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Diffeomorphic Counterfactuals
With Generative Models

Ann-Kathrin Dombrowski “?, Jan E. Gerken

Abstract—Counterfactuals can explain classification decisions
of neural networks in a human interpretable way. We propose a
simple but effective method to generate such counterfactuals. More
specifically, we perform a suitable diffeomorphic coordinate trans-
formation and then perform gradient ascent in these coordinates
to find counterfactuals which are classified with great confidence
as a specified target class. We propose two methods to leverage
generative models to construct such suitable coordinate systems
that are either exactly or approximately diffeomorphic. We analyze
the generation process theoretically using Riemannian differential
geometry and validate the quality of the generated counterfactuals
using various qualitative and quantitative measures.

Index Terms—Counterfactual explanations, explainable arti-
ficial intelligence, data manifold, generative models.

1. INTRODUCTION

EEP neural network models are widely used to solve
complex problems from computer vision (e.g., [1], [2],
[31, [4], [5]), strategic games and robotics (e.g., [6], [7], [8]), to

Manuscriptreceived 10 June 2022; revised 24 July 2023; accepted 3 December
2023. Date of publication 6 December 2023; date of current version 3 April 2024.
This work was supported in part by the Berlin Institute for the Foundations
of Learning and Data (BIFOLD) and in part by the German Ministry for
Education and Research (BMBF) under Grants 01IS14013A-E, 01GQ1115,
1GQO0850, 011S18025 A, and 011S18037 A. The work of Klaus-Robert Miiller
was supported in part by the Institute of Information and Communications
Technology Planning and Evaluation (IITP) grants funded by the Korea gov-
ernment(MSIT) undet Grant 2019-0-00079, in part by Artificial Intelligence
Graduate School Program, Korea University under Grant 2022-0-00984, and in
part by the Development of Artificial Intelligence Technology for Personalized
Plug-and-Play Explanation and Verification of Explanation. The work of Jan
E. Gerken was supported in part by the Wallenberg Al, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation and in part by the Swedish Research Council. The work of Pan Kessel
was supported in part by Prescient Design, Genentech. Pan Kessel also wants
to thank Shinichi Nakajima and Maximilian Alber for insightful discussions.
Recommended for acceptance by B. Hammer. (Ann-Kathrin Dombrowski and
Jan E. Gerken contributed equally to this work.) (Corresponding authors:
Klaus-Robert Miiller; Pan Kessel.)

Ann-Kathrin Dombrowski was with the Berlin Institute of Technology (TU),
10587 Berlin, Germany. She is now with SERI ML Alignment Theory Scholars
Program, Berkeley, CA 94704 USA, and also with the Principles of Intelligent
Behavior in Biological and Social Systems (PIBBSS), 18200 Prague, Czech
Republic (e-mail: dombrowski@ gmail.com).

Jan E. Gerken is with the Chalmers University of Technology and the Univer-
sity of Gothenburg, 41296 Gothenburg, Sweden (e-mail: gerken @chalmers.se).

Klaus-Robert Miiller is with the Berlin Institute of Technology (TU Berlin),
10587 Berlin, Germany, also with the Department of Artificial Intelligence,
Korea University, Seoul 136-713, South Korea, also with Max Planck Institut
fiir Informatik, 66123 Saarbriicken, Germany, and also with Google DeepMind,
10117 Berlin, Germany (e-mail: klaus-robert.mueller @tu-berlin.de).

Pan Kessel is with Prescient Design, Genentech, 4070 Basel, Switzerland
(e-mail: pan.kessel @ gmail.com).

Digital Object Identifier 10.1109/TPAMI.2023.3339980

, Klaus-Robert Miiller , and Pan Kessel

adversarial example
blond (p =~ 0.99)

counterfactual
blond (p ~ 0.99)
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Fig. 1. Example of a counterfactual from the CelebA dataset. The original
is classified as not blond. The adversarial is classified with high confidence
as blond, but the difference to the original resembles unstructured noise. The
counterfactual is also classified with high confidence as blond but in contrast to
the adversarial example it shows semantic differences to the original.

medicine (e.g., [9], [10], [11], [12]) and the sciences (e.g., [13],
[14], [15], [16], [17]). However, they are traditionally seen as
black-box models, i.e., given the network model, it has been
unclear to the user and even the engineer designing the algo-
rithm, what has been most important to reach a particular output
prediction. This can cause serious obstacles for applications
since, say, networks using spurious image features that are only
present in the training data might go unnoticed. Such undesired
behaviour hampering the network’s generalization ability has
indeed been identified using explanation methods [18], [19] and
is particularly problematic in safety-critical areas.

Supplying this desired transparency has been the subject of re-
cent developments in the field of explainable AT (XAI) [20], [21],
[22], [23], [24], ameliorating the aforementioned challenges.
Prominent techniques in this area [20], [25], [26], [27], [28],
[29], [301, [31], [32], [33], [34], [35], [36], [37], [38], [39] con-
struct e.g., saliency maps for classifiers or regressors [40] which
highlight areas of the input that were particularly important for
the classification.

A different approach to explain a neural network is given
by providing counterfactuals to the original inputs [41], [42],
[43]. These are realistic-looking images which are semantically
close to the original but differ in distinct features so that their
classification matches the desired target class, cf. Fig. 1. Coun-
terfactuals aim to answer questions like “Why was this input
classified as A and not as B?” or “What would need to change
in the input so that it is no longer classified as A but instead
as B?” [41], [42], [43] and thereby provide an explanation for
the classifier. Unlike attribution methods, counterfactuals do
not provide a relevance map, but an image that is similar to
the original input and serves as a kind of counter example or

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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Fig. 2. (a) Image data usually lies on a lower dimensional data manifold, which is embedded in high dimensional space. We want to know what image features

would have to change so that the classification flips. (b) If we follow the gradient of our target class with respect to the input % the prediction flips but the resulting
image is an adversarial example that looks indistinguishable from the original for a human observer. The changes to the original image are not semantic, but are
limited to specific noise. The euclidean difference between adversarial and original is therefore very small when measured in A" but large when measured in Z, cf.
Fig. 14. (c) We use to the normalizing flow g to obtain the latent space representation z = g~ (z) of our original image x. We then perform gradient ascent in the
latent space Z. The prediction flips, but this time the resulting image is a counterfactual. The changes to the original image are semantic. The euclidean difference
between counterfactual and original is small when measured in & and Z, cf. Fig. 14. (d) Left: Quantitative evaluations show that counterfactuals generalize to
simple classifiers in contrast to adversarial examples. Right: Nearest neighbours of counterfactuals are mainly of the target class in contrast to NNs of adversarials.
We show results for the CelebA data set. (e) Histograms for euclidean distances to training images for original images, adversarial examples and counterfactuals
are indistinguishable when measuring the distances in the input space X'. When measuring the distances in the latent space Z we see that adversarial examples
have larger distances. This confirms the hypothesis that adversarial examples lie off the data manifold. We show results for the CelebA data set.

hypothetical alternative for the original prediction. For certain
applications, counterfactuals can yield insights that attribution
methods cannot: for example, if we aim to classify circles and
squares in a data set where all circles are twice as large as squares
then the classifier could pick up on the size of the depicted object
instead of its shape. In this situation, attribution maps would not
be able to detect the size-correlation as they can only highlight
existing features. In contrast, counterfactuals would show larger
squares and smaller circles revealing that the classifier exploits
a spurious correlation.

It is important to emphasize that the counterfactual is required
to be a realistic sample from the data distribution in order

to elucidate the behaviour of the network on the data. This
requirement poses the greatest practical challenge to computing
counterfactuals since naively optimizing the output of the net-
work with respect to the input via gradient ascent yields adversar-
ial examples [44] which essentially add a small amount of noise
to the original input, as illustrated in the example given in Fig. 1.
This behavior can be understood using the manifold hypothesis:
the images are assumed to lie on a low dimensional manifold
embedded in the high dimensional input space, cf. Fig. 2(a), that
can be learned using a generative model. The gradient ascent
algorithm then walks in a direction orthogonal to the decision
boundary which is with high probability also orthogonal to



DOMBROWSKI et al.: DIFFEOMORPHIC COUNTERFACTUALS WITH GENERATIVE MODELS

the data manifold, resulting in a small perturbation which is
not semantic, as illustrated in Fig. 2(b). This is acceptable for
adversarial examples as they aim to flip the classification by
imperceptibly perturbing the input which may then also lie off
the data manifold. In contrast, counterfactuals are supposed
to facilitate the interpretation of the classifier’s decision by a
human operator. As such, unstructured, noisy, and therefore
uninterpretable perturbations are unhelpful for this task, i.e., the
change of the image must take a semantically meaningful form.

We propose to use insights from the mathematical discipline
of differential geometry to mitigate this problem. Differential
geometry can be understood as analysis on curved (hyper-) sur-
faces and thus provides the appropriate tools to study gradients
on the data manifold. It has been valuable for the field of ML in
general [45], [46], [47] and XAI specifically [48], [49], [50]. A
cornerstone of differential geometry is the idea that geometric
quantities can be described equivalently in different coordinate
systems. However, not all coordinate systems are equally useful
in practice. This phenomenon is ubiquitous in physics: for
instance, the mathematical expressions governing planetary mo-
tions greatly simplify in a heliocentric (sun-centered) coordinate
system as opposed to a geocentric (earth-centered) coordinate
system. In heliocentric coordinates, the planetary motions can
be described by simple Kepler ellipses and thus the relevant
degrees of freedom are easily recognizable. In contrast, the
orbits are very complicated in geocentric coordinates as can
be observed in the night sky. As a result, physical intuition
and interpretations are much easier to deduce in heliocentric
coordinates. Similarly, we attribute the difficulty to construct
counterfactuals by optimizing the output of a neural network
classifier with respect to its input as in Fig. 2(b) to the poor
choice of coordinates X in the input space given by the raw
image data. In contrast, in a suitably chosen coordinate system
Z, the data manifold would extend more evenly in all directions,
allowing for an optimization that stays on the data manifold
and thereby producing a counterfactual that has been changed
semantically when compared to the original. In order to find
such a coordinate transformation (called a diffeomorphism in
differential geometry) between A’ and Z, we use a normalizing
flow trained on the image data set under consideration. Since
the flow is by construction bijective and differentiable with a
differentiable inverse, it satisfies the technical conditions for a
diffeomorphism in differential geometry. Furthermore, the base
distribution of the flow is fixed to be a univariate Gaussian and
hence free of pathological directions. Moreover, this change of
coordinate system will lead to no information loss which is in
stark contrast to existing methods for generating counterfactuals.

In our method, the counterfactual is computed by taking the
gradient in the gradient ascent update with respect to the repre-
sentation in the base space of the normalizing flow as opposed
to the input of the classifier (Fig. 2(b)). This method comes with
rigorous theoretical guarantees and we refer to it as diffeomor-
phic counterfactuals. In particular, we show that this introduces
a metric into the update step which shrinks the gradient in
directions orthogonal to the data manifold. Furthermore, we
propose two separate methods which only approximately lead
to a diffeomorphism. While these approximate methods come
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with a lower level of theoretical guarantees, and can, in practice,
lead to some information loss, they can be scaled easily to very
high-dimensional datasets, as we demonstrate experimentally.
We refer to these methods as approximate diffeomorphic coun-
terfactuals. We theoretically prove that these methods also stay
on the data manifold under suitable assumptions. Our theoretical
analysis therefore provides a unified mathematical framework
for the application of generative models in the context of coun-
terfactuals. Importantly, we can not only optimize the output of
a classifier network on the data manifold in this manner, but also
that of a regressor.

This analysis is supported by our experimental results for
various application domains, such as computer vision and med-
ical radiology and a number of architectures for classifiers,
regressors and generative models. Note that we lay emphasis
on using quantitative metrics — as opposed to only qualitative
analysis — to evaluate the proposed methods; some quantitative
results are exemplified in Fig. 2(d) and (e).

The main contributions of our work are as follows:

1) We outline a simple and theoretically principled frame-
work for the generation of counterfactual explanations
using generative models.

2) We prove rigorously using differential geometry that the
resulting counterfactuals lie on the data manifold for well-
trained generative models.

3) We show that the proposed framework can be straightfor-
wardly extended to a broad class of tasks and generative
model architectures and demonstrate this in detailed nu-
merical experiments.

The paper is structured as follows: in Section II, we in-
troduce the proposed methods. Specifically, we will introduce
diffeomorphic explanations in Section II-C and the approximate
versions thereof in Section II-D. We then analyse the proposed
methods theoretically using Riemannian differential geometry
in Section III. This is followed by Section IV which provides
a detailed experimental analysis of our proposed methods. In
Section VI, we give an extensive discussion of related work.
The code for a toy example and our main experiments is publicly
accessible.!

II. METHODS

In this section, we will introduce in detail our novel dif-
feomorphic and approximately diffeomorphic counterfactuals.
For this, we will start by reviewing the basics of counterfactual
explanations and then present our two proposed methods.

A. Counterfactual Explanations

Consider a classifier’ f : X — R which assigns to an input
x € X the probability f(x). to be part of class ¢ € {1,...,C}.
Counterfactual explanations of the classifier f provide minimal
deformations ' = = + Jx such that the prediction of the clas-
sifier is changed.

Thttps://github.com/annahdo/counterfactuals
2In Appendix A, available online, we provide a list of the mathematical
symbols used as a convenience for the reader.
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In many cases of practical relevance, the data lies approx-
imately on a submanifold D C X which is of significantly
lower dimensionality Np than the dimensionality Ny of the
input space X'. This is known as the manifold hypothesis in
the literature (see e.g., [51]). For counterfactual explanations,
as opposed to adversarial examples, we are interested in de-
formations x’ which lie on the data manifold. Additionally, we
require the deformations to the original data to be minimal, i.e.,
the perturbation dx should be as small as possible. cf. (3) below.
The relevant norm is however measured along the data manifold
and not calculated in the input space. For example, a slightly
rotated number in an MNIST image may have large pixel-wise
distance but should be considered an infinitesimal perturbation
of the original image.

We mathematically formalize the manifold hypothesis by
assuming that the data is concentrated in a small region of
extension d around D. As we will show in Section I11, this implies
that the support .S of the data density p is a product manifold

S=DxTs X XLsy y » 6]

where Zs = (— %, %) is an open interval of length § (with respect
to the euclidean distance on the input space X'). We assume that o
is small, i.e., the data lies approximately on the low-dimensional
manifold D and thus fulfills the manifold hypothesis. We can
think of the Zs as arising from the inherent noise in the data.

Furthermore, we define the set of points in S classified with
confidence A € (0,1) asclasst € {1,...,C} by

Sia ={x € S|t =argmax f;(z) and fi(z) > A}. (2)
j

A counterfactual ' € X for class t of the original sample x € X
then is the closest point to x in St A,

' € S;a and argmind, (z,y) =2, 3)
Y
where d.(2', z) is the distance computed by the Riemannian
metric v on S (which is induced from the flat metric by the dif-
feomorphism given by the generative model). We will review the
necessary concepts of Riemannian geometry in Section III-A.

B. Generation of Counterfactuals

Often, counterfactuals are generated by performing gradient
ascent in the input space X, see [42] for a recent review on
counterfactuals. More precisely, for step size 7 and target class
t, one performs the gradient ascent step

S ) 4 n%(az(“) @

until the classifier has reached a threshold confidence A, i.e.,
f(z0+D), > A. The resulting samples will however often not
lie on the data manifold and differ from the original image x only
in added unstructured noise rather than in an interpretable and
semantically meaningful manner. Especially when applied to
high dimensional image data such samples are usually referred
to as adversarial examples and not counterfactuals. The reason
for the noisy gradients is that the classifier is trained only on
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Fig. 3.  When the gradient ascent optimization of the target class is performed
in the input space of the classifier, one leaves the data manifold and obtains
an adversarial example. If instead the gradient ascent is performed in the latent
space of a generative model, one stays on the data manifold, resulting in a
counterfactual example.

Algorithm 1: Generating Counterfactuals.
Require: z, f,g,9 ', t,A, A, N

1: 2+ g ()

2: for 7 in range(N) do

3V, Aok

4:  z < optimizer.step(A, V)
5: if f(g(2)): > A then

6:  return g(z)

7: end if

8: end for

9: return None

Note: x is the input for which we desire to find a counter-
factual explanation, f the predictive model, g the generative
model, g~ the (approximate) inverse of g, ¢ the target class,
A the target confidence, X the learning rate and N the maxi-
mum number of update steps. If the target confidence could
not be reached after NV steps, the algorithm returns None.

the data manifold, so gradient directions orthogonal to the data
manifold are ill-specified (e.g., [52]).

We therefore propose to estimate the counterfactual =’ of the
original data point x by using a diffeomorphism g : Z — 5. We
then perform gradient ascent in the latent space Z, i.e.,

LD — () )\a(f °9): (Z(i)) 5)

0z

with step size A € R . This has the important advantage that the
resulting counterfactual will lie on the data manifold. Further-
more, since we consider a diffeomorphism g, and thus in particu-
lar a bijective map, no information will be lost by considering the
classifier f o g on Z instead of the original classifier f on the data
manifold S, i.e., there exists a unique z = g~!(z) € Z for any
x € S. We show pseudo code for our approach in Algorithm 1.

As illustrated in Fig. 3, gradient ascent in X and Z are well-
suited to generate adversarial examples and counterfactuals,
respectively.

For regression tasks there is no explicit decision boundary,
but we can still follow the the same algorithm by directly
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maximizing (or minimizing) the output r of regressor f () until
we reach the desired target regression value.

C. Novel Method 1: Diffeomorphic Counterfactuals

We propose to model the map g by a normalizing flow and
will refer to the corresponding modified data «’ as diffeomorphic
counterfactuals in the following.

Specifically, a flow g is an invertible neural network which
equips, by the change-of-variable theorem, the input space X
with a probability density

det—

9z (6)

q(z) = qz(g *(2))

where gz is a simple base density, such as a univariate normal
density, on the latent space Z. The flow can be trained by
maximum likelihood, i.e., by minimizing

KL(p|g) = —E;~plogg(x) + const.

1%

N
,% Z log(q(xl)) -+ const. , (N

i=1

where z; ~ p are samples from the data density p. Since the flow
is bijective on the entire input space X, it will, in particular, be
bijective on the data manifold S C X. Furthermore, we will also
rigorously show in Section III-C that a well-trained flow maps
(to very good approximation) only to the data manifold, i.e.,
g(Z)~ S.

Therefore, flows guarantee that no information is lost when
performing gradient ascent in the latent space Z and also ensure
that the resulting counterfactuals lie on the data manifold .S. In-
deed, the flow can be understood as inducing a certain coordinate
change of the input space & which is particularly suited for the
generation of counterfactuals.

D. Novel Method 2: Approximate Diffeomorphic
Counterfactuals

While the method of the last section is very appealing as it
comes with strong guarantees, it may be challenging to scale
to very high-dimensional data sets. This is because flows have
a very large memory footprint on such datasets as each layer
has the same dimensionality as the data space A to ensure
bijectivity. We therefore posit an alternative method, called
approximate diffeomorphic counterfactuals, which comes with
less rigorous theoretical guarantees, but can scale better to very
high-dimensional data. Specifically, we propose two varieties of
approximate diffeomorphic counterfactuals:

Autoencoder-Based: The reconstruction loss of an autoen-
coder (AE), i.e.,

L =Eqopllgle(z) — =, ®)

withencodere : X — Zand generator g : Z — X isminimized
if the encoder is the inverse of the generator on the data manifold

S, ie.,

els=g"s. 9)
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This implies, in particular, that g(Z) = S if dim(Z) = dim(95).
As for normalizing flows, the image of the autoencoder is the
data manifold if the model has been perfectly trained. However,
an autoencoder will only be invertible on the data manifold in
this perfect training limit and if the latent space Z has the same
dimension as the data space .S. This is in contrast to normalizing
flows which are invertible on all of A’ by construction. As a
result, the autoencoder will necessarily lead to loss of informa-
tion unless the model is perfectly trained and the latent space
dimensionality perfectly matches the dimension of the data.
GAN-Based: Generative Adversarial Networks (GANs) con-
sist of a generator g : Z — X and a discriminator d : X —
{0, 1}. Training then proceeds by minimizing a certain minimax
loss, see [53] for details. It can be shown that the global mini-
mizer of this loss function ensures that samples of the optimal
generator g are distributed according to the data distribution, i.e.,

g(z) ~p for z~gqz. (10)

We refer to Section IV-A of [53] for a proof. However, the
optimal generator g is not necessarily bijective on the data
manifold. This implies that even for a perfectly trained GAN,
there may not exist a unique z € Z for a given data sample
x € X such that © = g(z). Furthermore, there is no manifest
mechanism to obtain the corresponding latent sample z € Z
for a given input € X'. This is in contrast to normalizing flows
and autoencoders, since, for these generative models, the inverse
map g~! : X — Z is either explicitly or approximately known,
respectively.

However, there is an extensive literature for GAN inversion,
see [54] for a recent review. For a given generator g and data
sample z € X, these methods aim to find a latent vector z €
Z such that  ~ g(z). This is often done by minimizing the
difference between the activations of an intermediate layer of
some auxiliary network, i.e.,

z = argmin [[h(g(2)) — h()[|.

zezZ

Y

For example, h can be chosen to be an intermediate layer of an
Inception network [55] trained on samples from the data density
p. Note that these inversion methods do not come with rigorous
guarantees as the optimization objective is non-convex and it is
unclear whether the values of the intermediate layer activations
are sufficient to distinguish different inputs.

III. THEORETICAL ANALYSIS

In this section, we employ tools from differential geometry to
show that for well-trained generative models, the gradient ascent
update (5) in the latent space Z does indeed stay on the data
manifold, as confirmed by the experimental results presented in
Section IV. Intuitively, since in (5) we take small steps in Z,
where the probability distribution is, for example, a normal with
unit variance, we do not leave the region of high probability in
the latent space and hence stay in a region of high probability
alsoin X.

We prove this statement for the case of diffeomorphic coun-
terfactuals, i.e., for normalizing flows, and — under stronger



3262

assumptions — also for approximate diffeomorphic counterfac-
tuals, i.e., for autoencoders and generative adversarial networks.

A. Differential Geometry

In this section, we briefly introduce the most fundamental
notions of differential geometry used in our discussion further
down. For a comprehensive textbook, see e.g., [56].

Differential geometry is the study of smooth (hyper-)surfaces.
The central notion of this branch of mathematics is that
of an n-dimensional (differentiable) manifold M which is
equipped with coordinate functions x* : M — R"™ (so-called
charts which are assembled into an atlas). These coordinates
allow for explicit calculations in R™, but geometric objects (ten-
sors) are independent of the chosen coordinates and transform in
well-defined ways under changes of coordinates. Such a change
of coordinates can be interpreted as a differentiable bijection
¢ : M — M whose inverse is also differentiable, a so-called
diffeomorphism.

At each point p € M, we attach an n-dimensional vector
space 1, M, the tangent space at p. Coordinates " induce a
basis in 7}, M and we will denote the components of v € T}, M
in this basis by v*. Under a diffeomorphism ¢, the components
of v transform as

12)

where in the second equality, we introduced the Einstein sum
convention which implies sums over repeated upper and lower
indices (the index in the denominator of the differential counts as
alower index). We will use this sum convention in the following
to streamline the notation.

To capture the notion of distance (and curvature) on M, a
metric tensory(p) : TpM x T, M — Ris used. The metric de-
fines a canonical isomorphism between 7}, M and its dual space
T M by v* = ~(p)(v,-) and v = v~ (p)(v*, -). Following the
usual convention in the general relativity literature, we use lower
indices v,, to denote the components of the dual vector v*. This
implies that in components the isomorphism reads

— v _ v
Uy = Vv’ and " =~+"v,,

13)

where the sums over v are implied and we introduced " for
the inverse of +,,,,, the components of +y in the basis induced by
the coordinates z*. In short, contraction with the metric is used
to raise and lower indices.

Given a metric, it is natural to consider shortest paths between
points on M. The corresponding curves are called geodesics.
If the length of the tangent vector of a geodesic o is con-
stant (as measured by the metric) along o, the geodesic is
affinely-parametrized. Importantly, the notion of an affinely
parametrized geodesic is coordinate independent and can there-
fore itself be used to construct coordinates on M, as we will see
below.
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B. Mathematical Setup

In order to analyze the gradient ascent (5) in the latent space
Z, we define in this section the necessary manifolds and coor-
dinates.

As above, let X be an Ny-dimensional manifold which is the
input space of the classifier f : X — RY with C classes. An
implementation of the classifier corresponds to a function on
RN and we denote the coordinates on & in which our classifier
is given by x“. These coordinates could e.g., be suitably nor-
malized pixel values. We furthermore use an N z-dimensional
manifold Z as the latent space for our generative model g :
Z — X. For GANs and AEs, we typically have Nz < Ny and
for normalizing flows Nz = Ny. In the latter case we have
moreover X = Z and g bijective with differentiable inverse
implying that g is a diffeomorphism. Similarly to the classifier,
also the generative model is implemented in specific coordinates
on Z which we denote by z“.

We equip Z with a flat euclidean metric d,5. Then, the
generative model g induces an inverse metric Y on g(Z) by

dg® 0g”°
aB _ sab Y
U 0 020 920~

In the case of Nz < Ny, v is singular. This metric is the crucial
new ingredient when performing the gradient ascent update in
the latent space (5) as opposed to in the input space (4), as the
following calculation shows.

One step of gradient ascent in the latent space Z is given by
the image under g of the update step (5). In x® coordinates and
to linear order in the learning rate A, it is given by

9g“ O(f o g
0z%  0z%

dg* 0g” %
0z 0z OxP

(14)

g () = g2 (=) + 2 +0(1%)

=g%(z) 2 +0(3?)

— o (0 o Oft 2
=g%(=")+ Ay 6x5+(9()»). (15)
If we start from the same points, (V) = g(2(?)), the difference
between gradient ascent in latent space (5) and input space (4)
is just given by the contraction of the gradient of f with respect
to & with the inverse induced metric 7 = gg: gg: . Hence, in
order to understand why the prescription (5) stays on the data
manifold, we will in the following investigate the properties of
~ for the case of well-trained generative models.

Before returning to vy, we will first discuss the structure of
the data. The probability density of the data on X" is denoted by
p: X — R and the probability density induced by ¢ is denoted
by ¢ : X — R. For ¢ in ® coordinates, we use the notation
¢ : RN* — R. The data is characterized by S = supp(p) C X
which becomes S, C R™* in 2 coordinates. We will assume
that the data lives approximately on a submanifold D C S of
X with dimension Np < Ny. In relation to the dimension of
our generative model, we assume that Np < Nz < Ny. As a
subset of X’ and in ® coordinates, D will be denoted by D, C
RN* . To capture that the data does not extend far beyond D, we
assume that S has euclidean extension § < 1, normal to D in
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Fig. 4. Construction of the y# coordinates which are aligned with the data
manifold D.

2% coordinates, i.e.,’

S, = {:cp + 4 ‘ op € Dy, ad € (— (16)

0 6
r3)}

Next, we will define coordinates in a neighborhood of D
which separate the directions tangential and normal to D as
illustrated in Fig. 4. Our construction is similar to the construc-
tions of Riemannian and Gaussian normal coordinates, adapted
for a submanifold of codimension larger than one. First, we
choose coordinates Y| on D and, for each p € D, a basis {n;}
for the tangent space 71}, D of the normal to D at p. Following
the usual construction of Riemannian normal coordinates, we
assign coordinates to a point g in some neighborhood of D by
constructing an affinely parametrized geodesic o : [0,1] — X
which satisfies 0(0) = p and (1) = ¢ and which has tangent
vector ¢’(0) € T,,D,. The coordinates of ¢ are then y(q) =
(y)(p),y.) € RN @ RN*~Nv where the i™ component of y |
is given by the i™ component of ¢/(0) in the basis {n;}. In a
sufficiently small neighborhood around D, we can find a unique
basepoint p € D and geodesic o for every q.

One important aspect of this construction is that by rescaling
the basis vectors {n; }, we can rescale the components of o’ (0).*
This means we can rescale the y, coordinates arbitrarily and
hence we can use this freedom to bound S in y coordinates by

the same ¢ that appeared in (16),
0 4
-, = . (17
N

Furthermore, in g(Z), we can choose the basis {n; } orthogonal
with respect to the (singular) metric v and obtain in some

Sy = {(yhyﬂ ERM |y €Dy, vl € <—

3The form (16) restricts the slices S| (xp) through S normal to D to be Ly
balls whose size is independent of zp. We make this restriction to simplify
notation but the argument can straightforwardly be extended to arbitrary shapes
of S| (zp) by bounding it by an Ly ball of radius /2.

“#Note that this does not change the parametrization of the geodesic, hence we
still have o(0) = pand o(1) = gq.
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neighborhood of D N g(Z)

nv

Y (y) = (18)

’yifl\’ x-Np
Note that this form of the metric together with (17) implies
in particular that S takes the product form mentioned in (1).
In the following, we will show that for well-trained generative
networks and thin data distributions (i.e., for small §), ’yL,l — 0.
To understand the consequences for the gradient ascent update
step, consider (15) in y* coordinates

afB Ofy Ox“ uv Oft
“It ~
oxP Oy Oy
0z, 0f 1 0ft
Rl (19)
ayH oy P ay” 83/1_ = 83/3_

For ’yl_l — 0 and (%i bounded, the second term vanishes and

we arrive at

nv a.f t
a l/

afB aft N 8ZE

= 2
55~ oy (20)

and hence the orthogonal directions in the update step (15), lead-
ing away from the data manifold D, are suppressed. Therefore,
(15) produces counterfactuals instead of adversarial examples.

C. Diffeomorphic Counterfactuals

In this section, we show that for well-trained normalizing
flows, the orthogonal components of the inverse metric 'yLl
vanish for thin data manifolds, as formalized in the following
theorem.

Theorem 1: For e € (0,1) and g a normalizing flow with
Kullback-Leibler divergence KL(p, q) < €

vl -0 as 0—0

foralli € {1,..., Ny — Np}.

The main argument of the formal proof givenin Appendix B.1,
available online, proceeds as follows: First, we show that a small
Kullback-Leibler divergence implies that most of the induced
probability mass lies in the support of the data distribution,

/ gz (x)dr >1—€.
S,

Next, we write ¢, as the pull-back of the latent distribution ¢,
under the flow g using the familiar change-of-variables formula
for normalizing flows. In the y* coordinates introduced above,
the resulting integral then factorizes according to the block-
diagonal structure (18) of the metric with integration domain
[—8/2,6/2] for the /' directions. As § — 0, the bound (21) can
only remain satisfied if the associated metric component 7y,
diverges, implying that ’yLl — 0.

Following the steps at the end of Section III-B, we see that this
necessarily implies that the gradient ascent update (5) stays on
the data manifold, since 3 is constant (and therefore bounded)
asd — 0.

21
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Fig. 5. Construction of the curve 7 used in Section III-D.

D. Approximate Diffeomorphic Counterfactuals

We now present a theorem similar to Theorem 1 for the
case of approximately diffeomorphic counterfactuals, i.e., for
AEs and GANs, showing that these models can also be used to
construct counterfactuals. This will however necessitate stronger
assumptions since the generative model is in this case not
bijective. In particular, we will assume that the generative model
captures all of the data, i.e., that D C g(Z), implying that in y
coordinates, although ~y is singular for Nz < Ny, the compo-
nent yp is non-singular. Therefore, we split the ¥, ; directions
into Ny — Nz singular directions and Nz — Np non-singular
directions. Since the inverse metric vanishes by definition in
the singular directions, the theorem focuses on the non-singular
directions and can then be stated as follows,

Theorem 2: If g : Z — X is a generative model with D C
g(Z) and image g(Z) which extends in any non-singular or-
thogonal direction 3’ outside of D,

713 —0
for § — 0 for all non-singular orthogonal directions y’ .

The proof can be found in Appendix B.2, available online,
and proceeds as follows: First, we construct a curve 7 : [0, 1] —
Z which cuts through S along the y° -coordinate line and lies
completely in g(Z), asillustrated in Fig. 5. Then, the length £(7)
of this curve (with respect to ) computed in y*-coordinates is,
for small §, approximately given by

L(7) =~ /71, (@p) (z1,." —30,.") -

Bounding the difference by § and using that £(7) is constant,
yields the desired result. As in the case of Theorem 1 above, this
implies again that the gradient ascent update (5) does not leave
the data manifold as shown in (20).

(22)

IV. EXPERIMENTS

Equipped with our theoretical results, we are now ready to
present our experimental findings.

We start by illustrating diffeomorphic explanations using a toy
example in three-dimensional space. This allows us to directly
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Fig. 6. Gradient ascent in X’ leads to points that lie significantly off-manifold
while gradient ascent in Z moves along the data manifold. The ground truth for
different classes is depicted in orange (source class) and gray (target class).

visualize the data manifold and the trajectories of gradient ascent
in X and Z.

We then apply our diffeomorphic counterfactual method,
using normalizing flows, to four different image data sets. We
use MNIST, CelebA and CheXpert for classification tasks and
the Mall data set for a regression task. We evaluate the results
qualitatively and quantitatively. Furthermore we discuss approx-
imate diffeomorphic counterfactuals, using VAEs and GANS,
which allow us to consider high resolution data.

For all experiments, we use the same setup: We require a
pretrained generator ¢ and a pretrained classifier f. We start with
a data point = from the test set that is predicted by the classifier
f as belonging to the source class. We define target class ¢ and
target confidence A. To produce an adversarial example, we
then update the original data point following the gradient in X/,
%ﬁf;), until we reach the desired target confidence. To produce
a counterfactual we first project the original data point into the
latent space of the generative model g by applying the inverse
generative model g1 (x) = z, or an appropriate approximation
(for GANs). We then update the original latent representation 2z
following the gradientin Z, % , until we reach the desired
target confidence.

For more details on model configuration, training and hyper-
parameters we refer to Appendix C, available online.

A. Toy Example

We consider data uniformly distributed on a one-dimensional
manifold, a helix, that is embedded in three-dimensional space
and train a simple normalizing flow that approximates the data
distribution. As illustrated in Fig. 6, we divide the data into two
classes corresponding to the upper and the lower half of the helix
and train a classifier.

We then generate counterfactuals by the gradient ascent opti-
mization in input space X" and in the latent space of the flow Z,
i.e., by using (4) and (5) respectively.

Starting from the original data point z, we observe that
gradient ascent in X’ leads to points that lie significantly off data
manifold S. In contrast to that, the updates of gradient ascent in
the latent space Z follow a trajectory along the data manifold
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Fig. 7. Left: As expected from the theoretical analysis, the parallelepiped
spanned by all three eigenvectors of the inverse induced metric scaled by the
corresponding eigenvalues is to good approximation one-dimensional, i.e., of the
same dimension as the data manifold, and tangential to it. Right: The Jacobians
of the trained flows have a low number of large and a large number of small
eigenvalues, suggesting that the images lie approximately on a low-dimensional
manifold. Both axes are scaled logarithmically.

resulting in counterfactuals with the desired target classification
which lie on the data manifold. We illustrate this in Fig. 6.

As we have an analytic description of the data manifold, we
can reliably calculate the distances to the data manifold for all
points found via gradient ascent in X or Z. We compare 1000
successful optimizations (all optimizations reach the desired
target confidence) in the input space X and latent space Z.
The median value for the distances to the data manifold when
performing gradient ascent in X or in Z are 2.34 and 0.01
respectively (see also Fig. 17 in the appendix, available online).
This intuitively and clearly illustrates the benefit of performing
gradient ascent in the latent space Z.

A non-trivial consequence of our theoretical insights is that
we can infer the tangent space of each point on the data manifold
from our flow g. Specifically, we perform a singular value
decomposition of the Jacobian % =UXV and rewrite the
inverse induced metric as

-1 _ 89@T

_ 7 — 22 T.
0z 0z vxtu

(23)
As we saw in Section III, for data concentrated on an Np-
dimensional data manifold D in an N y-dimensional embedding
space X, the inverse induced metric ~~1 has Ny — Np small
eigenvalues. Furthermore, the eigenvectors corresponding to the
large eigenvalues will approximately span the tangent space of
the data manifold. For our toy example from Section IV-A, we
can directly show the parallelepiped spanned by the three eigen-
vectors in three-dimensional space. Fig. 7 (left) indeed shows
that the parallelepipeds are significantly contracted in two of the
three dimensions making them appear as one dimensional lines.
For the high dimensional image data sets, which are discussed
in Section IV-B, we show the sorted eigenvalues, averaged over
100 random data points per data set, cf. Fig. 7 (right). Our
experiments confirm the theoretical expectation that the large
eigenvectors indeed span the tangent space of the manifold.

B. Image Classification and Regression

We now demonstrate applications of diffeomorphic counter-
factuals to image classification in several domains.
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1) Setup: We use MNIST [57], CelebA [58], CheXpert [59]
(a data set of labeled chest X-rays) and a the Mall data set [60],
[61], [62], [63] (a crowd-counting data set with video frames
from a shopping mall with head annotations of pedestrians).

Classifiers/Regressors: We train a ten-class CNN on MNIST
(test accuracy of 99%). For CelebA, we train a binary CNN on
the blond attribute (test accuracy of 94%). For CheXpert, we
train a binary CNN on the cardiomegaly attribute (test accuracy
of 86%).

For the Mall data set, we train a U-Net [64] that outputs a
probability map of the size of the image and a scalar regres-
sion value, which corresponds to the approximated number of
pedestrians in the picture. Following the definitions by Ribera et
al. [65], our trained U-Net reaches a RMSE for the head count
of 0.63. When we run our gradient ascent algorithm, we aim to
maximize/minimize merely the scalar regression value, i.e., the
number of pedestrians.

Generative Models: For diffeomorphic counterfactuals, we
choose a flow with RealNVP-type couplings [66] for MNIST
and the Glow architecture [67] for CelebA, CheXpert and the
Mall data set. For approximately diffeomorphic counterfactuals,
we use a simple convolutional GAN (dcGAN) and convolutional
VAE (cVAE) for MNIST and a progressive GAN (pGAN) [68]
for CelebA.

Generation of Counterfactuals: We start from original data
points = of the classes ‘four’ for MNIST, ‘not blond’ for
CelebA and ‘healthy’ for CheXpert. We select the classes ‘nine’,
‘blond’, and ‘cardiomegaly’ as targets ¢t for MNIST, CelebA, and
CheXpert, respectively, and take the confidence threshold to be
A = 0.99. For the Mall data set, we maximize the regression
value r (threshold at » = 10) if few pedestrians were detected
in the original image x and minimize the regression value
(threshold at r = 0.01) if many pedestrians were detected in
the original image z. We use Adam to optimize in X or Z until
the confidence threshold A for the target class ¢ is reached.

As discussed in Section II-D, GANs, which we use for ap-
proximately diffeomorphic counterfactuals, do generically not
require an encoder during the training process. We apply GAN
inversion methods to find an encoding of the source image.
Specifically, for the low-dimensional MNIST data set, we find
the latent representation z by minimising the euclidean norm
between the decoded latent representation g(z) and the original
image x. To find the initial latent representation for more high-
dimensional datasets, we use HyperStyle [69] GAN-inversion
techniques.

2) Qualitative Analysis: Our diffeomorphic counterfactuals
produced by the normalizing flows indeed show semantically
meaningful deformations in particular when compared to adver-
sarial examples produced by gradient ascent in the data space
X.

We show examples in Fig. 8. The counterfactuals resemble
images from the data set that have the target class as the ground
truth label. At the same time the counterfactuals are similar to
their respective source images with respect to features that are
irrelevant for the differentiation between source and target class.

For MNIST, the stroke width and the writing angle remain
unchanged in the counterfactuals while the gap in the upper
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Counterfactuals for MNIST (‘four’ to ‘nine’), CelebA (‘not-blond’ to ‘blond’), CheXpert (‘healthy’ to ‘cardiomegaly’), Mall (‘few’ to ‘many’) and Mall
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(‘many’ to ‘few’). Columns of each block show original image x, counterfactual «’, and difference h for three selected datapoints. First row of each block is our
diffeomorphic counterfactuals, i.e., obtained by gradient ascent in Z space. Second row of each block is standard gradient ascent in X" space. Heatmaps h show

the difference |z — x'| summed over color channels.

49

Ak
203E] - e

T T

()

Fig. 9.

Counterfactuals for cVAE on MNIST (a), dcGAN on MNIST (b) and pGAN on CelebA (c). Columns of each block show original image, decoded latent

representation of original, counterfactual and absolute difference |# — Z’| summed over color channels.

part of the *four’ changes to the characteristic upper loop of the
‘nine’.

For CelebA, the changes in the counterfactuals are focused
on the hair area as evident from the heatmaps. Facial features
and background stay (approximately) constant.

The counterfactuals for the CheXpert data set mostly brighten
the pixels in the central region of the picture leading to the
appearance of an enlarged heart. The other structures in the
image remain mostly constant.

Also for pictures taken from the Mall data set, we observe that
the counterfactuals remain close to the original images. When
maximizing the regression value, pedestrians are generated at
the picture’s edge or appear around darker areas in the origi-
nal image. When minimizing pedestrians, we observe that the
counterfactuals reproduce the darker parts of the floor and lines
between the tiles.

Results for approximately diffeomorphic counterfactuals are
shown in Fig. 9 in the middle and right block. The dcGAN on
MNIST produces some random pixel artifacts, but the generated
images are sharper than those produced by the cVAE. For the

CelebA images generated with pGAN, we see that the decoded
optimized latent representation of the original image deviates
slightly from the original. This is especially visible if the com-
position is not typical (arm is not properly reproduced in the first
row) or the background is highly structured (second row). For the
approximate diffeomorphic counterfactuals, we observe even
larger changes in the background. This may be attributed to the
imperfect inversion process and the quality of the pGAN, i.e., the
fact that the diffomorphism is only approximate and not exact.
To demonstrate that approximate diffeomorphic explanations
can scale to very high-dimensional data, we use a pretrained
StyleGAN [70], [71] for images of resolution 1024 x 1024 from
the CelebA-HQ data set [68]. Note that the StyleGAN can also be
used at the same resolution even for the more diverse ImageNet
dataset if required, see [72]. In order to use the same classifier as
before, we downscale the images to 64 x 64 resolution before
using them as input to the classifier. As demonstrated by Fig. 10,
approximate diffeomorphic counterfactuals lead to semanti-
cally meaningful and interpretable results even on these very
high-dimensional data sets. More examples for diffeomorphic-
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Fig.10.  Counterfactuals generated with HyperStyle and Celeba-HQ. Columns
show original, decoded latent representation, counterfactual and absolute differ-
ence | — &'| summed over color channels.

and approximately diffeomorphic counterfactuals are printed in
Appendix D, available online.

3) Quantitative Analysis: To quantitatively assess the quality
of our counterfactuals, we use several measures, as detailed in
the following.

Oracle: We train a 10-class SVM on MNIST (test accuracy of
92%) and binary SVMs on CelebA (test accuracy of 85%) and
CheXpert (test accuracy of 70%). The counterfactuals found
by performing gradient ascent in the base space of the flow
generalize significantly better to these simple models suggesting
that they indeed use semantically more relevant deformations
than conventional adversarial examples produced by gradient
ascent in X space.

For the Mall data set, we train a slightly larger U-Net (RMSE
for head count 0.72) and calculate regression values for the
original images, the images modified with gradient ascent in
X-space and the images modified with gradient ascent in Z-
space. As expected, the regression values for the counterfactuals
are significantly closer to the target values (0.01 for minimizing
pedestrians and 10 for maximizing pedestrians) than those of
original images and adversarial examples. Fig. 11 summarizes
these findings.

In Fig. 12, we show the localization of heads for the counter-
factuals and the adversarial examples for the Mall data set from
Fig. 8 using the original and the oracle U-Net. In order to find
the head locations, the regression value is rounded to the closest
integer representing the number of pedestrians in the image.
A Gaussian mixture model with the number of pedestrians as
components is then fitted to the probability map. Finally the
head positions are defined as the means of the fitted Gaussians.
The original U-Net is deceived by the adversarial examples:
When maximizing pedestrians (second row) the original U-Net
produces false positives, leading to markers at head locations
where there are no pedestrians. When minimizing pedestrians,
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Fig. 11.  Left: accuracy with respect to the target class k generalizes better to
SVM for diffeomorphic counterfactuals. Right: regression values for oracle are
closer to target values for Z-based counterfactuals (bars show means and errors
denote one standard deviation).
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Fig. 12. Head locations for pedestrians in counterfactuals and adversarial
examples when maximizing pedestrians (upper two rows) and minimizing
pedestrians (lower two rows). The original U-Net is fooled by the adversarial
examples, leading to false positives (second row) and false negatives (forth row)
when detecting pedestrians. The oracle U-Net generalizes to the diffeomorphic
counterfactuals found by gradient ascent in Z (odd rows) but not to the adver-
sarial examples found by gradient ascent in X' (even rows).

the adversarial examples (forth row) fool the original U-Net into
making false negative errors, that is failing to detect pedestrians,
although they are clearly present. The oracle U-Net on the
other hand produces regression values and probability maps
that enable correct identification of pedestrian’s head positions
(or lack thereof) for the adversarial examples when maximizing
(second row) and minimizing (forth row) pedestrians. For the
diffeomorphic counterfactuals (first and third row in Fig. 12),
the predictions of the two U-Nets are similar, showing that these
counterfactuals generalize to the independently trained oracle
U-Net.

Nearest neighbours: We compare the original images and the
images modified in X and Z with data from the data set. We
find the k-nearest neighbours (with respect to the euclidean
norm) and their respective ground truth classification/regression
value. For MNIST, CelebA and CheXpert, we then check what
percentage of the nearest neighbours was classified as the target
class. For Mall, we check the average number of pedestrians
present. Fig. 13 shows that the ten nearest neighbours of the dif-
feomorphic counterfactuals for MNIST, CelebA and CheXpert
share the target classification more often than original images
or adversarial examples. For the Mall data set the three nearest
neighbours of each counterfactual on average have regression
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Fig. 13.  Left: ground truth class for the ten nearest neighbours (NNs) matches

the target value (‘9°, ‘blond’ and ‘cardiomegaly’) more often for the counterfac-
tuals found in Z. Right: ground truth pedestrian counts averaged over the three
nearest neighbours are closer to target values for diffeomorphic counterfactuals.
Bars show means and errors denote one standard deviation.

TABLE I
INTERPRETABILITY METRIC IM1 VALUES FOR MNIST AND CELEBA
CALCULATED FOR ORIGINAL IMAGES, ADVERSARIAL
EXAMPLES AND COUNTERFACTUALS

data set images M1
original 2.250 £ 0.711
MNIST | gradient ascentin X | 1.603 & 0.317
gradient ascent in Z | 1.056 + 0.233
original 1.160 £ 0.303
CelebA | gradient ascentin X' | 1.144 + 0.287
gradient ascent in Z | 0.807 + 0.222

Low values mean better interpretability. We show mean and
standard deviation.

values that more closely match the target regression value
(r = 10 when maximizing and 7 = 0 when minimizing).

IM1 and IM2: Van Looveren and Klaise [73] propose two
metrics to test interpretability: IM1 is defined by

I_AE /
||l2" — AEc, (2')[| + €

(24)

where AE., and AE,; are two autoencoders which were each
trained on data from only one class (original class ¢ and target
class t, respectively) and € is a small positive value. The second
metric IM2 is defined by

||AE:(2") — AE(')]]

IM2 =
2] + €

) (25)

where AE is an autoencoder trained on all classes.

IM1 and especially IM2 have been repeatedly criticized [74],
[75], [76]. For IM2, we devide by the one-norm ||z/||; of the
modified image. This value is large if the image has more
bright pixels. Consequently, images with brighter pixels will
tend to have a smaller IM2, even though they might not be more
interpretable. We therefore limit our evaluation to IM1.

In Table I, we show mean and standard deviation for the in-
terpretability metric IM1 for two data sets; MNIST and CelebA.
We calculate the values for the original images, the adversarial
examples, produced by gradient ascent in X space, and the
diffeomorphic counterfactuals, produced by gradient ascent in
Z space. A low value for IMI means the image is better
represented by an autoencoder trained on only the target class.
Diffeomorphic counterfactuals achieve a lower IM1 value than
the adversarial examples, suggesting they are more interpretable.
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Fig. 14.  Euclidean distances in X and Z for adversarial examples (first row)

and counterfactuals (second row) for the CelebA dataset. Counterfactuals lie
closer to their respective source image than adversarial examples when measured
in Z, i.e., along the data manifold.

Similarity to original images: Counterfactuals are usually
required to be minimal, that is they should be the closest point to
the original data point, that lies on the data manifold and reaches
the desired confidence A with respect to the target class ¢. Unlike
other approaches, we do not encourage similarity by explicitly
minimizing the euclidean norm between counterfactual and
original image in A" space since the relevant distance is to be
computed by the induced metric on the data manifold S or,
equivalently, the flat metric in the latent space Z. However, our
counterfactuals still preserve high similarity to the respective
source image. We confirm this by calculating the euclidean
distances in X and Z between counterfactuals and all images of
the source class (this effect is illustrated for the CelebA dataset
in Fig. 14).

The average euclidean norm between counterfactuals and
the respective source images is significantly lower than the
average euclidean norm between counterfactuals and all images
of the source class. For adversarial examples, we expect the
euclidean distances in X" to the respective source image to be
very small while the euclidean distances in Z should be larger.
Fig. 14 shows the distribution of distances in A and Z between
counterfactuals/adversarials and their respective source images
as well as distances between counterfactuals/adversarials and all
images of the source class for the CelebA data set.

We refer to the Appendix C.7, available online, for graphs for
the other data sets.

In Tables IT and III we show the averaged euclidean norms of
the distances in X’ and Z for counterfactuals and adversarials
respectively, confirming our expectiations.

V. COMPARISON TO OTHER APPROACHES

In Section II, we introduced our method to generate dif-
feomorphic and approximately diffeomorphic counterfactuals.
These methods are independent of the specific classifier and gen-
erative model used. While many approaches to generate counter-
factuals exist (see Section VI), few are independent of classifier
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TABLE I
EUCLIDEAN NORMS L2 IN X FOR ADVERSARIAL EXAMPLES FOUND VIA
GRADIENT ASCENT IN X AND COUNTERFACTUALS FOUND
VIA GRADIENT ASCENT IN Z

L? source class

data set img L? source image
in X 254 &+ 0.61 877 &£ 1.25
MNIST in Z 4.82 + 1.20 9.27 &+ 1.32
CelebA in X 2.84 + 1.15 41.13 £ 10.03
in Z 19.10 =+ 6.08 40.79 + 9.19
CheXpert '}n X 1.59 + 0.46 33.68 + 6.49
in Z 13.69 =+ 4.54 34.71 + 6.51
Mall (min) in X 1.34 + 0.39 19.11 &+ 2.67
in Z 1098 + 3.66 17.39 &+ 3.10
Mall (max) in X 1.33 + 0.17 9.31 &+ 3.40
in Z 1590 =+ 5.28 19.35 &+ 6.36

We show mean and standard deviation.
TABLE III

EUCLIDEAN NORMS L? IN Z FOR ADVERSARIAL EXAMPLES FOUND VIA
GRADIENT ASCENT IN X AND COUNTERFACTUALS FOUND
VIA GRADIENT ASCENT IN Z

L? source class

data set img L? source image
in X 41.86 + 2.00 42.12  + 0.74
MNIST in Z 35.26 £ 4.68 3991 + 1.61
CelebA inX | 473.72 + 171.49 | 542.21 4+ 149.63
inZ | 138.35 4+ 23.43 | 380.24 + 41.23
CheXpert inX | 355.50 + 114.23 | 539.18 + 88.40
in Z 64.90 + 25.33 | 400.31 + 48.49
Mall (min) inX | 160.53 £+ 33.67 | 199.45 +  28.56
in Z 7856 £+ 11.84 | 180.39 + 15.78
Mall (max) inX | 142,50 + 7.61 | 1563.96 + 8.80
inZ | 116.85 + 27.50 | 161.64 4+ 23.99

We show mean and standard deviation.

and generative model. As we are interested in comparing meth-
ods to generate counterfactuals rather than comparing generative
models or classifiers, we thus restrict the comparison of out
method to methods that can be applied to independently trained
generative models and classifiers. We identify three recent ap-
proaches that meet these criteria: Joshi et al. [77], Zhao et al. [78]
and Looveren et al. [73]. We generate counterfactuals for the
CelebA dataset, using the setup detailed in Section IV-B. As the
algorithm by Looveren is not guaranteed to find counterfactuals
with high target confidence, we set the target confidence for all
algorithms to A = 0.5, and repeat our experiments for this value.
We show examples of the generated counterfactuals in Fig. 15
and summarize the quantitative evaluation results in Table I'V.

Joshi etal. [77] introduces an algorithm that performs gradient
ascent in the latent space of a generative model (specifically
VAEs and GANs), while minimizing the difference between
original and modified data points. This method is closely related
to ours, as we retrieve our proposed method for A — 0 in (2)
in [77]. Setting A to a larger value leads to larger similarities
between the original image and the counterfactual, especially
when measured in the image space. However, the resulting
counterfactuals generalize worse to the independently trained
SVM and Joshi’s algorithm requires a longer runtime compared
to ours until a counterfactual with the desired target confidence
is found (see Table IV).

Zhao et al. [78] propose to perturb the latent representation
of a Wasserstein GAN using exhaustive search or continuous
relaxation and test the generated images using the classifier.
The algorithm then returns the image for which the desired target
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Joshi

Zhao Looveren

Fig. 15.  Selected examples for CelebA (‘not blond’ to ‘blond’). From left to
right: original images, adversarial examples, counterfactuals retrieved with our
method, Joshi et al. [77], Zhao et al. [78] and Looveren et al. [73]. We use the
same generative model (Glow) and classifier for all methods.

confidence is reached within the maximum number of iterations.
As we test Zhao’s method on a normalizing flow, the base space
dimension and thus the search space is much larger than for a
comparable GAN. This leads to long computation times (median
is 15 min). Furthermore, minimal counterfactuals are less likely
to be found resulting in reduced similarity between original and
counterfactual (see Table IV). We also note that some searches
did not result in counterfactuals as only 438 of 500 runs were
successful. This number can be improved by increasing the
search radius, or the number of sampled images per iteration
at the cost of even longer computation time.

Looveren et al. [73] propose to use a prototype loss that guides
the counterfactuals towards the closest prototype that does not
represent the source class while simultaneously minimizing
the L; and Lo norm of the perturbation in image space. The
prototypes are defined in the latent space. Looveren et al. apply
their algorithm to a VAE trained on MNIST. As we apply their
algorithm to CelebA, a much more diverse data set, the search
for prototypes takes very long ( 6 min per image as we search
in the training set to capture more diversity) and the resulting
prototypes (the average over the 5 nearest neighbors that are
classified as the target class) are of mediocre quality. As a
consequence, high-level information of the original image is
lost when generating the counterfactuals, as can be seen in
Fig. 15. As a consequence, the SSIM between the generated
counterfactual and the original is substantially lower than for
the other methods. However, the counterfactuals do generalize
well to the independently trained SVM.

In summary, our method produces convincing counterfactuals
(see Fig. 15) and shows good performance on all quantitative
evaluation metrics, while being significantly faster than the
algorithms proposed by Joshi et al. [77], Zhao et al. [78] or
Looveren et al. [73].
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TABLE IV
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER APPROACHES TO GENERATE COUNTERFACTUALS

criterion originals | adversarials counterfactuals
ours Joshi et al. [76] | Zhao etal. [77] | Looveren et al. [72]

median SSTM (z, z") - 0.99 091 0.97 0.86 0.70
median La(z,z’) - 1.16 9.11 3.07 11.97 8.42

median La(z, z") - 279.53 132.20 122.75 160.46 148.02

% predicted as ¢t by SVM 13.17 15.70 29.17 20.03 28.75 37.53
successful runs (total=500) - 500 500 499 438 498

average computation time - 00:00:01 00:00:05 00:00:10 00:15:36 00:06:56

VI. RELATED WORK

In this section, we compare our approach with existing
methods.

This work builds upon and substantially extends our workshop
contribution [79]. Specifically, we introduce both diffeomor-
phic and approximate diffeomorphic counterfactuals and discuss
their relationship. To this end, we theoretically analyze this
broader class of generative models in a unified manner which al-
lows us to compare the relative strengths and weaknesses of these
approaches. In addition, we provide an expanded discussion of
the rigorous construction of the different coordinate systems.
In our experimental studies, we consider additional generative
models, specifically GANs and AEs, to find approximately
diffeomorphic explanations for different data sets demonstrating
that our method scales to a high-resolution data sets. Further-
more, we include experiments for additional datasets, such as
CelebA-HQ and Mall, as well as further tasks, i.e., regression in
addition to classification, and neural network architectures. We
also consider a variety of quantitative evaluations of counterfac-
tuals to evaluate the performance of the proposed methods.

A. Counterfactuals With Generative Models

A comparatively small number of publications consider
normalizing flows, which started to gain attention relatively
recently, in the context of generating counterfactuals.

Sixtetal. [80] train a linear binary classifier directly in the base
space of the flow. Adding the weight vector corresponding to the
target class to the base space representation and projecting back
to image space then produces a counterfactual with semantically
changed features. Unlike our method, this approach requires
training of a classifier and does not work for a general classifier
of arbitrary architecture. In addition to that, their approach relies
on the classifier being linear and binary so that the direction
in which the image is modified can be determined analytically.
Our method is more modular in the sense that the classifier
can be pretrained and is independent of the generative model.
Furthermore, we allow for the classifier to be non-binary as
well as non-linear and we apply our framework for regression.

Our approach is closest in spirit to the one taken by Joshi et
al. [77], as discussed above in Section V.

Other works also use autoencoders to generate counterfactu-
als.

Dhurandhar et al. [81] use elastic net regularization to keep the
perturbation J to the original data small and sparse. Furthermore,
they use an autoencoder to minimize the reconstruction loss of
the modified image and thus make sure the counterfactual lies
on the data manifold. This approach was expanded by adding

a prototype loss [73], as discussed in Section V above. Both
approaches apply their algorithm on tabular data and MNIST.
Our approach differs from these works as we are not using
generative models as a regularizer but directly modify the latent
space representation. Our method also does not require access
to labelled training data in order to compute prototypes, is
applicable to high dimensional image data sets, and has no
hyperparameters weighting different loss components.

A number of references such as Zhao et al. [78] discussed in
Section V above, use GANs to generate counterfactuals.

Samangouei et al. [82] propose to use classifier prediction
specific encoders together with a GAN which are trained to gen-
erate a reconstruction, a counterfactual, and a mask indicating
which pixels should change between the counterfactual and the
original. A similar approach is proposed by Singla et al. [83]
as they also train a GAN, that is conditioned on the classifier
predictions, jointly with an encoder to produce realistic looking
counterfactuals. In both works, the classifier is incorporated in
the training process of the GAN. After the training, the GAN
generates counterfactuals without querying the classifier. As a
consequence information about the classifier is integrated into
the GAN purely during training, while our approach can be
applied to independently trained models, which allows us to find
counterfactuals for different classifiers using the same generative
model.

Goetschalckx et al. [84] learn directions in the latent space
by differentiating through a classifier and the generator so that
cognitive properties of generated images, such as memora-
bility, can be modified by moving in those directions. They
do not specifically aim to produce counterfactuals but their
approach touches on related concepts. A difference to our
work is that the latent representation is restricted to be modi-
fied along a single direction, while for our method the direc-
tion of change is dictated by the gradient over several update
steps.

Lius et al. [85] use a GAN specifically trained for editing
that they condition on the original query image and the desired
attributes. They apply gradient descent to find attributes that
cause the GAN to generate an image that the classifier predicts
as the target class, while at the same time enforcing the image
to be close to the original. In contrast to this approach, we
directly modify the latent representation rendering our approach
independent of the exact structure of the generative model. We
also observe that our counterfactuals stay close to the original
image without explicitly enforcing similarity.

Finally, generative models have been used before in the con-
text of adversarial examples. Song et al. [86] optimize in the
latent space of a (conditioned) GAN to generate adversarial
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examples which are unrelated to any data point (unrestricted
adversarial examples) and validated against human observers.
Lin et al. [87] use adversarial training in the latent space of a
generative model (they use StyleGAN) to improve robustness
against adversarial attacks. A further line of research studies
learned latent manifolds in the context of enhanced sampling
methods for GAN training, see [88], [89].

We present the results from a detailed qualitative and quan-
titative comparison between our method and other approaches
that generate counterfactual explanations in Section V.

B. Quantitative Metrics for Counterfactuals

Many of the above works are limited to qualitative assessment
of counterfactuals. The quantitative assessment of counterfac-
tuals is still an active research area, a summary of quantitative
measures can be found in [74].

The most reliable evaluation of counterfactuals can be ob-
tained by a large study that lets human agents evaluate the
generated counterfactuals. As those are relatively costly to
conduct and can introduce unexpected biases if not designed
carefully, their application is often infeasible. Nevertheless, a
few works [78], [80], [90], [91] undertake small user studies (9 <
N < 60) on arelatively limited set of generated counterfactuals.
We aim to approximate an independent human evaluation by
testing our counterfactuals on newly trained models that serve
as oracles.

Some works [83], [92], [93] apply a metric commonly used
for generative model evaluation, the Fréchet Inception Distance
(FID) score [94], measuring the quality of the generated ex-
planation compared to samples from the data set. As we find
counterfactuals by moving directly in latent space the FID
for our counterfactuals would be very similar to the FID of
the generative model itself. We therefore do not consider the
FID to be a meaningful metric for (approximate) diffeomorphic
counterfactuals.

Van Looveren and Klaise [73] propose two metrics to test
interpretability: IM1 (defined in (24) above) uses two autoen-
coders which were each trained on data from only one class and
computes the relative reconstruction error of the counterfactual.
The second metric IM2 (defined in (25) above) calculates the
normalized difference between a reconstruction of an autoen-
coder trained on the target class and an autoencoder trained on
all classes. Van Looveren and Klaise use these two metrics to
compare how different loss functions effect the relative inter-
pretability measured by IM1 and IM2 for the MNIST data set.
We limit the quantitative evaluation of our counterfactuals to
IM1, since IM2 has been subject to controversies.

Other works [82], [93] check substitutability. They train clas-
sifiers on a training set consisting of generated counterfactuals
and compare their performance on the original test data set to a
classifier trained on the original training set. As we can generate
counterfactuals that are classified with very different confidence,
this method may not be useful as results may be highly dependent
on the choice of confidence.

Other methods aim to evaluate explanations by replacing pixel
values or entire regions based on the importance of features
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in the explanation [28], [82], [95], [96], [97] and testing the
performance of a classifier on the modified images. Those
methods may suffer from creating images that lie off the data
manifold, so that a thorough comparison may require extensive
retraining [98].

VII. CONCLUSION

In this work, we proposed theoretically rigorous yet practi-
cal methods to generate counterfactuals for both classification
as well as regression tasks, namely exact and approximate
diffeomorphic counterfactuals. The exact diffeomorphic coun-
terfactuals are obtained by following gradient ascent in the base
space of a normalizing flow. While approximate diffeomor-
phism are obtained with the help of either generative adversarial
networks or variational autoencoders. Our thorough theoretical
analysis, using Riemannian differential geometry, shows that
for well-trained models, our counterfactuals necessarily stay on
the data manifold during the search process and consequently
exhibit semantic features corresponding to the target class.
Approximate diffeomorphic counterfactuals come with the risk
of information loss but allow excellent scalability to higher
dimensional data. Our theoretical findings are backed by exper-
iments which both quantitatively and qualitatively demonstrate
the performance of our method on different classification as well
as regression tasks and for numerous data sets.

The application of our counterfactual explanation method is
straightforward and requires no retraining, so that it can be read-
ily applied to investigate common problems in deep learning like
identifying biases for classifiers or training data or scrutinizing
falsely classified examples — all common tasks for applications
in computer vision.

For future work, we intend to investigate the benefit of our
counterfactuals in the sciences, in particular for medical ap-
plications such as digital pathology [11] or brain computer-
interfaces [99].

Furthermore, the method presented in this work is not re-
stricted to the generation of counterfactuals for image data or in
computer vision. In particular, one could imagine applications
e.g., in chemistry and physics where the technique proposed here
may be used to optimize desired properties of stable molecules
which are restricted to minima of the associated potential energy
surface [15], [100], [101], [102].

In practical applications, it is often beneficial to incorpo-
rate symmetries as inductive bias following a well-established
paradigm in machine learning [103], [104]. It is straightforward
to incorporate symmetries into our method by employing equiv-
ariant normalizing flows as constructed e.g., in [105].

In conclusion, our method is applicable to a broad range of
computer vision problems and beyond as it provides a way to
optimize the output of a predictive model on the data manifold
given only indirectly by a trained generative model.
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