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ABSTRACT

We introduce a neural network surrogate model that predicts the eigenvalues for the turbulent microinstabilities, based on the gyrokinetic
eigenvalue solver in QuaLiKiz. The model quickly provides information about the dominant instability for specific plasma conditions, and in
addition, the eigenvalues offer a pathway for extrapolating transport fluxes. The model is trained on a 5� 106 data points large dataset based
on experimental data from discharges at the joint European torus, where each data point represents a QuaLiKiz simulation. The most
accurate model was obtained when the task was split into a classification task to decide if the imaginary part of eigenvalues were stable (�0)
or not, and a regression model to calculate the eigenvalues once the classifier predicted the unstable class.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0174643

I. INTRODUCTION

Integrated modeling is an important tool for the interpretation,
prediction, and optimization of magnetically confined fusion experi-
ments and will play an important role for designing future experiments
and reactors, such as DEMO. The idea behind integrated modeling is
that multiple different models that determine different phenomena in
the plasma, such as transport, heating, and magnetic configuration, are
coupled together into a single framework. An important part of the
framework is the transport models that in part determine the confine-
ment of the particles and energy. A good confinement is essential for
the possibility of a future fusion power plant. The transport is domi-
nated by plasma microinstabilities,1,2 i.e., turbulent transport. The sim-
ulations with the greatest physics fidelity of turbulent transport are
based on non-linear gyrokinetic theory. However, these models are
much too computationally expensive to routinely be used in the inte-
grated framework.

Hence, computationally cheaper reduced models based on quasi-
linear theory have been developed over the past decades. These
reduced models determine the eigenvalues of microinstabilites and use
linear relations between the perturbations in the plasma to calculate
the transport. A number of models with this approach have been

developed such as QuaLiKiz,3–5 TGLF,6 and EDWM,7 and they have
been fitted and verified against non-linear gyrokinetic simulations.8–10

These turbulent transport models have been used extensively in differ-
ent integrated frameworks, such as JINTRAC,11 ETS,12,13 etc. Even
though the reduced models are much computationally cheaper than
their non-linear gyrokinetic counterpart, they still can be time and
resource consuming when performing extensive analysis or long simu-
lations, such as analysis of the ramp-up phase. As such, it is beneficial
to speed up the reduced models, which also will allow for the possibil-
ity of real-time control applications.

Therefore, a surrogate model that reproduce the fluxes of
QuaLiKiz has been developed and implemented in integrated frame-
works.14–16 This new model, QLKNN, has replicated the results of the
full QuaLiKiz accurately at a fraction of the computational cost.
However, QLKNN and the reduced models encounter challenges
when applied to future devices due to the construction of the reduced
models, i.e., in the quasi-linear saturation. The reduced models (and
subsequently QLKNN) need a saturation rule to calculate the fluxes,
and it needs to be benchmarked to achieve realistic values. This is
done by comparing against non-linear gyro-kinetic simulations, but
ultimately by validating with fluxes from experiments. This makes it
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difficult to achieve reduced models with high accuracy for future devi-
ces, such as ITER and a DEMO.

In this work, we present a framework to address this issue by rely-
ing on the robustness of the underlying linear physics of the reduced
models. The eigenvalues calculated by the reduced models translate
between different devices since similar physics occur in different devi-
ces; thus, they make a more robust candidate for extrapolation.
Therefore, we present the work of a surrogate model for the eigenval-
ues calculated by QuaLiKiz. This will make the eigenvalues quickly
accessible, making it possible to perform high dimensional scans in
parameter space to assess the instabilities. Additionally, the eigenvalues
can be a combined with any saturation model, giving the possibility to
determine the fluxes.

Here, we present the surrogate model for the eigenvalues calcu-
lated with QuaLiKiz trained on a large joint European torus (JET)-
database. For a complete surrogate model for other devices and future
device scenarios, datasets generated by QuaLiKiz for such parameter
domains are needed. Additionally, the implementation of a saturation
rule for the surrogate model is left as future work. In this study, we
focus on a proof-of-principle for the underlying concept and investi-
gate which considerations need to be accounted for to obtain an accu-
rate model.

II. DATASET

A surrogate model generally consists of neural networks (NNs)
that mimic a model/system by learning the mapping between input
and output parameters from a dataset generated by that specific
model/system, in this case, the QuaLiKiz gyrokinetic eigenvalue
solver.17 QuaLiKiz uses independent and normalized local plasma
parameters to calculate the linear electrostatic drift wave and inter-
change instabilities. These input parameters are the ones that drive
and affect the instabilities such as the gradients, collisionality, impurity
content, etc. The outputs are the growth rates and associated real fre-
quencies (i.e., the imaginary and real part of the eigenvalue) for the
two fastest growing instabilities at 18 different wavenumbers. The ben-
efits of a trained NN is that it can be much faster than the original
QuaLiKiz but still give similar results, if the surrogate model is accu-
rate. However, it can only mimic QuaLiKiz properly in the parameter
space of the training dataset. Therefore, it is imperative to get a large
dataset that include as many of the different parameter domains as
possible. The generation of the dataset can be an arduous task, primar-
ily due to fact that the NN need a large amount of data points and the
number needed increase exponentially with the amount of input
parameters. In this work, we use a subset of a recently created data-
set16,18 containing 3:38� 107 data entries, with 15 input parameters.
Each data entry represents a QuaLiKiz simulation. In this section, we
give a brief presentation of the input and output parameters to
QuaLiKiz and the dataset, for a more detailed description see Ref. 16.
It is important to understand that a surrogate model only take into
account the phenomenon that is described in the main model, i.e., if a
physical phenomenon is not present in QuaLiKiz, it will not be present
in the NN-model. Noteworthy physical limitations in the QuaLiKiz
model are: no electromagnetic flux, it only accounts for electrostatic
fluxes, bounce averaged trapped electrons, and no geometric effects as
QuaLiKiz uses a shifted circular geometry. Therefore, geometric
parameters such as triangularity, elongation, etc. are not included in
the input parameters to the NNs.

A. Input and output parameters

QuaLiKiz uses certain plasma parameters as inputs, and most of
them are normalized and dimensionless. For the simulations in the
dataset, light impurities with a charge of less than 10 have been coa-
lesced into one “light impurity species.” Similarly, impurities with a
higher charge than 10 have been a coalesced into one “heavy impurity
species.” Hence, the simulations have been performed with four spe-
cies, one main ion species, two impurity species and electrons, which
makes a total of 33 input parameters. However, by using constraints
such as quasi neutrality and certain assumptions due to the availability
of data for the JET discharges, the number of input parameters can be
reduced to 15. The assumption used are:

• Zeff is radially constant throughout the plasma, i.e., rZeff ¼ 0;
• Ti ¼ Timp, as the widely available diagnostics measure the tem-
perature of impurity ion species, implying R=LTi ¼ R=LTimp

• The main ion is deuterium, with Zi¼ 1 and Ai¼ 2.

Here, LX is the gradient length, in circular geometry
LX :¼ �ð @

@qtor
lnXÞ�1, qtor is a flux label defined as

qtor :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtorðrÞ
wtorðaÞ

s
; (1)

where wtor is the toroidal magnetic flux and a is the minor radius. The
full set of the 15 input parameters in the dataset is presented in Table I.
q is the safety factor, ŝ the magnetic shear, �� the collisionality, a the
normalized pressure gradient, Mtor rotation Mach number, R=Lutor
normalized rotation gradient, and cE the E�B-shearing rate. These
parameters span a wide range of conditions in the JET-tokamak;
hence, the model is valid for analysis at that particular device.
However, if the normalized parameters for a discharge at another
device are within the confines of the parameters in Table I, the surro-
gate model will also be applicable. If out-of-range input values were to
be encountered post training of the models, they would not be able to

TABLE I. Input parameters to the NNs and their range. All parameters are normal-
ized and dimensionless.

Dimensionless
parameter

Associated physical
parameter Range min Range max

qtor r 0.10 0.93
q q 0.79 3.99
ŝ rq �0.48 3.99
R=LTe rTe �4.97 24.99
Zeff Zeff 1.00 3.97
log10ð��Þ ne �1.499 0.49
R=Lne rne �4.97 9.98
Ti=Te Timp 0.500 1.75
R=LTi rTimp �4.99 19.98
Nimp;light nimp;light 0.0002 0.049
a B0 �0.047 1.499
Mtor Xtor �0.048 0.99
R=Lutor rXtor �0.99 4.98
cE r2ðniTiÞ �1.49 0.49
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output reliable values. This is partly due to the complexity and non-
linearity of neural networks, which can lead to unexpected and dispro-
portionate changes in the predictions for small changes in the input
values.

The outputs, the eigenvalues, are calculated as dimensionless val-
ues. QuaLiKiz calculates the two fastest growth rates at 18 different spa-
tial scales separately ranging from ion scales kyqs < 1:5 to electron
scales kyqs > 1:5. Here, ky is the wavenumber in the poloidal direction,
and it is normalized with qs ¼ cs=Xc where cs is the ion sound speed
andXc is the cyclotron frequency. The 18 normalized wavenumbers are:
0.1, 0.175, 0.25, 0.325, 0.4, 0.5, 0.6, 0.8, 1, 2, 3.5, 6, 10.5, 15, 19.5, 24, 30,
and 36. At each wavenumber, there are four outputs, the fastest growth
rate and its associated real frequency, and the second fastest growth rate
and its associated real frequency. A negative real frequency represents
motion in the ion drift direction, usually associated with the ion temper-
ature gradient (ITG)-mode, and a positive real frequency represents
motion in the electron drift direction, usually associated with the
trapped electron-mode (TEM) and electron temperature gradient
(ETG)-mode. In total, there are 72 outputs for each QuaLiKiz simula-
tion, and they are normalized with cs=a. In Fig. 1, an example of a
growth rate spectrum for the strongest instability is shown.

The outputs in the dataset showed that QuaLiKiz rarely found a
second fastest growing instability, only 0.05% of the cases. This can be
compared to 22.24% for the fastest growing instability. When
QuaLiKiz does not find an instability, it sets the output for the growth
rate and the real frequency to zero. The few non-zero data points for
the second instability made us decide that in this study to focus only
on the fastest growth rate. The small amount of non-zero data points
would make it hard for the NNs to learn the patterns properly.

For the strongest instability, the rate of unstable solutions varied
between the different wavenumbers. We display the rate of the unsta-
ble samples in the training set per ky-index in Fig. 2. The ky-indices at
ion scales are 0–8 and electron scales 9–17, and the values for the two
indices at the boundary region, ky-indices 8 and 9 are kyqs ¼ 1and2.
We have the highest rate of unstable solutions for ky-indices 2, 3, 4,

and these unstable solutions represent the ITG-mode and TEM. At
higher ky-indices 12, 13, 14, we have an increased rate of unstable solu-
tions representing the electron temperature gradient (ETG)-mode.
However, at the meso-scales, the boundary region between ion- and
electron-scales, and for the largest wavenumber, we have a low amount
of unstable solutions. From a machine learning perspective, this is an
example of a an unbalanced dataset, in particular for certain ky-indices,
which can cause problems for the NNs, which we will discuss in Sec.
III. Later in this work, we employ a weighted loss function to solve this
issue.

B. QuaLiKiz dataset

To be able to create a surrogate model for the eigenvalues a suffi-
ciently large dataset of simulations with QuaLiKiz is needed. In this
work, we have used a large dataset based on experimental values from
the JET-experiments. The datasets were created from 2135 discharges,
both from quasi steady state- and transient-scenarios and a total of
12328 time windows were selected.

In certain cases, all necessary data were not available and certain
assumptions were needed;

• The Zeff contribution of the light impurity did not exceed 0.2 if
insufficient impurity information is provided

• Mtor ¼ R=Lutor ¼ cE ¼ 0 if no plasma rotation measurements are
available

• Ti ¼ Timp ¼ Te if no ion temperature measurements are available
• Zeff¼ 1.25 if no line-integrated effective charge measurements are
available.

The extracted experimental data were used to populate the data-
set as input to QuaLiKiz, at nine equidistant radial positions between
qtor ¼ 0:1 and 0.9. The drift waves instabilities, in general, and
QuaLiKiz, in particular, are sensitive of certain plasma parameter pre-
sented in Table I. Therefore, we have expanded the dataset for
{R=Lne ; R=LTe ; R=LTi ; ŝ; ce}. The gradients are especially important

FIG. 2. Rate of unstable solutions per ky-index for the strongest instability in the
dataset.

FIG. 1. An example of a growth rate spectrum (only growth rate for strongest insta-
bility), which is the output of the regression neural networks in this work.
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as the free energy in them drives the drift wave instabilities. Hence, a
five-point expansion was performed for {R=LTe ; R=LTi } and a three-
point expansion in {R=Lne ; ŝ}. All experimental data points that had
rotation data available were duplicate and assuming no rotation to
improve the NN interpolation for the rotation. Additionally, a three
point expansion of {ce} was performed. The total number of data
points is roughly 3:7� 107.

C. Data cleaning

There are benefits and drawbacks to using experimental data to
populate the input parameter space compared to using a predefined
region. There might be uncertainties and discrepancies in the measure-
ments which propagate to the dataset. For a dataset of this size, it is
not possible to manually verify every entry. Therefore, there are bound
to be some erroneous data points, but we can mitigate this by pruning
the dataset. Data points with extreme values in the input and/or the
output have been eliminated from the dataset. The range of the input
parameters post cleaning are displayed in Table I. One benefit with
using experimental data as method to populate the input space is that
it eliminates nonphysical conditions.

III. METHOD AND RESULTS

In this section, we describe the architecture of the models and
present their predictive capabilities. For the NNs, we have used
TensorFlow19 and fully connected feed forward NNs (FFNNs).20 As all
inputs and outputs are properly labeled, we have performed supervised
learning to optimize the NNs.

A. Definitions

The following list contains brief descriptions of key machine
learning related concepts and methods, and these are more thoroughly
explained in Ref. 20.

• R2—the coefficient of determination. This is commonly used as a
metric to measure model performance. It is defined as

R2 ¼ 1�

X
i

ðytruei � ypredi Þ2X
i

ðytruei � �ytrueÞ2 ;

where ytrue represents the dataset values of the output parameter,
ypred represents the predicted values of the output by the model,
and �ytrue represents the mean value of the dataset values of the
output. R2¼ 1 represents a perfect model with perfect predictions
on all data points, and R2¼ 0 represents a model with equally
poor predictive capabilities as a model that always outputs the
mean value of the given output parameter.

• Recall—in a binary classification task, the recall evaluation metric
is defined as

Recall ¼ True positives
True positivesþ False negatives

:

Note that in a binary classification task, “positives” refer to the
class that is being evaluated. In this work, we evaluate both clas-
ses in the binary classification tasks, which means that positives
are not only referring to the positive growth rates in this work.

When the recall of the stable class is evaluated, “True positives”
refers to the number of correctly classified stable solutions, where
the growth rate is 0. The same reasoning applies for the precision
which is defined below.

• Precision—in a binary classification task, the precision evaluation
metric is defined as

Precision ¼ True positives
True positivesþ False positives

:

• F1-score—in a binary classification task, the F1-score evaluation
metric is defined as

F1� score ¼ 2 � Precision � Recall
PrecisionþRecall

:

• Loss function—the trainable parameters in a machine learning
model are iteratively adjusted during the training to lower a loss
function. A typical loss function for regression tasks is the mean
squared error (MSE)

MSE ¼ 1
N

XN
i

ðytruei � ypredi Þ2:

• Binary cross-entropy—a loss function that is commonly used in
binary classification tasks. It is defined as

Binary cross-entropy

¼ � 1
N

XN
i

ytruei � logðypredi Þ þ ð1� ytruei Þðlogð1� ypredi ÞÞ:

• Activation function—the function that calculates the output of
the individual nodes in a neural network. A common activation
function is the Rectified Linear Unit (ReLU), which is defined as

ReLU xð Þ ¼ maxð0; xÞ:
Another common activation function is the Sigmoid function,
which is common for the output layer in binary classification
models

rðxÞ ¼ 1
1þ e�x

:

• Epochs—one epoch refers to one complete pass through the
entire training dataset during the training phase.

• Optimizer—the algorithm used to adjust the trainable parameters
of a model in order to lower the value of a loss function. A com-
mon optimizer is Adam, which combines two key techniques for
optimization: momentum and an adaptive learning rate.

• Learning rate—This controls the step size of the update of the
trainable parameters during the training phase.

• Dropout—the key idea behind dropout is that by randomly dis-
abling a set rate of neurons during training, the network cannot rely
too heavily on any particular neuron or learn complex co-adapta-
tions between neurons. This encourages the network to learn more
robust and generalized features, reducing the risk of overfitting.

• Batch size—the number of training examples (data points) that
are processed in parallel before the trainable parameters of a
model are updated.
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• MinMax scaling—linear scaling of the data to be within a certain
range, such as [0,1].

• Standard scaling—scaling of the data by removing the mean and
scaling to unit variance

z ¼ x � u
s

;

where z is the scaled value, x is the original value, u is the mean
value of the distribution of the considered parameter, and s is the
standard deviation of the distribution of the considered
parameter.

B. Models

As previously mentioned, this study will only focus on the stron-
gest growth rate, which means that for each data point, we have 15
input parameters and 36 outputs (one growth rate and real frequency
for each of the 18 wavenumbers). We have designed several different
neural network based models to evaluate which is the most suitable for
this problem. The outline of this study is as follows:

• Architecture of NNs
• One NN per ky-index or one NN for all ky-indices
• Splitting the task; classifier and regression with weighted loss
function

• Classification of ITG and TEM

C. Evaluation metric

The distribution of the output data for each ky is generally a com-
bination of a Gaussian-like distribution for the unstable solutions and
a large spike at 0 for the stable solutions. For instance, at ky-index 3,
the growth rate of the unstable entries across the dataset are spread out
and resemble a Gaussian distribution if it were to be plotted in a histo-
gram, and the stable entries with a growth rate of 0 adds a narrow
peak at 0 in this distribution. This leads to different options regarding
evaluation. For regression tasks with a linear output layer, R2 is com-
monly used for evaluation, in particular when the output data are
evenly (or Gaussian-like) distributed. However, in this case, the large
spike at 0 (stable solutions) will bias/corrupt the R2 value if the entire
output domain is evaluated using this metric. Or rather, the perfor-
mance on the unstable samples will be shrouded by the many stable
data points. For this reason, we evaluate the following combination of
metrics to get a more detailed interpretation of the performance of the
different models in this work:

• The R2 value of all unstable labels in the test set for each ky.
• The recall and precision for classification of stable/unstable data,
which is evaluated for both classes. Effectively, the recall and pre-
cision constitute the F1-score, however separately they provide a
more detailed picture of the classifier since the F1-score repre-
sents a compressed version of the recall and precision. This met-
ric is also later used for the ITG/TEM classification in this work.

D. Architecture of NNs

We performed a hyper-parameter search to find the most suited
neural network for the problem. The search is based on the first model
presented in this work, which is described in Sec. III E, and the found

hyper-parameters are applied to all of the following tests in this work.
It is possible that the hyper-parameters can be slightly tweaked further
to improve the score on the following tests, although we defer the
exploration of this topic to future investigations. The following hyper-
parameter combination represents the optimal configuration: opti-
mizer: Adam, loss function: MSE, learning rate: lr¼ 0.001, and batch
size¼ 256. We did set a roof of a total of 400 000 trainable parameters
(200 000 active trainable parameters for each training iteration using
dropout). With this restriction, we found the best configuration to be
two hidden layers with 600 nodes and 50% dropout in the second hid-
den layer, with the activation function: ReLu. The output of the NNs
that perform regression in this work is a linear layer. For the classifica-
tion tasks in this work, binary cross-entropy is used as the loss func-
tion, and the sigmoid function is used for the output layer. We also
employ MinMax scaling to all the input and output parameters, where
each distribution is scaled to be between 0 and 1. The reason for not
using standard scaling is that the distribution of the output parameters
is not Gaussian due to the large amount of stable solutions in the data-
set which has a growth rate and real frequency of exactly 0. In the fol-
lowing tests, we did not see an increased performance by instead
scaling the input parameters with standard scaling. For the training/
validation, we used 5� 106 entries randomly sampled from the
cleaned dataset, as well as 3� 106 randomly sampled entries from the
cleaned set for the testing. The total number of training iterations for
each model was set to approximately 20 000, which corresponds to 1
epoch with the full training set considering the batch size of 256.

E. One NN per ky-index or one NN for all ky-indices

We made two different models to determine if it is better to pre-
dict the eigenvalues with one NN for all ky-indices or to have one NN
for each ky-index. The eigenvalue problems in QuaLiKiz are indepen-
dent, but it is still of interest to explore if there are any benefits associ-
ated with predicting for all ky-indices at once since similar physics
govern for the different ky-indices. Each NN in the multi-NN model
has the same number of nodes as the NN for all ky-indices except in
the output layer. These models are trained on the entire training set
including both stable and unstable solutions, and for this specific test,
we are not implementing stable/unstable class balancing in either
model to allow for fair comparison. This is because balancing strategies
are not straightforward for the model that predicts the output at all ky
simultaneously, where each ky-index has a different amount of unsta-
ble solutions. Additionally, out of the two evaluation metrics, in this
particular test, we can only evaluate the R2 value for the unstable labels.
This is because the models have linear output layers and can thus not
perform classification since no exact zeroes are obtained in the predic-
tions. However, the test still serves as a useful comparison before we
continue by splitting the task into a classification task and a regression
task. The R2 values are displayed in Fig. 3, the growth rates at the top,
and the real frequency below. The model that has one NN for all ky-
indices is the blue curve with circle markers, and the model with one
NN per ky-index is the orange curve with triangle markers. From the
figure, it is clear that the two different models have similar perfor-
mance for all ky-indices and both struggle at ky-indices 8, 9, 16, and 17.
At these indices, we have unbalanced data, which was shown in Fig. 2.
The models are simply not encouraged to learn the patterns of the
unstable solutions here since a low value of the loss function can be
achieved by blindly predicting low values. The results for the model
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with one NN for each ky-index are more jagged as its NNs are inde-
pendent of each other, but overall, the results indicate that there is no
major drawback from using the model with one NN for each ky-index,
which will simplify class balancing in the following tests.

F. Splitting the task; classifier and regression

As mentioned, a limitation of these pure regression models is that
neither of them ever predict exactly zero, which represents a stable solu-
tion from the eigenvalue solver, and as a large part of the dataset is
exactly zero, it is imperative to rectify this to enable classification. This

problem is an artifact from the output of the gyrokinetic eigenvalue
solver in QuaLiKiz. The solution to the dispersion relation can yield
both positive and negative values for the growth rates. However,
QuaLiKiz truncates the output for the negative values to zero. The trun-
cation is performed as negative growth rates do not contribute to the
turbulent fluxes; nonetheless, the truncation means a loss of information
which could have been useful during the training process of the NNs.

In this case, without the information of negative growth rate, we
solve this problem by introducing a classifier, which determines if there
is a stable or unstable solution for given input parameters. If we have a
stable solution, we set the growth rate and real frequency to zero. In
addition, we introduce a regression model that is only trained on
unstable solutions and used post training when the classifier predicts
an unstable solution. In other words, the classifier and regression NNs
are trained separately. Both these models employ a dedicated NN for
each ky-index.

To balance the training, the regression model NNs have their
number of epochs adjusted for each ky-index to get same amount of
training iterations as previous runs (�20 000 iterations). This is
because the amount of unstable data is different for each ky-index;
thus, the number of iterations per epoch varies between the ky-indices
since the batch-size is constant. For the classifier, we investigate the
effect of balancing the loss function, such that the unstable class gets a
weighted loss with the same ratio as the ratio between the number of
stable/unstable entries for each ky-index. In practice, this means that
for ky-indices with a low number of unstable entries, the loss function
will be significantly higher per unstable entry. The neural network
with the balanced loss function will thus be encouraged to not neglect
the unstable entries, since these will contribute significantly to the total
loss function of the entire dataset even if they are few in numbers.
Since the balancing strategy is only active during the training, it is not
expected to limit predictive capabilities of datasets from other configu-
rations with different ratios of stable/unstable entries post training.
Rather, the entire point of the balancing procedure is to not neglect
uncommon unstable entries for certain ky-indices that might be more
common for those ky-indices in other datasets. These two balancing
strategies would be significantly more complicated for the model with
one NN for all ky-indices. Therefore, since the previous test showed
similar results for the models with different amount of outputs, we per-
form this test using the model with one NN for each ky-index.

In Fig. 4, we compare the recall and precision of two classification
models, one with and the other without weighted loss, which we refer
to as the balanced and unbalanced classifier, respectively. The top fig-
ure displays the metrics for the unbalanced classifier, and the bottom
figure displays the metrics for the balanced classifier. As expected, the
unbalanced classifier generally shows a high recall and precision for
the stable class since the data are dominated by stable solutions, as well
as a lower precision and recall for the unstable class, in particular for
the ky-indices with few unstable data. The balanced classifier manages
to raise the recall of the unstable data but shows a lower precision of
the unstable class. The lower precision is not surprising, and not neces-
sarily as problematic as it may seem since for a highly imbalanced test
set, even a small fraction of false unstable predictions will lead to a
high number of false unstable predictions in relation to the total num-
ber of unstable data. In other words, the precision metric is highly
biased by class imbalance which should be considered when evaluating
this metric.

FIG. 3. Comparison between using one NN per ky-index (orange triangle) and one
NN for all ky-indices (blue dot). The models show a similar R2 value on average.
Both models struggle at ky -index 8, 9, 16, and 17 where we have unbalanced data.
The R2 value for the model with one NN per ky is more jagged across the spectrum.
The R2 value is generally higher for the growth rate (a) compared to the real fre-
quency (b).

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 123904 (2023); doi: 10.1063/5.0174643 30, 123904-6

VC Author(s) 2023

 10 January 2024 14:23:18

pubs.aip.org/aip/php


Before we evaluate the classifier and regression model together,
we evaluate the regression model by itself in Fig. 5. Here, we also
investigate if there is any benefit or drawback of predicting the
growth rate and real frequency together (turquoise, upside-down tri-
angles) or separately (purple, rhombus). We refer to the test when
predicting the growth rate and real frequency together as “multi-task
learning.” The results show high R2 for all ky-indices for both the
growth rate and real frequency, and there is no difference when pre-
dicting the growth rate and real frequency separately or together.
There is a slightly lower R2 value for ky-index 9 at the meso-scale for
the real frequency.

These R2 values are informative since they tell that for cases
where it is known that there is an unstable solution, the regression
model performs exceptionally well. This is expected since it is not
trained on stable data and thus not partly biased to making predictions
in the stable domain, which the first models displayed in Fig. 3 are.

For a complete evaluation, we compare this combined balanced
classifier and regression model with the model with one NN for
each ky-index from Sec. III E in Fig. 6, which we refer to as the “First
test.” The new combined model is the black curve with star markers,
and the model with one NN per ky-index is the orange curve with

FIG. 4. Comparison between not using (a) and using (b) a weighted loss function in
the stable/unstable solution classifier. Overall, the recall of the unstable class (red
solid square) is significantly improved for the ky -indices with few unstable data by
using a weighted loss. This means that the model has improved in correctly classi-
fying the entries that actually are unstable while maintaining a high recall on the sta-
ble class (green solid plus). It is not surprising that the precision is lower for the
unstable class (red dashed square) when using a balanced loss function since this
metric is highly biased by unbalanced test data. The y axes show both the recall
and precision, both of which are unitless.

FIG. 5. R2 values of regression models that are only trained and evaluated on
unstable data. Two models are compared, where the growth rate (a) and real fre-
quency (b) either are predicted together (turquoise, triangles) or separately (purple,
rhombus). Overall, the R2 value is close to 1 for almost all ky -indices. There is no
difference between predicting the growth rate and real frequency separately or
together (the latter referred to as multi-task learning).
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triangle markers (same coloring and marker as when it appeared in
Fig. 3). Here, the unstable data that the combined model wrongly clas-
sifies as stable data are included in the R2-calculation in order to per-
form the comparison on the exact same test sets. The combined model
has a higher R2 value for all ky-indices compared to the first model,
both for the growth rates and real frequencies.

For the combined model predictions of the real frequency, we see
that the R2 value is lower for ky-indices 9 and 17. To investigate this,

we show the output for the combined classifier and regression model
compared with the true values in the test set in scatter density plots in
Fig. 7 for three ky-indices. Here, we also show histograms of the distri-
bution of false unstable predictions, as well as the dataset values for the
false stable predictions. The ky-indices are from the left to right: 3, 9,
and 17. Growth rates are at the top row and real frequencies at the bot-
tom. The three different ky-indices are at different scales, ky-index 3 is
at ion scales, 9 at meso-scales, and 17 at the smallest scale resolved in
the QuaLiKiz simulations in the dataset. The scatter plots only display
the unstable (non-zero) entries in the dataset, as including stable solu-
tions would lead to extreme intensity at (0,0). For ky-index 3, the real
frequencies have a large amount of data points both positive and nega-
tive, as there are two different instabilities at these scales. The negative
real frequency represents the ITG-mode and positive TEM. By the
intensity of the scatterplot, it is clear that there are more ITG-entries in
the dataset. For the rest of ky-indices, they have primarily entries with
positive real frequency, at these scales it represents the ETG-mode.
The figures visualizes how well the regression models perform for
instances where there is a correct classification. The thin vertical lines
at x¼ 0 in all of the figures are the cases there the classifier makes an
wrong classification, predicting a stable solution when it is unstable in
the dataset. This is also the reason why the R2 value is lower for the
real frequency compared to the growth rate in general. The regression
models on their own have similar accuracy, but the vertical lines gener-
ally deviate more from y¼ 0 for the real frequency. This is particularly
clear at ky-index 17 for the combined model. Here, the vertical line
representing incorrect classification leads to a larger decrease in R2

since the line at x¼ 0 is not centralized around y¼ 0. In other words,
some indices with distributions centralized further away from y¼ 0
are more penalized at wrong classification due to an artifact with the
R2-metric for this problem. Thus, it is important to consider all the dif-
ferent metrics to get a more detailed understanding of the model per-
formance, including the classification score, the performance of the
regression models when not considering false classification, as well as
the performance of the combined model and the visualizations in
Fig. 7. Overall, the histograms indicate that the false unstable predic-
tions show a similar distribution as the general distribution of the
unstable domain, which is displayed in the scatter density plots. The
histograms also indicate that overall, when the classifier wrongly classi-
fies an entry as stable, at least the database value of the growth rate is
small.

G. Classification of ITG and TEM

There are three instabilities present in QuaLiKiz, two at the ion
scales, the ITG-mode and TEM, and one at the electron scale, the
ETG-mode. Here, we investigate if a classifier can predict if an unsta-
ble output is associated with the ITG-mode or TEM. Important to
note is that QuaLiKiz only include the “pure” versions of the instabil-
ities; however, mixed modes of ITG/TEM exists which has a real fre-
quency close to zero. Since ITG and TEMs are only present at the
ion scales, we build a class balanced classifier at (ky-index � 8).
Fortunately, the two instabilities are easily distinguishable through
the real frequencies; positive real frequency indicates a TEM and a
negative real frequency indicates ITG-mode. This is generally true,
but for every step density gradients, the ITG-mode can move in the
electron direction, i.e., have a positive real frequency.22 Nonetheless,
these cases were deemed so rare no additional considerations were

FIG. 6. Comparison between: (1) a combined classifier and regression model with
a weighted loss function and one NN per ky-index (black star) and (2) the regres-
sion model in the first test with one NN for each ky-index with no class balancing
strategies (orange triangle). The R2 values of the growth rate (a) and real frequency
(b) are higher for the combined classifier and the regression model. The combined
model for the real frequency still shows a dip in R2 at ky -indices 9 and 17, although
this is likely an artifact from how wrongly classified unstable entries affect the
R2-metric for these indices, since previous figures show high classification score as
well as high regression performance for all ky -indices.
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taken for them. Note that the real frequency is not an input to the
classifier, but rather a tool for labeling the data. The recall and preci-
sion of the two instabilities are displayed in Fig. 8. The recall is high
for both instabilities; however, the precision for the TEM is lower for

the higher ky-indices. Similarly to the case for the unstable/stable
classifier, this is not surprising since the precision is greatly affected
by class imbalance in the evaluation set for a classifier that has been
balanced during training.

FIG. 7. Scatter density plots of the predicted eigenvalues vs the true values of the unstable solutions in the test set, and histograms of the distribution of false unstable predic-
tions, as well as the data values for the false stable predictions. The ky-indices are from the left to right: 3, 9, and 17. Growth rates are at the top row and real frequencies at
the bottom. The plots show that the model accurately predicts the growth rate and real frequency, and how falsely predicted unstable entries create vertical lines at x ¼ 0.
These vertical lines have different impact on the R2 value for the different ky -indices since they are centered around different values. An important conclusion is that the model,
when wrongly predicting a stable solution, at least predicts a low growth rate.
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As the classifier showed high recall, we created a model for the
prediction of eigenvalues with two classifiers and two regression mod-
els at ion scales. First, we used the same classifier as in Sec. III F to
determine if the input parameters yield a stable or unstable solution. If
the output is stable, again it sets the growth rate and real frequency to
zero; otherwise, it is passed forward to the ITG/TEM-classifier. This
classifier determines if the unstable solution corresponds to an ITG-
mode or a TEM. For both of the instabilities a dedicated regression
model, with a NN per ky-index, was trained to predict the growth rate
and real frequency. However, the R2 values for this model with two
classifiers and dedicated regression models for the ITG-mode and the
TEM were lower than for the model with one stable/unstable classifier
and one regression model for both instabilities presented in Fig. 6.
Even though each of the separate parts (ITG/TEM classifier, ITG- and
TEM-regression models) showed good performance, the added com-
plexity reduced the overall performance. An explanation for this is that
the occasions where the ITG/TEM-classifier makes wrong predictions
and the wrong regression model is used, it degrades the overall R2 val-
ues more compared with what is gained by having dedicated regression
models for each instability.

IV. SUMMARY AND OUTLOOK

In this paper, we have presented a framework for a neural net-
work surrogate model for the eigenvalues trained on a large dataset
from the QuaLiKiz gyrokinetic eigenvalue solver. The dataset is
populated with experimental data from JET discharges and the
model predicts the growth rate and real frequency for the strongest
instability for 18 different wavenumbers, ranging from the ion to
the electron scales. When the eigenvalue solver in QuaLiKiz finds a
stable solution to the dispersion relation, it sets the growth rate and
real frequency to zero. As the dataset was unbalanced in terms of

the stable/unstable ratio, proper data preparation and loss function
weighting was shown to be vital for good performance over the full
domain of wavenumbers.

The model that had the best performance was a combined stable/
unstable classifier and a regression model. First, a classifier predicts if
the input parameters are associated with a stable (zero growth rate) or
unstable (non-zero growth rate) solution. If it is stable, it sets the
growth rate and real frequency to zero; otherwise, it uses a regression
model to predict the growth rate and real frequency. The metrics used
to evaluate the models were recall and precision for the classification
and R2 for the regression, which is a metric related to the distance
between a perfect prediction and the actual prediction. However, only
unstable labels in the test set were included in the calculation of R2, as
the many stable solutions skewed the metric. Overall, the R2 value for
the unstable data were a useful metric to compare the performance of
different models, even if the metric was affected by wrongly classified
true unstable data. A more detailed understanding of the performance
of the best model could be obtained through the accuracy, recall, and
precision of the individual neural networks in the combined classifier
and regression model.

We saw that the classifiers with and without weighted loss excel
at different areas. With weighted loss, the precision was lower, but the
recall was higher for the unstable solution at meso-scales, as a conse-
quence by a higher relative number of wrongly classified unstable solu-
tions due to class imbalance. As neither of these two models, with and
without weighted loss, were superior for all of the four classification
metrics displayed in Fig. 4, one needs to decide what to prioritize when
creating the final surrogate model. One option is to use weighted loss
and get more wrongly predicated unstable solutions, and the other
option is to train without weighted loss and get more wrongly predi-
cated stable solutions. When using the surrogate eigenvalue model
with a saturation rule, this translates to if one would rather accept
occasionally getting too much or too little flux. Thus, the alternative
that provides the best model is indeed partly a matter of preference
depending on the application that is considered. However, as the dif-
ference is at the meso-scales, we do not generally expect this to have a
significant impact on the total fluxes.

Improvements of the model might be achieved by gaining access
to the information of the negative growth rates, QuaLiKiz truncates
negative values to zero. This additional information could be beneficial
for the NNs to learn how “far” in input parameter space they are from
an unstable solution. Another area of improvements might be to cor-
rect for crashes in the eigenvalue solver in the dataset. On few occa-
sion, the gyrokinetic eigenvalue solver in QuaLiKiz crashes due to
numerical issues, and it sets the output to zero for growth rate and real
frequency. It has been suggested in Ref. 21 that ensemble learning
might alleviate this problem. However, the crashes were deemed too
few to be significant to affect the overall performance for this first
framework. Additionally, in terms of increased performance of the
best model in this work, further improvements might be obtained
through more extensive hyper-parameter search for each individual
sub-task in the combined model, since the hyper-parameters in this
work, which were kept constant when comparing different models,
were based on the hyper-parameter search of the first model that per-
formed regression on both stable and unstable data. The performance
may also be slightly improved by removing dropout, in particular for
the regression tasks, although in this work, we choose to use dropout

FIG. 8. The recall and precision of the ITG/TEM classification model. The classifier
generally shows a high score. The precision for TEM (blue dashed cross) is lower
for ky -indices 6, 7, and 8, although this is because there are far fewer TEM entries
for these indices (precision is skewed by unbalanced testing data). The y axes
show both the recall and precision, both of which are unitless.
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to overall lower the risk of overfitting. Finally, a potential challenge
with using independent neural networks for each ky-index is that this
may lead to slightly less smooth spectra if the networks learn slightly
different patterns between the input and output parameters. This is
indicated by the slightly more jagged R2-score when using one neural
network for each ky-index compared to the model with one neural net-
work for all ky-indices. Ensuring smoothness will help avoid occasional
misidentification of the ky-index with the maximum growth rate,
which is important for the saturation rule. Future work thus involves
strategies to ensure smoothness, either through solving the class imbal-
ance problem for the model with one neural network for all ky-indices,
or through other smoothing techniques applied to the outputs of the
individual neural networks. Future work also includes an investigation
if there are physics based constraints that could be added to the loss
function to enhance the robustness of the model.

In addition to swiftly providing information about the most dom-
inant instability for specific plasma conditions, eigenvalues also offer a
pathway for extrapolating transport fluxes. As the linear physics of the
eigenvalues translate between different devices. With eigenvalues, mul-
tiple saturation rules could be used to evaluate the turbulent fluxes for
present and future devices.
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