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Abstract— Multi-object tracking (MOT) is the problem of
tracking the state of an unknown and time-varying number of
objects using noisy measurements, with important applications such
as autonomous driving, tracking animal behavior, defense systems,
and others. The MOT task can be divided into two settings, model-
based or model-free, depending on whether accurate and tractable
models of the environment are available. Model-based MOT has
Bayes-optimal closed-form solutions which can achieve state-of-the-
art (SOTA) performance. However, these methods require approxi-
mations in challenging scenarios to remain tractable, which impairs
their performance. Deep learning (DL) methods offer a promising
alternative, but existing DL models are almost exclusively designed
for a model-free setting and are not easily translated to the model-
based setting. This paper proposes a DL-based tracker specifically
tailored to the model-based MOT setting and provides a thorough
comparison to SOTA alternatives. We show that our DL-based
tracker is able to match performance to the benchmarks in simple
tracking tasks while outperforming the alternatives as the tasks
become more challenging. These findings provide strong evidence
of the applicability of DL also to the model-based setting, which
we hope will foster further research in this direction.

Index Terms— Multi-object tracking, Deep Learning, Trans-
formers, Random Finite Sets, Uncertainty Prediction.

I. INTRODUCTION

Multi-object tracking (MOT) is the problem concerned
with recursively estimating the state of an unknown and
time-varying number of objects, based on a sequence of
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noisy sensor measurements. The objects of interest can
enter and leave the field-of-view (FOV) at any time, they
do not always generate measurements at every time step,
and there can be false measurements originating from
sensor noise and/or clutter. Methods capable of tracking
objects under these conditions are required for a diverse
set of important applications, including tracking animal
behavior [1], pedestrian tracking [2], autonomous driving
[3], oceanography [4], military applications [5], and many
others. Methods to solve the MOT problem depend on
whether they operate in the model-based or model-free
setting. In the model-based setting, accurate and tractable
models of the measurement likelihood, as well as the
object dynamics, are available to the MOT designer. In
contrast, under the model-free setting, such models are
unavailable or intractable, e.g., due to high-dimensional
measurements such as image or video data [2], [6].

In the model-based setting, filters based on the random
finite set (RFS) formalism using multi-object conjugate
priors [7], [8] can provide closed-form Bayes-optimal
solutions to MOT and achieve state-of-the-art perfor-
mance [9]. Yet, due to the unknown correspondence be-
tween objects and measurements, also known as the data
association problem, the number of possible associations
increases super-exponentially over time. Consequently,
these methods must resort to approximations such as
pruning/merging for remaining computationally tractable
[8], [10], which inevitably leads to a deterioration of
tracking performance, especially in challenging scenarios.
Moreover, when the measurement and/or motion models
are nonlinear, one must rely on Gaussian approxima-
tions or sequential Monte Carlo methods to handle the
nonlinearity [11], which may further impact the tracking
performance.

In contrast, DL methods can directly learn a mapping
from sequences of measurements to state estimates in a
data-driven fashion, thus sidestepping the complexity of
dealing with data associations explicitly and therefore the
need to resort to heuristics for maintaining computational
tractability. However, almost all of the DL approaches
have been designed for model-free MOT, especially
video-based MOT, and are not straightforward to translate
to the model-free setting. To the best of our knowledge,
no prior work (except our preliminary analysis [12])
has developed a DL solution specifically tailored to the
model-based setting, and compared their performance to
traditional SOTA RFS-based methods such as [7], [8],
[13], [14].

In this paper, we propose a DL-based tracker specif-
ically tailored for model-based MOT, and provide a
thorough comparison to SOTA Bayesian filters in this
setting. As illustrated in Fig. 1, we leverage the insight
that the available multi-object models can be used for
generating unlimited synthetic training data. This allows
for the use of modern high-capacity DL architectures
such as the Transformer [15], which we further improve
by using insights specific to the model-based setting.
We show that our DL-based tracker is able to achieve
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Fig. 1. Bayes-optimal trackers require accurate and tractable models of the environment for their correct functioning but result in solutions that
are intractable for challenging tracking tasks. In our proposed solution, these mathematical models are instead used to generate unlimited

training data for MT3v2, a DL-based tracker using the Transformer architecture.

comparable performance to the benchmarks in simple
tasks while outperforming them in the presence of strong
model nonlinearities or an intractable number of possi-
ble data association hypotheses. These findings provide
strong evidence of the applicability of DL trackers also
in the model-based setting. Our specific contributions are:

• A novel, high-performing DL-based tracker specifi-
cally tailored for the model-based MOT setting. The
proposed architecture provides uncertainty estimates
in addition to state estimates and uses multiple im-
provements compared to standard Transformers, in-
cluding a selection mechanism for providing sample-
specific object queries, a decoder that iteratively
refines estimates, and a learned temporal encoding
of the measurement sequences.

• Uncertainty-aware loss formulations suited for train-
ing general DL-based trackers in the model-based
setting.

• An in-depth performance evaluation and compari-
son for SOTA Bayesian model-based MOT methods
under a realistic radar measurement model with
nonlinearities and finite FOV.

Notations
Throughout the paper we use the following notations:

Scalars are denoted by lowercase or uppercase letters with
no special typesetting (x), vectors by boldface lowercase
letters (x), matrices by boldface uppercase letters (X),
and sets by blackboard-bold uppercase letter (X). Se-
quences are indicated by adding subscripts or superscripts
denoting their ranges to the typesetting that matches their
elements (e.g., x1:k is a sequence of vectors, X1:j of sets),
and arrays by adding multiple such ranges (e.g., x1:k,1:n).
The number of elements in a set X is denoted |X|, and
we further define Na

.
= {i : i ≤ a , i ∈ N}.

II. MULTITARGET MODEL AND PROBLEM
FORMULATION

A. Measurement and Transition Model

For the analysis carried out in this paper, we use
the standard multitarget transition and observation models
for point objects [16, Chap. 5]. We denote the state
vector of object i at time step t as xt

i ∈ Rdx , and
the set of the states of all objects alive at time step
t as Xt. New objects appear according to a Poisson
point process (PPP) parameterized with intensity function
λb(x), while object death is modeled as independent and
identically distributed (i.i.d.) Markovian processes, with
survival probability ps(x). The objects’ motion models
are also i.i.d. Markovian processes, where the single-
object transition density is denoted as f(xt+1 | xt).

The single-object measurement likelihood is denoted
g(zt | xt), zt ∈ Rdz , where the probability of detection
in state x is pd(x) and each measurement is independent
of all other objects and measurements conditioned on its
corresponding target. Objects may generate at most one
measurement per time step, and measurements originate
from at most one object. Clutter measurements are mod-
eled as a PPP with constant intensity λc over the field of
view (FOV), and are independent of the existing objects
and any other measurements. The set of all measurements
generated at time step t (true measurements and clutter)
is denoted Zt.

B. Problem formulation

In this investigation, we focus on the problem of
multi-object estimation using a sequence of measurements
of arbitrary length, i.e., estimating XT given access to
measurements from τ time steps in the past until the cur-
rent time, i.e., [ZT−τ , · · · ,ZT ]. Although certain tracking
applications require the estimation of the entire trajecto-
ries of the objects, many important cases do not. One such
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example is perception in autonomous driving, where state
estimates are the main requirement for optimal decisions,
and trajectory estimation is only of marginal interest.

For applying a DL solution, we see this problem as a
sequence-to-sequence mapping task, where a sequence of
measurements z1:n is to be mapped to a sequence y1:k.
The sequence z1:n is formed by first appending each mea-
surement vector in the moving window [ZT−τ , · · · ,ZT ]
with its time of measurement, and then joining all mea-
surements into a single sequence, in arbitrary order.
Hence, n =

∑T
t=T−τ |Zt|. The sequence y1:k specifies

the predicted posterior density for XT in the form of
a Poisson multi-Bernoulli density1 with k components.
Each yi ∈ Rdy , i ∈ Nk, contains the existence probability
for that component and the parameters for describing its
state density (e.g., mean and standard deviation).

III. BACKGROUND ON TRANSFORMERS

The DL method used in this paper is based on the
Transformer architecture [15], which in recent years has
shown great potential in complex sequence-to-sequence
function approximation [17]–[19]. This section provides
a background on this type of neural network when pro-
cessing an input sequence z1:n with zi ∈ Rdz , i ∈ Nn, to
an output sequence y1:k with yi ∈ Rdy , i ∈ Nk.

A. Overall Architecture

The Transformer architecture is comprised of two
main components: an encoder and a decoder, as depicted
in Fig. 2. These components together make for a powerful
learnable mapping between an input sequence z1:n and an
output sequence y1:k, typically trained using stochastic
gradient descent on a loss function L(y1:k,x1:k) that
compares the network predictions with a ground-truth
sequence x1:k.

B. Multi-head Self-attention Layer

The main building block for the Transformer architec-
ture is the self-attention layer, used multiple times inside
both the encoder and decoder modules. The self-attention
layer first computes three different linear transformations
of the input:

Q = WQA, K = WKA, V = WV A, (1)

where A =
[
a1, · · · ,an

]
∈ Rd×n, and the matrices

Q,K,V are referred to as queries, keys, and values,
respectively. The matrices WQ,WK ,WV ∈ Rd×d are
the learnable parameters of the self-attention layer. The
output is then computed as

B = V · Softmax-c
(
K⊤Q√

d

)
, (2)

1A Poisson multi-Bernoulli density is the disjoint union of a PPP
and a multi-Bernoulli (MB) density. In turn, an MB density is the
disjoint union of Bernoulli components, each described by an existence
probability and a state density function [16].

×M

Add & Norm

Multi-head
attention

Multi-head
cross-attention

Add & Norm

FFN

Add & Norm

o1:k

y1:k

qe
1:n qd

1:k

Multi-head
attention

Add & Norm

FFN

N×

z1:n

e1:n

Add & Norm

Fig. 2. Simplified diagram illustrating the Transformer architecture.
Encoder on the left, containing N encoder blocks, processes the input
sequence z1:n into embeddings e1:n. Decoder on the right, containing
M decoder blocks, uses the embeddings e1:n produced by the encoder

together with the object queries o1:k to predict the output sequence
y1:k . FFN stands for fully-connected feedforward neural network.

where B =
[
b1, · · · ,bn

]
∈ Rd×n and Softmax-c is the

column-wise application of the Softmax function, defined
as

[Softmax-c(Z)]i,j =
ezi,j∑d

k=1 e
zk,j

; i, j ∈ Nn

for Z ∈ Rn×n, where zi,j is the element of Z on row i,
column j. Because of this structure, each output bi from a
self-attention layer directly depends on all inner products
of the type a⊤i Waj , for j ∈ Nn, with learnable W,
between the elements of the input sequence. This allows
for the potential to learn an improved representation of
each ai that takes into account its relationship to all the
other elements of the sequence.

In practice, Transformer-based architectures often use
several self-attention layers in parallel and then combine
the results, where this entire computation is referred to
as a multi-head self-attention layer (shown in green in
Fig. 2). For this, A is fed to nh different self-attention
layers (with separate learnable parameters) in parallel,
generating nh different outputs B1, · · · ,Bnh

, all ∈ Rd×n.
The final output B is then computed by vertically stacking
the results and applying a linear transformation to reduce
the dimensionality back to Rd×n:

B = W0

 B1

...
Bnh

 (3)
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where W0 ∈ Rd×dnn is a learnable parameter of the
multi-head self-attention layer. Finally, B is converted
back to a sequence b1:n = MultiHeadAttention(a1:n).

C. Transformer Encoder

The Transformer encoder is the module in charge of
transforming the input sequence z1:n into the embeddings
e1:n, where, after training, element ei can potentially
encode both the original value zi and any important
relationships it has to the other elements in the sequence.

A Transformer encoder is built from N encoder blocks
in series, as shown in the left of Fig. 2. The output for
encoder block l ∈ NN is computed as

z̃
(l−1)
1:n = z

(l−1)
1:n + qe

1:n (4)

t
(l)
1:n = MultiHeadAttention(z̃

(l−1)
1:n ) (5)

t̃
(l)
1:n = LayerNorm(z̃

(l−1)
1:n + t

(l)
1:n) (6)

z
(l)
1:n = LayerNorm(t̃

(l)
1:n + FFN(t̃

(l)
1:n)) , (7)

where MultiHeadAttention is a multi-head self-attention
layer, as described in Section III-B, FFN is a fully-
connected feedforward neural network applied to each
element of the input sequence separately, LayerNorm is a
Layer Normalization layer (as introduced in [20]), and
z
(l)
1:n is the input sequence after being processed by l

encoder blocks. Hence, z(0)1:n is the original input sequence
z1:n, and z

(N)
1:n is the output of the encoder module,

also denoted e1:n. Importantly, qe
1:n in (4), referred to as

the positional encoding for the input sequence, is added
to the input of every encoder block (as done in [21]),
computed as qe

i = fe
p (i), where f : Z → Rdz , and fe

p

can either be fixed (usually with sinusoidal components
[15]) or learnable [21]. Without it, the encoder module
becomes permutation-equivariant2, which is undesirable
in many contexts. For instance, when processing images
with Transformers the order of the elements in the input
sequence is related to their location in the image, and
therefore very important for correctly solving non-trivial
tasks.

D. Transformer Decoder

Once the embeddings e1:n are computed by the en-
coder, the decoder module is in charge of using them to
predict the output sequence y1:k. Different structures for
the Transformer decoder have been proposed for different
contexts [15], [22], [23], and the one used for this paper
is based on the DEtection TRansformer (DETR) decoder
[21] using object queries o1:k (illustrated on the right
part of Fig. 2), due to its speed and capacity to generate
outputs in parallel, instead of autoregressively. This type
of decoder, just like the encoder module, is comprised of
M decoder blocks, where the output for decoder block

2A function f is equivariant to a transformation g iff f(g(x)) =

g(f(x)).

l ∈ NM is computed as

õ
(l−1)
1:k = o

(l−1)
1:k + qd

1:k (8)

r
(l)
1:k = MultiHeadAttention(õ

(l−1)
1:k ) (9)

r̃
(l)
1:k = LayerNorm(õ

(l−1)
1:k + r

(l)
1:k) (10)

ẽ
(l)
1:k = MultiHeadCrossAttention(r̃

(l)
1:k, e1:n) (11)

ē
(l)
1:k = LayerNorm(r̃

(l)
1:k + ẽ

(l)
1:k)) (12)

o
(l)
1:k = LayerNorm(ē

(l)
1:k + FFN(ē

(l)
1:k) , (13)

where MultiHeadCrossAttention is a regular multi-head
self-attention layer as described in Section III-B, with
the difference that the matrices K, Q, and V in (1) are
respectively computed as WKe1:n, WQr̃

(l)
1:k, and WV e1:n

(all of the subsequent self-attention computations are
the same). The input to the first encoder block are the
object queries o1:k, a sequence of learnable vectors trained
jointly with the other model parameters. Once trained,
each oi ∈ Rdo , i ∈ Nk, will potentially learn to attend
to the parts of the embeddings e1:n that help predict yi.
Similar to the encoder module, o(l)

1:k represents the object
queries after being processed by l decoder blocks (which
also preserve the size of the input), where o

(M)
1:k denotes

the output of the decoder module y1:k. Finally, to prevent
the decoder module from being permutation-equivariant,
a positional encoding qd

1:k is added to the inputs of each
layer, where qd

i = fd
p (i).

IV. RELATED WORK

In recent years, deep learning (DL) has been increas-
ingly applied to the field of MOT, but mostly in the model-
free setting. This section starts by reviewing the literature
on DL for model-free MOT, up to recent state-of-the-art
trackers using modern techniques such as Transformers.
Then, a description of the challenges in doing the same
for the model-free setting is presented, along with our
contributions on this topic.

A. DL for model-free MOT

Deep learning (DL) has been widely applied to model-
free MOT, resulting in multiple breakthroughs to the
state of the art [6], [24], [25]. Some works use DL
methods as aid for solving one or several specific MOT
subtasks, such as object detection [26], [27], extracting
high-level features from input data [28], [29], associating
new measurements to existing tracks [30]–[32], manag-
ing track initialization/termination [33], predicting motion
models [34], [35], and others. Others attempt to solve the
entire MOT task using DL, with architectures based on
extensions of object detectors [36], convolutional neural
networks [37], [38], graph neural networks [39], [40].

More recently, and closer to our proposed work,
Transformer-based architectures [41]–[45] have gained
considerable prominence in the field, achieving excellent
results in popular vision-based MOT benchmarks. All of
them use encoder-decoder architectures with the concept
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of track queries. These queries are vectors predicted by
the decoder and trained to summarize the history of an
object. TrackFormer [41] and TransTrack [43] use these
queries to determine which information from the current
measurements will be utilized for generating predictions
at the current time step. Additionally, the queries are
used to create trajectories by linking predictions across
time. MOTR [42] further expands upon this technique
by incorporating a temporal aggregation network into the
track queries, thereby enhancing the decoder’s ability to
base predictions on measurements from prior time steps.
MeMOT [44] keeps an explicit memory bank of previous
states to help with long-term associations and employs
track queries to summarize an object’s history, but it
does not utilize them to link predictions over time (data
association is addressed in a separate module). SegDQ
[45] introduces the use of semantic segmentation as an
auxiliary task in MOT, showcasing the benefits of multi-
task learning.

B. DL for model-based MOT

Although DL approaches have been very successful
in the model-free setting (especially video-based MOT
[41]–[45]), the model-based setting has not received as
much attention from practitioners. In principle, just as DL
methods can often be easily extended to work with similar
data in different settings, such model-free MOT trackers
could be adapted to work for model-based MOT. Unfor-
tunately, due to certain fundamental differences between
these settings, several challenges arise when attempting
this adaptation.

The first important difference between these contexts
is in the dimensionality of the measurements obtained.
Because vision-based MOT trackers must handle very
high-dimensional measurements (images), their architec-
tures have been developed with inductive biases specific
to this challenge (e.g., stacks of convolutional layers, max
pooling, etc.). In model-based MOT the measurements are
typically low-dimensional, requiring these design deci-
sions to be revisited and probably replaced by alternatives.

Second, these two settings have very different require-
ments regarding temporal associations. In vision-based
MOT, it is very costly to process image data from multiple
time steps jointly, and long-term temporal associations
are not always essential (often a single image contains
accurate information about the location of all objects).
As a result, most [41], [43]–[48], if not all, of the
existing vision-based MOT trackers are unable to process
more than a few frames per time step. In contrast, long-
term temporal associations are of utmost importance in
model-based MOT, as data association uncertainties are
significantly higher than for vision-based tasks. Adapting
such methods to a context where long-range (considerably
more than just a few time-steps) temporal associations
are essential would require addressing this shortcoming
in their design.

Third, vision-based trackers often leverage the image
structure of the measurements for performing tracking in
ways that do not have a straightforward counterpart in
the model-based setting (e.g., [46], [47], which rely on
learning appearance cues to handle occlusion properly).
Naturally, such trackers cannot be used in the model-
based setting without modifications, which would likely
render some of their key novelties unusable.

Therefore, rather than handpicking a few of these
approaches and attempting to tailor them to the model-
based setting, we chose to draw inspiration from a variety
of methods. To do so, we carefully picked the most
promising aspects that we believe can work effectively
in the model-based setting and incorporated other compo-
nents that were not present in these approaches but that we
believe can provide significant benefits for model-based
MOT. This resulted in the novel loss formulations for
training uncertainty-aware DL-based trackers described in
Section V-D, and the proposed tracker, MT3v2. MT3v2
is specifically designed to excel in the low-dimensional
model-based setting, with improvements such as the se-
lection mechanism (Section V-B), iterative refinement
(V-C), and the ability to directly leverage measurements
arbitrarily far away in the past, this tracker surpasses the
performance of current state-of-the-art Bayesian trackers
in challenging, nonlinear tracking tasks.

V. MULTITARGET TRACKING TRANSFORMER V2

As mentioned in Section II, we see the model-based
MOT problem as the task of mapping a sequence of
measurements z1:n to a sequence of predictions y1:k,
corresponding to the parameters of a multi-Bernoulli den-
sity (state distribution and existence probability for each
component) describing the objects present at time step T .
Using the available transition and measurement models
of the environment, we generate unlimited training data
to train MT3v2 to learn this mapping. By approaching
the problem as a sequence-to-sequence learning problem
using a Transformer-based model, we are able to train
a tracker that uses a constant number of parameters
regardless of the number of time steps being processed.
In this way, we maintain computational tractability by
sidestepping the need for heuristics that often impact
performance.

A. Overview of MT3v2 architecture

The MT3v2 architecture is similar to the Transformer
encoder-decoder network described in Sec. III, with some
important distinctions as shown in Fig. 3. First, instead
of learning a set of fixed object queries o1:k, MT3v2
uses a selection mechanism to generate context-sensitive
object queries (Sec. V-B), adapting to the measurements
z1:n for each sample. Second, the decoder structure uses
iterative refinement (Sec. V-C) for improving regression
performance. Third, the training of the architecture is
improved by training with intermediate decoder predic-
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MT3v2

Encoder

Selection
mechanism Decoder

z1:n

e1:n

b1:n

Loss

Total Loss

x1:m

L

Lmatch

Lc

Fig. 3. Overview of the MT3v2 architecture. Input sequence of
measurements z1:n is processed by the encoder, generating the

embeddings e1:n and by the selection mechanism, generating the
initial estimates z̃1:k , object queries o1:k , and positional encodings
qd
1:k for the decoder. The embeddings from the encoder, along with
the output of the selection mechanism, are used by the decoder to

output y1:k , describing a multi-Bernoulli density with k components.

tions (Sec. V-D) and via the addition of a contrastive
auxiliary loss (Sec. V-E). Lastly, instead of positional
embeddings, we use embeddings based on the time-of-
arrival of a measurement (Sec. V-F), allowing the model
to leverage on this information without being distracted
by the specific order of the elements in the measurement
sequence z1:n.

The idea behind this specific structure is that the
encoder can process the measurement sequence into a
new representation e1:n that summarizes relevant infor-
mation to the MOT task, such as which are the clutter
measurements, which measurements come from the same
objects, etc. Then, the selection mechanism uses the
generated embeddings and measurements to create object
queries o1:k (and corresponding positional embeddings)
which are specifically suited for the current sequence z1:n.
Furthermore, to relieve the decoder from the burden of
having to generate predictions from scratch, the selection
mechanism also generates potential starting points z̃1:k,
which the decoder then uses for iterative refinement at
each decoder block. The final output sequence from the
decoder, denoted y1:k, represents the parameters of a
k-component MB density. Each yi, i ∈ Nk is of the
form (µi,Σi, pi), containing respectively the mean and
covariance for a Gaussian distribution, and the existence
probability for that Bernoulli component.

Both the output sequence y1:k from the decoder (along
with outputs from the intermediate decoder blocks, see
section V-D) and the embeddings e1:n are used for
training MT3v2. The output sequence is used to approx-
imate the negative log-likelihood of the predicted multi-
Bernoulli densities, while the embeddings are used for
computing an auxiliary contrastive loss that accelerates
learning. Training is then performed by optimizing the
sum of these two different losses.

The rest of this section explains the selection mecha-
nism and the iterative refinement process in the decoder

e1:n

m1:n

δ1:n

z1:n

z̃1:k

o1:k

qd
1:k

FFN

Top-k Index

Index

Index

i1:k

FFN

FFN

FFN

Sigmoid

Fig. 4. MT3v2’s selection mechanism: Embeddings e1:n are fed to
an FFN and then a sigmoid layer, producing scores m1:n. The

embeddings of the measurements with the top-k scores are fed to two
FFNs, producing the object queries o1:k and their corresponding

positional encodings qd
1:k .

in more detail, followed by a description of the negative
log-likelihood loss and the contrastive auxiliary loss used,
and finalizes with information about the most important
preprocessing steps applied to the training data.

B. Selection Mechanism

The selection mechanism of MT3v2, illustrated in de-
tail in Fig. 4, is in charge of producing the initial estimates
for iterative refinement z̃1:k (see Section V-C), and the
object queries o1:k along with their positional encodings
qd
1:k, similar to the two-stage encoder proposed in [49]. It

does so by learning to look for the measurements among
z1:n that are the best candidates to be used as starting
points for the decoder (i.e., measurements that are likely
to be close to the state estimates that the decoder is in
charge of producing for that specific sequence z1:n) and
basing its outputs on them. This simplifies the decoder’s
task and improves performance, as shown in Sec. VII-C.

First, scores mi ∈ [0, 1] for each of the embeddings ei
are computed according to mi = Sigmoid(FFN(ei)), i ∈
Nn. The indices i1:k of the top-k scores are then computed
according to top-k(m1:n) = [i1, i2, · · · , ik], where

ij = argmax
a

ma s.t. a /∈ {il : l < j}, (14)

for j ∈ Nk. These indices i1:k are used to index the
sequences δ1:n (predicted adjustments), z1:n, and e1:n,
by applying the Index function

Index(a1:n, i1:k) = [ai1 ,ai2 , · · · ,aik ] , (15)

which we will abbreviate as Index(a1:n, i1:k) = ai1:k .
The initial estimates z̃1:k are then computed by summing
the top-k measurements and their corresponding predicted
adjustments

z̃1:k = zi1:k + δi1:k , (16)

where δi = FFN(ei). At the same time, the object
queries and decoder positional encodings are computed
by feeding the top-k embeddings to separate FFN layers:

o1:k = FFN(ei1:k), qd
1:k = FFN(ei1:k). (17)
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In contrast to MT3 [12], MT3v2’s selection mechanism
feeds ei1:k to FFN heads to produce the object queries and
the positional encodings, not the indexed measurements
z̃i1:k . We found that this improves performance, as the
embeddings are higher-dimensional and can therefore
contain much more information about the task for pro-
ducing useful queries and positional encodings.

C. Iterative Refinement

To further improve the performance of MT3v2, we
adopt the idea of iterative refinement [49], [50] in the
decoder. As stated previously, the decoder outputs the
sequence y1:k which represents the k components of an
MB density, where each yi = (µi,Σi, pi) contains respec-
tively the mean, covariance, and existence probability for
that Bernoulli. Instead of directly computing the sequence
of predicted state means µ1:k from the output of the
decoder’s last layer (e.g., µ1:k = f(o

(M)
1:k ), with some

learnable f ), we start with the initial state estimates z̃1:k
computed by the selection mechanism, and each decoder
layer l ∈ NM generates adjustments ∆l

1:k to it. Summing
all adjustments to the initial estimates then yields the
output µ1:k for the decoder.

Concretely, the initial estimates z̃i are first trans-
formed from measurement space to state-space, and are
then denoted by µ0

i . Then, the output o(l)
1:k of each decoder

layer l is fed to an FFN (each layer has an FFN with
separate parameters), which then produces adjustments
∆l

1:k in the state space. New adjustments are added to
the previous estimate at each decoder layer, resulting in
predicted state means µl

1:k for each layer l, where

µl
i = µ0

i +

M∑
l=1

∆l
i, l ∈ NM , (18)

Covariances and existence probabilities are not iteratively
refined and are directly computed at each layer as

Σl
1:k = Diag

(
Softplus

(
FFN(o

(l)
1:k)

))
, (19)

pl1:k = Sigmoid
(
FFN(o

(l)
1:k)

)
, (20)

where Softplus(·) is applied element-wise as

Softplus(x) = log(1 + ex), (21)

and Diag : Rn → Rn×n, also applied element-wise, is a
function that constructs a diagonal matrix from its input.
Predicting diagonal covariance matrices Σl

i may impact
performance but improves training time considerably
(avoids the need to invert a full positive definite matrix
when computing the log-likelihood of the state density,
see Sec. V-D). Putting these together, each decoder layer
produces an MB density yl

1:k = (µl
1:k,Σ

l
1:k, p

l
1:k). The

final output of MT3v2 is then the output at the last
decoder layer, i.e., y1:k = yM

1:k, whereas the other outputs
yl
1:k, l ∈ NM−1 are used only during training.

D. Loss

We train MT3v2 using an approximation of the ex-
pected sum of the negative log-likelihood (NLL) of the
M MBs yl

1:k, l ∈ NM , evaluated at the ground-truth
target states [51]. Training all the intermediate decoder
block outputs instead of just the final predictions y1:k

from the final layer is shown to accelerate learning for
deep Transformer decoder architectures and improve final
performance [21], [52], and is confirmed by our ablations
(see Sec. V-C). We sample a measurement sequence z1:n,
and corresponding ground-truth targets x1:m using the
available models of the environment, where xi ∈ Rdx , i ∈
Nm are the states for the m objects which are alive at the
last time step. Then the measurements are fed to MT3v2,
which generates predictions yl

1:k, l ∈ NM (one for each
decoder layer, see Section V-C). The loss for this sample
is then expressed as

L(x1:m,y1
1:k, · · · ,yM

1:k) = −
M∑
l=1

log f l(x1:m), (22)

where f l(x1:m) is the MB density specified by yl
1:k,

evaluated at x1:m.
Computing f l(x1:m) directly is computationally in-

tractable, since all possible associations between the
MB components and the ground-truth object states must
be accounted for, making the number of terms in this
expression grow super-exponentially on k and m [51],
[53]. However, in most cases all but one of the possible
associations between Bernoullis and targets have negligi-
ble contribution, so we can approximate this NLL with
only the contribution from the most likely association.
To do so, we append ‘∅’ elements to the sequence x1:m

resulting in a new sequence x̃1:k with the same number
of elements3 as each yl

1:k, and approximate the NLL as

− log f l(x1:m) = −
k∑

i=1

log
∑
σ

f l
i (x̃σ(i)) (23)

≈ −
k∑

i=1

log f l
i (x̃σl(i)), (24)

where σ is a permutation function, σ : Nk → Nk | σ(i) =
σ(j) ⇒ i = j, corresponding to one possible association
between MB components and ground-truth object states,
and f l

i (xσ(i)) is the Bernoulli density specified by yl
i

evaluated at the σ(i)-th element of x̃1:k, such that

log f l
i (x̃j) =

{
log pli + logN (x̃j ;µ

l
i,Σ

l
i) if x̃j ̸= ∅

log(1− pli) otherwise.
(25)

Finally, σl corresponds to the most likely association
between objects and Bernoulli components predicted at
the decoder layer l. Computing σl directly as described

3We choose a value of k which is large in comparison to the generative
model and enforce m ≤ k by not adding more than k objects to
any sample. This restriction is only enforced during training; during
evaluation/inference this loss does not need to be computed.
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in [51] resulted in unstable learning, and we instead
approximate it similarly to [21], as

σl = argmin
σ

k∑
i=1

Lmatch(y
l
i, x̃σ(i)), (26)

where

Lmatch(y
l
i, x̃σ(i)) =

{
0, if x̃l

σ(i) = ∅
∥µl

i − x̃σ(i)∥ − log pli, otherwise,
(27)

which can be solved efficiently using the Hungarian
algorithm [54].

E. Contrastive Auxiliary Learning

Another improvement we add to the training process
is an auxiliary task of trying to predict which of the
measurements in z1:n came from which objects (and
which are clutter). Adding simpler auxiliary tasks often
improves the initial part of the training process (when
the main task is still too hard to solve, and might not
provide much gradient information) and the generalization
performance of the final model [55].

To implement this, we use an idea inspired by Su-
pervised Contrastive Learning [56], where the model is
trained to generate similar predictions for samples of the
same classes, but dissimilar to samples of other classes.
During the data generation, we annotate each measure-
ment zi, i ∈ Nn, with an integer bi encoding from which
object it came from, −1 if it is clutter . Let Pi be the set of
indices of measurements that came from the same object
as the measurement zi, Pi = {j ∈ Nn | j ̸= i , bi = bj},
the auxiliary loss Lc is then defined similarly to [56],
but using the object identifiers b1:n as the labels for the
contrastive learning of the encoder embeddings:

Lc(e1:n, b1:n) = β

n∑
i=1

−1

|Pi|
∑
i+∈Pi

log
eu

⊤
i ui+∑

j∈Nn\i
eu

⊤
i uj

(28)

u1:n =
FFN(e1:n)

∥FFN(e1:n)∥ 2

. (29)

where β ≥ 0 is a hyperparameter controlling the trade-off
between the auxiliary task and the main task. This loss can
be intuitively understood as encouraging the processed
embeddings ui and uj from different measurements zi, zj
to be similar if bi = bj (u⊤

i uj will be large) or dissimilar
if bi ̸= bj (u⊤

i uj will be small). Training the model on
the sum of this auxiliary loss and the loss defined in
Section V-D accelerated learning and improved MT3v2’s
final performance, especially in more challenging tasks,
as shown in our ablations studies in Sec. V-C.

F. Preprocessing

1. Preprocessing measurements
Before feeding the measurement sequence to MT3v2,

each measurement goes through three preprocessing steps.
First, we divide a measurement zi by a normalization
factor to ensure that the values in each dimension (r,
ṙ, θ) are in the range [0, 1]. The normalization factor is
computed using the known FOV dimensions.

Second, we increase its dimensionality to a value d′ >
3, by multiplying it with a learnable matrix W ∈ Rd′×3.
This transformation allows the self-attention layers in the
encoder to have dimensionality d′ instead of 3, which
increases the flexibility of its representational power.

Lastly, the time-of-arrival t of zi is used to compute
its encoder positional encoding qe

i ∈ Rd′
. This is done

with the help of a learned lookup table fλ(ti), where λ is
trained jointly with the other parameters of the network.
This allows the architecture to have direct access to the
corresponding time of measurement for each zi, while
at the same time sidestepping the need to learn that the
position in the sequence z1:n is irrelevant to the task.

2. Postprocessing outputs
As an additional step, we also post-process the

model’s outputs. The final predicted state means µl
1:k

for each layer l (see (18)) are scaled using the FOV’s
known dimensions before computing the losses, so that an
unscaled output ranging from 0 to 1 covers the entire FOV.
This ensures that the decoder structure needs to produce at
most unitary outputs regardless of the actual size of the
FOV, which reduces the chance of exploding gradients
due to large errors during training.

VI. EVALUATION SETTING

This section describes the setting used to evaluate
the capabilities of the proposed DL tracker in model-
based MOT. Specifically, we benchmark MT3v2 against
two SOTA Bayesian MOT filters based on the random
finite set formalism: the Poisson multi-Bernoulli mixture
(PMBM) filter [10] and the δ-generalized labeled multi-
Bernoulli (δ-GLMB) filter [8], in a simulated scenario
with synthetic radar measurements. The PMBM filter
provides a closed-form solution for MOT with standard
multitarget models with Poisson birth, whereas the δ-
GLMB filter provides a closed-form solution for MOT
when the object birth model is a multi-Bernoulli (mix-
ture). In what follows, we first describe the tasks the
different algorithms were deployed on, along with their
most relevant implementation details, and then we present
the measures for evaluating the filtering performance.

A. Task Description

We compare the performance of the DL approach to
the traditional Bayesian filters in four different tasks. task
1 is a baseline task, simpler than the other 3, where we
expect traditional approaches to be a strong benchmark

8 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No.



for the DL tracker. We then investigate the impact of
increasing the complexity of the data association (task
2), increasing the nonlinearity of the models (task 3), and
both changes simultaneously (task 4).

The motion model used for all four tasks is the nearly
constant velocity model, defined as:

f(xt+1|xt) = N (xt+1 ; µ(xt) , Σ ),

µ(xt) =

[
I I∆t

0 I

]
xt, Σ = σ2

q

[
I
∆3

t

3 I
∆2

t

2

I
∆2

t

2 I∆t

]
where xt+1,xt ∈ Rdx , dx = 4 represents target position

and velocity in 2D at time steps t+ 1 and t respectively,
and ∆t = 0.1 is the sampling period, σq controls the
magnitude of the process noise. The state for newborn
objects is sampled from N (µb,Σb) with

µb =


7
0
0
0

 , Σb =


10 0 0 0
0 30 0 0
0 0 3 0
0 0 0 3

 ,

values chosen to have an object birth model that covers
a reasonable part of the field of view. The measurement
model used is a non-linear Gaussian model simulating
a radar system: g(z|x) = N

(
z;H(x),Σ(x)

)
, where H

transforms the xy-position and velocity state-vector x
into (r, ṙ, θ), respectively the range, Doppler and bearing
of each target. For tasks 3 and 4, Σ(x) is computed
according to the approach described in [57], with the
hyperparameters detailed in Appendix A, resulting in
a realistic radar measurement model with strong non-
linearities close to the edges of the FOV (measurement
noise increases quickly as the objects get closer to the
edges). In contrast, in tasks 1 and 2 Σ(x) is set to the
constant

Σ(x) =

5.62 · 10−3 0 0
0 9.56 · 10−1 0
0 0 1.00 · 10−2


where the values of the diagonal were chosen to make
all tasks have similar measurement noise intensity in
the central region of the FOV. The field of view
for all tasks is the volume delimited by the ranges
(0.5, 150), (0, 30), (−1.3, 1.3) for r (m), ṙ (m/s), and θ
(radians), respectively.

All tasks use Poisson models with parameter λ0 for
the initial number of objects and have τ = 20, and
ps(·) = 0.95. To increase the data association com-
plexity in tasks 2 and 4, certain hyperparameters of
the generative model were changed, as shown in Table
I. The simultaneous increase in the number of clutter
measurements, process noise, and number of objects,
along with a decrease in the detection probability, causes a
substantial increase in the number of probable hypotheses
that conventional MOT algorithms have to keep track
of, making it considerably harder for them to perform
well with a feasible computational complexity. To give
an estimate of the data association complexity, we report
that, for the PMBM filter, an average of 20 probable

TABLE I
Hyperparameters changed for increasing data association complexity.

Task λ0 pd λc σq λb

1 2 0.95 4.4 · 10−3 0.2 1.3 · 10−4

3 2 0.95 4.4 · 10−3 0.2 1.3 · 10−4

2 6 0.7 2.6 · 10−2 0.9 3.5 · 10−4

4 6 0.7 2.6 · 10−2 0.9 3.5 · 10−4

hypotheses were necessary to be kept track of in tasks
1 and 3 for achieving the reported performance. On the
other hand, for tasks 2 and 4 the number of hypotheses
maintained by PMBM was ∼140, almost an order of
magnitude higher than for the simpler tasks.

B. Implementation Details

For all experiments on MT3v2, the increased dimen-
sionality of the measurements is d′ = 256, we use
N = 6 encoder blocks and M = 6 decoder blocks,
multi-head self-attention layers with 8 attention heads and
k = 16 object queries, embedding layers with de = 256,
object queries with do = 256, and the contrastive loss
hyperparameter β is set to 4.0. All FFNs in the encoder
and decoder blocks have 2048 hidden units and are trained
with a dropout rate of 0.1. All FFNs in the selection
mechanism have 128 hidden units, while the one used for
computing ui in the contrastive loss has 256. To compute
µ0

i in (18), measurements are mapped from measurement
space to state-space as

µ0
i =

(
ri cos(θi), ri sin(θi), 0, 0

)
(i.e., using 0 as initial estimates for the velocity dimen-
sions). The model was trained using Adam [58] with a
batch size of 32 and initial learning rate 5 · 10−5, and
whenever the loss did not decrease for 50k consecutive
gradient steps the learning rate was reduced by a factor
of 4. The training was performed on a V100 GPU for
1M gradient steps in tasks 1 and 2, 700k in task 3,
and 400k in task 4, amounting to approximately 4 days
of training for each task. MT3v2 was implemented in
Python + PyTorch, and the code to define, train, and
evaluate it is made publicly available at https://github.
com/JulianoLagana/MT3v2, along with trained models
for each of the tasks.

We proceed to describe the implementation details of
PMBM and δ-GLMB. PMBM uses a Poisson birth model
with Poisson intensity λbN (µb,Σb), and the initial Pois-
son intensity for undetected objects is set to λ0N (µb,Σb).
As for δ-GLMB, the multi-Bernoulli birth model is used,
which contains a single Bernoulli component with prob-
ability of existence λb and state density N (µb,Σb). In
addition, to model undetected objects existing at time 0,
the multi-Bernoulli birth model at time 1 contains 2λ0

Bernoulli components, each of which has probability of
existence 0.5 and state density N (µb,Σb).

To handle the nonlinearity of the measurement model,
the iterated posterior linearization filter (IPLF) [59] is
incorporated in both PMBM and δ-GLMB, see, e.g., [60].
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The IPLF is implemented using sigma points with the
fifth-order cubature rule [61] as suggested in [62] for radar
tracking with range-bearing-Doppler measurements, and
the number of iterations is 5. In IPLF, the state-dependent
measurement noise covariance Σ(x) is approximated as
Σ(x̂) where x̂ is either the mean of the predicted state
density or the mean of the state density at last iteration.

For PMBM and δ-GLMB, the unknown data associa-
tions lead to an intractably large number of terms in the
posterior densities. To achieve computational tractability
of both PMBM and δ-GLMB, it is necessary to reduce
the number of parameters used to describe the poste-
rior densities. First, gating is used to remove unlikely
measurement-to-object associations, by thresholding the
squared Mahalanobis distance, where the gating size is
20. Second, we use Murty’s algorithm [53] to find up to
200 best global hypotheses. Third, we prune hypotheses
with weights smaller than 10−4. For PMBM, we also
prune Bernoulli components with probability of existence
smaller than 10−5 and Gaussian components in the Pois-
son intensity for undetected objects with weights smaller
than 10−5. Both PMBM4 and δ-GLMB5 implementations
were developed in MATLAB.

C. Performance Measures

To evaluate the algorithms we use two performance
measures: the generalized optimal sub-pattern assignment
(GOSPA) metric [63], and the negative log-likelihood of
the MOT posterior (NLL) [51]. The GOSPA metric is
considered due to its widespread use, its computational
simplicity, and for being a metric in the space of sets. The
NLL performance measure is used to evaluate the algo-
rithms further, taking into account all of the uncertainties
available in the predicted MOT posterior. We compute
a Monte Carlo approximation of the expected value of
each performance measure by generating 1k samples of
measurement sequences z1:n and corresponding ground-
truth object states XT from the generative model. The
measurement sequences are fed to each of the tracking
algorithms, producing MOT posterior densities for each
sample, which are then compared to the corresponding
XT ’s, using each of the performance measures.

1. GOSPA metric
To compute the GOSPA [63] metric, it is neces-

sary to extract state estimates from the predicted MOT
posterior for each algorithm, generating point-wise pre-
dictions for the states of objects alive at time step T :
X̂ = {x̂1, · · · , x̂|X̂|}. For PMBM and δ-GLMB, we
first process the MOT posterior by selecting the global
hypothesis with the largest weight (method 1, as defined
in [10]), generating a multi-Bernoulli distribution. Then,
X̂ is formed by selecting the means of all Bernoulli
components with existence probability greater than pcutoff,

4https://github.com/Agarciafernandez/MTT/tree/master/PMBM%
20filter
5http://ba-tuong.vo-au.com/rfs_tracking_toolbox_updated.zip

where pcutoff is chosen separately for each algorithm to
minimize its GOSPA score. The MOT posterior defined
by MT3v2’s output y1:k is already in the form of a multi-
Bernoulli density, and we also form its X̂ by thresholding
the components based on their existence probabilities.

Given a set of state estimates X̂, we compute the
GOSPA metric between X̂ and the ground-truth target
states XT , with α = 2 and Euclidean distance, defined
as
d(c,2)p (X̂,X) = min

γ∈Γ
(30)( ∑

(i,j)∈γ

∥x̂T
i − xT

j ∥
p
2︸ ︷︷ ︸

Localization

+
cp

2
(|X̂| − |γ|)︸ ︷︷ ︸

False detections

+
cp

2
(|X| − |γ|)︸ ︷︷ ︸

Missed objects

) 1
p

where the minimization is over assignment sets between
the elements of X̂ and X, such that γ ⊆ {1, · · · , |X̂|} ×
{1, · · · , |X|}, while (i, j), (i, j′) ∈ γ =⇒ j = j′, and
(i, j), (i′, j) ∈ γ =⇒ i = i′. In all our experiments we
use c = 10, p = 1. The cutoff parameter was chosen
at 10 because the tracking task is 4-dimensional: 2D
position and velocity. Higher-dimensional tasks make the
Euclidean distance between states larger than for lower-
dimensional tracking scenarios. See Appendix B for an
analysis of the sensitivity of the results to the cutoff
parameter c.

2. NLL performance measure
The NLL performance measure is computed by eval-

uating how well the MOT posterior explains the ground-
truth data [51] in terms of its negative log-likelihood:

NLL(fa,XT ) = − log fa(XT ) (31)
where fa is the MOT posterior computed by tracker
a. As explained in [51], for an algorithm to obtain a
good NLL score, its MOT posterior must be able to
explain the set of objects XT for all samples, including
potential missed objects and false detections. Algorithms
like δ-GLMB are therefore not suitable for being assessed
with this performance measure, since the MOT posterior
produced by them is unable to explain any missed objects:
fδ−GLMB(XT ) = 0 whenever |XT | > n, where n is the
number of Bernoulli components in δ-GLMB’s predicted
posterior, therefore resulting in an average NLL score of
∞ (for NLL, lower values entail better performance). For
PMBM we use method 1 as described in [10] to extract
a PMB density, which is then able to explain any number
of missed objects due to its PPP component.

To evaluate MT3v2 with the NLL performance mea-
sure, we add a PPP component with a piece-wise constant
intensity function described as

λMT3v2(x) =

{
λ̄ , if x is inside the FOV
0 , otherwise

(32)

to its posterior, resulting in a PMB MOT density for
MT3v2:
fMT3v2(XT ) =

∑
XD⊎XU=XT

fMB(XD)e−λ̄
∏

x∈XU

λMT3v2(x)

(33)
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where fMB(·) is the MB density with k Bernoulli compo-
nents described by MT3v2’s output y1:k, and λ̄ is tuned
to minimize NLL over 1k samples from the generative
model.

Lastly, directly computing the NLL for a PMB density
is not computationally tractable except for the simplest
cases, so we approximate it using the algorithm presented
in [51], resulting in the following performance measure:

NLL(f,X) ≈ min
γ∈Γ

−
∑

(i,j)∈γ

log
(
pigi(xj)

)
︸ ︷︷ ︸

Localization

(34)

−
∑

i∈F(γ)

log(1− pi)︸ ︷︷ ︸
False detections

+

∫
λ(y′)dy′ −

∑
j∈M(γ)

log λ(xj)︸ ︷︷ ︸
Missed objects

,

where pi, gi are the existence probabilities 6 and state
densities for the i-th Bernoulli components of the PMB
density f , and λ(·) is its PPP intensity function. Here
Γ is the set of all possible assignment sets (as defined
for GOSPA), while F(γ) = {i ∈ Nm | ∄ j : (i, j) ∈ γ} is
the set of indices of the Bernoullis not matched to any
ground-truth (m is the number of Bernoulli components
in f ), and M(γ) =

{
j ∈ N|X| | ∄ i : (i, j) ∈ γ

}
is the set

of indices of ground-truths not matched to any Bernoulli
component.

VII. RESULTS

This section contains the results of the evaluations
performed for assessing the tracking capabilities of the
proposed deep learning tracker and is divided into four
subsections. First, subsection A, describes an illustrative
example of the performance of MT3v2 in a simple
tracking task, depicting the predictions generated by the
algorithm in this context and validating their soundness.
Second, subsection B contains the results of a thorough
comparison of MT3v2 to the model-based SOTA algo-
rithms PMBM and δ-GLMB, in the four tasks described
in Section A. Third, subsection C validates and quantifies
the importance of each of MT3v2’s most important design
decisions via a set of ablation studies. Lastly, subsection
D further evaluates each algorithm by investigating its
running time complexity.

A. Illustrative Example

As a way to validate the soundness of the MT3v2
architecture, it is helpful to illustrate the predictions
generated by it given a certain sequence of measurements.
However, doing so using measurement sequences sampled
from any of the four tasks described in section VI-A

6Method 1 of extracting state estimates presented in [10] often generated
Bernoulli components with existence probability equal to 1. To do a fair
comparison with MT3v2, we cap all existence probabilities for both
methods at a maximum of 0.99 instead, which prevents PMBM from
obtaining too large of a penalty for some samples with false detections.

Fig. 5. Illustration of MT3v2’s tracking performance in a simplified
setting. Black crosses illustrate the measurements available to MT3v2

(Doppler component not illustrated to avoid clutter), and their
transparency is determined by their relative time of measurement:

more opaque crosses correspond to more recent measurements, closer
to t = T . Dark blue circles and arrows show MT3v2’s predicted
object positions and velocities. Light blue ellipses illustrate the

predicted position uncertainties and dashed ellipses the predicted
velocity uncertainties. Ground-truth object positions and velocities are

illustrated in green as diamonds and arrows, respectively.

proved to be not optimal for this. The high measurement
and motion noise in these tasks, along with a high number
of clutter measurements makes it challenging to interpret
measurement sequences visually.

Therefore, we resorted to creating a new, simpler task
with fewer clutter measurements and lower measurement
noise just for this purpose, and trained MT3v2 in it.
MT3v2’s tracking capabilities after training are illustrated
in Fig. 5, which contains the measurement sequence fed
to MT3v2, along with the predictions generated for this
2D tracking task. It shows MT3v2 being able to track
three objects among clutter, estimating their position
and velocities and also providing sensible uncertainty
predictions for these quantities.

Evidently, although helpful as a sanity test for the
approach, this type of analysis does not suffice for com-
paring MT3v2’s performance to other approaches. Hence,
we perform a thorough comparison in subsection B using
the performance measures described in Section VI-C over
a large number of samples instead.

B. Comparison to Model-Based SOTA

The performance of MT3v2 was compared to both
SOTA Bayesian filters PMBM and δ-GLMB, in the four
tasks7 introduced in Section VI-A. For this purpose,
MT3v2 was trained from scratch in each of the 4 tasks,

7We note that it is not possible to perform a comparison on datasets such
as MOT17 and MOT20, since neither MT3v2, PMBM, nor δ-GLMB
work with image inputs.

PINTO ET AL.: BENCHMARKING DEEP LEARNING IN THE MODEL-BASED MULTI-OBJECT TRACKING SETTING. 11



0 0.5 1 1.5 2 2.5 3 3.5

·107

0

10

20

30

40

number of samples

G
O

SP
A

Task 1
Task 2
Task 3
Task 4

Fig. 6. GOSPA scores for MT3v2 during training for each of the
four tasks. Performance improves steadily with more training, and

most of the gains come from the first 1M training samples. Training
on tasks 2 and 4 takes longer due to the more complicated

measurement model, so fewer samples were processed in the same
amount of allotted training time than for the other tasks.

and the GOSPA values during training for each of them
are shown in figure 6. For all tasks, performance improved
steadily with more training, and most of the gains in
performance are obtained within the first 1M processed
samples (30k gradient steps, 1-2 days of training time).
The training continued for as long as possible within the
computational constraints available, but more training in
task 4 could have yielded better performance. Note that
the GOSPA values for tasks 2 and 4 are considerably
larger than for the other tasks primarily due to a higher
average number of ground-truth objects to be predicted.

Once trained, we computed the average GOSPA and
NLL scores over 1k samples for MT3v2 in each task. The
resulting scores, together with those for the benchmark
algorithms, are shown in Table II and III, along with
the corresponding decompositions and 95% confidence
intervals. NLL scores for δ-GLMB are not shown in Table
III because, in the GLMB density representation, each
global hypothesis consists of Bernoulli components with
deterministic existence probabilities (either 0 or 1). After
extracting the most likely global hypothesis, the resulting
type of multi-object posterior assigns zero probability to
any set of object states with cardinality larger than the
number of Bernoulli components, incurring a penalty of
infinity whenever false detections occur (all tasks). We
refer to [51] for an in-depth explanation of this behavior.

In terms of GOSPA, we see that MT3v2 is able
to match performance with the best benchmark in the
simpler setting, task 1, while outperforming it in tasks
2, 3, and 4, supporting our hypothesis that DL trackers
can outperform traditional model-based methods when the
data association becomes more complicated and/or the
models more nonlinear. In terms of NLL, the conclusion
is similar, with the exception of task 2 where MT3v2 has
similar performance to PMBM. Our results agree with
a growing body of literature showing that performing
estimation via a direct mapping from the sequence of
measurements to the object states often yields better
performance than recursively estimating the state at every
time-step [64]–[66]. In a way, our approach is similar to

TABLE II
GOSPA scores for all tasks.

Task Algorithm GOSPA Localization False Missed

1
PMBM 3.44 ± 0.18 2.24 0.12 1.07
δ-GLMB 3.84 ± 0.20 2.13 0.06 1.64
MT3v2 3.46 ± 0.18 2.32 0.12 1.01

2
PMBM 19.03 ± 0.53 6.40 0.57 12.06
δ-GLMB 20.63 ± 0.61 5.56 0.23 14.83
MT3v2 17.03 ± 0.46 8.12 0.96 7.95

3
PMBM 7.27 ± 0.30 3.93 0.10 3.24
δ-GLMB 7.42 ± 0.30 3.21 0.70 3.79
MT3v2 6.01 ± 0.27 3.50 0.21 2.29

4
PMBM 26.72 ± 0.71 2.08 0.02 24.61
δ-GLMB 27.43 ± 0.71 3.26 0.02 24.14
MT3v2 22.67 ± 0.54 10.80 0.99 10.88

TABLE III
NLL scores for all tasks.

Task Algorithm NLL Localization False Missed

1
PMBM 1.78 ± 0.33 1.24 0.14 0.39
MT3v2 6.49 ± 0.35 5.76 0.25 0.48

2
PMBM 31.40 ± 1.00 23.57 1.47 6.35
MT3v2 36.00 ± 0.94 29.75 2.62 3.62

3
PMBM 22.39 ± 1.01 10.85 2.39 9.16
MT3v2 12.90 ± 0.54 10.80 0.66 1.43

4
PMBM 55.21 ± 1.49 25.23 1.18 28.79
MT3v2 45.55± 0.98 18.55 5.49 21.52

those approaches, as we are learning a parametric function
mapping the measurement sequence directly to the final
object states.

Additionally, for most of the tasks, we notice that the
localization error for MT3v2 (in both GOSPA and NLL)
is higher than for the benchmarks, suggesting that the
regression part of the network could be further improved.
We theorize that further training plus predicting full
state covariances (we only predict diagonal covariance
matrices, see section V-C) would improve this, but leave
it for future work. At the same time, we note the higher
GOSPA-missed and NLL-missed cost for PMBM and δ-
GLMB in almost all tasks, the gap to MT3v2 being the
largest for task 4. As expected, the increase in the data
association complexity for these tasks requires traditional
approaches to aggressively prune hypotheses to remain
computationally tractable, leading to more missed targets
and worse performance.

To further investigate the high missed costs for the
Bayesian benchmarks, we provide a failure case study of
the algorithms in Task 4. To do so, we divide the (r, θ)
dimensions of the FOV into 25 different sectors, and plot
the missed ratio (number of missed objects / total number
of objects) in each sector for tasks 2 and 3, along with
those of MT3v2, in Figures 7 through 9. The missed rates
for MT3v2 in task 2 are very similar to PMBM, so we
omit it for conciseness.

Figure 7 shows that in task 2 the tracker’s missed
ratios are reasonably constant throughout the FOV, in
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Fig. 7. PMBM’s missed rate per FOV sector for task 2 (very similar
to MT3v2 and δ-GLMB).

Fig. 8. MT3v2’s missed rate per FOV sector for task 3.

line with our expectations, since the data association
complexity is increased across the entire FOV, with no
specific region being more or less complex than others. In
task 3 on the other hand, Figs. 8 and 9 show that PMBM’s
(and δ-GLMB’s) performance is considerably worse than
MT3v2’s for objects closer to the edges of the FOV. In
these regions, the measurement model becomes highly
non-linear, with the state-dependent measurement noise
covariance Σ(x) (Section VI-A) increasing rapidly. We
hypothesize that the Gaussian approximations in PMBM
are not accurate enough in the presence of such strong
non-linearities, and thus negatively impact the tracker’s
performance. In task 4 both of these changes (increased
data association complexity and model nonlinearities)
affect PMBM’s performance, explaining its very high
GOSPA and NLL’s missed costs. In contrast, MT3v2’s
missed costs for all tasks are lower than for both bench-

Fig. 9. PMBM’s missed rate per FOV sector for task 3 (very similar
to δ-GLMB).

marks, especially in task 4 (3.94 vs 28.79 NLL-missed
costs), suggesting that DL-based trackers indeed handle
these challenges in a better way than traditional model-
based approaches.

C. Ablation Studies

In order to validate and quantify the importance of
each of the most important design decisions in MT3v2,
we ran extensive ablation tests evaluating all possible
combinations of these variables. We altered four features
in the ablations, referred to in Table IV as 1, 2, 3, 4,
corresponding respectively to whether the training had:

1) Intermediate decoder losses: the additional loss
components f l(x1:m) for all l ̸= M in (22) (set
to zero to turn off this feature).

2) Contrastive auxiliary loss: section V-E (we set β
to zero to turn off this feature)

3) Selection mechanism: section V-B (the object
queries o1:k, positional encodings qd

1:k, and initial
estimates z̃1:k in (16) and (17) are treated as
additional parameters of MT3v2 and trained via
gradient descent to turn off this feature).

4) Iterative refinement: section V-C (the predicted
state means in (18) for each decoder layer are
computed directly from that layer’s output as µl

i =

FFN(o
(l)
1:k) to turn off this feature).

With the exception of the changes described in the table,
all models are identical in structure, hyperparameters, and
initial weights, and were trained on the same data.

The average GOSPA for each ablation was computed
using 1k samples from the models described for task 4
(all models were evaluated using the same data to reduce
variance) and is shown in Table IV along with decom-
positions and 95% confidence intervals for the means.
We provide all the trained models for these ablations in
https://github.com/JulianoLagana/MT3v2.

TABLE IV
Ablation GOSPA scores for task 4.

1 2 3 4 GOSPA Difference

27.02± 0.60 +3.49
✓ 30.15± 0.76 +6.62

✓ 27.05± 0.61 +3.52
✓ ✓ 28.07± 0.70 +4.54

✓ 29.11± 0.73 +5.58
✓ ✓ 25.42± 0.58 +1.89
✓ ✓ 26.68± 0.59 +3.15
✓ ✓ ✓ 28.36± 0.61 +4.83

✓ 25.22± 0.58 +1.69

✓ ✓ 24.67± 0.59 +1.14

✓ ✓ 25.84± 0.60 +2.31
✓ ✓ ✓ 24.13± 0.54 +0.6

✓ ✓ 25.86± 0.59 +2.33
✓ ✓ ✓ 24.04± 0.57 +0.51
✓ ✓ ✓ 25.89± 0.59 +2.36

✓ ✓ ✓ ✓ 23.53± 0.56 0.00
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TABLE V
Complexity evaluation for each algorithm.

Task Algorithm Inference time (s) Training time

1
PMBM 4.92 N/A
δ-GLMB 13.14 N/A
MT3v2 0.03 4 days

2
PMBM 126.80 N/A
δ-GLMB 217.66 N/A
MT3v2 0.04 4 days

3
PMBM 13.90 N/A
δ-GLMB 40.40 N/A
MT3v2 0.04 4 days

4
PMBM 310.14 N/A
δ-GLMB 781.00 N/A
MT3v2 0.06 4 days

The results show that all the design decisions in
MT3v2 are important for its performance: removing any
of them results in worse GOSPA for this task. The most
important design decision is training with intermediate
decoder losses (1), which is known to be a design deci-
sion of great importance when training deep Transformer
decoders [21], [52]. Putting (1) aside, the most impactful
ablation is not performing iterative refinement (4). This is
possibly due to the fact that Task 4 has the lowest signal-
to-noise ratio of all of the tasks, making it challenging to
learn to predict the object states from scratch instead of
refining them from initial estimates. Interestingly, we also
note that although performance is best when all proposed
features are present, in isolation none of them improve
performance.

D. Complexity Evaluation

As a further comparison of the algorithms considered,
this section describes the inference times8 for MT3v2,
PMBM, and δ-GLMB in each of the 4 tasks from Section
VI-A. MT3v2 was run on a V100 GPU, and PMBM and
δ-GLMB on 32 Intel Xeon Gold 6130 CPUs. The average
inference times are shown in Table V.

From the table, one can see that MT3v2’s inference
is orders of magnitude faster than the traditional methods
during inference, and can directly be used for real-time
tracking in many contexts. Additionally, inference times
for it scale considerably better than for the benchmarks
when increasing the complexity of the task (MT3v2 is
more than 5000 times faster than the benchmarks in the
most complicated task), highlighting another advantage
of DL-based Transformer approaches. However, we also
note that this comparison between approaches is far from
perfect.

First, it is complicated to compare inference times
between MT3v2 and the benchmarks, because these ap-
proaches are fundamentally different. MT3v2 is based

8The time required to process a complete sequence of measurements
z1:n and generate a predicted posterior density for XT .

on Transformers and deep learning and therefore benefits
greatly from parallelization and specific hardware (such
as GPUs) that has been perfected over recent years
to increase inference and training speed. On the other
hand, traditional Bayesian methods such as the ones we
compare to rely on processing each time step in the
sequence of measurements sequentially, therefore being
harder to parallelize; benefitting more from faster CPUs
instead.

Second, deep learning methods require training before
they can be used for inference, which as noted previously
can take a considerable amount of time. As shown in the
table, MT3v2 requires 4 days of training in a task before
being able to produce estimates, whereas the model-based
benchmarks do not require any training.

Third, MT3v2 and the Bayesian methods were run
on different hardware and implemented using different
software, as described in Section VI-B. Our hardware
choices were based on the available resources from C3SE,
while our software choices mostly reflect what other open-
source implementations used, rather than what would be
optimal for each of the methods.

Nevertheless, the difference between inference times
is so significant that we deemed it worth mentioning, even
if the comparison is not perfect. We expect that even in
the case that considerable effort is dedicated to speeding
up the benchmarks, DL-based approaches that process
the measurement sequence in parallel will continue to be
more efficient, especially in challenging tasks.

VIII. CONCLUSION

In this paper, we propose what is to the best of our
knowledge the first thorough comparison between DL
trackers and Bayesian model-based filters in the model-
based setting. To do so, we design a DL tracker specif-
ically tailored for this setting, based on the Transformer
architecture and with multiple improvements specific to
model-based MOT.

Our results are the first to show two important find-
ings. First, that deep learning trackers can match the
performance of Bayesian algorithms in simple tasks, even
though their performance is close to Bayes-optimal. Sec-
ond, that DL can outperform these traditional approaches
when the tracking task becomes more complicated, either
due to increased complexity in the data association or
stronger non-linearities in the models of the environment.
This provides strong evidence for the applicability of deep
learning to the multi-object tracking problem also in the
model-based regime.

Interesting possibilities for future work are: (1)
Adding more flexibility to the families of densities pre-
dicted by MT3v2 (e.g. Bernoulli components with non-
diagonal covariances, more complicated state densities,
normalizing flows [67], etc.); (2) Adapting MT3v2 to set-
tings where trajectory estimates are needed; (3) Extending
MT3v2 to work with higher-dimensional measurements
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such as images, and comparing it to existing model-free
MOT methods in datasets such as MOT20 [68].

Appendix A
OFDM PARAMETERS

The parameters for the realistic RADAR model used
as the measurement model for tasks 3 and 4 (see Section
VI-A) are described in detail in Table VI, based on [69].

TABLE VI
OFDM parameters for realistic RADAR model

Parameter name Value

Transmission power 0 dBm
Carrier frequency 140 GHz
Noise power spectral density −174 dBm/Hz
Total bandwidth 2 GHz
Number of subcarriers 1000
Subcarrier spacing 2 MHz
Radar cross-section 0.1 m2

Receiver noise figure 10 dB
Number of receive antennas 20

Number of OFDM symbols 2048
Cyclic prefix overhead 7%

Appendix B
Varying GOSPA cutoff parameter

The cutoff parameter c in GOSPA’s definition (see
(30)) determines the cost of missed and false detections in
relation to the localization costs. This choice is nontrivial,
and should reflect the design constraints of the application
that tracking will be used for. Although in this paper we
chose c = 10 for all experiments, we also ran an addi-
tional experiment evaluating GOSPA for all algorithms at
different values of c for task 3. The results are shown in
Fig. 10.

Fig. 10. GOSPA scores and 95% confidence intervals for task 3 at
different cutoff levels.

The plot shows that all algorithms obtain similar
performance at lower cutoff values, because they all
have low localization errors (see II). However, as we

increase the cutoff value, MT3v2 becomes clearly better
than the benchmarks, primarily because of its lower false
and missed rates (which receive higher penalties as c
increases). We expect this to approximately hold in the
other tasks as well, with MT3v2 becoming the clear
winner as the cutoff values are increased (due to its
significantly lower missed rates).
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