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Abstract — In recent work, we extended the methodology of multiplicity counting in nuclear safeguards by
elaborating the one-speed stochastic transport theory of the calculation of the so-called multiplicity moments,
i.e., the factorial moments of the number of neutrons emitted from a fissile item, following a source event from
an internal neutron source [spontaneous fission and (a, n) reactions]. Calculations were made for solid spheres
and cylinders, with the source being homogeneously distributed within the item. Recent measurements of the
Rocky Flats Shells during the Measurement of Uranium Subcritical and Critical (MUSIC) campaign conducted
by Los Alamos National Laboratory and assisted by the University of Michigan inspired us to extend the model
to spherical shell geometry with a point source in the middle of the central cavity. Comparison of the calculated
results with the experimental ones indicated that accounting for fission as the only neutron reaction (the
standard procedure in the point model, adapted also in our work so far) was not sufficient for reaching good
agreement with measurements. The model was therefore extended to include elastic scattering into the one-
speed formalism, whereas the effect of inelastic scattering was accounted for in an empirical way. After these
extensions, good agreement was found between the calculated and the measured values. The paper describes
the extension of the theory and provides concrete quantitative results.

Keywords — Multiplicity moments, space-dependent model, shell items, point source, elastic scattering,

inelastic scattering, Rocky Flats Shells.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Determining the parameters of an unknown sample, pri-
marily the fission rate, which is proportional to the mass of the
even number isotope, with passive interrogation methods is
based on multiplicity counting. This is achieved by measure-
ment of the rate of single neutron detections as well as the rate
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of detecting neutrons in double and triple coincidences (the
singles, doubles, and triples rates). These, in turn, depend on
the factorial moments of the number of neutrons emitted from
a fissile sample following a source emission event (also
referred to as multiplicity moments or just “Bohnel
moments”)’. These moments depend on the parameters of
the sample in which one is interested; hence, an expression of
these moments as functions of the sample parameters make it
possible to determine the sought parameters from the mea-
sured multiplicity moments by an inversion of the
expressions.

In the traditional method used so far, these multi-
plicity moments are derived theoretically in the so-called
point model, in which the spatial and angular dependence
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of the neutrons inside the sample is neglected; only the
number distribution of the neutron emission by the inter-
nal source and the internal multiplication within the sam-
ple by a uniform first collision probability are accounted
for.! By neglecting the spatial and angular aspects of
neutron transport inside a finite item with given boundary
conditions, the point model is clearly only an approxima-
tion/simplification of the real case and will not be able to
reconstruct the multiplicity moments exactly. This means
that the usual method of unfolding the fission rate of the
unknown sample from the measured multiplicity
moments based on the point model formulas will lead
to a biased value. A more realistic and better method of
calculating the multiplicity moments, which accounts for
the spatial and angular transport of neutrons in the finite
item, would increase the accuracy of the identification of
the sample mass.

In recent publications, we introduced a method for
the calculation of the multiplicity moments beyond the
point model, i.e., in a one-speed transport theory model,
in which the spatial and angular transport of the neutrons
is taken into account.>* A general theory was developed
for the calculation of the moments in arbitrary geometries
for solid, homogeneous items. Concrete calculations were
made for items with spherical and cylindrical geometries
with a collision number expansion. Because of the sym-
metry properties of these shapes, the calculations were
simplified as compared to an arbitrary geometry.

One limitation of the previous work, even at the level of
the general theory, was that it was formulated for cases where
the item was homogeneous, the internal source was distrib-
uted evenly and homogeneously inside the item, and the
angular distribution of the source neutrons was isotropic.
Recently, a need arose to relax these limitations in connection
with an ongoing project related to the Measurement of
Uranium Subcritical and Critical (MUSIC) experimental
measurements campaign.” ' The campaign consisted of mea-
surements on the Rocky Flats Shells (stacked shells of highly
enriched metallic uranium, consisting of 93% **°U; see
Refs. 7 and 8) driven by a *>*Cf point source placed in the
center of each configuration. This measuring arrangement is
equivalent to a spherical shell having a central spherical
cavity, a point source in the center, but no source distributed
in the fissile part.

In order that such a case be treated, extension of the
theory is needed in several points. One is treatment of the
central cavity, which means that the item is not uniform and
homogeneous. Neutrons entering the cavity will travel
through it without collisions. In other words, the reaction
cross sections are not constant in space any longer. This fact
affects the equations for single particle-induced distribution,
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which is the first step when backward master equations are
used. Another is that the source is not homogeneous in space
either. This affects the equation connecting the single particle
induced—distribution, and hence its moments, to the source-
induced distribution and its moments.” Treatment of point
sources in neutron transport is a standard procedure, although
a point source in the center of the cavity requires some care.

With the model extended to shells with a point source in
the center of the cavity, preliminary calculations were made
with data of the Rocky Flats Shells. Comparison with the
measurements showed that the calculated moments were
systematically lower than the measured ones. Calculation of
the critical sizes of pure *>°U and **°Pu samples and compar-
ison with known criticality data also showed that the model
underestimates the internal multiplication in the item. To
improve the accuracy of the predictions, the effect of elastic
scattering was included in the model. This led to a significant,
but still not fully satisfactory, improvement with regard to
both the comparison with the measurements on the Rocky
Flats Shells and the comparison with critical sizes. To
improve the agreement further, the effect of inelastic scatter-
ing was accounted for in an approximate manner with
a phenomenological method such that the one-speed charac-
ter of the model could still be kept.

With these extensions, rather good agreement was
found between the calculated and the measured data for
the Rocky Flats Shells. In the following, these extensions
will be described one after the other, and quantitative
values of the calculations will be given.

II. TREATMENT OF THE CAVITY

Since the central spherical cavity does not affect the
spherical symmetry, in this piece of work for the treatment
of the item with a nonhomogeneous material distribution, we
will use the spherical geometry model of Ref. 3 as the starting
point. Also, since we want to model the case of a spontaneous
fission source with a pure metallic uranium sample, the o
factor will be taken as zero throughout. Including a nonzero o
factor is a matter of triviality since it requires only the rescal-
ing of the probability distribution of the source neutrons.''?

Since the multiplicity moments, even in the point
model, are described by backward-type master equa-
tions, one needs first an equation for the number dis-
tribution of the emitted neutrons due to one starting
particle. Then, another equation is needed to connect

#This approach, also called the regeneration point technique, was
originally developed in connection with cosmic electron-photon
showers.'!
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the distribution (or its generating function) of the single particle—induced event with that of the case starting with
a source emission event (a random number of particles starting the process). The presence of the cavity affects
primarily the single particle-induced distribution; hence, in this section, only this will be treated. The relationship
between the single neutron—induced and source event—induced distributions will be treated in connection with the
point source; Sec. I11.

In Refs. 2 and 3, assuming a homogeneous sphere of radius R and that the induced fission neutrons have an isotropic
angular distribution, the following master equation was derived for the distribution p(n = n|r, p) = p(n|r, p) of emission of
a total number of # neutrons, due to one starting neutron at radial position » and directional cosine p with respect to the position
vector:

C(r, 1) o0 1
dse ¥ S pk) Y J A diy - diy
0

plalr,p) = e CWEE, |+ ij
i —mend -1 2 2 2

0

X p(m|7(s), 1) plnal (), 1) ... plel ¥ (5), 1) - (1)

Introducing the generating function g(z|r, p) of p(n|r,n) as  vector. Here, all distance units are measured in dimen-
sionless optical path units, i.e., units of the mean free

0 path 1/%, (the only reaction is assumed to be fission).
glz|r,p) = Zznp(n|r, 1y (2) The use of the optical path in the equations simplifies
n=0 the notations and makes the formalism more

and switching to optical units (distances measured in units ~ transparent.
of the mean free path), one obtains a substantially simpler To apply the same equation for a shell with a central
equation for the generating function in the form cavity of radius 7o, the expressions for the solid sphere

are modified as follows. As is illustrated in Fig. 1, for
() each radial starting position r, there is a critical polar

glz|rp) = ze (W 4 J dse™q.[gz” ()] .  (3) angle, with a corresponding ., equal to
0

In the above, n is a random variable and 7 is a realization R
of it, g, is the generating function of the number distribu-
tion of the induced fission neutrons,

l 1
sl =5 | dustelrn) @ \
is the “scalar” generating function,

Y (s) = /12 +s*+2rsp (5)

is the radial position of the neutron at a distance s away
from the starting point » along direction p, and

€am) = =m0 + (R = )
— /P2 ) R (6
is the distance to the boundary of the sphere of radius
R from radial position » along direction p, the latter

being the polar ar'lgle b?tween the neutron p051t19n Fig. 1. Illustration of the neutron paths for p>p, and
vector at the starting point and the neutron velocity for pu < pu,, in the shell with a central cavity.

&ANS NUCLEAR SCIENCE AND ENGINEERING - VOLUME 197 - AUGUST 2023



SPACE-DEPENDENT CALCULATION OF MULTIPLICITY MOMENTS FOR SHELLS - PAZSIT et al. 2033

S | Sto

ucr(r) =He = — 1 - 0, (7)

which separates the trajectories into two classes. Neutrons starting from a point » with
TR T (8)

will not pass the cavity; hence, the distance €(r, n) to the boundary from point r into direction cosine p has to be
calculated exactly as before, whereas neutrons with

H< e (9)

will have part of their trajectory in the cavity, where no reactions can take place. This is the section of the path between
the points s; and s in Fig. 1, in terms of the path length. These points, valid only for p < p,, are given as

$12= $120m 1) = —riE (07 — (2 = 13) . (10)

One way of treating the cavity is to rewrite Eq. (3) for the single particle-induced generating function to the case where
the cross section of the material is a function of space. To keep the advantages of using the optical path, corresponding
to the medium, we define the normalized cross section

2(r
olr) =52 (1)
where
o Ef for r > ro
Z(r) = { 0 for r<rg (12)

with X, being the constant fission cross section inside the shell. From Egs. (11) and (12), it immediately follows that
o(r) =A(r—r), (13)

where A(x) is the unit step function.

With the above space-dependent relative cross section, which defines a generalized optical path length, Eq. (3) will take the form

£(rp)
7J0 o(r(s))ds (r,1)
]

g(zlr,n) =ze dso(r(s)) e ™" g, [ g(z]r(s))] - (14)

0

Here, in contrast to Eq. (1), the multiplying cross section in the second term on the right-hand side had to be moved
inside the integral because the cross sections are now space dependent in order to account for the central cavity.
Rewriting Eq. (13) in terms of the path length variable s as

_ )1 for  p>p,
o(s) = { A(sy —s) + A(s —s2)  for n< W, (15)

and substituting Eq. (15) into Eq. (14) leads to the equation for the single particle—induced generating function in the
form

C(rn)
gmmﬁwm—Mwﬁw“W+L memmwmm@

1(*«“)
+A(w,, (r) — u){zeé(r-,u)ﬂsz(r-,u)S1(V7H)) + J dse™q,g(z]7r (s))]
0

€(r,n)
+e(52(V7H)Sl(VaH))J dse™ q,]g(z] r’(s))]} : (16)

s2(rsp)
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It is also interesting to write down the equation for the scalar (angularly integrated) generating function, from which the
scalar moments can be derived. This is partly because in the Neumann-series solution, one needs only the scalar
moments. Moreover, if the source is distributed in the item and is isotropic, then one actually needs only the scalar
single particle—induced moments to calculate the source-induced moments. But, even if the angular moments are needed
(which is the case of a source in a cavity, as we will soon see), it is still sufficient to obtain a solution for the scalar
moments, from which the angularly dependent moments can be easily calculated with a simple quadrature. This will be
shown explicitly below.

Therefore, for both the generating function of the single particle-induced distribution and the moments, we will
also list the equations for the scalar quantities. By integrating Eq. (16) with respect to p, one obtains the equation for the
scalar generating function as

ey 1(rp)
g@hﬂ=zzgdr)+-%[ldu{JO dse™q,] g(zIr(5))]

((i’,p.) 1 1 {)(V,]J) (17)
_|_e[s2(r.u)7s1(r,u)] J dse™gq, [g(z| I’/(S))] + EJ dHJ dses Qr[ g(Z| r’(s))} ’
s2(r,p) Her 0
where
1 Her 1
go(r) = no(r) = 5 J dpe =t (] 4 J dpe 0w | (18)
-1 Uy

From Eq. (16), equations can be derived for the angular factorial moments by successive derivation with respect to z.
For the first moment

og(z|r,p
(n(r. ) = n(r ) = EETW) (19)
z=1
one obtains
(r,m)
) = A= (e vy dse )
0
51r0)
+ A (r) — e Uzt 4 Vr,lJ dse~"n(r'(s)) (20)
0
O(r,n)
+ Vi e[SZ(’v“)Sl(W)]J dse~*n(r'(s))] .
s2(r,p)

From Egs. (17) and (18), or alternatively, angularly integrating Eq. (20), one obtains for the scalar first moment n(r) the
equation

n(r) =no(r) + %

Ju” du{ JO ™ dsein(r ()

1
€(r,p)

1 O(r,n)
—i—e[“‘Z(”v“)Sl(W)]J dsesn(r’(s))} +J duj dse‘“n(r’(s))] ,

s2(rp) Her
where ny(r) is defined in Eq. (18).

Similar equations can be derived for the second and third factorial moments m(r, n) and w(r, u), respectively. For
the second angular moment, ( (n(r,p)(n(r,n) — 1)) =m(r,n), one obtains
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C(rn)
mr.) = Al = 1) we{mm%%»+wmwwﬁ

51 (r;)
Al =),
(r,p)

dse™ {v,’z n2(7(s)) + vy m(r’(s))} (22)

+e<s2("”>_51<’=”>)J dse™s {v,_; n2 (¥ (s)) + vri m(r’(s))]}

s2(r,1)
whereas for the scalar second moment, one has
vop | (M 1(rp)
m(r) = mo(r) + r? J dp J dse*m(r'(s))
-1 0
£(r,p) 1 O(rp)
—|—e[32(’7”)sl(’*“)]J dsem(r'(s)) p + J duj dse™* m(r'(s)) (23)
s2(r,1) Her 0
with
Vv 2 Her Sl("v”)
mo(r) = —= J dp J dse*n*(r'(s))
2 1) 0
€(r,n) 1 O(r,p)
+e[“2(’*“)sl(”“>]J dse=*n*(¥'(s)) p + J duJ dse*n*(r'(s))| . (24)
s2(r,p) Her 0

The third factorial moment, ((n(r,p)(n(r,pu) — 1) )(n(r,pn) — 2)) =w(r,pn), can be derived in an analogous manner.
One obtains

€(r,n)
w(r,p) = Ap — ucr(r))JO dse™* {v3n° (7 (5)) +3vean(r'(s))m(r (s)) +viw(r'(s)) }

1(rp)
+ Alpe (r) — 1) “0 dse™* {v 30 (r'(s)) +3ve2n(r(s))m(r (s)) + veaw(r'(s))}

C(rp)
4 ea(rw)=si(rp) J dse™s {Vr_3 (¥ (s)) +3vean(@(s))m( (s)) + v w(r (s)) }1 (25)

s2(rp)

whereas the equation for the scalar moment will read as

Vr, Her 1) —s / 52 () —s1 (7,1 ) —s / 1 frw) —s /
w(r) = wo(r) + 71 Jldu{Jo dse S w(r'(s)) + el =sirm)] Lz(w) dse S w(r (s))} + Lcrdujo dse™ w(r (s))]
(26)
with
Her s1(r,1)
wo(r) = % U_ldu{JO dse™ [v,3m (7 (5)) + 3vpan(r (s)) m(F (s))]
£(rp)
+ eln2(rm—si(rp)] L - dse™ [v,3n° (¥ (s)) + 3veon(¥ (s)) m(F (s))] }
1 (r,) 7
—I-L ,dMJo dse™ [v3n* (¥ (s)) + 32 n(r’(s))m(r’(s))]] : (27)
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The above moment equations, both for the scalar and the
angular moments, can be solved numerically with the
same Neumann-series expansion (collision number
expansion) method as was the case for the solid sphere
and cylinder in Refs. 3 and 4. This possibility is much
better visible from the equations for the scalar moments,
where the inhomogeneous parts ng(r), mo(r), and wy(r)
are explicitly separated from the integration kernels, these
latter constituting the homogeneous part of the equations.
Altogether, in practice, it is simpler to use to collision
number iterations on the scalar moments, even if, as will
be seen in the next section, with the point source in
a cavity, one will need the angular moments taken at
pu = 1. However, one can either extract this value from
the last step of the collision number iterations for the
scalar moments, or one can use the final iterated value
of the scalar moments to extract the angular moments at
p = 1 with one single quadrature. For the first moments,
from Eq. (20), this is given as

(R=r)

nrp=1)=e ®" 4 vmj dsen(r+s) (28)

0

since €(r,1) =R —r and ¥/(s) = r + s for p = 1. Similar
expressions can be derived for m(r, 1) and w(r, 1).

lIl. THE POINT SOURCE

We turn now to the case of the point source and the
case of nonisotropic source. As will be seen, treating an
isotropic source in a cavity will necessitate the treatment
of nonisotropic sources. First, we treat the case of a point
source in the center of a solid sphere.

l1L.A. Isotropic Point Source in a Homogeneous
Medium (Solid Sphere)

In Refs. 3 and 4, it was assumed that the probability
of a source event was uniformly distributed in the item.
Hence, one had in the general case the probability density
being constant:

pr(r) = : (29)

I_/ )
where V' is the volume of the item. Accounting also for
the isotropic character of the source, the equation con-
necting the generating function G(z) of the source event—
induced emission number and the single particle—induced
generating function reads as

@ANS
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6(2) = | drprr)alstelr)

= %JVdrqs lg(z|r)], (30)

where g¢;[...] is the generating function of the number
distribution of source neutrons, with the single particle—
induced generating function being its argument in the
above.

An isotropic point source in the center of a sphere
preserves spherical symmetry; hence, one has

8(r)

P =4y G1)

and since because of the spherical symmetry,
dr = 4m*dr | (32)
one arrives at the particularly simple expression
G(z) = g;[g(z]0)]. (33)
This yields the compact results for the first, second, and
third factorial moments N, M, and W, respectively, of the

number of neutrons emitted from the sample for one
source event as

N =v,,1n(0) , (34)
M = Vs2 l’l2 (O) + Vsl m(O) ) (35)

and
W = v30°(0) + 3v,21(0)m(0) + v w(0) . (36)

In Eq. (33), g(z|r) is still the one corresponding to
a homogeneous solid sphere, whose moments, which
appear in Expressions (34), (35), and (36), were already
calculated in Ref. 3. Expressions (34), (35), and (36) are
actually easier to evaluate than those for a distributed
source since one does not need to integrate the single
particle—induced moments over the volume of the item.

Some numerical examples in Fig. 2 show the first
three factorial moments as a function of the radius of the
sphere in optical units. For comparison with the case of
the distributed source, each figure also shows the
moments corresponding to the same sphere with
a distributed source.
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o5 Mean value of emitted particles

== =Distributed source
= Central point source

0 L L L L L
0 0.1 0.2 0.3 0.4 0.5
R [mfp]
1500 Second moment of emitted particles
== =Distributed source
== Central point source
1000
=
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0 T L L 1
0 0.1 0.2 0.3 0.4 0.5
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5 «10° Third moment of emitted particles
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= Central point source
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=
1 L
0.5r
0 1 1
0 0.1 0.2 0.3 0.4 0.5

R [mfp]

Fig. 2. First, second, and third moments of the num-
ber of neutrons emitted from a solid sphere for
a distributed source (dashed lines, blue) and
a central point source (solid lines, red) as functions
of the outer radius R.

The input data of the spontaneous and induced fis-
sion multiplicities are given in Table 1. These were taken
from the material data of the Rocky Flats Shells (93%
25U and 7% **®U) and a **Cf source.™®

NUCLEAR SCIENCE AND ENGINEERING - VOLUME 197 - AUGUST 2023
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The plots in Fig. 2 show that for the same size of the
sphere, the moments corresponding to the source of the
same strength and multiplicity located in the center are
larger than those corresponding to the distributed source.
This is expected since neutrons starting from the center of
the sphere have a higher importance than those closer to
the surface.

l11.B. Point Source in a Cavity of a Shell

The treatment of an isotropic point source in the
cavity requires some care because of the vacuum sur-
rounding the source. In this vacuum the angular distribu-
tion of the neutrons is highly anisotropic, actually
singular, since they are progressing radially out of the
source. The isotropy of the source means that each neu-
tron obeys an angular density d(p — ;) such that p, is
distributed evenly between [—1, 1].

To handle such a source, one has to consider a more
general description of the number distribution angular
density of the source neutrons, as it was introduced in
connection to the energy description of spallation
neutrons.'? In a one-speed description, still in spherical
symmetry, one should consider the source distribution
function Ps(k,r, 1, Wy, ... 1) such that

Ps(k, 7,1y, Wy, ... W) rPdrdy, . .. dy, (37)
is the probability that in one source event, there will be &
neutrons emitted around » and p;, W, ... 1. This general
expression can be simplified if the number of neutrons
generated is independent of the position and the direc-
tions are independent of both each other and the number
of neutrons generated in the source event and the posi-
tion. Further, if the angular distributions are uniform, then
Ps(k,r pwy, Wy, ... 1) will be simplified to

Ps(k,rowy, o) = p(B)p (MW (38)
where f,, (1) is the uniform angular density.

Coming back now to the source in the cavity, since in
the equation of the single particle-induced distributions
only neutrons starting within the medium are considered,
a practical way of treating the central source is to neglect
the free flight of the neutrons and consider them only
when they arrive at the surface of the cavity. Since all
neutrons will arrive at the surface of the spherical cavity
at the same radial distance ry in a direction perpendicular
to the surface of the cavity, one will have
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TABLE I

Input Parameters Used in the Calculations

First Moment

Second Moment Third Moment

Spontaneous fission (**Cf)
Induced fission (93% 2*°U + 7% ***U at 2 MeV)

Vsf1 = 3.757
V1 = 2.637

Vsf2 = 11.962
Vo = 5.623

Vsf 3 = 31.812
V3 = 9.476

d(r —ro)

PS(kvr)ul)HZv"-uk) :ps(k> Sk(u_l) : (39)

Using this in the master equation leading to an expression
for the generating function G(z) will result in

G(2) = gslg(zlro, 1)] (40)
Similarly to the case of the point source in the solid

sphere, Eq. (33), the factorial moments obtained from
Eq. (40) have the simple form

N =vgin(ry, 1) (41)
M = v on*(ro, 1) +vem(ro, 1) (42)
and
W =vg;3 n(ro, 1) + 3vsan(ro, 1)m(ro, 1)
+vsaw(ro, 1) . (43)

Apart from the fact that unlike in Eqgs. (34), (35), and
(36), it is the angular moments that occur and not the
scalar ones, Eq. (41), (42), and (43) have the same
advantageous property that no integrals over the volume
of the item need to be taken. Since the scalar single
particle—induced moments can be calculated only through
the calculation of their angular moments, the computa-
tional effort would be the same. However, it has to be
kept in mind that both the generating function g(z|r, p)
and hence also its moments are not the same here as for
the homogeneous medium. The moments in Egs. (34),
(35), and (36) are calculated for the solid sphere, which
has already been done in Ref. 3. The angular moments in
Egs. (41), (42), and (43), on the other hand, have to be
calculated from the more involved equations such as
Egs. (20), (22) and (25), or from the scalar moment
Egs. (21), (23), and (26), and by converting them to the
corresponding angular moments by relations of the

Eq. (28) type.
@ANS

Calculations for shells have been performed for cases
with various inner and outer shell radii, with the same
material data as in Table 1. One set of results with a fixed
inner radius and varying outer radii is shown in Fig. 3. It
is seen that as it could be expected, all moments for the
sphere with an equal outer radius are higher than for the
shell. This is naturally due to the lower internal multi-
plication (smaller mass) of the shell, due to the central
cavity.

It is worth adding that the main incentive of the work
described so far is not to show that a central source leads
to higher internal multiplication than an equivalent dis-
tributed one or that a solid sphere leads to higher internal
multiplication than a shell with the same central point
source. These results are trivial and could be predicted
without calculations, and the fact that they could be
reproduced just makes the results, and hence the formal-
ism, plausible. The main purpose was to elaborate
a formalism that makes it possible to obtain quantitative
results such that they can be used for multiplicity count-
ing for items with a shell geometry and a central source
and that can also be compared against the measurements,
as will be done in the next section.

IV. INCLUSION OF SCATTERING

Results of calculations based on the formalism devel-
oped above for shells were compared with the prelimin-
ary results of the measurements made on the Rocky Flats
Shells during the MUSIC campaign.”® The building
blocks of these shells are highly enriched hemispheres
of metallic uranium (93% 2*3U and 7% ***U), which can
be nested into each other to form solid spheres or thick
shells of various sizes from pairs of identical hemi-
spheres. Measurements were analyzed for four configura-
tions of the Rocky Flats Shells measured by the Neutron
Multiplicity Array Detector (NoMAD), 15 tubes
embedded within a high-density polyethylene (HDPE)
matrix.'®> Evaluation of the singles, doubles, and triples
(S, D, and T) rates on shells with the same inner radius
and four different outer radii, using a >>>Cf source in the
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Fig. 3. First, second, and third moments of the number
of neutrons emitted from a solid sphere (blue lines,
marked with circles) and a shell with an inner radius ) =
0.1 mean free path (red lines, marked with triangles),
both with a central source. R,y is the outer radius in
optical units for both cases.

central cavity were completed.'* The factorial moments
of the source-induced emission were derived from the S,
D, and T rates, using the source intensity and the detector
efficiency of the detectors used in the experiment.
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The calculations were first performed for the same
physical sizes as the experiments, assuming induced fis-
sion as the only neutron reaction, similarly to the proce-
dure used in the point model. The measurements were
made with a compilation of Rocky Flats Shell sets with
an inner radius of 2.0126 cm and outer radii of
R = 5.6692, 6.6696, 7.3296, and 8.0027 cm, respec-
tively. The quantitative results obtained from the formu-
las developed in the preceding sections deviated from the
measured ones; all calculated moments were systemati-
cally lower than the measured ones (shown later in
Fig. 5). This indicated that the calculations underesti-
mated the internal multiplication.

One might assume some reasons for this difference
between the measurements and the calculations. One
reason could be possible uncertainties in the extraction
of the factorial moments from the measured S, D, and
T rates in the measurements. Also, there is the further
circumstance that the calculations were made for solid
hemispheres whereas in the Rocky Flats Shells, there are
gaps between the layers of the nested hemispheres.”®

Hence, a somewhat more straightforward and unam-
biguous way of checking the fidelity of the calculated
results was chosen. It is the calculation of the critical radii
of pure solid spheres of *°U and ?*°Pu for which well-
known data are available in the literature. Although in
principle this only proves the correctness of the calcula-
tion of the first moment, it is still a good indicator of the
fidelity of the model.

For the critical radii of a solid sphere of pure
25U and pure **°Pu, the calculations yield the following
values, respectively:

RY25 = 10.46 cm;  (true value : 8.5 cm) (44)
and
RP =533 cm;  (true value : 4.97 cm) (45)

For the Rocky Flats Shells, the critical size of a solid
sphere is about 8.83 cm, but this is partly because the
shells consist of 93% **°U and 7% 2*®U and partly
because of the gap between the shell layers.”*

The above differences for the factorial moments and
the critical sizes both point to the same direction, namely,
that the model developed on the same assumptions as the
point model, which regards the reactions that the neutrons
undergo (only fission), underestimates the internal multi-
plication (or overestimates leakage). Since the boundary
conditions are properly accounted for in the model,
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a rather natural first guess for the reason for this deviation
is that other processes, and primarily scattering, are not
taken into account. For instance, at the average energy of
the source neutrons, taken in the present one-speed model
as 2 MeV (the same energy value usually used in the
point model), the macroscopic elastic scattering cross
section for **°U is about three times larger than the
fission cross section. Scattering within the item has
a similar effect as a reflector surrounding the core; i.e.,
it increases the internal multiplication; hence, its effect
has to be taken into account.

The reason why in the point model, scattering is not
explicitly accounted for is that in the point model equa-
tions, in which phase-space coordinates such as position
and direction of traveling do not appear, scattering is
a “non-event,” consisting of a reaction where one neutron
before the collision produces one outgoing neutron. This
is a situation similar to the traditional point theory of the
Feynman-alpha and Rossi-alpha methods, where only
fission and absorption are accounted for. In the point
model of multiplicity counting, the influence of the posi-
tion and velocity direction on leakage is condensed into
the first collision probability (embedded into the leakage
multiplication), which is one of the unknowns of the
process.

Therefore, it appears advisable to try to include
elastic scattering as a first step into the generalization
of the model. As it turns out, accounting for elastic
scattering in the model is relatively straightforward.
Since elastic scattering of neutrons on heavy nuclei
can be assumed to be isotropic to a very good approx-
imation and since energy loss of the neutrons can be
neglected, the hitherto used one-speed transport theory
with isotropic scattering can be kept. In this model,
elastic scattering is equivalent to a fission event with
one fission neutron generated. One can include such
a process in the model by switching to using the number
distribution of neutrons per reaction as a weighted aver-
age of the number distribution of induced fission and the
singular distribution (a Kronecker delta) of the scatter-
ing and correspondingly using the total cross section for
the unit of the mean free path. The procedure is com-
pletely analogous to how the joint number distribution
of source neutrons is calculated as a weighted average of
the distributions of spontaneous fission neutrons and
that of the (a,n) neutrons or how the number distribu-
tion of the number of neutrons from a reaction is calcu-
lated from the number distribution of induced fission
and absorption in Ref. 9. We mention here in passing
that likewise, absorption can be included in the present
model as a fission event with zero generated neutrons.
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However, because of the negligibly small absorption
cross section, this possibility is not considered here.
In formulas, we introduce the total cross section as
Xr =X+ 2y (46)
and the number distribution of neutrons from a reaction
(also called secondaries) as the weighted sum

S %,
polk) = S5 i 57 801 = o + By (47)
T T

Here, as before, f; stands for the number distribution of
induced fission neutrons; 6 ; is a Kronecker symbol; and
oy and B, are the fractional contributions of fission and
elastic scattering cross sections to the total cross section,
respectively. Then, the size of the item in optical units is
determined by X7 whereas the number distribution of the
neutrons per reaction is given by Eq. (47). As mentioned
above, Egs. (46) and (47) could easily be extended to
include absorption, containing a 6,0 term. However,
since absorption is low at these neutron energies in the
given nuclei, this inclusion is not considered here.

The above means that the factorial moments
Veiy i = 1,2,3 of the distribution p, (k) will enter the moment
equations. From Eq. (47), these are readily obtained as

Vyi = OgVr + BS 61}1 (48)
To see the effect of scattering on the quantitative values
of the factorial moments, first, the following conceptual
calculations were performed. We started with a solid
sphere with no scattering—only fission included. To
calculate the size of the sphere in optical units (which
is employed in the formulas), the **°U fission cross
section at 2 MeV, Xy = 0.0621125 cm™!, was used.
Thereafter, we added scattering such that the scattering
cross section became 25%, 50%, and 75% of the total
cross section. The case of only fission thus corresponds
to B, =0, and the realistic case for **°U is close
to B, = 0.75.

The effect of scattering is illustrated in Fig. 4, show-
ing the factorial moments as functions of the physical
sphere radius for different values of the relative weight f,
of the elastic scattering cross section to the total cross
section. Calculations were made for a sphere radius up to
7 cm. In the plots, the physical size of the sphere was
used as the independent variable because when scattering
is included, the total cross section and hence also the
optical path length change. Thus, although the physical
size of the sphere does not change, its size in terms of the
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Fig. 4. The first three factorial moments as functions of the radius of a pure 2*°U sphere, with varying degrees B, of elastic
scattering being included. Left column: full range (R between 0 and 7 cm); right column: half range (R between 0 and 3.5 cm).

In Fig. 4, the left column shows the results for the
whole range (R between 0 and 7 cm) whereas the right
column does it for the half range 0 < R < 3.5 cm since in
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mean free path changes for different extents of scattering
included. For a fair comparison, we need to use the
physical size as the independent variable.
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the full-range plot, the differences in the various
moments for small R values are not visible. The figure
shows that inclusion of scattering increases the factorial
moments; the higher the contribution from scattering is,
the higher the moments become. Scattering processes
close to the boundary might both increase leakage and
act as a reflector whereas scattering farther away from
the boundary might mostly act as a reflector. It appears
that the reflector effect dominates over the outscatter
processes, and increasingly so for increasing sphere
radii.

It is also seen that even with a relative contribution of
scattering with B, = 0.75, for small sizes, up to about
R =2 cm, the effect of scattering is minor. However,
the deviation between the cases of no scattering and
scattering increases fast with increasing size of the sys-
tem; moreover, the relative deviation increases also with
the moment order. Approaching the critical size of the
case with scattering (which is smaller than with only
fission), the deviations diverge.

It is now interesting to check the improvement in the
fidelity of the model both by calculating the critical sizes
of pure *>°U and ?*°Pu spheres and by comparing the
factorial moments obtained experimentally for the Rocky
Flats Shells. With regard to critical sizes, making calcula-
tions with the inclusion of scattering and using the elastic
scattering cross sections of 2>°U and **’Pu at 2 MeV yield
the results

RUZ® —8.043 cm;  (true value : 8.5 cm) (49)
and
RP29 — 4,527 cm; (true value : 4.97 cm) (50)

A comparison with the case when only fission is
accounted for, Egs. (44) and (45), shows that the accuracy
of calculated critical radius is now significantly better,
especially for *°U. It is also seen that accounting for
elastic scattering, the model now slightly overestimates
the internal multiplication. The same tendency is seen
also on the calculated factorial moments. These are now
larger than without scattering, but they are also larger
than the measured ones, as is seen in Fig. 5, showing
both the preliminary experimental results and the calcu-
lated results with and without scattering (B, = 0.753 and
0, respectively).

Figure 5 also shows that unlike for the critical radii, the
deviation between the measured and the calculated values is
larger when scattering is included than without scattering.
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Fig. 5. Comparison of measured and calculated

first, second, and third moments of the number of neu-
trons emitted from the Rocky Flats Shells for four dif-
ferent outer radii and with an inner radius of 2.0126 cm.

This indicates that accounting for elastic scattering, even if
it improves the fidelity of the model, is still not sufficient for
good agreement with measurements. The remaining possible
reason for the difference between the calculated and the
measured values can be sought in the neglect of inelastic
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scattering. In an inelastic scattering event, the neutron energy
decreases significantly. At the lower energy of the inelasti-
cally scattered neutrons, both the cross sections and the fission
neutron multiplicities are different, which may have
a nonnegligible impact on the internal multiplication and
transport process.

The present one-speed transport theory model used
so far is obviously not suitable to treat inelastic scatter-
ing. In order to extend the model to be able to handle
inelastic scattering properly, one should introduce energy
dependence and anisotropic scattering. Formally, both of
these aspects can easily be included in the model, as will
be shown in coming publications.'> However, the main
stumbling block will be the fact that the cross sections,
the fission neutron multiplicities, and the scattering func-
tion will become energy dependent. Even if it is possible
to restrict the relevant energy range to above the reso-
nance region, this will require the handling of extensive
data tables and excessive running times.

Although the above path will be explored in future
work, for the time being, we note that there exists
a simpler, even if empirical, fix to account for inelastic
scattering approximately in a one-speed model. In
Ref. 16, it is suggested that in view of the fact that the
average energy of once inelastically scattered neutrons is
about 1 MeV, one gets a better estimate of the critical
mass if the relevant cross sections and multiplicities are
taken at 1 MeV.

We tested this suggestion first for the critical masses
predicted by the model. The multiplicities for induced
fission of U and **°Pu at 1 MeV are available in
Ref. 17. Taking into account fission and elastic scattering
with cross sections at 1 MeV, the following results are
obtained:

RY25 —8.623 cm;  (true value : 8.5 cm) (51)
and
RP29 — 5295 cm; (true value : 4.97 cm) (52)

Compared with Egs. (49) and (50), an improvement is
seen in the prediction of the critical radius, especially for
23U, It is also seen that with this empirical correction,
the model again underestimates the internal multiplica-
tion (overestimates the critical radius).

A more interesting question is how the use of the cross
sections and multiplicities at 1-MeV neutron energy would
affect the calculated values of the factorial moments, which
by using data at 2 MeV overestimate the measured ones
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significantly. Here, too, one might expect a larger effect of
using data at 1 MeV since the fission cross section—induced
fission neutron multiplicities are all lower than at 2 MeV,
especially for **U content.

The factorial moments of the number of neutrons
emitted per one source event (*>>Cf spontaneous fission)
from an item with the geometrical and material properties
of the Rocky Flats Shells were calculated with the cross
sections and multiplicities of 25U and #PU taken at
1 MeV. The fission and elastic scattering cross sections
of the mixture of the two isotopes were calculated in the
standard way, that is, '8

N,
z¥~:: vavip Ave
M;

(53)
with x representing the reaction type and i the nuclide index
in question (235 or 238), w; being the weight fraction of the
corresponding isotope, and p = 18.664 g/em’ being the
density of the compound. The fission number distribution f;
of the compound was calculated as

235 238

x
ﬁc:é—ﬁ335+£—ﬁ¢238 (54)
f f

with Xy = 2%35 + 2}338. The number distributions f,'{255 and

238(k) were taken from Verbeke et al.'” With these,
similarly to Eq. (47), the number distribution p,(k) of
the secondaries in a reaction when both fission and scat-
tering are accounted for is obtained as

S5,
prk) = Z_ffk + 2_1 Or1= Ogf + By O1- (55)
T T

Here, X, = 23135 + ngg and Xy = Xy + X.. Naturally,
the formal relationships between the factorial moments
of pure fission and those of fission plus scattering are the
same as in Eq. (48); that is,

Vi = OsVri +Bdi1 (56)
where i is the moment order.

The numerical values of the cross sections of the com-
pound, used in the calculations, are given in Table II, and the
factorial moments of the number distribution of fission neu-
trons and those of the secondaries with elastic scattering
included are given in Table III. The factorial moments of the

source emission neutrons are the same as given in the first row
of Table 1.
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TABLE II
Macroscopic Cross Sections of the Rocky Flats Shells at 1 MeV*
93% **U 7% ***U 93% *U + 7% >**U
Zei 27 =0.17225 2% =0.014068 Zo = 0.18632
Xr Xr =0.23988

*In units of cm .

TABLE III

Factorial Moments of the Rocky Flats Shells at 1 MeV

First Moment

Second Moment Third Moment

Induced fission
Fission plus elastic scattering

Vil = 2.52359
v = 1.34015

Vio = 5.10119
Vo = 1.13887

Vr3 = 8.00135
V3 = 1.78635

Figure 6 compares the preliminary results of the mea-
surements and the calculated values, with and without scatter-
ing. The figure shows that with accounting for elastic
scattering and assuming an average neutron energy of
1 MeV, the calculated values agree with the measured ones
remarkably well, especially for the first moment. With
increasing moment order, the agreement slightly worsens.

It might sound contradictory that one accounts for the
effect of inelastic scattering by merely changing the average
energy of neutrons in the system but without accounting for
the cross section of inelastic scattering. However, it has to be
kept in mind that this is only a phenomenological, approx-
imative treatment. Neglecting the actual inelastic scattering
events is compensated by the fact that one takes 1 MeV as the
average energy of neutrons in the system whereas in reality,
1 MeV is only the average energy of the neutrons after one
inelastic collision, which is less than half of all neutrons
generated in a single chain.

In summary, accounting for elastic scattering properly in
the formalism and modifying the model empirically to account
for inelastic scattering in an approximate manner, we found
good agreement between calculations and measurements. This
is very promising from the point of view that by accounting for
inelastic scattering propetrly in an energy-dependent treatment
with anisotropic scattering, even better agreement will be
found. Work is already underway in this direction.

V. CONCLUSIONS

With the extension of the one-speed transport theory
model, developed in our earlier work, to shells with
a central cavity and central point source with inclusion of
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elastic scattering, and accounting for the effect of inelastic
scattering in an empirical way, rather good agreement was
found between the calculated values of the factorial
moments with the preliminary results of the measurements
made on the Rocky Flats Shells.”® This suggests that it is
worth pursuing the extension of the model to include
energy dependence and anisotropic scattering such that
the effect of inelastic scattering can be accounted for in
an exact way. The conceptual extension of the model is
rather straightforward'; on the practical side, the complex-
ity of the calculations will increase significantly, and the
computational burden might prove prohibitive.

It is also seen that in the transport model developed
by us, most aspects of the physical process, such as the
various reaction types, presence of a mixture of different
nuclides, arrangement geometry, etc., can be taken into
account, which the point model cannot do. This means
that for a given item, the factorial moments can be pre-
dicted with a much higher accuracy than the point model
would do. The question is, however, how much this
enhanced capability can be utilized for the very purpose
of material identification, i.e., to solve the inverse task of
determining the fissile mass of the item from the mea-
sured S, D, and T rates. Namely, the enhanced capabilities
of the model come with the price that it contains a large
number of parameters, all of which in principle would
need to be determined (and/or several be known in
advance) in an unfolding procedure in order to extract
the only important parameter, the source fission rate. This
would be even more complicated if (a,n) reactions were
included. Despite all the approximations that its applica-
tion incurs, the advantages of the point model, as is the
case with all lumped parameter models such as the
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Fig. 6. Comparison of measured and calculated first, second,
and third moments of the number of neutrons emitted from the
Rocky Flats Shells for four different outer radii and with an
inner radius of 2.0126 cm. In the calculated values, the material
properties correspond to those of the isotopic composition of
the Rocky Flats Shells at a neutron energy of 1 MeV.

Feynman-alpha and Rossi-alpha methods, are that it con-
tains a very small set of parameters, which can be
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unfolded by an analytical inversion of the simple alge-
braic formulas, and that the model is robust, i.e., not very
sensitive to fine geometrical and material details (within
certain limits).

For the space-dependent model, an analytical unfold-
ing procedure is obviously not possible since even the
direct task, i.e., the calculation of the factorial moments, is
only possible numerically. However, an unfolding is
achievable based on machine learning methods (artificial
neural networks). It is here that the larger resolution of the
details in the space-dependent model may come to an
advantage. Namely, since the properties of both the fissile
and the fissionable material are included in the calculation
of the factorial moments, it might be possible to deter-
mine the amount of fissile mass contained in the sample,
which is impossible using the point model, which can
determine only the fissionable content of the sample,
that usually plays the role of the source. Examining the
potentials of the space-dependent model for determining
sample parameters is the most important next step that
will need to be explored.
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