/10.1088/1755-1315/863/1/012041
https://doi.org/10.1088/1755-1315/863/1/012041
https://doi.org/10.1089/big.2020.0159
https://doi.org/10.1089/big.2020.0159
https://doi.org/10.1162/neco.1997.9.8.1735
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib66462480C215E7B3C076177619A26FF1s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib66462480C215E7B3C076177619A26FF1s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib66462480C215E7B3C076177619A26FF1s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib66462480C215E7B3C076177619A26FF1s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib12D64EB1D6B20EDA2A03190B7C335939s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib12D64EB1D6B20EDA2A03190B7C335939s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib12D64EB1D6B20EDA2A03190B7C335939s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib12D64EB1D6B20EDA2A03190B7C335939s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib28F8E9F50DEEDD49437C34AD10492404s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib28F8E9F50DEEDD49437C34AD10492404s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib28F8E9F50DEEDD49437C34AD10492404s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibDBC392BB8F5D19B305380FDF5E199655s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibDBC392BB8F5D19B305380FDF5E199655s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibDBC392BB8F5D19B305380FDF5E199655s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibDBC392BB8F5D19B305380FDF5E199655s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib752EFC3A1A02C4C51964FFD93415DEFBs1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib752EFC3A1A02C4C51964FFD93415DEFBs1
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1016/j.ijforecast.2019.07.001
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib0A1FDC234D384D4DE6BBDBDDF3E4A3C7s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib0A1FDC234D384D4DE6BBDBDDF3E4A3C7s1
https://doi.org/10.48550/arxiv.1609.03499
https://doi.org/10.48550/arxiv.1609.03499
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib0F4388859B79F2B3F8925C2645577B5As1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib0F4388859B79F2B3F8925C2645577B5As1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib0F4388859B79F2B3F8925C2645577B5As1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib41895E8550AE316081AD2FFE4533BC2Ds1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib41895E8550AE316081AD2FFE4533BC2Ds1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibBC4C0ED89EEDF3B7732D69D89753C10Bs1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibBC4C0ED89EEDF3B7732D69D89753C10Bs1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibBC4C0ED89EEDF3B7732D69D89753C10Bs1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib9FFC3E2C45DC1188272E2DFD66BA2721s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib9FFC3E2C45DC1188272E2DFD66BA2721s1
https://doi.org/10.48550/arxiv.2205.13504
https://doi.org/10.1109/TPWRS.2020.3028133
https://doi.org/10.1016/j.enbuild.2021.110886
https://doi.org/10.1016/j.enbuild.2021.111379
https://doi.org/10.1016/j.energy.2020.117531
https://doi.org/10.1109/ACCESS.2020.3009537
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib05E27422EB782A77D62247311632F608s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib05E27422EB782A77D62247311632F608s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib05E27422EB782A77D62247311632F608s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibA169F9F63330CA1F8D15CDFE42DEBB09s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibA169F9F63330CA1F8D15CDFE42DEBB09s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibA169F9F63330CA1F8D15CDFE42DEBB09s1
https://doi.org/10.48550/arxiv.1905.10437
https://doi.org/10.48550/arxiv.1905.10437
https://doi.org/10.48550/arxiv.2201.12886
https://doi.org/10.2307/1913643
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib338462F04FDBD239A93545C4DBBCB45Bs1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibC6CC66B8D2DBA83010D3532128519182s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib7059C8F1337F0B3F82F7418B9FF53632s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib7059C8F1337F0B3F82F7418B9FF53632s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibCC00EF081C2829808AAE26972ADFBFB8s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibCC00EF081C2829808AAE26972ADFBFB8s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib903677D4522261F2479752880E2734C3s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib903677D4522261F2479752880E2734C3s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibC24D8FE66C1A74D3574D84E8AFAA1D2Ds1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibC24D8FE66C1A74D3574D84E8AFAA1D2Ds1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibC24D8FE66C1A74D3574D84E8AFAA1D2Ds1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibC24D8FE66C1A74D3574D84E8AFAA1D2Ds1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bibC24D8FE66C1A74D3574D84E8AFAA1D2Ds1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib8706762AB8FBFE314EC481A94DBFDD87s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib8706762AB8FBFE314EC481A94DBFDD87s1
http://refhub.elsevier.com/S0378-7788(23)01040-X/bib8706762AB8FBFE314EC481A94DBFDD87s1

	A study of deep learning-based multi-horizon building energy forecasting
	1 Introduction
	2 Related work
	2.1 Foundational deep learning methods for time series forecasting
	2.2 Recent deep learning architectures for time series forecasting
	2.3 Deep learning-based building energy forecasting
	2.4 Innovation of this study

	3 Methodology
	3.1 Problem formulation
	3.2 The encoder-decoder architecture
	3.3 Deep learning architectures for comparison
	3.4 Loss function and evaluation metrics

	4 Case study
	4.1 Dataset
	4.2 Exploratory data analysis
	4.3 Data preprocessing
	4.3.1 Data cleaning and dataset splitting
	4.3.2 Feature preparation
	4.3.3 Data transformation

	4.4 Experimental setup

	5 Results and discussion
	5.1 Quantitative analysis
	5.1.1 Comparison of predictability of electricity and heating
	5.1.2 The impact of incorporating future information
	5.1.3 The performance of probabilistic forecast
	5.1.4 Computational cost
	5.1.5 Sensitivity analysis

	5.2 Qualitative analysis
	5.2.1 Changes in operating mode of the City Museum
	5.2.2 Uncertainty brought by performing shows in the City Theatre
	5.2.3 Heating is more predictable than electricity


	6 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


