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ABSTRACT
Energy-efficient execution of task-based parallel applications is
crucial as tasking is a widely supported feature in many parallel
programming libraries and runtimes. Currently, state-of-the-art
proposals primarily rely on leveraging core asymmetry and CPU
DVFS. Additionally, these proposals mostly use heuristics and lack
the ability to explore the trade-offs between energy usage and
performance. However, our findings demonstrate that focusing
solely on CPU energy consumption for energy-efficient scheduling
while neglecting memory energy consumption leaves room for
further energy savings. We propose JOSS, a runtime scheduling
framework that leverages both CPU DVFS and memory DVFS in
conjunction with core asymmetry and task characteristics to enable
energy-efficient execution of task-based applications. JOSS also
enables the exploration of energy and performance trade-offs by
supporting user-defined performance constraints. JOSS uses a set
of models to predict task execution time, CPU and memory power
consumption, and then selects the configuration for the tunable
knobs to achieve the desired energy performance trade-off. Our
evaluation shows that JOSS achieves 21.2% energy reduction, on av-
erage, compared to the state-of-the-art. Moreover, we demonstrate
that even in the absence of a memory DVFS knob, taking energy
consumption of both CPU and memory into account achieves
better energy savings compared to only accounting for CPU energy.
Furthermore, JOSS is able to adapt scheduling to reduce energy
consumption while satisfying the desired performance constraints.
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1 INTRODUCTION
Energy efficiency has emerged as a crucial design constraint in
various parallel computing systems ranging from battery-powered
mobile devices to high performance computers. Modern chip multi
- processors (CMPs) incorporate a variety of hardware features to
improve energy efficiency. The integration of multiple core types on
a single die, referred to as static asymmetry, in big.LITTLE architec-
tures [2, 3, 6, 8, 39], offers the possibility to execute applications on
different cores with varied performance and power characteristics.
Modern CMPs also support dynamic voltage and frequency scaling
(DVFS), referred to as dynamic asymmetry, which manages system
power consumption and enables exploration of performance and
power consumption trade-offs when executing applications. In
addition, cores of the same type are typically grouped into clusters
to reduce the design cost and complexity associated with enabling
per-core DVFS [27]. In such core-clustered designs, the cores in a
single cluster operate at the same DVFS setting [2, 3, 39].

There has been extensive research on leveraging static and/or
dynamic asymmetry, as knobs to reduce CPU energy consumption
since it is typically the largest contributor to the total energy
consumption in a system [10, 14, 21, 26, 33, 37, 41, 44]. In order
to meet the memory demand for emerging many-core architec-
tures, main memory bandwidth and capacities have also been
steadily increasing (albeit at a slower rate)[5]. This has led to
the memory system also becoming a major contributor to the
total energy consumption [32]. Several works have highlighted the
importance and the benefit of leveraging memory DVFS, alongside
static and/or dynamic asymmetry offered by the CPUs, since it
opens up many opportunities for establishing trade-offs between
performance and energy consumption [16–18, 43]. These propos-
als however focus on the potential of leveraging these knobs in
the context of single-threaded and multi-programmed workloads
(comprising several single-threaded applications).

Task-based parallel programming models are supported by many
production parallel programming libraries and runtimes [1, 13,
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22, 34], such as OpenMP, since it eases the process of expressing
parallelism inherent in applications. In this model, an application
is expressed as a directed acyclic graph (DAG), where the tasks
(vertex) and their dependencies (edges) are generated dynamically
during execution. Tasks can be of different types and exhibit diverse
attributes (e.g. OPs/byte ratio) [20]. Additionally, moldable execu-
tion enabled by intra-task parallelism (i.e. using multiple cores for
running a single task) has been shown to improve performance and
lower the impact of system idle energy [11, 12].

Energy-efficient execution of a task DAG relies on runtime
schedulers to map each task in the DAG to hardware resources
(i.e. choosing the appropriate core type and number of cores for
the task) and throttle the available DVFS knobs simultaneously.
Several recent works have targeted energy-efficient runtime sched-
uling techniques for task-based parallel applications, which can
be broadly grouped into three categories [10–12, 14, 26, 28, 33, 35,
37, 44]. The first category primarily exploits task characteristics
(e.g. task OPs/byte, task size, task criticality) in conjunction with
static asymmetry without leveraging DVFS [11, 28]. The second
category employs task characteristics jointly with dynamic asym-
metry, while being restricted to symmetric architectures [33, 37, 38].
The third category employs task characteristics together with static
asymmetry and a subset of dynamic asymmetry knobs (CPU DVFS)
for scheduling [10, 12, 14, 26, 33, 44].

Unfortunately, existing works do not leverage static and dynamic
asymmetry, especially memory DVFS, in conjunction with task
characteristics for scheduling. Our analysis in Section 2 shows that
concurrently utilizing all the knobs, i.e. core type (TC), number
of cores (NC), core frequency (𝒇𝑪 ) and memory frequency (𝒇𝑴 ),
provides greater opportunities for reducing energy consumption
over using a subset of the knobs. We also show that, even in
the absence of a memory DVFS knob, considering CPU energy
consumption alone, as done in prior works, for scheduling tasks
without taking memory energy consumption into account leaves a
lot of scope for improvement. Furthermore, prior art is designed for
a specific target and mostly uses a set of heuristics without having
the ability to explore trade-offs between performance and energy
consumption.

The goal is to develop a runtime scheduling framework that
leverages the aforementioned knobs and provides the ability to tar-
get various trade-offs between performance and energy consump-
tion. To achieve this goal, several challenges need to be addressed.
Firstly, the effects of tuning available knobs, individually and in
conjunction, on performance and energy consumption needs to
be understood. Secondly, the interplay between task scheduling
decisions and the exploration of various trade-offs between energy
and performance needs to be investigated. Thirdly, there is a need to
accommodate applications/tasks with diverse characteristics while
also ensuring low runtime overhead.

We propose JOSS (JOint Scheduling and Scaling), a runtime
scheduling framework that can target various energy performance
trade-offs through leveraging the aforementioned knobs. Overall,
JOSS achieves the goals set out by optimizing the execution of
each task in the DAG. For instance, JOSS reduces the total energy
consumption of a task-based application by running each task with
the lowest energy possible. The operation of the framework can be

summarized as follows. First, JOSS utilizes multivariate polynomial
regression based models for predicting the execution time and
power consumption of CPU and memory subsystem when running
a task on different configurations spanning the four knobs <TC,
NC, 𝑓𝐶 , 𝑓𝑀>. Second, the JOSS task scheduler combines the model
predictions together with instantaneous task concurrency during
runtime to estimate the energy consumption of a task and make
the scheduling decisions accordingly for various trade-off goals. To
prune the large search space formed by the four knobs and reduce
the overhead during runtime, JOSS uses a steepest descent approach
to determine the configuration that satisfies the desired trade-off
in a few steps.

We evaluate JOSS under two scenarios targeting different en-
ergy performance trade-offs: (1) reducing the total energy con-
sumption and (2) reducing energy with user-specified performance
speedup with respect to (1). The results for scenario (1) indicate that
JOSS achieves 21.2% energy reduction on average compared to the
state-of-the-art [12] on an NVIDIA Jetson TX2 platform. Even in
the absence of a memory DVFS knob, JOSS can still provide an addi-
tional 5.2% energy reduction than the state-of-the-art. For scenario
(2), we show that JOSS is able to adapt scheduling to reduce energy
consumption while satisfying the desired performance constraints.

In summary, this paper makes the following contributions:
• We demonstrate that (1) leveraging static asymmetry and dy-
namic asymmetry, i.e. core type, number of cores, core frequency
and memory frequency, together with task characteristics, en-
ables significant reduction in energy consumption; (2) even in the
absence of a memory DVFS knob, taking total energy consump-
tion (including CPU and memory) into account for configuration
selection results in lower energy consumption compared to only
considering CPU energy.

• Wepropose the JOSS runtime scheduling framework for task-based
parallel applications on multicore architectures, which provides
the ability to explore various energy performance trade-offs.

• We build a set of models usingmultivariate polynomial regression
capable of accurately predicting the execution time, average CPU
power, and average memory power of each task when tuning the
four available knobs, individually and simultaneously.

2 MOTIVATION
We motivate JOSS by demonstrating (1) the importance of tak-
ing memory energy consumption into account and its impact on
selecting configurations for the different knobs; (2) the impact
of concurrently leveraging the four knobs <TC,NC, 𝑓𝐶 , 𝑓𝑀> on
reducing energy consumption; (3) the potential for energy perfor-
mance trade-off exploration (e.g. reducing energy while satisfying
user-specified performance constraints). We use NVIDIA Jetson
TX2 as the experimental platform since it features static asymmetry
(i.e. a dual-core high-performance Denver CPU and a relatively
low-performance quad-core A57 CPU) and dynamic asymmetry
(CPU and memory DVFS knobs that can be tuned during execution).

For this experiment, we use two different benchmarks - Ma-
trix Multiplication (MM, compute-intensive) and Memory Copy
(MC, memory-intensive), configured with a DAG parallelism (𝑑𝑜𝑝)
of one, where 𝑑𝑜𝑝 represents the potential task concurrency in
the task DAG obtained by dividing the total number of tasks by
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Figure 1: Total energy consumption under the four scenarios.

the length of the longest path. We run both benchmarks with all
possible combinations of the knobs, measure CPU and memory
power consumption, and execution time and use these results in
our analysis. In these benchmarks, tasks represent the numerical
kernels, which are typically invoked numerous times wherein the
routine(s) executed by different tasks (invocations of the same
kernel) are identical. Additional details about the platform and the
benchmarks are provided in Section 6.

2.1 Importance of Including Memory Energy
To motivate the importance of including memory energy for CPU
DVFS, we compare the total energy consumption (CPU+memory)
under different scenarios as shown in Figure 1. Scenario 1 (1𝑠𝑡 bar)
represents the state-of-the-art [12], where the configuration that
consumes the least CPU energy is identified while tuning the three
knobs <TC,NC, 𝑓𝐶> and fixing 𝑓𝑀 at the highest frequency 1.87GHz.
In scenario 2 (2𝑛𝑑 bar), we identify the configuration that consumes
the least total energy while tuning <TC,NC, 𝑓𝐶> and fixing 𝑓𝑀 at
1.87GHz. Note that for both scenarios, we assume that memory
DVFS knob is unavailable and that the memory always operates
at the highest frequency. From Figure 1 we can observe that the
configuration identified (see x-axis labels) when only considering
CPU energy consumption is sub-optimal for both MM and MC.
However, taking memory energy into account leads to a different
configuration that further reduces the total energy, while still being
restricted to three knobs. For instance, in the case of MC the best
configuration changes from <A57, 2, 1.11> to <Denver, 1, 1.57> and
leads to 16% energy reduction.

2.2 Leveraging Knobs in Conjunction
Tomotivate the importance of leveraging the four knobs in conjunc-
tion, we compare the total energy consumption under scenarios 3
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Figure 2: Energy performance trade-offs exploration.

Figure 3: High-level overview of JOSS.

and 4 in Figure 1. Here we assume the memory DVFS knob to be
tunable. Scenario 3 (3𝑟𝑑 bar) enhances the state-of-the-art [12] with
support for orthogonal frequency scaling where CPU and memory
frequencies are throttled independently. This involves determining
the best configuration of <TC,NC, 𝑓𝐶>, as in scenario 1 and then
evaluating the total energy consumption when tuning 𝑓𝑀 while
the other three knobs remain fixed. Scenario 4 (4𝑡ℎ bar) represents
leveraging the four knobs in conjunction (the approach adopted by
JOSS) where energy consumption for the entire configuration space
is searched to determine the configuration that consumes the least
total energy. The results show that in the case of MC scenario 4
ends up selecting a different configuration and leads to 10% energy
savings compared to scenario 3. For MM scenario 4 does not provide
any additional benefit since there is no change in the configuration.

In summary, we conclude that (i) even in the absence of a memory
DVFS knob, only considering CPU energy results in sub-optimal
configuration selection thereby emphasizing the importance of also
taking memory energy consumption into account; (ii) in comparison
to the orthogonal CPU DVFS and memory DVFS throttling, leveraging
the four knobs in conjunction can lead to more energy savings.

2.3 Exploring Energy Performance Trade-offs
It is crucial that the scheduler aims to reduce energy consumption
while still maintaining a good level of performance. Figure 2 shows
the potential trade-offs between energy consumption and perfor-
mance when tuning the available knobs. Note that the first bar
represents the configuration that consumes the least total energy,
which we will use as the baseline for the rest of this discussion.
We can observe that tuning core frequency from 1.11 to 1.57 for
MM and MC provides 1.4× and 1.3× performance speedup while
increasing energy consumption by 10% and 1%, respectively. The
maximum speedup for MM is 1.8× which comes at the cost of
36% increase in energy consumption. MC can achieve a maximum
speedup of 1.9× at the cost of 30% increase in energy consumption.
Building a runtime scheduling framework that can flexibly explore
energy performance trade-offs will enable the user to customize the
scheduler to their specific requirements.

3 JOSS RUNTIME FRAMEWORK OVERVIEW
Figure 3 provides a high-level overview of the JOSS runtime frame-
work. The framework takes the application, details about the archi-
tectural knobs (number of clusters, number of cores in each cluster,
supported frequencies) and performance constraints (that can be
specified by either user or system software) as inputs.
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Figure 4: Overview of the model building process.

To enable energy performance trade-off exploration, JOSS lever-
ages four knobs <TC,NC, 𝑓𝐶 , 𝑓𝑀> whose effects on energy and
performance need to be understood when tuned individually and
in combination. We therefore develop performance and power
models to understand the effects and guide configuration selection.
JOSS specifically comprises a performance model, a CPU power
model and a memory power model to provide the scheduler with
the prediction of task execution time and power consumed in
CPU and memory domains when executing tasks with different
configurations. Energy and performance estimates are used by the
task scheduler to guide configuration selection and achieve the
desired trade-off goals. The scheduler maps tasks to selected CPU
cores and sends the frequency throttling requests to the CPU DVFS
controller and the memory DVFS controller. JOSS targets total
energy reduction if a performance constraint is not specified.

In Section 4, we first introduce the development of the three
prediction models in JOSS. Section 5 will then describe the task
scheduler and how these models are utilized to enable energy
performance trade-off exploration.

4 MODELS
Challenges: JOSS utilizes models to predict performance and
power consumption of tasks and understand the energy and perfor-
mance effects from tuning the four knobs <TC,NC, 𝑓𝐶 , 𝑓𝑀>. Two
challenges need to be addressed in this context. First, creating a
model to predict the effect of four tunable knobs for varying task
characteristics is complicated and expensive, especially as the num-
ber of configurations increases. To tackle this issue, JOSS combines
models with runtime samples in a hybrid approach. We sample the
two knobs <TC,NC> during runtime (details in Section 5.1) and use
models to predict the impact of DVFS on performance and power
consumption of a task from the other two knobs <𝑓𝐶 , 𝑓𝑀>.

Second, prediction models for execution time and power con-
sumption proposed in prior works rely on the availability of a num-
ber of Performance Monitoring Counters (PMCs) [23, 29, 30, 35, 36,
40, 45] and/or model the impact of a subset of the four knobs [11, 12].
However, the availability of specific PMCs on different architectures
limits the adoption of existing models [15, 31]. For instance, Goel
et al. [23] use CYCLE:ACTIVITY:STALLS_L2_PENDING on Haswell
to estimate the memory intensity of an application, which is un-
available on later Intel microarchitectures. Even the TX2 platform
used in our evaluation does not provide PMCs related to stall cycles.
To address this, the models used in JOSS do not rely on any PMCs
thereby improving portability across architectures.

Overview: To enable performance and power predictions, we
first characterize the platform by running a set of synthetic bench-
marks. Since the impact of DVFS on a task depends on its use

of computational and memory resources, we generate a set of
synthetic benchmarks with varying levels of utilization of the two
components. We execute the synthetic benchmarks while tuning all
four knobs during the training stage and collect the corresponding
execution time and average power values. Subsequently, we build
the performance and power prediction models using multivariate
polynomial regression (MPR). This technique is commonly used to
model the implicit nonlinear relationships between variables [30,
40, 45]. Figure 4 depicts an overview of the model building process.

4.1 Synthetic Benchmarking and Profiling
The basic structure of the synthetic benchmark includes a compu-
tation loop and a memory access loop. Through controlling the
number of iterations in each loop, we can generate different ratios of
computations and memory access. In this work, by keeping the total
execution time of synthetic benchmarks constant, we start from
50% of computation and 50% of memory access and then increase
or decrease the execution time of corresponding loops by 2.5% as
shown in Figure 4. In total, we generate 41 synthetic benchmarks
with different ratios between computation and memory access.
We profile the platform via executing these synthetic benchmarks
at all possible configurations for the four knobs and measure the
execution time, CPU and memory power consumption.

4.2 Performance Model
The performance model aims to predict the execution time of a task
under joint CPU and memory frequency scaling. In the model, the
total execution time is estimated as the sum of computation time
and stall time due tomemory latency: Time = Timecomp + Timestall.
We use memory-boundness (MB) to quantify the fraction of time
CPU is stalled due to memory latency [12, 23]. When scaling core
frequency (𝑓𝐶 → 𝑓 ′

𝐶
), the computation time will scale linearly. So

the computation time Time′comp at frequency 𝑓 ′
𝐶
can be calculated

as:

𝑇𝑖𝑚𝑒′𝑐𝑜𝑚𝑝 = 𝑇𝑖𝑚𝑒 × (1 − 𝑀𝐵) × 𝑓𝐶

𝑓 ′
𝐶

(1)

Time′stall is dependent on core and memory frequency scaling in
addition to task characteristics (MB). Memory frequency scaling
directly influences the latency of memory access. Core frequency
scaling, however, has an (indirect) impact on how often a core
issues memory access requests. We utilize the statistics from run-
ning synthetic benchmarks presented in Section 4.1 to build the
performance model using MPR as shown below:

𝑇𝑖𝑚𝑒′
𝑠𝑡𝑎𝑙𝑙

= 𝑇𝑖𝑚𝑒 × (
2∑︁

𝑖=0
𝛽𝑖𝑥𝑖 +

2∑︁
𝑖=0

𝛽𝑖𝑖𝑥
2
𝑖 +

1∑︁
𝑖=0

2∑︁
𝑘=𝑖+1

𝛽𝑖𝑘𝑥𝑖𝑥𝑘 + Y ) (2)
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(b) Memory Power

Figure 5: CPU and memory power consumption from
profiling synthetic benchmarks on A57 using two cores. The
labels in the x-axis are of the format <𝑓𝐶 , 𝑓𝑀>.

where 𝑥𝑖 = {𝑀𝐵,
𝑓𝐶
𝑓 ′
𝐶

,
𝑓𝑀
𝑓 ′
𝑀

}, 0≤i≤2. Here, 𝛽𝑖 , 𝛽𝑖𝑖 , 𝛽𝑖𝑘 are the coeffi-
cients of the linear component, the quadratic component and the
interaction component, respectively, and Y is the intercept. The
execution time at <𝑓 ′

𝐶
, 𝑓 ′
𝑀
> is Time′ = Time′comp + Time′stall.

Estimating task execution time at different <𝑓 ′
𝐶
, 𝑓 ′
𝑀
> settings

during runtime requires knowing the MB value and a sampled
execution time at a reference <𝑓𝐶 , 𝑓𝑀> setting. To obtain the MB
value without using PMCs, we sample the execution times at two
different core frequency settings during runtime (i.e. sample 𝑇𝑖𝑚𝑒

and 𝑇𝑖𝑚𝑒′ at 𝑓𝐶 and 𝑓 ′
𝐶
) under a fixed memory frequency. We then

obtain MB as follows:

𝑀𝐵 = (𝑇𝑖𝑚𝑒′

𝑇𝑖𝑚𝑒
− 𝑓𝐶

𝑓 ′
𝐶

)/(1 − 𝑓𝐶

𝑓 ′
𝐶

) (3)

4.3 Power Models
The goal of the CPU and memory power models, used in JOSS, is to
predict the impact of joint core and memory frequency scaling on
CPU power and memory power consumed by a task, respectively.
We leverage the statistics collected from profiling synthetic bench-
marks for building the CPU and memory power models, akin to
the performance model, as shown in Figure 4.

4.3.1 CPU PowerModel. The results from running synthetic bench-
marks indicate that CPU power consumption is mainly dependent
on core frequency and task characteristics (MB). For instance, Fig-
ure 5a indicates that CPU power consumption, when running three
synthetic benchmarks (represented by different levels of MB) with
various <𝑓𝐶 , 𝑓𝑀> settings (represented in x-axis) on Jetson TX2,
shows negligible effects from memory frequency scaling. Conse-
quently, we build the CPU power model as shown in Equation 4.
We do not use voltage explicitly since it is strongly correlated with
frequency in our evaluation platform and this enables us to reduce
collinearity on the regression model.

𝑃𝑜𝑤𝑒𝑟𝐶 =

1∑︁
0

𝛽𝑖𝑥𝑖 +
1∑︁
0

𝛽𝑖𝑖𝑥
2
𝑖 + 𝛽01𝑥0𝑥1 + Y (4)

where 𝑥𝑖 = {𝑀𝐵, 𝑓𝐶 }, 0≤i≤1.

4.3.2 Memory Power Model. Memory power is dependent on all
three influential factors, i.e. core frequency scaling, memory fre-
quency scaling and task characteristics (MB). Figure 5b shows
the impact of 𝑓𝐶 , 𝑓𝑀 and MB on memory power on Jetson TX2.

Consequently, we build the memory power model as shown in
Equation 5.

𝑃𝑜𝑤𝑒𝑟𝑀 =

2∑︁
0

𝛽𝑖𝑥𝑖 +
2∑︁
0

𝛽𝑖𝑖𝑥
2
𝑖 +

1∑︁
𝑖=0

2∑︁
𝑘=𝑖+1

𝛽𝑖𝑘𝑥𝑖𝑥𝑘 + Y (5)

where 𝑥𝑖 = {𝑀𝐵, 𝑓𝐶 , 𝑓𝑀 }, 0≤i≤2. Note that the coefficients 𝛽 and Y
generated for the three models in equations 2, 4 and 5 are distinct
values.

4.3.3 Idle Power. The total predicted power consumption for a
task is the sum of dynamic power and idle power. Dynamic power
consumed by a task is estimated using the models discussed previ-
ously. We measure idle CPU power and idle memory power during
benchmarking when cores are switched on but are not actively
executing computations and use the measured values as predictions.
We incorporate idle power characterization at different frequencies
(voltages) in our models but do not consider temperature due to the
small observed variations (<10 degrees) in operating temperature.
Unlike dynamic power which is specific to each task, idle power is
shared across all concurrently running tasks.We obtain information
about the number of concurrently running tasks from the runtime
(details in Section 5.3) and use that to attribute idle CPU andmemory
power proportionally among concurrently running tasks.

Modeling for different core type and number of cores: The
aforementioned models predict the impact of tuning two knobs
<𝑓𝐶 , 𝑓𝑀> on performance, CPU and memory dynamic power con-
sumption. However, when tasks execute on different core types and
with different number of cores <TC,NC>, MB values change due
to the underlying core performance and workloads characteristics.
Consequently, the coefficients in the models for different <TC,NC>
are distinct and we determine them via running the synthetic
benchmarks at corresponding <TC,NC>.

Our evaluation in Section 7 shows that the proposed models are
accurate for determining the configuration for specified trade-off
goals with low overhead during runtime. We also evaluated the
effectiveness of enhancing the performance and power models with
higher degree coefficients but observed that it resulted in model
overfitting and increased computation overheads without further
improvement in prediction accuracy. Note that the profiling and
the model building steps just need to be done once for a specific
platform (e.g. at install-time or boot-time), and do not impact the
execution time of applications.

5 JOSS TASK SCHEDULER
JOSS task scheduler utilizes model predictions to take scheduling
decisions and explore energy performance trade-offs. Figure 6
provides an overview of the scheduler’s timeline. JOSS first samples
task execution times to obtain MB values required for performance
and power predictions. Details regarding the sampling process and
model invocation are presented in Section 5.1. Next, in Section 5.2,
we discuss how JOSS employs the predictions and identifies the best
configuration for the four knobs to satisfy the energy performance
trade-off goal. In Section 5.3, we discuss the task scheduling process
and frequency coordination approach applied to shared resources
(i.e. core-clusters and memory) where the frequency throttling by
concurrently running tasks could potentially lead to interference.
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Figure 6: JOSS task scheduler timeline.

5.1 Runtime Sampling and Model Prediction
As discussed earlier, in Equation 3, power and performance models
rely on MB values which are computed by sampling task exe-
cution times at two different core frequency settings 𝑓𝐶 and 𝑓 ′

𝐶
.

Furthermore, it is important to sample task execution with different
<TC,NC> configurations since MB values vary with different core
types and number of cores used to execute a task. Consequently,
JOSS samples task execution times, for different kernels, when
running with different <TC,NC> configurations at both 𝑓𝐶 and 𝑓 ′

𝐶
and then uses the MB values for predicting at different <𝑓𝐶 , 𝑓𝑀>.

JOSS performs online sampling (at the beginning of execution)
for each kernel. It leverages the observation that a typical kernel
is invoked several times during application execution and that it
is sufficient to sample a small fraction to estimate MB without
introducing prohibitive overheads from online sampling. The task
scheduler initializes a separate performance look-up table, a CPU
power look-up table and a memory power look-up table for storing
the measured values and the predictions for each kernel.

In a nutshell, the runtime sampling and model prediction phase
operates as follows: Firstly, JOSS samples the execution times of all
kernels at different <TC,NC> at 𝑓𝐶 . Once all kernels are sampled at
𝑓𝐶 , JOSS then switches the cluster frequency to 𝑓 ′

𝐶
and repeats the

process. Note that the frequency transitions on different clusters
are asynchronous, i.e. sampling on one cluster can immediately
transition from 𝑓𝐶 to 𝑓 ′

𝐶
without waiting for the sampling comple-

tion on the other clusters. After sampling at 𝑓 ′
𝐶
, JOSS immediately

computes the MB values at different <TC,NC> configurations. It
then uses it along with performance and power models to populate
the per-kernel look-up tables with predicted values.

5.2 Configuration Selection for Different
Energy Performance Trade-off Goals

Once model predictions are complete, the scheduler transitions to
configuration selection for each kernel. JOSS achieves the desired
energy performance trade-off goal by optimizing the execution
of each individual task. For instance, JOSS reduces the total en-
ergy consumption by running each task with the lowest energy
possible. JOSS utilizes predictions to determine the configuration
that satisfies the desired energy performance trade-off for each
kernel. The approach for selecting the best configuration for each
kernel is detailed later in this section. Successive invocations of
the same kernel use the identified configuration without having
to incur the overhead of configuration selection repeatedly. In

this section, we investigate two different scenarios: reducing total
energy consumption with and without performance constraints.

5.2.1 Reducing Total Energy Consumption. A simple approach for
configuration selection is to exhaustively loop through all possible
configurations and compare the estimated energy values to deter-
mine the configuration that consumes the least energy. However,
as core counts and the number of available DVFS settings scale,
such an approach can result in significant computation overheads
during runtime. To address this, we introduce a heuristic search
algorithm based on the steepest descent method that can prune
the large search space and identify the configuration with the least
energy consumption with reduced overhead.

Figure 7 illustrates the pruning process. First, the algorithm
computes the energy consumption of four corner configurations
(representing combinations of the highest and the lowest CPU and
memory frequency) for each <TC,NC>. Second, the algorithm com-
pares the four corner values across different <TC,NC> to identify
the <TC,NC> with the most number of lowest corner values. This
step confines the search space to a specific <TC,NC> table. In the
third step, the algorithm searches for the most energy-efficient joint
DVFS setting <𝑓𝐶 , 𝑓𝑀> from this table. This is accomplished by
starting from the corner that has the least energy consumption,
comparing the energy consumption of that configuration against all
its immediate neighbours and repeating this immediate neighbour
search process iteratively until it converges at a configuration
with the least energy consumption. The algorithm terminates once
it detects that the energy value of the selected configuration is
the lowest among all its immediate neighbors. We compare the
overheads and the effectiveness of the two approaches in Section 7.4.

5.2.2 Reducing Total Energy Consumption under Performance Con-
straints. JOSS supports performance constraints specified as speedups
relative to the execution time for energy minimization. To meet

Figure 7: The steepest descent approach used in JOSS for
pruning search space and configuration selection.
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these constraints, JOSS translates the performance speedup for the
whole application to individual tasks assuming that speeding up
individual tasks will lead to an equivalent speedup of the entire
application.

JOSS applies the steepest descent search under performance
constraints as follows: It starts with the most energy efficient con-
figuration and evaluates the performance of its three nearest data
points within the same <TC,NC> table, which involves increasing
𝑓𝐶 , 𝑓𝑀 , or both. If one or more neighboring points’ execution
times meet the constraint, JOSS chooses the configuration with
the least energy consumption. Otherwise, it incrementally raises
the frequencies and repeats. If no frequency combinations within
that <TC,NC> satisfy the constraint, JOSS first checks performance
tables with more cores (NC), then faster clusters (TC), and repeats
the search. If no configuration meets the performance constraint,
the fastest configuration is selected.

5.3 Task Scheduling and Frequency
Coordination

Once the task scheduler determines the configuration for a task
whose input dependencies are satisfied and can be scheduled for
execution (i.e. ready task), it places the task in a work queue of
a randomly selected core of the selected core type. Note that the
scheduler allows the task to be stolen by other cores of the same
type, to maintain load balancing while also ensuring that the task
runs on the most suitable core type. Stealing across asymmetric
clusters is disabled to prevent task execution on an energy ineffi-
cient cluster and frequency setting. For instance, MM results (𝑑𝑜𝑝
= 4 and 16) show that work stealing across asymmetric clusters
improves performance by 41% but incurs a 87% energy increase.

Moldable task execution (NC > 1) is performed on multiple cores
by dynamically partitioning the task workloads among cores of the
same type. Once a core finishes executing a task partition, it can
continue fetching other tasks from its own work queue without
waiting for partitions to finish on other cores. The core that finishes
executing the partition last, declares the completion of the task and
wakes up the dependent tasks.

JOSS tracks the status of each core (i.e. working or sleeping)
to estimate instantaneous task concurrency. This is required to
attribute the shared idle power among concurrently executing
tasks. Furthermore, frequency throttling of the shared resources
such as core-cluster and memory subsystem impacts concurrently
executing tasks. Diverse frequency requirements for concurrent
tasks can result in DVFS interference on shared resources and
trigger DVFS serialization thereby introducing performance bottle-
necks. JOSS therefore adopts a simple averaging heuristic to balance
the demands among the concurrent tasks when it detects that
there is concurrency. JOSS averages the pre-determined frequency
setting for the task with the current frequency setting of the shared
resources.We evaluated other heuristics such asmin,max, weighted
average, etc. and found arithmetic mean to perform the best.

Fine-grained tasks: DVFS throttling overhead for fine-grained
tasks where the execution times can be as small as a few microsec-
onds is non-negligible. Therefore, JOSS adopts the task coarsen-
ing algorithm proposed in the state-of-the-art [12], which first
determines the <TC,NC> without any frequency throttling and

then attempts to search for more tasks of the same type from the
work queues of the selected core type in a round-robin manner.
Once a sufficient number of fine-grained tasks of the same type is
found, JOSS searches for the best joint <𝑓𝐶 , 𝑓𝑀> setting that satisfies
the trade-off under the determined <TC,NC>.

6 EXPERIMENTAL METHODOLOGY
In this section, we provide details about the experimental platform,
benchmarks and the state-of-the-art schedulers that we compare
against.

6.1 Experimental Platform
We use the NVIDIA Jetson TX2 development board in our evalua-
tion [3]. It is an asymmetric platform that features two CPU clusters:
Denver and A57. The Denver cluster comprises a high-performance
dual-core NVIDIA Denver CPU, while the A57 cluster comprises
a comparatively lower performance quad-core ARM CPU. Both
clusters support the same range of operating core frequencies. The
two clusters can be operated at different frequencies but all the cores
in the same cluster must operate at the same frequency. The choice
of using the NVIDIA Jetson TX2 is also motivated by its support for
EMC frequency scaling for the memory controller (EMC/MC) and
DRAM (LPDDR4). Existing systems with support for memory DVFS
typically support frequency scaling in the memory controller, the
DDRIO and the DRAM device while only supporting voltage scaling
in the memory controller due to design challenges associated with
operating the DRAM array at multiple voltages [25]. The integrated
INA3221 power sensor is used to sample the power consumption
of CPU and memory subsystem. Power samples obtained every
5 milliseconds are used to compute CPU and memory energy
consumption, which is then accumulated throughout the duration
of application execution. The Linux governor is set as userspace
to enable CPU frequency scaling. The CPU and memory frequency
are set at the highest, i.e. 2.04GHz for both clusters and 1.87GHz for
memory, before executing a benchmark. The Linux kernel version
is 4.9.253-tegra and the compiler version is g++ 7.5.0. We repeat
each experiment 10 times and report the arithmetic average.

6.2 Evaluated Benchmarks
We evaluate JOSS using ten benchmarks from the Edge and HPC
domains. Table 1 provides additional details. These benchmarks
comprise a different number of kernels (i.e. task types) and exploit
parallelism by invoking multiple instances of them. For our model
to work, kernels need to have identical features across repetitions.
Therefore, kernels that are invoked with different input sizes are
treated as distinct task types by the model.

6.3 Evaluated Schedulers
We evaluate the effectiveness of JOSS by comparing it to multiple
state-of-the-art task-based schedulers. Both JOSS and the evaluated
schedulers below are implemented on top of XiTAO [4].

(1) GRWS (Greedy Random Work Stealing) is a widely used
baseline scheduler for task-based applications [13, 22, 34], which
attempts to keep idle cores busy through task stealing. GRWS does
not leverage DVFS knobs and each task only runs on a single core.
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Table 1: Evaluated Benchmarks
Benchmark abbr. Description Input Size Num. of Tasks
Heat
Diffusion [4]

HD Heat diffusion on a 2D grid using the iterative Jacobi stencil, which includes two kernels:
Copy and Jacobi. We evaluate three problem sizes of different resolutions.

2048(small),8192(big), 16384(huge) 320032, 32032,
16032

Dot Product [4] DP Computing the sum of the products of two equal-length vectors, vectors are partitioned into
blocks and computation of each block is marked as a single task, 100 iterations.

VectorSize 6400000, BlockSize 32000 20200

Fibonacci [19] FB Fibonacci numbers computed using recursion method. Term 55, GrainSize 34 57314
Darknet-VGG-16
CNN [42]

VG A 16-layered deep neural network that is typical of mobile and edge devices and implemented
as a fork-join DAG, iteratively executed for 10 iterations.

768×576 RGB image, blocksize 64 5090

Biomarker Infec-
tion [7]

BI A medical usecase for differentiating periprosthetic hip infection and aseptic hip prosthesis
loosening. It computes the possible Biomarkers combinations to predict symptoms.

Sample Size 2 6217

Alya [24] AL Alya is a high performance computational mechanics code to solve complex partial differential
equations, and the parallelization strategy is based on mesh partitioning.

200K CSR non-zeros 47840

Sparse LU Factor-
ization [19]

SLU Sparse matrix decomposition into the product of a lower and upper triangular matrix. It
includes four kernels: LU0, FWD, BDIV and BMOD.

64 blocks, BlockSize 512 11472

Matrix Multipli-
cation [4]

MM A synthetic benchmark where each task computes A×B=C, A and B are partitioned in N×N
tiles, N = input size. 𝑑𝑜𝑝 is configurable.

256×256, 512×512 10000, 2000

Matrix Copy [4] MC A synthetic benchmark where each task reads and writes a large matrix, creating streaming
behavior to access the main memory continuously. 𝑑𝑜𝑝 is configurable.

4096×4096, 8192×8192 20000, 10000

Stencil [4] ST A synthetic benchmark where each task repeatedly updates points on a multi-dimensional
grid using the values at a set of neighboring points. 𝑑𝑜𝑝 is configurable.

512×512, 2048×2048 50000, 50000
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Figure 8: Total energy consumption of evaluated benchmarks when using GRWS, Aequitas, ERASE, STEER and JOSS. All energy
values are normalized to the total energy of the baseline GRWS, therefore, lower is better.

(2) ERASE [11] employs an online history-based performance
model and an offline categorized CPU power model to determine
the configuration <TC,NC> that reduces CPU energy consumption
without relying on explicit DVFS changes.

(3) Aequitas [37] is a heuristic-based scheduler that extends
HERMES [38]. It first determines the core frequency for running
each task based on task thief-victim relations (slow down the thief
cores) and the size of the work queues. On core-clustered platforms,
it lets each active core within a cluster tune the cluster frequency for
a short interval (1s) in a round-robin time-slicing manner. Aequitas
does not leverage the memory DVFS knob and moldable execution.

(4) STEER [12] is a model-based scheduler, which exploits the
task characteristics and available CPU DVFS knob. It utilizes a
performance model and a CPU power model to identify the con-
figuration <TC,NC, 𝑓𝐶> for each task that consumes the least CPU
energy. STEER does not leverage the memory DVFS knob.

7 EVALUATION
We evaluate JOSS under two scenarios targeting different energy
performance trade-offs: (i) in Section 7.1 we evaluate the effec-
tiveness of JOSS at reducing the total energy consumption by
comparing it to several state-of-the-art schedulers; (ii) in Section 7.2
we evaluate the ability of JOSS for reducing the total energy con-
sumption with user specified performance constraints with respect

to (i). Finally, we analyze the prediction accuracy of three proposed
models in Section 7.3 and present overhead analysis in Section 7.4.

7.1 Reducing Total Energy Consumption
Figure 8 compares the total energy consumption (incl. CPU energy
and memory energy) when using GRWS, ERASE, Aequitas, STEER
and JOSS across different benchmarks. We also include a new data-
point, JOSS_NoMemDVFS, where JOSS is employed for reducing
the total energy consumptionwithout leveraging thememoryDVFS
knob (𝑓𝑀 is fixed at max. value). This is included to understand the
impact of JOSS on asymmetric platforms, which support CPU DVFS
but lack support for memory DVFS. For the supported benchmarks,
we evaluate different task granularity and task DAG parallelism
(𝑑𝑜𝑝) settings. This enables us to evaluate the effectiveness of the
schedulers across a broad spectrum of task DAGs.

Overall, the results show that JOSS consumes the least energy
across all benchmarks compared to the evaluated schedulers. Specif-
ically, JOSS achieves 40.7% energy reduction, on average, compared
to the baseline GRWS, while STEER, Aequitas and ERASE achieve
19.5%, 8.7% and 16.3% average reduction compared to the base-
line respectively. These results demonstrate that JOSS achieves an
additional 21.2% energy reduction compared to STEER (the best
among the state-of-the-art). Even in the absence of memory DVFS
knob, JOSS_NoMemDVFS achieves a 24.8% reduction in energy con-
sumption compared to GRWS, which is still an improvement over
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Figure 9: Energy consumption (bottom) and execution time (top) when targeting energy reduction under performance
constraints. Performance and energy values are normalized to JOSS without performance constraints.

the state-of-the-art (e.g. 5.2% additional savings than STEER). This
emphasizes the importance of taking the total energy consumption
into account even when the memory DVFS knob is unavailable.

We analyze the effectiveness of JOSS using SparseLU (specifically
the BMOD kernel) as an example. BMOD kernel accounts for 91%
of the total number of tasks in SparseLU. With GRWS, 63% of
BMOD tasks execute on the high-performance Denver cores while
37% of tasks execute on the relatively low-performance A57 cores.
Although executing on a single Denver core is 3.4× faster than
an A57 core, a reasonable fraction end up executing on the A57
cores, since the four A57 cores end up stealing more tasks from
Denver queues. With ERASE, the CPU energy estimates obtained
using performance and CPU power models indicate that running
BMOD tasks on two Denver cores consumes less CPU energy since
it can achieve linear speedup without doubling the CPU power
consumption. Thus, ERASE reduces the CPU energy compared
to GRWS. Aequitas relies on task stealing relations and the work
queue size to select the core frequency and each active core tunes
the cluster frequency for a short interval. A57 cores steal more
BMOD tasks from the Denver cores, which make A57 become
thief cores and get more workloads. Therefore, it ends up both
slowing down and speeding up A57 cluster frequency for brief
periods during execution (38% tasks executing on Denver and
62% executing on A57). With CPU frequency throttling, Aequitas
reduces CPU energy but increases memory energy consumption in
comparison to GRWS and ERASE due to the performance slowdown.
STEER further reduces the CPU energy consumption by identifying
the configuration <Denver, 2, 1.11GHz> for BMOD tasks. STEER
however does not take memory energy consumption into account.
Consequently, the performance slowdown from throttling CPU
frequency setting results in higher memory energy consumption.

In contrast to STEER, JOSS_NoMemDVFS aims to reduce the
total energy consumption. It utilizes three proposed models in JOSS
to predict the CPU energy together with memory energy when
only throttling the core frequency while memory frequency is fixed
as the maximum. JOSS_NoMemDVFS selects <Denver, 2, 1.57GHz>
as the configuration for reducing energy consumption. Running

at 1.57GHz increases the CPU energy consumption compared to
STEER. However, it also ends up reducing more memory energy
consumption because of the performance improvement achieved
from higher CPU frequency. JOSS leverages the memory frequency
knob to further reduce the total energy consumption by identifying
the configuration of <Denver, 2, 1.11GHz, 0.8GHz> for BMOD
tasks. Since BMOD kernel is compute-intensive when running on
two Denver cores (MB is estimated to be 1%), running with lower
memory frequency does not have much impact on execution time
of the tasks and leads to lower memory energy consumption.

7.2 Reducing Total Energy under Performance
Constraints

Figure 9 shows results of JOSS reducing the total energy con-
sumption while attempting to satisfy user specified performance
constraints. In this experiment, we test three performance targets
(speedups of 1.2×, 1.4× and 1.8× with respect to JOSS targeting en-
ergy reduction solely), in addition to MAXP where JOSS maximizes
individual task performance without considering energy.

The top part of the figure shows the execution time of each
configuration, along with the performance target. Overall, the
results across benchmarks show that JOSS can achieve 1.2×, 1.4×
and 1.8× speedups at the additional cost of 6%, 13% and 32% increase
in energy consumption over JOSS without performance constraints.
In a few cases, the ability to achieve the desired trade-off targets is
impacted by the accuracy of the prediction models. For example,
in the case of MC_4096, JOSS slightly misses (by 3%) the deadline
of 1.2× speedup due to the inaccuracy in model predictions. The
average prediction error of performance, CPU power and memory
power models in this case are 9.2%, 13.8% and 18.9%, respectively.
Furthermore, in benchmarks with high degree of memory intensity,
JOSS does not achieve 1.8× speedup even when executing with
maximum <𝑓𝐶 , 𝑓𝑀>, despite significant increase in total energy
consumption. Ultimately, task performance is limited by processor
capabilities, such as peak FLOPS andmemory bandwidth, restricting
JOSS’ ability to reach a performance target.
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Figure 10: Model prediction accuracy of three proposed
models in JOSS. Dotted lines represent the medians.

7.3 Model Accuracy
We analyze the accuracy of the performance, CPU power and mem-
ory power models proposed in JOSS. We compute accuracy using
the formula: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 (𝑟𝑒𝑎𝑙−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

𝑟𝑒𝑎𝑙
. We report

the arithmetic average numbers across all evaluated benchmarks.
The real values are collected through running each benchmark on
all possible configurations for the four knobs. Figure 10 presents
the prediction accuracy distribution of the three models across
the evaluated benchmarks. The results show that the performance
model achieves 97% accuracy on average (themedian is 98.3% shown
as the dotted line in Figure 10), the CPU power model achieves 90%
accuracy on average (the median is 91.8%), while the memory power
model achieves 80% accuracy on average (the median is 84.6%).

7.4 Overhead Analysis
To enable performance and power consumption prediction, JOSS
implements three look-up tables per kernel for storing themeasured
and predicted execution times, CPU power and memory power con-
sumption. Consider a platform with 𝑁 cores in total,𝑀 asymmetric
core-clusters such that each cluster comprises 𝑁

𝑀
cores, the possible

number of cores that can be used for each task equals log 𝑁
𝑀
. Assume

the numbers of available core frequency and memory frequency
settings are 𝑁 𝑓𝐶 and 𝑁 𝑓𝑀 . The storage overhead for three look-up
tables for each kernel in JOSS is 3 ×𝑀 × log 𝑁

𝑀
× 𝑁 𝑓𝐶 × 𝑁 𝑓𝑀 .

The sampling phase only requires 𝑀 × log2
𝑁
𝑀

× 2 tasks per
kernel (e.g. 2 core-clusters × 3 possible numbers of cores per task
× 2 CPU frequencies = 12 tasks per kernel on Jetson TX2). For the
benchmarks we evaluate, our analysis shows that JOSS only spends
0.8% of the total execution time, on average, in this phase.

Next we compare the overheads of using steepest descent search
and exhaustive search (details in Section 5.2.1). The results on
Jetson TX2 show that using steepest descent search reduces timing
overheads by 70% on average, compared to exhaustive search across
all evaluated benchmarks, due to the significant reduction in the
number of comparisons. Our evaluation also shows that configura-
tions using selected steepest descent search achieves 97% energy
reduction relative to the configurations selected using exhaustive
search. On larger platforms, using the steepest descent search is
expected to reduce timing overheads even further.

8 RELATEDWORK
Existing works can broadly classified into three categories: those
focusing on CPU energy reduction, memory energy reduction and
total (CPU and memory) energy reduction.

CPU energy on architectures with per-core DVFS: Acun et al. [9]
employ per-core DVFS and adopt an online history-based approach
for performance and CPU power predictions by executing with ev-
ery possible frequency. HERMES [38] proposes workpath-sensitive
and workload-sensitive algorithms for per-core DVFS in a work
stealing runtime. It slows down thief cores and selects appropriate
frequencies based on workload sizes. CATA [10] dynamically tunes
the frequency based on incoming task criticality and the available
power budget at the moment. AAWS [44] targets for work steal-
ing runtime on asymmetric platforms and proposes work-pacing,
work-sprinting and work-mugging strategies (that require hard-
ware support) by detecting the parallel slackness.

CPU energy on architectures with cluster-based DVFS: Besides
Aequitas [37], ERASE [11] and STEER [12], discussed in Section 6.3,
CHRT [26] is a phase-based scheduler that predicts task placement,
cluster frequency, and number of cores for each execution phase. It
uses an offline model where the online phases map to the model
and takes the recorded configuration as the prediction.

Memory energy: MemScale [18] targets energy consumption in
the memory subsystem. They leverage dynamic profiling, perfor-
mance and power modeling to guide DVFS of memory controller
and frequency scaling of memory channels and DRAM. David
et al. [16] propose an intuitive algorithm that detects memory
bandwidth utilization for tuning DVFS of memory subsystem. Both
proposals are however tailored for multi-programmed workloads.

CPU+Memory energy: Sundriyal et al [43] target minimizing the
power consumption of a system given the performance loss toler-
ance. They propose performance and power models using PMCs to
determine the best joint frequency setting in a time window-based
manner for the entire application. CoScale [17] is an epoch-based
framework for multi-programmed workloads. They first collect
PMCs for model prediction and then search for the best frequency
pair using gradient-descent. However, their model only targets sin-
gle -threaded applications and does not support task-based parallel
applications.

9 CONCLUSION
We propose JOSS, a runtime scheduling framework that can both
reduce energy consumption and explore various energy perfor-
mance trade-offs for task-based parallel applications. Overall, JOSS
achieves the goals set out via optimizing the execution of each
task in the application. JOSS comprises a performance model, a
CPU power model, a memory power model and a task scheduler. It
utilizes the three models to predict the execution time and power
consumption for each task when running with different configu-
rations for the four knobs (i.e. core type, number of cores, core
frequency scaling and memory frequency scaling). In contrast to
existing works, JOSS manages to achieve higher energy savings
by considering the impact of memory energy consumption, in
addition to core asymmetry, CPU DVFS and task characteristics,
and through the use of memory DVFS as a tunable knob. Our
evaluation shows that JOSS achieves an additional 21.2% energy
reduction on average compared to the state-of-the-art. Even in the
absence of memory DVFS knob, JOSS can still save 5.2% additional
energy. Furthermore, it is capable of reducing the total energy while
still satisfying the performance constraints specified. We hope that
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these results together with related papers that demonstrate benefits
of memory scaling will encourage widespread adoption of memory
DVFS knob as an additional avenue for improving energy efficiency.
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