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Abstract
This paper presents a novel multi-scale method for elliptic partial differential equa-
tions with arbitrarily rough coefficients. In the spirit of numerical homogenization,
the method constructs problem-adapted ansatz spaces with uniform algebraic approx-
imation rates. Localized basis functions with the same super-exponential localization
properties as the recently proposed Super-Localized Orthogonal Decomposition
enable an efficient implementation. The method’s basis stability is enforced using
a partition of unity approach. A natural extension to higher order is presented, result-
ing in higher approximation rates and enhanced localization properties. We perform
a rigorous a priori and a posteriori error analysis and confirm our theoretical find-
ings in a series of numerical experiments. In particular, we demonstrate the method’s
applicability for challenging high-contrast channeled coefficients.
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1 Introduction

We consider the numerical solution of a second-order linear elliptic partial differ-
ential equation with a strongly heterogeneous coefficient. The coefficient may be
non-periodic, with oscillations appearing on several non-separated scales. For such
coefficients, classical finite element methods based on problem-independent polyno-
mial ansatz spaces typically yield unsatisfactory approximations, cf. [1]. It is possible
to overcome this issue by incorporating problem-specific information into themethod’s
ansatz space, which is commonly known under the term numerical homogenization
and has been an active research field throughout the past decades. For an overview
on numerical homogenization, we refer to the recent textbooks [2, 3] and the review
article [4].

Under minimal assumptions on the coefficient, numerical homogenization is able
to achieve optimal orders of approximation without any pre-asymptotic effects. How-
ever, this is not possible without a computational overhead. Compared to classical
finite element methods, it is either necessary to consider basis functions with an
enlarged support, or to increase the number of basis functions per mesh entity. As
prominent examples, we mention the Multiscale Spectral Generalized Finite Ele-
ment Method (MS-GFEM) [5–7], the Adaptive Local Basis (AL-Basis) [8, 9], the
Localized Orthogonal Decomposition method (LOD) [10–13], Rough Polyharmonic
Splines (RPS) [14], and gamblets [15].

The above-mentioned approaches can be distinguished into two classes. Methods
like MS-GFEM and the AL-Basis first solve local spectral problems in the space
of (locally) operator-harmonic functions. The respective ansatz spaces are then con-
structed by gluing together local eigenfunctions by means of a partition of unity [16,
17]. For such methods, the support of the basis functions is fixed by the choice of par-
tition of unity. For convergence of optimal order, the number of local eigenfunctions
taken into account needs to be increased logarithmically with the desired accuracy. In
order to make these approaches computationally more efficient, one can use random
sampling strategies as proposed, e.g., in [18].

The second class of methods includes the LOD, RPS, and gamblets. The idea is to
construct problem-adapted ansatz spaces by applying the solution operator to specific
classical finite element spaces with respect to some coarse mesh TH , which typically
does not resolve the coefficient’s oscillations. Due to their connection to isogeometric
analysis in the case of constant coefficients, such methods are sometimes referred to
as spline-type approaches. While optimal approximation orders of these methods are
achieved by design, the true challenge is to construct a local basis of the problem-
dependent ansatz space. An almost optimal solution is provided by the LOD, which
constructs a fixed number of basis functions per mesh entity that decay exponentially
fast with respect to the coarsemesh. This rapid decay enables a localization of the basis
functions to �-th order element patches with diameters of order �H . For convergence
of optimal order, the oversampling parameter � needs to be increased logarithmically
with the desired accuracy.

Recently, the Super-Localized Orthogonal Decomposition (SLOD) has been pro-
posed in [19] (see also [20–24]). The key contribution of the SLOD is a novel
localization strategy that enables a significantly improved localization compared to
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the LOD. The SLOD constructs rapidly decaying basis functions, which in practice
yields to super-exponentially decaying localization errors. Note that a rigorous proof
of these super-exponential localization properties is still open, and only a justifica-
tion based on a conjecture from spectral geometry is available, cf. [19]. Nevertheless,
using LOD theory, one can prove the practically pessimistic result that the SLOD at
least achieves the exponential localization properties of the LOD. The advantageous
localization properties of SLOD result in smaller local patch problems for the basis
computation and a sparser coarse system matrix. Numerical experiments indicate that
the SLOD outperforms the LOD, achieving similar magnitude errors for significantly
smaller oversampling parameters. Until now, for the best practical realization of the
SLOD in [19], the stability of the SLOD basis functions cannot be guaranteed a priori.
For high-contrast channeled coefficients or convection-dominated regimes, these basis
stability issues may deteriorate the method’s approximation quality (see the numerical
experiments in Sect. 7).

This paper proposes a novel multi-scale method that, on the one hand, preserves
the unique localization properties of the SLOD and, on the other hand, resolves the
aforementioned basis stability issues. This is achieved by combining the SLOD with
a partition of unity approach. More precisely, locally on nodal patches, we apply the
respective local solution operator to classical finite element source terms. Multiplying
these spaces with the corresponding hat-functions yields local ansatz spaces with
a low effective dimension. Consequently, low-dimensional optimally approximating
spaces are constructed by solving local spectral problems. Compared to MS-GFEM
methods, the proposedmethod has themajor advantage that the local spectral problems
are posed in a space spanned by a small number of deterministic snapshots. Hence,
possible random sampling strategies can be avoided. Furthermore, due to their low
dimension, the local spectral problems are easy to solve. The global problem-adapted
ansatz space is then obtained by gluing together the local optimal approximation spaces
using a partition of unity. Compared to, e.g., the LOD and SLOD, where the supports
of the basis functions need to be increased with the desired accuracy, the proposed
method has local basis functions and instead the number of basis functions per mesh
entity is increased. We highlight that, from an application point of view, the proposed
multi-scale method is conceptually simple and straightforward to implement. Further,
by adapting the polynomial degree of the finite element source terms, one can easily
construct higher-order versions of the method. Similarly as for the higher-order LOD
[25, 26], one obtains higher-order convergence rates using the regularity of the source
only.

We prove that the proposed method possesses the advantageous localization and
convergence properties of the SLOD which can be quantified a posteriori. Building
on the well-understood theoretical foundation of the LOD, we additionally perform a
pessimistic a priori error analysis, proving that the proposed method at least recovers
the convergence and localization properties of the LOD. For the method’s higher-
order versions, we observe that solely increasing the polynomial degree significantly
improves the localization properties. Numerical experiments even suggest that an
(almost) local basis exists for sufficiently large polynomial degrees. Another notewor-
thy contribution of this work is the implementation of the proposed method as well as
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the SLOD in the Python-library gridlod [27]. This serves the principles of open
access and reproducibility while enabling computations on large parallel clusters.

The outline of this paper is as follows. In Sect. 2, we introduce the prototypical
elliptic model problem. Section3 recalls preliminary results, which are then used
in Sect. 4 for the definition of the novel multi-scale method. An a posteriori error
analysis is presented in Sect. 5 followed by a pessimistic a priori error analysis in
Sect. 6. Finally, Sect. 7 presents a series of numerical experiments which confirm our
theoretical findings.

2 Model problem

We consider the prototypical second-order elliptic PDE −divA∇u = f in weak
form with homogeneous Dirichlet boundary conditions on a polygonal/polyhedral
Lipschitz domain � ⊂ R

d , d ∈ {2, 3}. Furthermore, without loss of generality, we
assume that � is scaled such that its diameter is of order one. The coefficient function
A ∈ L∞(�,Rd×d)may bematrix-valued and is assumed to be symmetric and positive
definite almost everywhere. More specifically, we assume that there exist constants
0 < α ≤ β < ∞ such that

α|η|2 ≤ (A(x)η) · η ≤ β|η|2, x ∈ �, η ∈ R
d (2.1)

with |·| denoting the Euclidean norm. The weak formulation of the elliptic model
problem uses the Sobolev space V := H1

0 (�) and the bilinear form a : V × V → R,
given by

a(u, v) :=
∫

�

(A∇u) · ∇v dx .

The symmetry and the condition (2.1) ensure that the above bilinear form is an inner
product on V . Its induced norm is the energy norm ‖·‖a,� := √

a(·, ·), which is
equivalent to the canonical Sobolev norm on V . The Lax–Milgram theorem ensures
that, for all source terms f ∈ L2(�), there exists a unique weak solution u ∈ V to the
boundary value problem, satisfying

a(u, v) = ( f , v)L2(�), for all v ∈ V. (2.2)

Note that the moderate restriction to source terms in L2(�) (rather than the dual
space V ′ = H−1(�)) will be essential for the uniform convergence of the numerical
homogenization method. We note that the possibly rough coefficient generally pre-
vents H2(�)-regularity of the solution, which would be required by classical finite
elements. For a generalization to source terms with less regularity, we refer to [4].
Let us mention that the proposed method is not restricted to the class of elliptic PDEs
with Dirichlet boundary conditions. Considering the extensions of the SLOD [20, 21],
also an extension of the proposed method to (non-symmetric) coercive operators and
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even Helmholtz-type problems seems possible. In particular, more general boundary
conditions of Neumann and Robin type can be taken into account.

Henceforth, we refer to A−1 : L2(�) → V as the solution operator that maps
f ∈ L2(�) to the unique solution u ∈ V of (2.2). Moreover, for a subdomain ω ⊂ �,
we denote by aω(·, ·) and ‖ · ‖a,ω the restriction of the bilinear form a(·, ·) to ω and
the restricted energy norm, respectively. The restricted solution operator subject to
homogeneous Dirichlet boundary conditions on ∂ω is denoted by A−1

ω : L2(ω) →
H1
0 (ω).

3 Preliminaries

Let TH denote a quasi-uniform coarse mesh of � consisting of closed, simplicial, or
quadrilateral shape-regular elements. The subscript H denotes the maximal element
diameter, i.e., H := maxT∈TH diam(T ) and by NH , we denote the set of all (interior
and boundary) vertices ofTH . For the ease of presentation,we henceforth only consider
quadrilateral meshes; the extension to triangular meshes is straightforward.

The proposed multi-scale method utilizes the concept of patches. For any � ∈ N0,
we define the �-th order (element) patch of a union of elements ω ⊂ � recursively by

N0(ω) := ω, N�+1(ω) :=
⋃ {

T ∈ TH : T ∩ N�(ω) �= ∅
}

.

3.1 Discontinuous finite element spaces

For a fixed (but arbitrary) polynomial degree p, we denote with

P(TH ) := {v ∈ L2(�) : v|T , T ∈ TH , is polynomial of coordinate degree ≤ p}

the non-conforming space (with respect to V) consisting of element-wise defined
polynomials. We define the restriction of P(TH ) to a subdomain ω ⊂ � by

P(ω) := {v ∈ P(TH ) : supp(v) ⊂ ω}.

One can characterize the spaceP(T ), T ∈ TH in terms of a suitable orthonormal basis
{	T , j : j = 1, . . . , J } with J := dim(P(T )), e.g., shifted tensor-product Legendre
polynomials. Hence, a local orthonormal basis of P(TH ) is given by {	T , j : T ∈
TH , j = 1, . . . , J }.

Let 
H : L2(�) → P(TH ) denote the L2-orthogonal projection, which for each
v ∈ L2(�), is given by the element-wise equation

(
Hv,w)L2(T ) = (v,w)L2(T ), for all w ∈ P(T ), T ∈ TH .

The projection satisfies the following stability and approximation estimates

‖
Hv‖L2(T ) ≤ ‖v‖L2(T ), v ∈ L2(T ), T ∈ TH , (3.1)
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‖(1 − 
H )v‖L2(T ) ≤ CaH‖∇v‖L2(T ), v ∈ H1(T ), T ∈ TH (3.2)

with constant Ca > 0 depending only on the regularity of the mesh TH and the
polynomial degree p, see, e.g., [28].

In addition, we define the broken Sobolev space Hk(TH ), k ∈ N, by

Hk(TH ) := {
v ∈ L2(�) : v|T ∈ Hk(T ), T ∈ TH

}

with the seminorm

|·|2Hk(TH )
:=

∑
T∈TH

|·|2Hk(T )
.

3.2 Conforming companion spaces

We next define local conforming companions of the functions 	T , j , so-called bubble
functions, which we denote by bT , j . For each element T ∈ TH , these functions fulfill,
for 1 ≤ j ≤ J ,

bT , j ∈ H1
0 (T ), 
HbT , j = 	T , j . (3.3)

We do not require an explicit characterization. However, it is important that such
functions actually exist. This is guaranteed by [25, Cor. 3.6] stating that, for all 	T , j ,
there exist a corresponding bubble function bT , j such that

‖bT , j‖L2(T ) + H‖∇bT , j‖L2(T ) ≤ Cb‖	T , j‖L2(T ), T ∈ TH , j = 1, . . . , J

(3.4)

with constant Cb > 0 depending solely on the mesh regularity of TH and the polyno-
mial degree p.

By means of the bubble functions, we can define the operatorBH mapping possibly
non-conforming functions to TH -piecewise bubble functions with the same L2-
projection. For any function in P(TH ), we uniquely define BH by setting BH	T , j :=
bT , j for all T ∈ TH , j = 1, . . . , J . We can extend the operator to L2(�) by setting

BHv := BH
Hv, for all v ∈ L2(�).

Clearly, the kernels of the operators 
H and BH coincide and one can prove the local
stability estimate

‖BHv‖L2(T ) + H‖∇BHv‖L2(T ) ≤ Cbo‖v‖L2(T ), v ∈ L2(T ), T ∈ TH (3.5)

with another constant Cbo > 0 depending solely on the mesh regularity of TH and
the polynomial degree p. By the definition of BH , we obtain, for all v ∈ L2(�),
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q ∈ P(TH ),

(BHv , q)L2(�) = (BH
Hv , q)L2(�) = (
Hv , q)L2(�) = (q , v)L2(�), (3.6)

i.e., BH is the L2-projection onto the space of bubble functions.

3.3 Partition of unity

The proposed multi-scale method is based on the framework of partition of unity
methods, cf. [16, 17]. Although, there is great flexibility in the choice of such a
partition, for simplicity, we restrict ourselves to the hat-functions {�z : z ∈ NH }
corresponding to all (interior and boundary) nodes of TH . Recall that the hat-function
�z associated with node z ∈ NH is a continuous TH -piecewise bilinear function
uniquely defined by setting its nodal values for all y ∈ NH to �z(y) = δyz with δ

denoting the Kronecker symbol. By definition, the hat-functions have an L∞-norm of
one and, due to the shape-regularity of TH , their gradients satisfy

‖∇�z‖L∞(�) ≤ C�H−1, z ∈ NH (3.7)

with constantC� > 0 depending solely on the mesh regularity of TH . Denotingωz :=
supp(�z), the shape-regularity of TH also implies that the supports {ωz : z ∈ NH }
have a finite overlap, i.e., the maximal number of overlapping supports

Col := max
T∈TH

#{z ∈ NH : T ⊂ ωz} (3.8)

is uniformly bounded. In what follows, we abbreviate the node patches around z ∈
NH and the element patches around T ∈ TH by ω�

z := N�(ωz) and ω�
T := N�(T ),

respectively.

4 Multi-scale method

This section introduces the proposed multi-scale method. The local ansatz spaces of
the method are constructed by applying the local solution operator on an oversam-
pling domain to piecewise polynomial source terms and by subsequent restriction to
a subdomain. Due to the oversampling, the resulting local spaces have a low effective
dimension, and thus, low-dimensional optimally approximating spaces are utilized.
The ansatz space of the method is obtained by gluing together the low-dimensional
local approximation spaces. Note that we consider a fixed polynomial degree p and
do not track the dependence of constants on p. Explicitly tracking this dependence
would make the analysis less clear and also add no value, as it relies on estimates that
are pessimistic in p.
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4.1 Local approximation spaces

For any z ∈ NH , we aim to approximate the restriction of the solution spaceV|ωz using
local approximation spaces. This is accomplished by choosing the local approximation
space V�

H ,z |ωz with

V�
H ,z := span

{
A−1

ω�
z
q : q ∈ P(ω�

z )
} ⊂ H1

0 (ω�
z ) (4.1)

being defined on the oversampling domain ω�
z .

Due to the oversampling, the restricted space contains many redundant functions.
This holds, in particular, after the multiplication with the hat-function�z when gluing
the local approximation spaces together. Hence, we investigate the optimal approxi-
mation of �zV�

H ,z by n-dimensional subspaces Q(n) ⊂ H1
0 (ωz). Given the subspace

Q(n), its worst-case best approximation error is defined as

sup
v ∈V�

H ,z

inf
w∈Q(n)

‖�zv − w‖a,ωz

‖v‖a,ω�
z

.

Typically, the minimal worst-case best approximation error is referred to as Kol-
mogorov n-width, cf. [29], and is defined as

dzn(H , �) := inf
Q(n)⊂H1

0 (ωz)

sup
v ∈V�

H ,z

inf
w∈Q(n)

‖�zv − w‖a,ωz

‖v‖a,ω�
z

. (4.2)

Indeed, there exists a corresponding optimal local approximation space of dimensionn,
which we explicitly compute. For this, we solve the low-dimensional eigenvalue prob-
lem, which seeks eigenpairs (v, λ) ∈ V�

H ,z × R such that

aωz (�zv,�zw) = λ aω�
z
(v,w), for all w ∈ V�

H ,z . (4.3)

We denote the eigenfunctions by {vi : i = 1, . . . , N := dim(V�
H ,z)} assuming an

ordering such that the corresponding eigenvalues satisfy λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0.
Consequently, denoting

V�,n
H ,z := span{vi : i = 1, . . . , n},

the optimal local approximation space of dimension n is given by �zV�,n
H ,z .

4.2 Global approximation space

A global approximation space is obtained by gluing together the above local approx-
imation spaces using the partition of unity, i.e.,
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V�,n
H :=

∑
z∈NH

�zV�,n
H ,z .

We measure the overall error when approximating �zV�
H ,z by spaces of dimension n

by

dn(H , �) := max
z∈NH

dzn(H , �). (4.4)

Finally, the proposed method seeks u�,n
H ∈ V�,n

H such that

a(u�,n
H , v) = ( f , v)L2(�), for all v ∈ V�,n

H . (4.5)

Note that the mesh size H determines the accuracy of the approximation. The over-
sampling parameter � specifies the size of the local patch problems and determines
the method’s localization error, whereas the number of local functions is given by n
and needs to be chosen sufficiently large. For a precise choice of the parameters H , �,
and n, we refer to Remarks 5.6 and 6.3. The following two sections are devoted to
the theoretical analysis of the proposed multi-scale method. In Sect. 5, we present an
a posteriori error analysis, while in Sect. 6, we present a priori error bounds.

5 A posteriori error analysis

Subsequently, we derive an a posteriori error analysis of the proposed method by
establishing a connection to the SLOD introduced in [19]. The SLOD is conceptually
related to the proposed method, as it also constructs its basis functions by applying
the local solution operator to TH -piecewise polynomial source terms.

5.1 Higher-order SLOD

For the a posteriori error analysis, we first briefly introduce a higher-order variant of the
SLOD. Note that this variant only serves theoretical purposes and is not investigated
numerically. Let us fix an arbitrary element T ∈ TH and oversampling parameter
� ∈ N. Henceforth, we drop all fixed indices and denote the �-th order patch around
T just by ω := ω�

T . Furthermore, we make the meaningful assumption that no patch
ω coincides with the entire domain �.

For its prototypical (global) basis functions {ϕ j : j = 1, . . . , J } associated to the
element T , the SLOD uses the following ansatz

ϕ j := A−1g j

with source terms g j ∈ P(ω) to be determined subsequently. We obtain a localized
approximation ψ j ∈ H1

0 (ω) of the basis function ϕ j by computing its Galerkin pro-
jection onto the local subspace H1

0 (ω), i.e., ψ j ∈ H1
0 (ω) satisfies

123



P. Freese et al.

aω(ψ j , v) = (g j , v)L2(ω)
, for all v ∈ H1

0 (ω). (5.1)

For the choice of g j , we recall some notation and results on traces of H1(ω)-
functions (see, e.g., [30] for details). Denoting U := V|ω⊂ H1(ω), we introduce the
trace operator on ω restricted to U as

tr : U → X := range tr ⊂ H1/2(∂ω).

An example of a continuous right-inverse of tr is theA-harmonic extension, henceforth
denoted by tr−1. Given w ∈ X , it satisfies tr tr−1 w = w and

aω(tr−1 w, v) = 0, for all v ∈ H1
0 (ω). (5.2)

Using definitions (5.1) and (5.2), and that (v − tr−1 tr v) ∈ H1
0 (ω), it holds

a(ψ j , v) = aω(ψ j , v) = aω(ψ j , v − tr−1 tr v) = (g j , v − tr−1 tr v)L2(ω).

This result yields, together with the definition of ϕ j and the local support of g j , the
following key observation

a(ϕ j − ψ j , v) = (g j , v)L2(ω) − aω(ψ j , v) = (g j , tr
−1 tr v)L2(ω), v ∈ H1

0 (�).

(5.3)

Hence, we can rephrase the smallness of the localization error as the (almost) L2(ω)-
orthogonality of g j to the space

Y := tr−1 X ⊂ U (5.4)

of A-harmonic functions on ω (which satisfy the homogeneous Dirichlet boundary
condition on ∂� ∩ ∂ω). Since the restricted L2-projection 
H |Y has a finite rank
of dimension less or equal to K := J · #(TH ∩ ω), there exists a singular value
decomposition (SVD) such that


H |Y v =
K∑

k=1

σk(v,wk)H1(ω) qk (5.5)

where σ1 ≥ · · · ≥ σK ≥ 0 denote the singular values, {q1, . . . , qK } the L2(ω)-
orthonormal left singular vectors, and {w1, . . . , wK } the H1(ω)-orthonormal right
singular vectors.

We choose the source terms g j as the left singular vectors corresponding to the J
smallest singular values, i.e.,

g j := qK−J+ j , j = 1, . . . , J . (5.6)
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Fig. 1 Singular values σk of operator 
H |Y defined in (5.5) for an interior patch, for different pairs of �,

p. The singular values σK−J+1 relevant for (5.7) are marked by dashed horizontal lines

This yields

sup
v∈Y : ‖v‖H1(ω)

=1
(g j , v)L2(ω)

≤ σK−J+1, j = 1, . . . , J .

which follows directly from the properties of the SVD. We define the quantity σ

measuring the (quasi-)orthogonality between the g j and Y as

σ(H , �) := max
T∈TH

σT (H , �), σT (H , �) := σK−J+1. (5.7)

The quantity σ is crucial for the error analysis of the SLOD as it determines the
localization error. Note that the dependence of σ on the (fixed) polynomial degree p is
not made explicit in (5.7). The following remark deals with the decay of σ with respect
to the oversampling parameter � and, for the sake of curiosity, also the polynomial
degree p.

Remark 5.1 (Decay of σ ) In [19], it has been numerically observed and conjec-
tured that, for p = 0, the quantity σ decays super-exponentially as � is increased,
cf. Fig. 1 (left). A similar decay in � can also be observed for p > 0. In accordance
with [19, 20], we state the following conjecture: there exists Cσ > 0 depending
algebraically on H , � and C > 0 independent of H , � such that

σ(H , �) ≤ Cσ (H , �) exp
( − C�

d
d−1

)
. (5.8)

Conversely, for fixed �, a rapid decay of σ in p can be observed, cf. Fig. 1 (right).
The low level of magnitude of the last singular values may suggest that the respective
source terms correspond to fully local basis functions. However, due to the low levels
or singular values, this is difficult to verify numerically.
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Choosing for each patch the basis functions corresponding to the J source
terms (5.6), we obtain the SLOD ansatz space

V�,SLOD
H := span{ψ�

T , j : T ∈ TH , j = 1, . . . , J }. (5.9)

The Galerkin SLOD solution u�,SLOD
H ∈ V�,SLOD

H then satisfies

a(u�,SLOD
H , w) = ( f , w)L2(�), for all w ∈ V�,SLOD

H . (5.10)

Note that a reasonable SLOD approximation requires a stable choice of the basis
functions in (5.9). However, for large oversampling parameters and patches inter-
secting the boundary, the choice (5.6) may be insufficient, and a special treatment is
required. In [19, App. B], such an algorithm is proposed, curing possible stability and
uniqueness issues in practice. Since we still cannot guarantee stability in an a priori
manner, we assume that the source terms corresponding to the basis function of (5.9)
form a Riesz basis of P(TH ), which is formulated in the following.

Assumption 5.2 (Riesz stability) The set

{g�
T , j : T ∈ TH , j = 1, . . . , J }

is a Riesz basis of P(TH ), i.e., there is Cr(H , �) > 0 depending polynomially on H
and � such that, for all (cT , j )T∈TH , j=1,...,J ,

C−1
r (H , �)

∑
T∈TH
j=1,...,J

c2T , j ≤
∥∥∥∥

∑
T∈TH
j=1,...,J

cT , j g
�
T , j

∥∥∥∥
2

L2(�)

≤ Cr(H , �)
∑
T∈TH
j=1,...,J

c2T , j .

(5.11)

5.2 A posteriori error bound using SLOD

We provide an a posteriori error analysis of the proposed method based on SLOD
techniques. Conceptually, it is similar to the one for the SLOD, cf. [19, Thm. 6.1], but
it additionally includes the local optimal approximation error dn defined in (4.4).

Theorem 5.3 (A posteriori error bound) Let Assumption 5.2 be satisfied and let u
and u�,n

H denote the solutions to (2.2) and (4.5), respectively. Then, there exists a
constant C > 0 independent of H , �, and n, such that, for any f ∈ Hk(TH ), k ∈ N0,

‖u−u�,n
H ‖a,�

≤ C
(
Hs+1| f |Hs (TH ) + �d+1C1/2

r (H , �)
(
σ(H , �) + Hdn(H , �)

)‖ f ‖L2(�)

)

with s := min{k, p + 1} and the notation H0(TH ) := L2(�) and |·|H0(TH ) :=
‖ · ‖L2(�).
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Proof The application of Céa’s Lemma yields, for arbitrary v ∈ V�,n
H ,

‖u − u�,n
H ‖a,� ≤ ‖u − v‖a,�. (5.12)

Let the solution to the (higher-order) collocation variant of the SLOD, cf. [19,
Rem. 5.1], with oversampling parameter m := ��/2� be denoted by um,SLOD

H . Given
a source term f ∈ L2(�), its solution is obtained by the following linear combination
of localized basis functions ψm

T , j :

um,SLOD
H =

∑
T∈TH
j=1,...,J

cT , jψ
m
T , j

with coefficients cT , j that are uniquely defined by

∑
T∈TH
j=1,...,J

cT , j g
m
T , j = 
H f . (5.13)

Adding and subtracting um,SLOD
H in (5.12) and employing the triangle inequality yields

‖u − u�,n
H ‖a,� ≤ ‖u − um,SLOD

H ‖a,� + ‖um,SLOD
H − v‖a,�. (5.14)

The first term is the error of the collocation variant of the SLOD. It can be bounded
using a higher-order version of [19, Thm. 6.1] stating the existence of a constant
Cslod > 0 independent of H and m such that

‖u − um,SLOD
H ‖a,� ≤ Cslod

(
Hs+1| f |Hs (TH ) + C1/2

r (H ,m)md/2σ(H ,m)‖ f ‖L2(�)

)
.

For the second term in (5.14), we choose v ∈ V�,n
H as sum of functions vnz ∈ V�,n

H ,z
to be specified later, i.e.,

v =
∑
z∈NH

�zv
n
z .

Using the partition of unity property of the hat-functions
∑

z∈NH
�z ≡ 1, we obtain

‖um,SLOD
H − v‖2a,� =

∥∥∥ ∑
z∈NH

�z(u
m,SLOD
H − vnz )

∥∥∥2
a,�

≤ Col

∑
z∈NH

‖�z(u
m,SLOD
H − vnz )‖2a,ωz

123



P. Freese et al.

with Col defined in (3.8) denoting the maximal number of overlapping ωz . For any
z ∈ NH , we can locally on ωz replace u

m,SLOD
H by um,SLOD

H ,z defined by

um,SLOD
H ,z :=

∑
T⊂ωm

z
j=1,...,J

cT , jψ
m
T , j ∈ H1

0 (ω�
z )

with the basis functions ψm
T , j := A−1

ωm
T
gmT , j . As approximation to um,SLOD

H ,z , we use

vz :=
∑
T⊂ωm

z
j=1,...,J

cT , j ψ̂
m
T , j ∈ V�

H ,z

with ψ̂m
T , j := A−1

ω�
z
gmT , j ∈ V�

H ,z being approximations of ψm
T , j . We choose vnz ∈ V�,n

H ,z

as the not necessarily unique element minimizing ‖�zvz − �zv
n
z ‖a,ω�

z
. Abbreviating

e1z := um,SLOD
H ,z − vz, e2z := vz − vnz ,

and performing the above-mentioned local replacement, we obtain

‖�z(u
m,SLOD
H − vnz )‖2a,ωz

≤ 2
(‖�ze

1
z‖2a,ωz

+ ‖�ze
2
z‖2a,ωz

)
, (5.15)

where we add and subtract vz and employ the triangle inequality. Using the product
rule and the bound (3.7), we get for the first term

‖�ze
1
z‖2a,ωz

≤ 2β
(
C2

�H−2‖e1z‖2L2(ωz)
+ ‖∇e1z‖2L2(ωz)

)
. (5.16)

Noting that by e1z ∈ H1
0 (ω�

z ), we obtain for the first term in (5.16)

‖e1z‖2L2(ωz)
≤ ‖e1z‖2L2(ω�

z )
≤ C2

pπ
−2�2H2‖∇e1z‖2L2(ω�

z )
(5.17)

using Friedrichs’ inequality on ω�
z with diam(ω�

z ) ≤ Cp�H , Cp > 0. For the second
term in (5.16), we infer the trivial estimate

‖∇e1z‖2L2(ωz)
≤ ‖∇e1z‖2L2(ω�

z )
,

which implies that, in order to bound (5.16), it suffices to estimate ‖∇e1z‖L2(ω�
z )
. Using

the continuity estimate

‖ tr−1
ωm
T
trωm

T
v‖H1(ωm

T ) ≤ Ctr‖v‖H1(ωm
T ), v ∈ V|ωm

T

with a constant Ctr > 0 independent of H , � from the proof of [19, Thm. 6.1], one
can show that
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(gmT , j , tr
−1
ωm
T
trωm

T
e1z )L2(ωm

T )
≤ Ctrσ(H ,m)‖e1z‖H1(ωm

T ). (5.18)

By (5.3) and (5.18), as well as the discrete Cauchy–Schwarz inequality, the finite
overlap of the patches ωm

T and Friedrichs’ inequality, we get

α‖∇e1z‖2L2(ω�
z )

≤
∑
T⊂ωm

z
j=1,...,J

cT , j a(ψm
T , j − ψ̂m

T , j , e
1
z )

= −
∑
T⊂ωm

z
j=1,...,J

cT , j (g
m
T , j , tr

−1
ωm
T
trωm

T
e1z )L2(ωm

T )

≤ Ctrσ(H ,m)
∑
T⊂ωm

z
j=1,...,J

|cT , j |‖e1z‖H1(ωm
T )

≤ CCtr(Cp�Hπ−1+ 1)σ (H ,m)md/2 J 1/2
√√√√√

∑
T⊂ωm

z
j=1,...,J

c2T , j ‖∇e1z‖L2(ω�
z )

with constant C > 0 reflecting the overlap of the patches ωm
T . Using (5.17), this yields

an estimate for (5.16) and consequently bounds the first term in (5.15).
For the second expression in (5.15), using the definition of the Kolmogorov n-

width (4.2), Friedrichs’ inequality on the patch ω�
z , the discrete Cauchy–Schwarz

inequality, and that the gmT , j are L
2-normalized, we obtain

‖�ze
2
z‖a,ωz ≤ dn(H , �)‖vz‖a,ω�

z
= dn(H , �)

∥∥∥∥A−1
ω�
z

∑
T⊂ωm

z
j=1,...,J

cT , j g
m
T , j

∥∥∥∥
a,ω�

z

≤ Cpdn(H , �)α−1/2π−1�H

∥∥∥∥
∑
T⊂ωm

z
j=1,...,J

cT , j g
m
T , j

∥∥∥∥
L2(ω�

z )

≤ CCpdn(H , �)α−1/2π−1�Hmd/2 J 1/2
√√√√√

∑
T⊂ωm

z
j=1,...,J

c2T , j

with constant C > 0 appearing in the bound C2md J of the number of terms in the
above sum. Consequently, we conclude the estimate for the second term in (5.15).

The assertion can be finalized by combining all estimates utilizing

∑
z∈NH

∑
T⊂ωm

z
j=1,...,J

c2T , j ≤ Cmd
∑
T∈TH
j=1,...,J

c2T , j ≤ CCr(H , �)md‖ f ‖2L2(�)
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with constant C > 0 reflecting the overlap of the patches ωm
z . Here, we used Assump-

tion 5.2 and (3.1) and (5.13). Finally, for the sake of readability, we substitutem = � �
2�

by �, which may introduce additional constants that change the decay rate of σ by
some constant factor. ��

5.3 Local approximation error bound using SLOD

The error estimate from Theorem 5.3 incorporates the spectral approximation error
dn defined in (4.4). Subsequently, we derive a bound for dn utilizing the SLOD for
constructing bases of the local spaces V�

H ,z defined in (4.1). For this purpose, we fix a

node z ∈ NH and treatω�
z as the whole domain. For the oversampling parametersm =

1, . . . , � − 1, we denote the basis functions with a tilde to emphasize that, in general,
they do not coincide with their global counterparts ψm

T , j , i.e.,

{ϕ̃m
T , j := A−1

ω�
z
g̃mT , j : T ⊂ ω�

z , j = 1, . . . , J } (5.19)

with source terms g̃mT , j ∈ P(ω̃m
T ), where ω̃m

T := ωm
T ∩ω�

z .We denote the corresponding
localized basis by

{ψ̃m
T , j := A−1

ω̃m
T
g̃mT , j : T ⊂ ω�

z , j = 1, . . . , J }. (5.20)

Similarly, as in the full domain setting, we need to measure, for all T ⊂ ω�
z , the

(quasi-) orthogonality of the source terms {g̃mT , j : j = 1, . . . , J } on the corresponding
space of A-harmonic functions

tr−1
ω̃m
T
trω̃m

T

(
H1
0 (ω�

z )|ω̃m
T

)
. (5.21)

Similarly to (5.5), for a node z ∈ NH and element T ⊂ ω�
z , we denote the singular

values of 
H restricted to (5.21) by σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃K ≥ 0. Analogously to (5.7),
we define

σ̃ (H , �,m) := max
z∈NH

max
T∈TH

σ̃z,T , σ̃z,T := σ̃K−J+1.

The quantity σ̃ is strongly related to its counterpart σ from (5.7) and, in numerical
experiments, exhibits the same qualitative behavior as described in Remark 5.1. A
local variant of Assumption 5.2 is required to ensure the stability of the local basis.

Assumption 5.4 (Local Riesz stability) For all patches ω�
z , the set

{g̃mT , j : T ⊂ ω�
z , j = 1, . . . , J }
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is a Riesz basis of P(ω�
z ), i.e., there is C̃r(H , �,m) > 0 depending polynomially on

H , �, and m such that, for all z ∈ NH and all (cT , j )T⊂ω�
z , j=1,...,J ,

C̃−1
r (H , �,m)

∑
T⊂ω�

z
j=1,...,J

c2T , j ≤
∥∥∥∥

∑
T⊂ω�

z
j=1,...,J

cT , j g̃
m
T , j

∥∥∥∥
2

L2(ω�
z )

≤ C̃r(H , �,m)
∑
T⊂ω�

z
j=1,...,J

c2T , j . (5.22)

Theorem 5.5 (Bound on dn) Let Assumption 5.4 be satisfied. Then, there exists a
constant C > 0 independent of H , �, and m such that, for m = 1, . . . , � − 1

dn(H , �) ≤ C�md/2H−1C̃1/2
r (H , �,m)σ̃ (H , �,m),

where n ≈ md.

Proof Let us consider a fixed node z ∈ NH and oversampling parameter �. As approx-
imation space Q(n) of dimension n ≈ md , we choose

Q(n) := span{�zψ̃
m
T , j : T ⊂ ωm

z , j = 1, . . . , J }

with basis functions defined in (5.20). For the approximation of vz ∈ V�
H ,z , we choose

the element wz ∈ Q(n) as

wz = �z

∑
T⊂ωm

z
j=1,...,J

cT , j ψ̃
m
T , j ,

where the cT , j are the coefficients of the expansion of vz in terms of the basis func-
tions ϕ̃m

T , j defined in (5.19). Note that, by Assumption 5.4, the coefficients cT , j are
uniquely determined. Thus, we can estimate the spectral approximation error (4.2)
using vz and wz as

dzn(H , �) = inf
Q(n)⊂H1

0 (ωz)

sup
vz ∈V�

H ,z

inf
wz∈Q(n)

‖�zvz − wz‖a,ωz

‖vz‖a,ω�
z

≤ sup
vz ∈V�

H ,z

‖�zvz − wz‖a,ωz

‖vz‖a,ω�
z

.

Denoting

ez :=
∑
T⊂ωm

z
j=1,...,J

cT , j
(
ϕ̃m
T , j − ψ̃m

T , j

) ∈ H1
0 (ω�

z ),

we obtain for the numerator, using the product rule, the triangle inequality, and (3.7):
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‖�zvz − wz‖a,ωz ≤ β1/2‖∇(�zez)‖L2(ω�
z )

≤ β1/2(C�H−1‖ez‖L2(ω�
z )

+ ‖∇ez‖L2(ω�
z )

)
.

We apply Friedrichs’ inequality on the patch ω�
z using that diam(ω�

z ) ≤ Cp�H , with
a constant Cp > 0. Hence, we can bound the first term against the second term, i.e.,

‖ez‖L2(ω�
z )

≤ CpH�π−1‖∇ez‖L2(ω�
z )

.

We adapt estimate (5.18) to the local setting introducing a constant C̃tr > 0. Using
the finite overlap of the patches ω̃m

T , the discrete Cauchy–Schwarz inequality and
Friedrichs’ inequality on ω�

z , we obtain

α‖∇ez‖2L2(ω�
z )

≤
∑
T⊂ωm

z
j=1,...,J

cT , j a(ϕ̃m
T , j − ψ̃m

T , j , ez)

≤ C̃trσ̃ (H , �,m)
∑
T⊂ωm

z
j=1,...,J

cT , j‖ez‖H1(ω̃m
T )

≤ CC̃tr(Cpπ
−1H� + 1)md/2σ̃ (H , �,m)

√√√√√
∑
T⊂ωm

z
j=1,...,J

c2T , j‖∇ez‖L2(ω�
z )

,

where C > 0 reflects the overlap of the patches ω̃m
T .

Adding the remaining coefficients cT , j from the expansion of vz in terms of the ϕ̃m
T , j

and using Assumption 5.4, we get

C̃−1
r (H , �,m)

∑
T⊂ω�

z
j=1,...,J

c2T , j ≤
∥∥∥∥

∑
T⊂ω�

z
j=1,...,J

cT , j g̃
m
T , j

∥∥∥∥
2

L2(ω�
z )

≤ C2
boH

−2
∥∥∥∥

∑
T⊂ω�

z
j=1,...,J

cT , j g̃
m
T , j

∥∥∥∥
2

H−1(ω�
z )

≤ C2
boβH−2‖vz‖2a,ω�

z
.

Here, we also employed that, by (3.5) and (3.6), we have, for all q ∈ P(ω�
z ),

‖q‖L2(ω�
z )

= sup
v ∈ H1

0 (ω�
z )

(q , v)L2(ω�
z )

‖v‖L2(ω�
z )

≤ CboH
−1 sup

v ∈ H1
0 (ω�

z )

(q , BHv)L2(ω�
z )

‖∇BHv‖L2(ω�
z )

≤ CboH
−1‖q‖H−1(ω�

z )
.

Combining the estimate yields the assertion. ��
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Remark 5.6 (Choice of parameters) This remark specifies how to choose the oversam-
pling parameter � and the number of local functions n in order to preserve the optimal
order of convergence of s+1 in Theorem 5.3. For �, the super-exponential decay (5.8)
implies that it needs to be chosen of order |log H |(d−1)/d . Using Theorem 5.5 and
that σ̃ has similar decay properties as σ , we obtain that n needs to be chosen of order
|log H |d−1. Note that these choices require the validity of (5.8) and Assumption 5.2
and 5.4. For a (pessimistic) estimate which is valid without any assumptions, we refer
to Remark 6.3 below.

6 (Pessimistic) a priori error analysis

This section presents an a priori error analysis of the proposed method, which is based
on the LOD framework, cf. [4, 10, 11]. Note that the exponential localization proper-
ties of the LOD cannot match the practically observed super-exponential localization
properties of the SLOD, cf. Remark 5.1. Nevertheless, the LOD construction has the
decisive advantage that the basis stability is guaranteed by construction and that the
exponential localization can be rigorously proved. This enables an a priori analysis
without assumptions on the stability of the SLOD basis and without conjectures on
the decay of singular values, cf. Assumptions 5.2 and 5.4 and Remark 5.1.

6.1 Higher-order LOD

We briefly introduce a higher-order version of the LOD similar to the constructions in
[25, 26]. The LOD constructs its problem-adapted basis functions by adding fine-scale
information to coarse-scale finite element functions. We define the space of fine-scale
functions as

W := kernel
H . (6.1)

The step of adding fine-scale information is called correction and utilizes the so-
called correction operator C : V → W defined as the a-orthogonal projection ontoW ,
i.e.,

a(Cv,w) = a(v,w), for all w ∈ W.

We split up the correction operator into a sum of element correction operators, i.e.,
C = ∑

T∈TH
CT with element correction operators CT : V → W defined by

a(CT v,w) = aT (v,w), for all w ∈ W.

For any v ∈ V , the correction CT v decays exponentially fast away from its associated
element T ∈ TH , cf. [26, Lemma5.1],whichmotivates a localization. For this purpose,
we substitute the global space W by localized counterparts W�

T := W(ω�
T ), where,

for a subdomain ω ⊂ �, we use the definition
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W(ω) := {w ∈ W : supp(w) ⊂ ω}. (6.2)

The localized element correction operator C�
T : V → W�

T is then defined by

a(C�
T v,w) = aT (v,w), for all w ∈ W�

T .

Similarly as for the correction operator C which can be decomposed into a sum of
element correction operators, we define the localized correction operator by

C� :=
∑
T∈TH

C�
T .

The ansatz space of the LOD is then obtained by adding (localized) corrections to
the bubble functions {bT , j : T ∈ TH , j = 1, . . . , J } defined in (3.3), i.e.,

V�,LOD
H := span{(1 − C�)bT , j : T ∈ TH , j = 1, . . . , J }.

The Galerkin LOD approximation u�,LOD
H ∈ V�,LOD

H then satisfies

a(u�,LOD
H , w) = ( f , w)L2(�), for all w ∈ V�,LOD

H . (6.3)

6.2 A priori error bound using LOD

Using LOD techniques, we can prove the following a priori error estimate for the
proposed multi-scale method. Numerical experiments show that this estimate is tenta-
tively pessimistic. Nevertheless, compared to Theorem 5.3, it has the crucial advantage
that it does not rely on additional assumptions or conjectures.

Theorem 6.1 (A priori error bound) Let u and u�,n
H denote the solutions of (2.2) and

(4.5), respectively. There exist constants C,Cd > 0 independent of H , �, and n such
that, for any f ∈ Hk(TH ), k ∈ N0

‖u − u�,n
H ‖a,�

≤ C
(
Hs+1| f |Hs (TH ) + �d/2H−1(�d/2 exp(−Cd�) + dn(H , �)

)‖ f ‖L2(�)

)
.

with s := min{k, p + 1}.
Proof We apply Céa’s Lemma, which yields, for arbitrary v ∈ V�,n

H ,

‖u − u�,n
H ‖a,� ≤ ‖u − v‖a,�. (6.4)

For the oversampling parameter m := ��/2�, we define the approximation

um,LOD
H := (1 − Cm)BHu
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which is not the Galerkin LOD solution (6.3) but has the same approximation prop-
erties, cf. proof of [25, Thm. 4.4]. Adding and subtracting um,LOD

H in (6.4) and using
the triangle inequality yields

‖u − u�,n
H ‖a,� ≤ ‖u − um,LOD

H ‖a,� + ‖um,LOD
H − v‖a,�. (6.5)

Using the above-mentioned approximation properties of um,LOD
H , we obtain the

following estimate for the first term in (6.5)

‖u − um,LOD
H ‖a,� ≤ Clod

(
Hs+1| f |Hs (TH ) + md/2H−1 exp(−Cdm)‖ f ‖L2(�)

)
.

with constants Clod,Cd > 0 independent of H , �, and m.
For the second term in (6.5), we choose v ∈ V�,n

H as sum of functions vnz ∈ V�,n
H ,z to

be specified later, i.e.,

v =
∑
z∈NH

�zv
n
z .

Using the partition of unity property of the hat-functions
∑

z∈NH
�z ≡ 1, we obtain

for the second term in (6.5),

‖um,LOD
H − v‖2a,� =

∥∥∥ ∑
z∈NH

�z(u
m,LOD
H − vnz )

∥∥∥2
a,�

≤ Col

∑
z∈NH

‖�z(u
m,LOD
H − vnz )‖2a,ωz

with Col defined in (3.8). For any z ∈ NH , we can, locally on ωz , substitute u
m,LOD
H

by

um,LOD
H ,z := (1 − Cm)(BHu|ωm

z
).

Hence, we define vnz ∈ V�,n
H ,z as the (not necessarily unique) elements minimizing the

expression ‖�zvz − �zv
n
z ‖a,ω�

z
, where

vz := (1 − C̃�
z )(BHu|ωm

z
)

is an approximation to um,LOD
H ,z . We denote W�

z := W(ω�
z ) and define the above used

correction operator C̃�
z : H1

0 (�) → W�
z by

aω�
z
(C̃�

z v,w) = aω�
z
(v,w) for all w ∈ W(ω�

z ). (6.6)

Note that it holds vz ∈ V�
H ,z which is a non-trivial observation, cf. [4, Rem 3.7 ii].
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Abbreviating

e1z := um,LOD
H ,z − vz, e2z := vz − vnz ,

we obtain after performing the above-mentioned local substitution

‖�z(u
m,LOD
H − vnz )‖2a,ωz

≤ 2
(‖�ze

1
z‖2a,ωz

+ ‖�ze
2
z‖2a,ωz

)
. (6.7)

Following (5.16), in order to bound the first term in (6.7), it suffices to bound ‖e1z ‖L2(ωz)

and ‖∇e1z‖L2(ωz)
. It holds

e1z = (Cm − C̃�
z )(BHu|ωm

z
) ∈ W�

z

which implies that e1z has vanishing element averages. Thus, by Poincare’s inequality

‖e1z‖2L2(ωz)
≤ 4π−2H2‖∇e1z‖2L2(ωz)

it is sufficient to estimate ‖∇e2z‖L2(ωz)
in order to obtain a bound for the first term

in (6.7). Given a function supported in ωm
z (e.g., BHu|ωm

z
) the correction operator Cm

coincides with the localization of C̃�
z to m-th order patches. Hence, we can apply the

localization error estimate from the proof of [25, Thm. 4.4], here in the oversampling
parameter m and (3.5) to obtain

‖∇e1z‖2L2(ωz)
≤ ‖∇(Cm − C̃�

z )(BHu|ωm
z
)‖2L2(ω�

z )

≤ C2
lom

d exp(−Cdm)2‖∇(BHu|ωm
z
)‖2L2(ω�

z )

≤ C2
loC

2
boH

−2md exp(−Cdm)2‖u‖2L2(ωm
z )

.

with constants Clo,Cd > 0 independent of H , �, and m.
For the second term in (6.7), we obtain by the definition of theKolmogorov n-width,

the stability of (1 − C̃�
z ) and (3.5) that

‖�ze
2
z‖2a,ωz

≤ d2n (H , �, n)‖vz‖2a,ω�
z
≤ βd2n (H , �, n)‖∇(BHu|ωm

z
)‖2L2(ω�

z )

≤ C2
boH

−2β2d2n (H , �, n)‖u‖2L2(ωm
z )

.

Combining the previous estimates, using Friedrichs’ inequality on � (recall that � is
scaled to unit size), we get

‖u‖L2(�) ≤ π−1‖∇u‖L2(�) ≤ π−2α−1‖ f ‖L2(�).

Finally, we substitute m = � �
2� by �, which introduces additional constants and

changes the exponential decay rate Cd by a factor of two. ��
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6.3 Local approximation error bound using LOD

Subsequently, we derive an a priori bound for dn , which is fully explicit in H and �.
This is the analog to Theorem 5.5, which does not rely on additional assumptions or
conjectures. Numerical experiments show that this estimate is tentatively pessimistic.

Theorem 6.2 (Bound on dn) There exists C,Cd > 0 independent of H , �, and m such
that, for m = 1, . . . , � − 1

dn(H , �) ≤ C�md/2 exp(−Cdm),

where n ≈ md.

Proof Let us consider a fixed node z ∈ NH and oversampling parameter �. By [4,
Rem. 3.7 ii], we can write any v ∈ V�

H ,z as

v = (1 − C̃�
z )BHv

with the correction operator C̃�
z defined in (6.6). We define the patch-local localized

correction operator by C̃m := ∑
T⊂ω�

z
C̃mT , where, denoting W̃m

T := W(ωm
T ∩ ω�

z ), the

element correctors C̃mT : H1
0 (ω�

z ) → W̃m
T are defined by

aω�
z
(C̃mT v,w) = aT (v,w), for all w ∈ W̃m

T .

As approximation space Q(n) of dimension n ≈ md , we choose

Q(n) := span{�z(1 − C̃m)bT , j : T ⊂ ωm
z , j = 1, . . . , J }

and as approximation wz ∈ Q(n) of an element vz ∈ V�
H ,z , we use

wz = �z(1 − C̃m)(BHvz |ωm
z
).

Using the approximation space Q(n) and the above defined choice of wz , we can
bound the Kolmogorov n-width as follows

dzn(H , �) = inf
Q(n)⊂H1

0 (ωz)

sup
vz ∈V�

H ,z

inf
wz∈Q(n)

‖�zvz − wz‖a,ωz

‖vz‖a,ω�
z

≤ sup
vz ∈V�

H ,z

‖�zvz − wz‖a,ωz

‖vz‖a,ω�
z

.

Abbreviating

ez := (C̃m − C̃�
z )BHvz,
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we can estimate the numerator using (3.7) and

�z(1 − C̃m)(BHvz |ωm
z
) = �z(1 − C̃m)BHvz,

as

‖�zvz − wz‖a,ωz ≤ β1/2‖∇�zez‖L2(ωz)

≤ β1/2(C�H−1‖ez‖L2(ωz)
+ ‖∇ez‖L2(ωz)

)
.

It holds that ez ∈ W�
z , which implies that e1z has vanishing element averages. Thus,

by Poincare’s inequality

‖ez‖L2(ωz)
≤ 2π−1H‖∇ez‖L2(ωz)

.

Applying the localization error estimate from the proof of [25, Tehorem 4.4] to show
that C̃m approximates C̃�

z exponentially and using (3.5), and Friedrichs’ inequality on
the patch ω�

z with diam(ω�
z ) ≤ Cp�H , Cp > 0, we obtain

‖�zvz − wz‖a,ωz

≤ β1/2(2C�π−1 + 1)‖∇ez‖L2(ω�
z )

≤ Clom
d/2β1/2(2C�π−1 + 1) exp(−Cdm)‖∇BHv‖L2(ω�

z )

≤ CboCloCp�m
d/2β1/2(2C�π−1 + 1)α−1/2π−1 exp(−Cdm)‖vz‖a,ω�

z
,

with constants Clo,Cd > 0 independent of H , �, and m. The assertion follows imme-
diately. ��
Remark 6.3 (Choice of parameters) This remark specifies how to choose the oversam-
pling parameter � and the number of local functions n in order to guarantee the optimal
order of convergence of s + 1 in Theorem 6.1. By Theorem 6.1, � needs to be chosen
of order |log H |. Using Theorem 6.2, we obtain that n needs to be chosen of order
|log H |d . According to the experiments, these choices are pessimistic, cf. Remark 5.6.

7 Implementation and numerical experiments

In this section, we numerically investigate the proposed multi-scale method regard-
ing the localization error, optimal convergence properties, high-contrast channeled
coefficients, and higher-order polynomials using suitable benchmark problems. As a
comparison, we use the SLOD from [19], which we consider as state-of-the-art. We
refer to [19, Sec. 8] for a comparison of the SLOD to other multi-scalemethods such as
the LOD. For underlining the origin of the proposed method and its super-localization
properties, cf. Theorems 5.3 and 5.5, we subsequently refer to it as Super-Localized
Generalized Finite Element Method (SL-GFEM).
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7.1 Implementation

For the practical implementation of the SL-GFEM, we need to perform a fine-scale
discretization, i.e., we substitute the infinite-dimensional function space V by the
finite element space Vh := V ∩ P1(Th). Here, Th denotes a fine-scale mesh obtained
by uniform refinement of TH , where the number of refinements should be chosen such
that the resulting mesh resolves all oscillations of A and f . For solving the patch
problems (4.1) and (4.3), one considers patch-local subspaces of Vh .

The SL-GFEM is straightforward to implement, as only very few technical details
need to be addressed. The local spaces V�

H ,z,h (discrete counterparts of V�
H ,z) can be

computed in parallel. Their computation only requires the local stiffness and mass
matrices on the respective patches.

In contrast to, e.g., MS-GFEM methods [5–7], the SL-GFEM solves local eigen-
value problems which are posed in the space spanned by a small number of
deterministic snapshots. This results in a lower dimension of the eigenvalue prob-
lems (4.3) and, hence, makes them easier to solve numerically. After a multiplication
with the respective hat-functions (partition of unity functions), we store the eigen-
functions corresponding to the n largest eigenvalues of the eigenvalue problems (4.3).
These functions are then used as ansatz functions for computing the global approxima-
tion (4.5). Compared to the SLOD, by construction, no stability issues in the choice of
basis can occur for the SL-GFEM and thus, no special treatment of boundary patches
is required, cf. [19, App. B].

For the implementation, we use gridlod [27], which is a Python-library ini-
tially designed for the implementation of LOD-related methods. Although we do not
require particular LOD-functionality from gridlod, it is convenient to use its flexi-
ble data structures for patches and its local discretization tools. Similarly, as in [31],
our implementation can solve all local patch problems in parallel on an HPC clus-
ter. As a comparison, we also implemented the SLOD from [19] in gridlod. All
experiments are fully reproducible, and the corresponding source code can be found
in [32].1

7.2 Numerical experiments

We consider the domain � = (0, 1)2 equipped with coarse Cartesian meshes TH and
a fine Cartesian mesh Th obtained by uniform refinement of TH . Note that, for ease
of presentation, H and h henceforth denote the elements side lengths instead of their
diameters. For all numerical experiments, we use h = 2−10, which results in about
one million degrees of freedom for the fine mesh. Note that our implementation also
works for higher spatial dimensions d. For the numerical experiments, we consider two
scalar diffusion coefficients A (realization of randomfieldwith short correlation length
and high contrast channeled coefficient) and two source terms f (constant and non-
polynomial). The precise definitions can be found in the respective experiments. Each
configuration serves its own purpose for numerically investigating the SL-GFEM. For

1 A respective GitHub-repository can be found in https://github.com/TiKeil/SL-GFEM.
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1 2 3 4
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SL-GFEM, n = 10, p = 0
SL-GFEM, n = 15, p = 0
SL-GFEM, n = 20, p = 0
SL-GFEM, n = 30, p = 0
SL-GFEM, n = 40, p = 0
SLOD

Fig. 2 Localization errors of the SL-GFEM for multiple choices of n and of the SLOD for a fixed coarse
mesh

measuring the approximation quality, we use the relative energy error, i.e.,

erela (ũ) := ‖uh − ũ‖a,�

‖uh‖a,�

,

where uh ∈ Vh denotes the first order finite element approximation of (2.2) which we
use as reference solution. Further, ũ is a placeholder for the SL-GFEM approxima-
tion (4.5) or the SLOD approximation (5.10).

7.2.1 Super-exponential localization

First, we investigate the localization properties of the SL-GFEM given several choices
of the local approximation space size n. For the choice f ≡ 1, the optimal order term
in Theorems 5.3 and 6.1 disappears and only the localization error and the approxi-
mation error dn are present. As coefficient A, we consider a realization of the random
field taking piecewise constant values on T2−8 , which are independent and identically
distributed in the interval [1, 100]. This results in a maximum contrast of 100. We
consider the fixed coarse mesh T2−5 and the polynomial degree p = 0.

For several sizes of local approximation spaces n, Fig. 2 depicts the relative energy
errors of the SL-GFEM and the SLOD as a function of the oversampling parameter �.
Clearly, the parameter n strongly impacts the approximation error of the SL-GFEM.
One observes a large difference in the approximation quality, for instance, for n = 10
and n = 15. Conversely, choosing n = 20 does not yield a significantly better approx-
imation than n = 15. This effect is related to the large jumps between the plateaus in
Fig. 1 and is also visible Theorems 5.5 and 6.2. In conclusion, for a sufficiently large n,
the SL-GFEM shows a rapid decay of the localization error confirming Theorems 5.3
and 6.1 numerically. For the SLOD, the super-localization property [19, Sec. 7] is
visible in Fig. 2.
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22 23 24 25

10−3

10−2
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SL-GFEM, n = 10, p = 0, � = 1
SL-GFEM, n = 50, p = 0, � = 1
SL-GFEM, n = 10, p = 0, � = 2
SL-GFEM, n = 50, p = 0, � = 2
SL-GFEM, n = 10, p = 0, � = 3

SL-GFEM, n = 50, p = 0, � = 3
SLOD, � = 1
SLOD, � = 2
SLOD, � = 3
slope 2

Fig. 3 Convergence plot of the SL-GFEM and SLOD for multiple choices of n and �

7.2.2 Optimal convergence

For investigating the convergence with respect to the coarse mesh size H , we use the
same coefficient as in Sect. 7.2.1 but consider the non-polynomial source term

f1(x1, x2) := (x1 + cos(3πx1)) · x32 ∈ H1(�).

Figure3 depicts the errors of the SL-GFEM and SLOD for multiple choices of n and �

as a function of H . As a reference, a line with slope two indicates the expected order
of convergence.

For n and � sufficiently large, one observes that the SL-GFEM converges with an
order of two which numerically confirms Theorems 5.3 and 6.1. Notably, the errors
of the SL-GFEM are smaller by nearly one order of magnitude than the errors of
the SLOD. This effect only appears for non-trivial coefficients A, i.e., the effect is
most probably related to the contrast of the coefficient. The contrast dependence is
investigated more closely in the following subsection.

7.2.3 High-contrast channeled coefficient

One of themajor challenges formulti-scalemethods is their sensitivity to high-contrast
channeled coefficients. In this numerical experiment, we consider the coefficient
Aκ constructed by adding four channels of conductivity κ in the coefficient from
Sects. 7.2.1 and 7.2.2. Some of the channels touch the boundary, while others stop
before. The number κ is the maximum contrast of Aκ . Figure4 depicts the coefficient
for κ = 105, 107.

For this numerical experiment, we choose the same setup as in Sect. 7.2.1. Figure5
depicts the localization errors for the above choices of κ .

The SL-GFEM appears to be largely unaffected by large values of κ . For the SLOD,
in contrast, the best practical realization known until now [19] yields a basis with
deteriorating stability as κ is increased (growing constants in Assumptions 5.2 and
5.4). This explains the worse performance of the SLOD for κ = 107 compared to
κ = 104. Notably, when compared to Sect. 7.2.1, the SL-GFEM does not need more
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Fig. 4 Coefficient Aκ for κ = 104, 107 (left and right)
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SL-GFEM, n = 40, p = 0 SLOD
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10−6

10−4

10−2

�

Fig. 5 Localization errors of the SL-GFEM and the SLOD for the high-contrast channeled coefficient Aκ

for κ = 104, 107 (left and right)

local functions n to attain a good approximation quality, which suggests that the choice
of n is not affected by the contrast.

7.2.4 Higher-order polynomials

One key benefit of the proposed method is its flexibility with regard to the choice of
polynomial degree, i.e., the construction of higher-order methods is straightforward.
While the previous numerical experiments have investigated the performance of the
SL-GFEMfor p = 0, this experiment also considers higher polynomial degrees.Using
the setup from Sect. 7.2.2, Fig. 6 depicts the errors of the SL-GFEM for p = 0, 1, 2
as a function of H together with lines indicating the respective expected orders of
convergence.

For n and � sufficiently large, it can be observed that the method of degree p
converges with an order of p+2 (recall that f is sufficiently smooth). This numerically
confirms Theorems 5.3 and 6.1. Note that the choice of n needs to be adapted to p,
which is related to the larger plateaus in Fig. 1.Weobserved that n needs to be increased
linearly as p is increased. It is left to future research to find a (possibly adaptive)
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22 23 24 25
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SL-GFEM, n = 70, p = 1, l = 2
SL-GFEM, n = 130, p = 2, l = 2
slopes 2, 3, 4

Fig. 6 Convergence plot of the higher-order SL-GFEM for multiple choices of n, �, and p

choice of n such that pessimistic choices (that may result in unnecessarily many basis
functions) can be avoided.
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