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Abstract
Long-timescale behavior of proteins is fundamental to many biological processes. Molecular
dynamics (MD) simulations and biophysical experiments are often used to study protein
dynamics. However, high computational demands of MD limit what timescales are feasible to
study, often missing rare events, which are critical to explain experiments. On the other hand,
experiments are limited by low resolution. We present dynamic augmented Markov models
(dynAMMo) to bridge the gap between these data and overcome their respective limitations. For
the first time, dynAMMo enables the construction of mechanistic models of slow exchange
processes that have been not observed in MD data by integrating dynamic experimental
observables. As a consequence, dynAMMo allows us to bypass costly and extensive simulations, yet
providing mechanistic insights of the system. Validated with controlled model systems and a
well-studied protein, dynAMMo offers a new approach to quantitatively model protein dynamics
on long timescales in an unprecedented manner.

1. Introduction

Understanding the triad of protein structure–function–dynamics is of paramount importance in many fields,
including biochemistry, biophysics, and medicine [1–7]. Thanks to extensive studies of the bovine pancreatic
trypsin inhibitor (BPTI), for example, we now understand the atomic details of its essential role in inhibiting
serine proteases [8]. This knowledge has been possible by combining findings from the fields of x-ray
crystallography [9] and nuclear magnetic resonance (NMR) [10–13] with molecular dynamics (MD)
simulations [14–16]. However, reconciling experimental and simulation data in a systematic manner often
poses problems due to technical and resource limitations. Enabling such a merger would yield a significant
opportunity for quantitative structural biology and biophysics.

Typically, we model dynamic experiments [17], such as NMR relaxation dispersion, single molecular
Förster resonance energy transfer, dynamic neutron scattering, or x-ray photon correlation spectroscopy
using simple n-site jump models [18–22]. This approach yields forward and reverse exchange rates for the
different states as well as site populations. However, modeling dynamics this way beyond a two-state
exchange is challenging, due to experimental limitations and poor timescale separation. In effect, we are
limited to highly simplified models of the complex underlying dynamics of our data where the structure of
states often remain elusive or ambiguous [23–28].

Over the past few decades, MD simulations have become increasingly popular in the field of biophysics,
providing atomistic insights into the behavior of biological systems at high temporal and spatial resolutions
[29–31]. Force field models are steadily improving in quality and their scope is boarding to include
disordered proteins and nucleic acids [32–34]. Although not broadly available, the development of
special-purpose computers, like Anton [35–37], makes it possible to study millisecond timescale molecular
processes. Graphics processing unit (GPU)-accelerated simulations as well as distributed computing
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Figure 1. Schematic of dynamic augmented Markov models (dynAMMo). Simulations often fail to reproduce experimentally
observed dynamic observables, such as NMR relaxation dispersion data due to force field inaccuracies and finite simulation
length. Experiments, on the other hand, are often noisy and often do not reveal the mechanistic details of kinetic exchange. With
dynAMMo, we take into account, both, simulation and experimental data to obtain a single mechanistic kinetic model.

initiatives, such as Folding@home [38] or GPUGrid are more widely available allow us to access processes on
the micro- to millisecond timescale, in particular when large ensembles of simulations are analyzed using
Markov state models (MSMs) [39–43]. MSMs represent themolecular kinetics fully: the relevant structural
states, their thermodynamic weights and their mutual exchange rates [44–50]. MSMs have enabled studies of
many biological processes, such as protein folding, enzymatic activity, or protein–protein interactions [42,
51–57].

Despite these advances in force field accuracy and simulation technologies, we often observe a systematic
discrepancy between the experimental values predicted fromMD trajectories and experimental data [58–61].
The origin of these discrepancies is two fold. First, imperfections in the force field models remain which lead
to skewed populations and altered dynamics. Second, simulations still do not cover the range of biological
timescales of interest. Methods like transition [62] and discrete path sampling [63], transition interface
sampling [64], milestoning [49, 65], metadynamics [66], flooding [67], or replica exchange [68, 69] offer
potential avenues to bridge this timescale gap. The advent of deep generative neural network-based
surrogates further provides new venues for overcoming the sampling problems [70, 71]. However, each of
these approaches have inherent limitations in their scope or rely on extensive manual intervention. Together,
these limitations prevent us from directly comparing to many experiments and thus gaining a mechanistic
interpretation of our data.

The integration of simulation and experimental data is a big challenge with a long history [72]. Previous
methods include post hoc reweighing or sub-selection of simulations data [73, 74], modeling kinetics with
generated ensembles [75], biasing simulations with stationary experimental data [76–85] and dynamic
experimental data [86, 87], and building MSM using experimental and simulation data [88], augmented
Markov models (AMMs). AMMs combine stationary experimental observables with simulation data to
correct for bias in MD data, which improved agreement with complementary stationary and dynamic data
[88]. However, AMMs cannot take into account dynamic data, and consequently also cannot deal with
situations where our simulations have not sampled processes which are important to explain the data.

Here, we present dynAMMo, a new approach that accounts for stationary and dynamic experimental
data, such as R1ρ or Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion experiments [20, 89, 90], to
estimate a Markov model (figure 1). By combining constrained optimization with the principle of maximum
entropy, we are able to correctly recover experimental timescales from biased simulations and are able to
model exchange between states not seen in the simulation data as long as the states themselves are known. To
our knowledge, this is the first method that enables the construction of mechanistic models of protein
dynamics, even when rare events remain unobserved in the MD data. This achievement is made possible
through the dynamic experimental data that complement the simulations by reporting on the exchange
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processes that have not been sampled by the simulations. With dynAMMo, we therefore address the
aforementioned issue in MD simulations by circumventing the, often very costly, need for (reversibly)
sampling rare events in order to establish a kinetic mechanistic model. Also, we can show that our method
fails and thus does not overfit when one or more relevant states are missing. The method therefore broadens
the scope for future research in understanding the complex dynamics of biomolecular systems in general and
brings the field closer to the development of data-driven models that accurately capture the underlying
mechanisms-of-action.

2. Theory

2.1. dynAMMo
MSMs are based on the discretization of the state space Ω of a molecule into n states. By following the
traversal of an MD trajectory through these states we can estimate the transition probabilities pij from states i
to states j through the analysis of transition counts cij(τ) with a lag time τ [39, 40, 43]. The resulting
transition matrix T(τ) ∈ Rn×n encodes themolecular kinetics of the system, including the populations of the
states and the rates of exchange between them. This information is accessible through the spectral
components of T(τ), the eigenvectors R and eigenvalues λ, as well as the stationary distribution π (see
supporting information, ‘Theory’) [43].

AMMs [88] aim to estimate an MSM which matches stationary experimental observables, such as NMR
3J-coupling or residual dipolar coupling data that probe the ‘true’ Boltzmann distribution, by reweighing the
relative populations of the states through the maximum entropy principle. Even though this approach does
not directly take into account information about the kinetic rates between the states, Olsson and Noé observe
that the integration of stationary observables has an effect on the prediction of dynamic observables, such as
Rex1ρ relaxation dispersion. However, in general we cannot expect AMMs to match dynamic experimental
data, nor can they consider cases in which not all states of the MSM are connected.

Here, we address these limitations with dynAMMo that combine simulation data, in the form of one or
more count matrices C (supplementary information, algorithm 1, line 1), and dynamic and stationary
experimental observables oexp to a single kinetic model. By combining these sources of information, we aim
to obtain a more accurate and comprehensive representation of biomolecular dynamics. Using experimental
data that report on the conformational exchange kinetics, we can directly estimate the forward and reverse
rate constants of switching from one state to another. Unlike Brotzakis et al, no prior knowledge of the
kinetic rates are required nor are we limited to a two-state exchange.

2.2. Connection between experiments and simulations
For each experimental observable oexp, we assume that there is a corresponding observable function f(·)
(forward model) available that maps all configurations, x ∈ Ω, to a complex or real vector space, V , however,
often just a scalar, e.g. a distance or a chemical shift. For MSMs, we can average these values over the n
Markov states yielding a ∈ Vn [88]. Here, we focus on dynamic experiments, where we measure time
correlations of these observables either directly or through a transformation. From an MSM, T(τ), we can
compute the time correlation of f :

⟨ f(x(0))⊤f(x(kτ))⟩ ≈ odynamic (k) = a⊤ΠT(τ)k a, (1)

whereΠ is the diagonal matrix of the stationary distribution π, and ⊤ is the transpose or the complex
conjugate. We can compare this quantity directly to experimentally measured counterparts and thereby use it
to drive the estimation of MSMs. Many dynamic observables, however, are transformations of the
time-correlation, rather than the time-correlation itself. This includes, among others, CPMG and Rex1ρ
relaxation dispersion, which measure the convolution of the time-correlation function with a spin-lock field.
Here we assume fast chemical exchange, and use previously described closed-form expression for Markov
models [91, 92] to predict data and drive MSM estimation (see supporting information, ‘Theory’ for a more
detailed explanation).

2.3. Estimation of dynAMMo
We estimate dynAMMo models by optimizing a loss function which includes the transition counts cij from
states i to j and the sum of the mean-square difference between the predictions and experimental data,D, of
the lth observable at the kth lag-time,

arg min
λ̂,R̂,π̂

L
(
T̂(τ) | D,C(τ)

)
=−

∑
ij

cij logpij +
∑
l,k

(
opred, dynl,k − oexp, dynl,k

)2
. (2)
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Here, pij is the probability of transitioning between states i and j. The loss is computed with respect to the

spectrum of T̂(τ), i.e. the eigenvalues λ̂, eigenvectors R̂, and the stationary distribution π̂ and is subject to
several constraints. To estimate λ̂ and R̂, we use gradient descent with additional orthogonality constraints
for optimization of the eigenvectors. Rather than enforcing orthogonality directly with a penalty term in the
loss function, dynAMMo optimizes the eigenvectors on the Stiefel manifold through Riemannian
optimization [93]. Following AMMs, we further have the option to include stationary experimental
observables as described previously [88]. The estimation procedure as well as the theoretical details are
explained in more detail in supporting information, ‘Theory’.

3. Results and discussion

3.1. Enforcing dynamic experimental constraints on a kinetic model rescues biased simulation data
To demonstrate the power of dynAMMo, we will first examine our model by applying it to two
one-dimensional energy potentials: the Prinz potential [43] (figure 2, brown background) and the three-well
potential (figure 2, teal background). In both model systems, there is one slow transition as well as one or
more faster transition(s) that we aim to model. The Prinz potential has four states with comparable
populations with one slow transition between the first and last two states, whereas the three-well potential
has two fast-interchanging low-energy states and one state with a high energy barrier. In both model systems,
we used the slowest eigenvectors as an observable function as they encode near perfect information about the
slowest process.

We will first examine the scenario where we have biased simulations, which we compare with the
experimental data derived from a ‘ground truth’ model. In this case, all states were reversibly sampled in the
simulations. However, due to, for example, force field inaccuracies and finite sampling, the timescales of
exchange between the processes and the thermodynamics of the system do not correspond to the ‘true’
ensemble. By investigating the free energy profiles of the two systems (figure 2(A)/(J)), we see that the
populations of the MSM (blue) match the ground truth well (yellow). Consequently, we would not expect
reweighing considering only the stationary observables, as is done in AMMs, will not have a big effect on the
prediction of the dynamic observables since the timescales show significant discrepancies (figure 2(B)/(K))
between the MSM and the ground truth. Using dynAMMo, we can perfectly match the slowest timescales
(figure 2(B)/(K)). We find a similar mismatch between the MSMs estimated on the biased data and the
‘ground truth data’ (figure 2(C)/(L)). Since our observable function inherently informs about the slowest
process we find that, dynAMMo does not substantially modify the timescale of the faster processes
(figure 2(B)). This implies that the model does not introduce unnecessary bias into the estimation if it is not
reflected in the observable. As opposed to the Prinz potential, we find that the predicted kinetics in the model
trained on biased data from the three-well potential (figure 2, panels (J)–(L)) are accelerated compared to
the ground truth (figure 2(K)). This mismatch in timescales manifests itself as poor agreement with the
observable time correlation functions (figure 2(L)) between the ground truth (yellow) and the naive MSM
(blue). Integrating the correlation function data and the biased simulation data with dynAMMo, we are in
agreement with the ground-truth data and match the underlying rates.

3.2. Disconnected simulations can be combined to a single Markovmodel using dynamic constraints
Many systems are characterized by timescales which are impractical to sample with statistical confidence.
However, we may have access to multiple experimental structures of each of the states in isolation, some of
which we can sample transitions between, others which are infeasible to sample. An example is the bovine
BPTI, for which numerous studies have reported slow millisecond timescale dynamics [94–97], and a
millisecond long MD simulation only sampled the suspected slow transition once [16]. In many other cases,
sampling such a transition in an unbiased fashion remains impractical.

To test such a scenario, we designed two experiments where we discard the transition counts of the
slowest transition (figures 2(D) and (E)/(M) and (N)), gray dotted line) and split the trajectory in two. We
build two MSM corresponding to the, now, disconnected subregions of the state space (supporting
information, ‘Materials and Methods’). After reweighing the populations using the stationary AMM
procedure [88], we perfectly match the model (red) and the ground truth (yellow) populations
(figure 2(D)/(M)). Despite not having prior information on the slowest process, we can correctly identify the
missing timescale using dynamic experimental observables (figure 2(E)/(N)). Our model bridges the two
sides, even in the absence of observed transitions between them. This discovery is guided by the correlation
function, i.e. the observable (figure 2(F)/(O)). The correlation function indirectly holds this information
(equation (S4)), as a slower exchange process corresponds to a slower decay in the correlation function. Since
we can match, both, the kinetics and the thermodynamics of the systems, we can also fit the observable
prediction (figure 2(F)/(O) red, solid) to the ground truth (figure 2(F)/(O) yellow, dashed). Using
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Figure 2. Overview of model system benchmark results. Three different scenarios using two model systems, the Prinz potential
(brown background) and the three-well potential (teal background) are shown. The three different scenarios include biased
simulations (A)–(C), (J)–(L), disconnected trajectories (D)–(F), (M)–(O), and unobserved or missing states (G)–(I), (P)–(R).
Each of the scenarios show the free energy potential, timescales of exchange, and observable plots. χ2 values and residuals
between the model predictions and the ground truth data are also shown for the observable plots. The model results are shown in
red, the ‘ground truth’ experimental data in yellow, and the naive MSM predictions in blue.∆G values of the slowest transition
for the different systems are given in the supporting information (table S4).

experimental dynamic observables, we can thereby merge disconnected simulation statistics and estimate a
single model which faithfully reproduces all the available data.

3.3. dynAMMo does not overfit when relevant states are missing
Next, we consider the case where one or more states that contribute to a measurable experimental signal is
missing from the MD simulation data. This situation is common in MD simulation studies as the simulation
time is often insufficient to sample all the relevant states, and is an edge case related to the ‘disconnected’
situation discussed above. However, contrary to the previous case, we do not have all structural information
to support a reliable prediction of the observable here. We therefore anticipate that dynAMMo is unable to
yield a model perfectly fitting these data. To simulate this scenario, we discard transition counts from one
state completely. Concretely, this procedure discards simulation data about states above 0 (figures 2(G)–(I))
in the Prinz potential and states below 2.5 in the asymmetric triple well potential (figures 2(P)–(R)). In this
case, models built with dynAMMo cannot match (figure 2(I)/(R)) the data, which translates into missing
timescales (figure 2(H)/(Q)). Mismatching predictions indicate that the model is failing, which suggests that
one or more states that give rise to a measurable signal are missing.

3.4. A mechanistic model of BPTI disulfide isomerization dynamics with dynAMMo
To test how our model performs in a realistic scenario, we turned to BPTI as a protein system. BPTI is a
58 residue protein whose dynamics has been extensively studied, both experimentally [95, 96, 98, 99] and
computationally [16, 100]. BPTI is known to have micro- to millisecond conformational exchange [95, 96,
101], centered mainly on different isomerizations of the disulfide bond between Cys14 and Cys38. In
addition, there is a 1ms long MD trajectory available at a temperature of 300K [16]. In this simulation, all
known major conformations of BPTI are sampled, and the transitions between them show a distinct
separation of timescales. Analysis of the trajectory shows conformational exchange in the fast microsecond
regime [16, 88, 102], which is much faster than what the experimentally determined rates are suspected to
reflect these processes. The discrepancy between the experiments and the simulation data makes BPTI an
ideal test case for demonstrating dynAMMo as an avenue to reconcile the data.
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Figure 3. Integrating BPTI simulations and CPMG NMR data to build a quantitative kinetic model with dynAMMo. (A)
Representative structures of the major BPTI states with the structural characteristics highlighted. Aromatics are shown for
orientation. (B) Kinetic network between macrostates. The colors of the nodes correspond to the structural representatives shown
above. The size of the nodes and the arrow widths are proportional to the size of the populations as well as the reaction rate,
respectively. Rates are shown above/below the arrows in ms−1. (C) Timescales of exchange as a function of the slowest processes.
dynAMMo is shown in red and the MSM from the simulation data is colored blue. The time constant of the experimentally
determined exchange is shown in yellow with the standard deviation shown as shaded area.

By integrating simulation [16] and experimental CPMG data [94] from NMR spectroscopy with
dynAMMo, we build a kinetic model of BPTI (figure 3). In line with previous analyses [88, 103], we used
time-lagged independent component analysis [104] to define a low dimensional space which we discretized
into 384 states and aggregated into four metastable structural states. Consistent with previous analyses, the
major structural substates display isomerization of the disulfide bridges between residues 14 and 38
(figure 3(A)). We show the most populated states colored purple and light blue (a total population of
approximately 90%), while the remaining population is shared by the green and orange states (figure 3(A)).
The state connectivity is dense and rates vary across an order of magnitude (figure 3(B)), which we show
with arrows of varying thickness between the states colored by identity and scaled by their relative
populations. The slowest rates correspond to the transitions to the two minor states (supporting
information, figure S6(a)) and we expect to occur in the low millisecond regime. The implied timescales
computed from our dynAMMo model are systematically shifted compared to those of the naive MSM that
only takes simulation statistics into account (figure 3(C)). For the MSM, the slowest processes are barely on
the order of hundreds of microseconds (dark blue crosses) [91]. On the other hand, the slowest implied
timescale estimated by dynAMMo is on the order of magnitude of approximately 3.2ms. This timescale
matches well with those estimated from experimental data at the same temperature using a two-state fit,
where Millet et al determined a chemical exchange of the order of 2–3ms [94].

In figure 4 we show representative examples of some key observables. The plots show CPMG relaxation
dispersion curves, which measure the effect of chemical exchange on 15NH spins. The chemical shift
predictions that were used as observables for the backbone amides were obtained by the PPM algorithm
[105]. The experimental CPMG data are shown in yellow, whereas the predictions of the model are shown in
red and the predictions were scaled according to the values reported in the supporting information
(figure S7). All observables show an excellent overall agreement with the data, suggesting that the underlying
model is capable of explaining the data in a meaningful way (see supporting information, figures S8 and S9).
We note that all relevant residues involved in the exchange display a relatively strong dispersion, which we are
able to perfectly match using dynAMMo. This observation strengthens the argument that the conformations
sampled in the MD simulation constitute the relevant configurations needed to explain the experimental
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Figure 4. CPMG relaxation dispersion data of BPTI 15NH spins. Nine representative examples of CPMG plots are shown. The
fitted model (red, solid) is in high agreement with the experimental data (yellow circles). χ2 values between the prediction and
the experiments are shown for each subplot. The dagger † refers to the dataset that has been recorded at a Larmor frequency of
600MHz. Conversely, the double dagger ‡ refers to the dataset recorded at 500MHz [94]. Residuals between the experiments and
predictions are shown in pink.

data. We stress that dynAMMo uses all observables to fit one global kinetic model. Therefore, the predictions
of the relaxation dispersion curves for the backbone nitrogens differ only by the observable used for each
residue. Here, we demonstrate how dynAMMo can be used to combine experimental NMR relaxation data
with simulation data from MD simulations. Therefore, we obtain a detailed mechanistic explanation of how
the different metastable states observed in the MD trajectory contribute to the experimentally probed
chemical exchange.

3.5. Quantitative molecular kinetics from disconnected simulation statistics with dynAMMo
Above we saw how dynAMMo could recover the correct kinetics on a controlled test system. To evaluate
whether dynAMMo generalizes to more complex protein systems, we establish a similar benchmark,
systematically removing simulation statistics that connect the major and minor populated states of BPTI. For
this case, we similarly find that dynAMMo can quantitatively recover the exchange rates between the
disconnected states (figure 5(A)), and recover the implied timescales accurately (figure 5(B)), despite the
minor discrepancies between the timescales in the connected and disconnected case (figures 3 and 5). The
discrepancies observed, although noticeable, are on the same order of magnitude. We are to expect these due
to a combination of limited data and data uncertainty. The MSM in this case is missing the slowest
process (figure 5(A), dashed cross), however, dynAMMo can recover this process and quantitatively
predict the timescale. We show a detailed analysis of this scenario in the supporting information
(figure S6(b)).

4. Conclusion

Here we have introduced dynAMMo, a new method to improve the accuracy of mechanistic biomolecular
models by incorporating dynamic experimental measurements to correct for biases in the kinetics and
thermodynamics of MD simulations. However, most intriguingly, dynAMMo also allows us to build
quantitatively predicted model of molecular kinetics even in the absence of simulation statistics on (slow)
conformational transitions. We show the performance of dynAMMo across two well-controlled benchmark
systems and later deploy it to two realistic scenarios using data from molecular simulations and NMR
spectroscopy on the protein BPTI. It is essential to highlight that while dynAMMo offers significant
advancements, the robustness of the model still depends on the quality of the initial MD and experimental
data. In cases where MD simulations inadvertently do not sample certain rare events or states, we can only
build a (useful) dynamic AMM if all states are known but only some transitions are missing (‘disconnected’
model case). The model fails if one or more important state are missing, offering important insights into the
conformational space of the molecule. This observation reinforces the need for comprehensively sampling
the relevant conformational states, either through simulations or with experimental techniques. Further,
since dynAMMo balances experimental and simulation data through the principle of maximum entropy, we
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Figure 5. Overview of simulating disconnected case using BPTI simulations and CPMG data. (A) Kinetic network between the
disconnected states. All transitions between the purple/light blue and orange/green clusters were removed (indicated with dashed
gray arrows) and two MSM were built using only the within-states trajectory data. The colors of the states correspond to the
clusters shown in figure 3(A). (B) Implied timescale plot of the disconnected model (gray), the connected model (red), and the
MSM (blue) for comparison. The presumed timescale of exchange that was removed in this scenario is indicated as a dashed
cross. Lower panel: four representative examples of CPMG relaxation dispersion predictions of selected backbone nitrogens. The
predictions of the disconnected case (dashed gray) are plotted together with the predictions of the connected scenario (red) for
comparison. χ2 values are shown with respect to the predictions of the disconnected case and the experimental data (yellow).

approach a compromise from an information theoretical perspective. Therefore, although multiple models
could potentially explain the data, we identify the one that requires minimal perturbation from the
simulation data to align with the available experimental evidence. As such, dynAMMo opens up the
possibility of salvaging sparsely sampled simulation data sampled using biased force fields and repurpose
them to build quantitatively predictive models for structural biology.

5. Materials andmethods

The estimator is implemented in Python and uses PyTorch [106] and DeepTime [107] as the main analysis
and modeling tools. The estimation procedure and theory details are provided in supporting information,
‘Theory’. The code will be made available on https://github.com/olsson-group/dynAMMo. All figures
showing molecular structures were made using PyMol [108]. All plots were generated using Matplotlib
[109]. Additional results, such as the slowest estimated eigenvectors, loss function, and stationary
distribution are reported in the supporting information for all model systems (figures S4 and S5) and BPTI
(figure S6), respectively.

5.1. Benchmarkmodel systems
The DeepTime implementation of the four-state Prinz potential and the three-well potential datasets was
used to simulate the two benchmark systems [107]. The parameters used to simulate the trajectories are
reported in the supporting information (table S1). The estimation of the dynAMMo were carried out as
outlined in section 3. Each scenario uses different parametrizations of the potential and a table with an
overview is listed in the supporting information (table S2). Chapman–Kolmogorov tests have been
performed on all MSMs used in this study (supporting information figures S1 and S2).
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5.2. BPTI
The estimation and analysis of the BPTI dynAMMo were conducted as described in section 3.
Chapman–Kolmogorov tests were conducted on the MSMs used here to ensure validity of the models
supporting information (figure S3). The estimation parameters of the two scenarios are listed in the
supporting information (table S3). Further details are provided in supporting information, ‘Materials and
Methods’.
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