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a b s t r a c t

This paper proposes a method to synthesise controllers for cyber-physical systems subjected to
disturbances, such that the controlled system satisfies specifications given as linear temporal logic
formulas. To solve this problem, a finite-state abstraction of the original system is first constructed,
and then a controller is synthesised for the abstraction. Due to the disturbances and uncertainty in
the environment, future states cannot be predicted exactly, and the abstraction must take this into
account. For this purpose, the robust stutter bisimulation relation is introduced, which preserves the
existence of controllers for any given linear temporal logic formula that excludes the next operator.
States are related by the robust stutter bisimulation relation if the same target sets can be guaranteed
to be reached or avoided under control of some controller, thus ensuring that disturbances have similar
effect on paths that start in related states. It is shown that there exists a controller enforcing a linear
temporal logic formula for the original system if and only if a controller exists for the abstracted
system. The approach is illustrated by a robot navigation example.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A cyber-physical system (CPS) is an integration of a dynami-
cal physical system and computers affecting its behaviour (Lee,
2015). This can be a continuous time dynamical system subject
to process disturbances, under control of a computer with a
fixed sampling time. CPSs are often safety critical, thus they
must meet correctness guarantees. One way to achieve such
guarantees is to use formal synthesis to construct the control logic
utomatically (Belta et al., 2017).
Synthesis computes, from a model of the CPS and a formal

pecification, the allowed control actions such that the behaviour
f the controlled system satisfies the specification. The specifica-
ion is a formalisation of the requirements, and can be expressed
n, for instance, Linear Temporal Logic (LTL, Baier and Katoen
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2008). LTL extends propositional logic with temporal operators
so that requirements on future behaviour can be specified.

Standard algorithms (Belta et al., 2017; Kloetzer & Belta, 2008;
Ramadge, 1989) for controller synthesis with LTL specifications
require finite transition systems, whereas many CPSs are de-
scribed by continuous models with infinite state spaces. Such
models can be turned into transition systems by discretisation, but
in general neither the state space nor the transition relation of
the resulting concrete transition system are finite (Tabuada, 2009).
Finite-state abstraction, though, groups states in a finite quotient
tate space. One such abstraction method is bisimulation (Milner,
989). It preserves all LTL properties (Baier & Katoen, 2008), and
s guaranteed to produce finite quotient spaces for certain types
f systems (Alur et al., 2000).
If the bisimulation quotient of a system is infinite, a finite quo-

ient space might be obtained by using a coarser abstraction. One
pproach to obtain coarser quotients is approximate bisimulation
here bisimulation is relaxed to allow a bounded difference be-
ween the behaviours of the concrete and abstract system (Girard
Pappas, 2007). Coarser quotients also result from (approximate)

imulation (Belta et al., 2017; Reissig et al., 2016; Tabuada, 2006;
amani et al., 2011), which relaxes bisimulation by retaining
nly some controlled behaviours of the concrete system. Dual-
imulation (Wagenmaker & Ozay, 2016) produces a coarser ab-
traction than bisimulation by using overlapping subsets. Another
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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oarse abstraction is obtained by divergent stutter bisimulation
hich allows stutter steps within the abstract states (Baier & Ka-
oen, 2008). Mohajerani et al. (2021) show that divergent stutter
isimulation yields abstractions for which a controller can be
ynthesised if and only if a controller can be synthesised for
he concrete system, given that the synthesis is performed with
TL specifications without the next operator (LTL\◦). Without this
perator specifications cannot refer to specific time intervals, but
his is not always necessary for formalising the requirements.
nfortunately, the work by Mohajerani et al. (2021) applies to
eterministic transition systems and do not work for systems
ubject to disturbances.
Disturbances, that stem from the system dynamics or fidelity

oss in the discretisation, create non-determinism. Abstraction
ethods for controller synthesis for non-deterministic transi-

ion systems have been considered by Liu and Ozay (2016),
sing LTL\◦. Also, Nilsson et al. (2012) consider abstractions

of discrete-time systems subject to disturbances where N-step
eachability is the basis for abstraction, and in the work by Nils-
on et al. (2017) progress groups are introduced to allow coarser
bstractions while preserving long-horizon reachability and pro-
ress properties. However, for these approaches, controllers that
xist in the concrete system might not have a corresponding
ontroller in the abstract system. Another abstraction approach
s (approximate) alternating bisimulation (Alur et al., 1998; Pola
Tabuada, 2009), which is an extension of (approximate) bisim-
lation applicable for synthesis with LTL specifications on non-
eterministic systems.
This paper addresses the problem of designing a controller

or a given non-deterministic concrete transition system and an
TL\◦ specification using an abstraction method that guarantees
hat a controller can be synthesised for the concrete system
f and only if a controller can be synthesised for the abstract
ystem. The abstractions are based on the robust stutter bisimu-
ation relation introduced in this paper, which extends divergent
tutter bisimulation to non-deterministic systems, and relaxes
lternating bisimulation to LTL\◦ specifications. As such, this work
an be seen as a combination of the works by Mohajerani et al.
2021) and Pola and Tabuada (2009). It is shown how an abstract
ransition system can be constructed based on robust stutter
isimulation, and how this abstraction is used to synthesise and
mplement a controller for the concrete system.

. Preliminaries

.1. Transition systems

A transition system is a tuple G = ⟨S,Σ, δ, S◦,AP, L⟩ with S
set of states, Σ a set of transition labels, δ ⊆ S × Σ × S a

ransition relation, S◦
⊆ S a set of initial states, AP a set of atomic

propositions, and L : S → 2AP a state labelling function. Denote the
set of all transition systems by T .

Let S∗ and Sω denote the sets of all finite and infinite sequences
of S, respectively, and S∞

= S∗
∪ Sω . The set of non-empty

inite sequences is denoted by S+
= S∗

\ {ε}, where ε is the
mpty sequence. Two sequences ρ ∈ S∗ and π ∈ S∞ can be
oncatenated to form a new sequence ρπ ∈ S∞. A finite sequence
∈ S∗ is a prefix of π ∈ S∞, written ρ ⊑ π , if there exists a

equence π ′
∈ S∞ such that ρπ ′

= π , and ρ is a proper prefix
f π , written ρ ⊏ π , if ρ ⊑ π and ρ ̸= π . A finite sequence of
tates ρ = s0 · · · sn ∈ S∗ is a finite path fragment of G if for all
≤ i < n there exists σi ∈ Σ such that (si, σi, si+1) ∈ δ. The set

of all finite path fragments of G is denoted Frags∗(G). An infinite
equence of states π ∈ Sω is an infinite path fragment of G if for
ll finite prefixes ρ ⊏ π it holds that ρ ∈ Frags∗(G). The set of
ll infinite path fragments of G is denoted Fragsω(G). The set of
2

ll path fragments of G is Frags∞(G) = Frags∗(G) ∪ Fragsω(G). A
ath of G is an infinite path fragment π = s0s1 · · · ∈ Fragsω(G)
ith s0 ∈ S◦. The set of all paths of G is denoted Pathsω(G). For
∈ T the state labelling function L can be extended to sequences
= s0s1 · · · ∈ Frags∞(G), as L(π ) = L(s0)L(s1) · · · ∈ (2AP)∞.
For G1,G2 ∈ T with S1 ∩ S2 = ∅, their union is G1 ∪ G2 =

S1 ∪ S2,Σ1 ∪Σ2, δ1 ∪ δ2, S◦

1 ∪ S◦

2,AP1 ∪ AP2, L⟩ with L(s) = L1(s)
or s ∈ S1, and L(s) = L2(s) for s ∈ S2.

G ∈ T is deadlock-free if for each state s ∈ S there exists a label
∈ Σ and a state t ∈ S such that (s, σ , t) ∈ δ.

.2. Relations

Given a set X , a relation R ⊆ X × X is an equivalence relation
n X if it is reflexive, symmetric, and transitive. The equivalence
lass of x ∈ X is [x]R = { x′

∈ X | (x, x′) ∈ R }. The set of all
quivalence classes modulo R, the quotient space of X under R,
s X/R = { [x]R | x ∈ X }. Partitioning into equivalence classes
s one way to abstract the state set of a transition system; in the
bstract system each equivalence class is one state. A relation R1
s a refinement of a relation R2 if R1 ⊆ R2, and then R2 is said
to be coarser than R1.

Let R ⊆ X × X be an equivalence relation. A set T ⊆ X is
a superblock of R, if for all x1 ∈ T and all x2 ∈ X such that
(x1, x2) ∈ R, it holds that x2 ∈ T . The set of all superblocks
of R is denoted SB(R). Superblocks are sets of elements that are
closed under the equivalence relation R. Alternatively, they can
be characterised as unions of zero or more equivalence classes;
thus, the empty set is also a superblock.

2.3. Linear temporal logic

A formula of Linear Temporal Logic without Next (LTL\◦) (Baier
& Katoen, 2008) is a logical formula over atomic propositions
from a set AP, the propositional logic operators, and the binary
operator U . Its syntax is defined by ϕ = ⊤ | p | ¬ψ | ψ ∧ θ | ψ U
θ , where p ∈ AP, and ψ and θ are LTL\◦ formulas. For G ∈ T ,
whether an infinite path fragment π = s0s1 · · · ∈ Fragsω(G)
satisfies the LTL\◦ formula ϕ, written π ⊨ ϕ, is defined inductively
on the structure of ϕ:

• π ⊨ ⊤ always holds;
• π ⊨ p iff p ∈ L(s0);
• π ⊨ ¬ψ iff π |H ψ does not hold;
• π ⊨ ψ ∧ θ iff π ⊨ ψ and π ⊨ θ ;
• π ⊨ ψ U θ iff there is m ≥ 0 such that smsm+1 · · · ⊨ θ and

for all 0 ≤ i < m it holds that sisi+1 · · · ⊨ ψ .

n LTL\◦ formula ϕ holds at state s, written ⟨G, s⟩ ⊨ ϕ, if all
nfinite path fragments starting at s satisfy ϕ, i.e, for all infinite
ath fragments π ∈ Fragsω(G) with s ⊏ π , π |H ϕ. The transition
ystem G satisfies ϕ, written G |H ϕ, if ⟨G, s◦⟩ |H ϕ for all initial
tates s◦ ∈ S◦.
Additional temporal operators are defined based on the exist-

ng ones as ♢ψ ≡ ⊤ U ψ , □ψ ≡ ¬♢¬ψ , and ψ W θ ≡ □ψ∨(ψ U
). The operators U and W are read as (strong) until and weak
ntil. If ψ U θ is satisfied on a path fragment, then θ eventually
olds for some state sequence in the path fragment, and ψ holds
n all state sequences before that. ψ W θ is similar , but is also
atisfied on path fragments where ψ holds in all states.
LTL\◦ can be generalised over state sets X ⊆ S. For π =

0s1 · · · ∈ Frags∞(G), let π ⊨ X iff s0 ∈ X . Such LTL\◦ formulas
re called generalised LTL\◦ formulas.
Let G ∈ T . A stutter step formula for G is a generalised LTL\◦

ormula of the form P V T , where P, T ⊆ S with P ∩ T = ∅

nd V ∈ {U,W}. Let R ⊆ S × S be an equivalence relation. If
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, T ∈ SB(R), then the formula P V T is called an R-superblock
tep formula from P .

Stutter step formulas P V T describe the immediate future
hen a system is in some state set P . The set T contains states
hat can be entered next from P . A stutter step formula of the
orm P U T means that a path visiting P will eventually reach T ,
hereas P W T means that it is possible to stay in P indef-

nitely or enter T . Superblock step formulas, where the source
nd target sets both are superblocks, describe the transition rela-
ion of an abstract system whose states are equivalence classes.
-superblock step formulas make it possible to abstract away
o-called R-stutter steps, transitions within an equivalence class.
hether a path fragment satisfies an R-superblock step formula

s independent of the number of R-stutter steps. If R preserves
tate labels, then it can also be shown that the satisfaction of LTL\◦

ormulas is independent of such steps.
For π = s0s1 · · · ∈ Frags∞(G), its stutter free sequence sf(π ) ∈

∞ is obtained from π by removing all elements si+1 such that
i+1 = si. Two path fragments π1, π2 ∈ Frags∞(G) are stutter
quivalent if sf(L(π1)) = sf(L(π2)), and if both are either finite or
nfinite. The trace of equivalence classes of π with respect to an
quivalence relation R is [π ]R = [s0]R[s1]R · · · . Then π1, π2 are
-stutter equivalent if sf([π1]R) = sf([π2]R).

heorem 1 (Baier and Katoen 2008). Let G ∈ T , let ϕ be an LTL\◦

ormula, and let π1, π2 ∈ Fragsω(G) be two stutter equivalent path
ragments. Then π1 ⊨ ϕ iff π2 ⊨ ϕ.

.4. Controllers

Transition systems can be controlled by dynamically restrict-
ng the set of allowed transitions. A controller does this by de-
iding, based on the history of visited states, the set of allowed
ransition labels. Thus, a (general) controller for G ∈ T is a
function C : S+

→ 2Σ .
As a controller controls a transition system G, the resultant

behaviour is described by another transition system, called the
controlled system, the states of which are sequences of states of
the original transition system G.

Let G ∈ T , and C : S+
→ 2Σ be a controller for G. The controlled

ystem is C/G = ⟨S+,Σ, δC , S◦,AP, LC ⟩, with

C =
{
(s0 · · · sn, σ , s0 · · · snsn+1) ∈ S+

×Σ × S+
|

(sn, σ , sn+1) ∈ δ and σ ∈ C(s0 · · · sn)
}
.

nd LC (s0 · · · sn) = L(sn).
The initial states of the controlled system C/G are the initial

tates of the original system G, interpreted as sequences of length
ne. After observing a state sequence s0 · · · sn, the state of G is sn
nd the state of C/G is s0 · · · sn. The transitions from this state
n C/G are those possible in G from sn and allowed by C from
0 · · · sn. C is said to be deadlock-free if C/G is deadlock-free. Let
denote all deadlock-free controllers.
C enforces a (generalised) LTL\◦-formula ψ from state s of G if

C/G, s⟩ ⊨ ψ , and C enforces ψ on G if C/G ⊨ ψ . That is, an LTL\◦

ormula is enforced from a state if every controlled path fragment
tarting from that state satisfies the formula. An LTL\◦ formula is
nforced on a transition system if it is enforced from every initial
tate.
The path fragments of a controlled system C/G are given by

rags∞(C/G), which by definition are sequences of states of C/G
nd thus sequences of sequences of states of G. Such path frag-
ents (s0)(s0s1) · · · (s0s1 · · · sn) · · · of the controlled system C/G
an be replaced by path fragments s0s1 · · · sn · · · of G. Let C : S+

→
Σ be a controller for G. A finite path fragment ρ = s0s1s2 · · · sn ∈

rags∗(G) is permitted by C if for all 0 ≤ i < n there exists
∈ C(s · · · s ) such that (s , σ , s ) ∈ δ. The set of all finite path
i 0 i i i i+1

3

fragments in G permitted by C is denoted by Frags∗(C,G). This can
be extended to permitted infinite path fragments, Fragsω(C,G),
and permitted path fragments, Frags∞(C,G). The set of permitted
paths, Pathsω(C,G), is defined likewise.

2.5. Positional controllers

A positional controller for G ∈ T is a function C : S → 2Σ . As
a positional controller only makes decisions based on the current
state, its controlled system can be alternatively defined using the
original transition system state space. The controlled system of

under the control of C is C/G = C/G where C : S+
→ 2Σ

with C(ρu) = C(u) for all ρ ∈ S∗ and u ∈ S. Let C denote all
deadlock-free positional controllers.

Let ψ be a generalised LTL\◦-formula for G ∈ T . The set of
states where ψ can be enforced by control is:

ECG(ψ) =
{
s ∈ S | ∃C ∈ C s.t. ⟨C/G, s⟩ |H ψ

}
;

ECG(ψ) =
{
s ∈ S | ∃C ∈ C s.t. ⟨C/G, s⟩ |H ψ

}
.

It is clear that ECG(ψ) ⊆ ECG(ψ) for every generalised LTL\◦

ormula ψ . For stutter step formulas, i.e., generalised LTL\◦ for-
ulas of the form P U T and P W T , also the converse
olds.

roposition 2. Let G ∈ T be deadlock-free, and let ψ be a stutter
tep formula for G. Then ECG(ψ) = ECG(ψ), and there exists a C ∈ C
such that, for all states s ∈ ECG(ψ) it holds that ⟨C/G, s⟩ |H ψ .

roof. Let ψ ≡ P V T be a stutter step formula. Clearly,
ECG(ψ) ⊆ ECG(ψ), as a positional controller is a special case of a
general controller. It remains to show ECG(ψ) ⊆ ECG(ψ). Assume
that s0 ∈ ECG(ψ). Either it holds that s0 ∈ T or s0 ∈ P . If s0 ∈ T ,
learly s0 ∈ ECG(ψ). The proof continues on a case-by-case basis
for s0 ∈ P .

If ψ ≡ P W T it must be shown that there exists a controller
C ∈ C such that all infinite path fragments π ∈ Fragsω(C,G) has
the property that either there exists a path fragment τ = τ ′t ⊑ π

with s0 ⊑ τ ′
∈ P∗ and t ∈ T , or there exists a path fragment

τ ⊑ π with s0 ⊑ τ ∈ Pω . Since there is a controller C ∈ C that
enforces ψ from s0, there is always a choice σ from any state
s1 ∈ P∩ECG(ψ) such that C(s1, σ ) ⊆ P∪T . C can therefore always
enforce the next possible states to be in P ∪ T , which means all
ontrolled path fragments have the desired property.
The other case is when ψ ≡ P U T . For a contradiction, assume

hat there does not exist a controller C ∈ C that enforces ψ from
s0. Then there must exist an s1 ∈ P ∩ C(s0) such that there does
ot exist a controller C

′

∈ C that enforces ψ from s1. It holds
that ⟨C/G, s0s1⟩ |H P U T , which means that s1 ∈ ECG(ψ). By
induction, it is possible to construct an infinite path fragment
π ∈ Fragsω(C,G) with π = s0s1 · · · ∈ Pω . This contradicts
⟨C/G, s0⟩ |H P U T . □

3. Controller synthesis by abstraction

This paper concerns synthesis of a controller enforcing an
LTL\◦ formula ϕ on a concrete transition system G, as illustrated
by the dashed arrow in Fig. 1. Typically, G models a discrete-
time dynamical system derived from difference equations with
infinite state, control, and disturbance spaces, thus G’s state space
is infinite.

Synthesis Problem. Given G ∈ T and an LTL\◦ formula ϕ, find
C ∈ C that enforces ϕ on G.
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Fig. 1. Illustration of controller synthesis by abstraction. The dashed arrow
represents synthesis directly on the concrete system, the solid arrows represent
synthesis by abstraction.

To apply methods for finite transition systems to infinite state
paces, an abstraction-based approach is used, shown by the
olid arrows in Fig. 1. First, the concrete transition system G is
transformed into a finite-state abstraction G̃. Then is synthesised
n abstract controller C̃ that enforces ϕ on G̃. Third, a concrete

controller C , which enforces ϕ on G, is constructed from C̃ . As
ynthesis of controllers for LTL\◦ specifications is known (Kloetzer
Belta, 2008; Ramadge, 1989), this paper only concerns the

irst and third steps, i.e., constructing the abstraction G̃ and the
oncrete controller C .

bstraction Problem. Given a concrete G ∈ T , and an LTL\◦

ormula ϕ, construct an abstract G̃ ∈ T such that, there exists
C̃ ∈ C enforcing ϕ on G̃ iff there exists C ∈ C enforcing ϕ on G.

To solve the Abstraction Problem, the abstract transition sys-
tem G̃ must be constructed so that it is equivalent with respect
to synthesis to the concrete system G. This ensures soundness and
ompleteness of the approach, i.e., any controller obtained from G̃
is related to a controller for G, and if there exists a controller for G,
then it can be found by synthesis based on G̃.

Though the existence of a controller C̃ for G̃ carries over to the
existence of a controller C for G, it remains to find a method to
construct C from C̃ .

Controller Construction Problem. Given a concrete G ∈ T , an
abstraction G̃ of G, an LTL\◦ formula ϕ, and C̃ ∈ C that enforces ϕ
n G̃, construct C ∈ C that enforces ϕ on G.

. Robust stutter bisimulation

This section defines the robust stutter bisimulation (RSBS) re-
ation, which identifies two transition systems as equivalent if
he same LTL\◦ formulas can be enforced on both systems. This
s the crucial criterion to identify solutions to the Abstraction
roblem, ensuring that any transition system G̃ that is robust
tutter bisimilar to the concrete system G can be used as its
bstraction.
The goal is to classify two states of a transition system as

obust stutter bisimilar when the same LTL\◦ formulas can be
nforced from both. Due to the absence of the ‘‘next’’ operator,
his condition can be simplified by considering only stutter step
ormulas, or, more precisely, superblock step formulas. Given an
quivalence class P , a superblock step formula P U T or P W T
xpresses that the system can transition to other equivalence
lasses with or without the guarantee that this transition occurs
ventually. The condition can be further simplified to superblock
tep formulas that can be enforced by positional controllers be-
ause of Proposition 2. Controllers for arbitrary LTL\◦ formulas
an be constructed by combining positional controllers enforcing
tutter step formulas from different states.

efinition 1. An equivalence relationR ⊆ S×S is a robust stutter
isimulation (RSBS) on G ∈ T if for all (s1, s2) ∈ R the following

onditions hold:

4

Fig. 2. A transition system G with an RSBS R.

(i) L(s1) = L(s2)
(ii) for every R-superblock step formula ψ from [s1]R such

that s1 ∈ ECG(ψ) it holds that s2 ∈ ECG(ψ).

Two states s1, s2 ∈ S are robust stutter bisimilar, denoted s1 ≈ s2,
f there exists an RSBS relation R on G with (s1, s2) ∈ R.

So, a relation R is an RSBS if (i) it preserves the labels of
tates, and (ii) the same superblock step formulas can be enforced
rom equivalent states. Though (ii) is not inherently symmetric,
ymmetry is ensured as R is an equivalence relation. R is re-
uired to be an equivalence relation so that RSBS can be defined
n terms of superblock step formulas. Since the identity relation is
n RSBS, it is clear that there exist RSBS subject to the additional
equirement of being an equivalence relation. It is shown in
roposition D.2 by Krook et al. (2022) that a coarsest RSBS exists
nd is an equivalence relation. By Proposition 2 it is enough to
efine enforceability through ECG(ψ), i.e., using positional con-

trollers. Definition 1 can be seen as a generalisation of divergent
stutter bisimulation (Baier & Katoen, 2008) to transition systems
with disturbances.

Example 1. Consider the transition system G = ⟨S,Σ, δ, S◦,AP,
L⟩ in Fig. 2 and the equivalence relation R that divides the state
space into six equivalence classes S/R = {A1,A2,B1,B2,C,D}

here A1 = {a1, a2}, A2 = {a3, a4}, B1 = {b1, b2}, B2 = {b3, b4},
= {c1, c2}, and D = {d1, d2}. Clearly, R fulfils condition (i) in
efinition 1 as all states in each class are labelled the same from
P = {a, b, c, d}. By enumerating all deadlock-free positional
ontrollers and all R-superblock step formulas it can also be
erified that condition (ii) is fulfilled by R. □

To identify two transition systems as equivalent, the definition
f an RSBS on a single transition system is lifted to a relation
etween transition systems by considering the union transition
ystem.

efinition 2. Let G1,G2 ∈ T with S1 ∩ S2 = ∅. G1 and G2 are
robust stutter bisimilar, G1 ≈ G2, if there exists a RSBS R on
G1 ∪ G2, and it holds that

∀s1 ∈ S1◦. ∃s2 ∈ S2◦. (s1, s2) ∈ R , and
s2 ∈ S2◦. ∃s1 ∈ S1◦. (s1, s2) ∈ R .

. Quotient transition system

Given a RSBS R on the states of G ∈ T , the Abstraction
roblem still requires to construct an equivalent and hopefully
maller transition system. This can be done by constructing a quo-
ient transition system whose states are the equivalence classes
nduced by R. Standard quotient constructions (Baier & Katoen,
008) fail to ensure RSBS between the original and quotient
ystems since they do not distinguish the different stutter step
ormulas. Thus, the following definition.



J. Krook, R. Malik, S. Mohajerani et al. Automatica 160 (2024) 111394

D
b

G

w

Σ

a

w
t
s
f
c
a
m
d
P
p

E
s
c
l
e
{

e
s

c

c
b

T

P
G

R

N
t
t
s

(

N

⟨

T

w

Fig. 3. A part of the quotient system G/R.

efinition 3. Let G ∈ T , and R be a RSBS on G. The robust stutter
isimulation quotient is

/R = ⟨S/R,ΣR, δR, S◦

R,AP, LR⟩

here

R =
{
ψ | ψ is an R-superblock step formula from (1)

P ∈ S/R such that P ⊆ ECG(ψ)
}

;

δR =
{
(P, ψ, T ′) ∈ S/R ×ΣR × S/R | ψ ≡ P V T (2)

such that T ′
∈ S/R and T ′

⊆ T
}

∪{
(P, ψ, P) ∈ S/R ×ΣR × S/R | ψ ≡ P W T

for some T ∈ SB(R)
}

;

S◦

R =
{

[s◦]R | s◦ ∈ S◦
}

;

nd LR([s]R) = L(s) for all s ∈ S.

The transition labels ΣR are R-superblock step formulas of
the form P V T that can be enforced from the source set P in the
concrete system G. The quotient transitions δR are then defined
based on the formulas these labels represent. A label P V T ,
here P is an equivalence class and T is a superblock, is attached
o transitions from P to each equivalence class (each abstract
tate) that constitutes T , representing the controller’s ability to
orce the system to T without being able to determine the precise
oncrete state entered. A label P W T is additionally attached to
selfloop transition on P , representing the fact that the system
ay also stay in P . This definition works precisely because it
istinguishes between the different R-superblock step formulas
U T and P W T , and generates transitions that ensure that all
ossible control actions from P are accounted for.

xample 2. Consider again G and RSBS R of Fig. 2. Its quotient
ystem G/R is given in Fig. 3. The states are the six equivalence
lasses and their labels match the corresponding concrete states’
abels. The transition labels in ΣR are constructed based on the
xistence of positional controllers. A positional controller C(s) =

σ1} enforces different R-superblock step formulas from different
quivalence classes. For instance, ⟨C/G, ai⟩ ⊨ A1 W ∅ for ai ∈ A1,
o A1 ⊆ ECG(A1 W ∅). Clearly, A1 ∈ S/R, so ψ1 ≡ A1 W ∅ ∈ ΣR
by (1). Other formulas such as A1 W B1 are implied by ψ1 and
an also be enforced, so a total of 31 formulas A1 W T with
T ⊆ {A2,B1,B2,C,D} are included in ΣR (not all shown in the
figure). According to (2), the label A1 W ∅ is attached to the
selfloop transition A1 → A1, and A1 W B1 is attached to A1 → A1
and A1 → B1, etc. On the other hand, no stutter step formula
A1 U T is enforceable from A1, so those formulas do not appear
in ΣR. From state d2, it is not possible to force a transition to
only one of d1 or c1, but it holds that ⟨C/G, di⟩ ⊨ D W C. Hence,
D W C ∈ Σ along with implied formulas. □
R

5

The following theorem confirms that the quotient G/R of a
oncrete G ∈ T with respect to a RSBS R is robust stutter
isimilar to G.

heorem 3. Let G ∈ T , and R be a RSBS on G. Then G ≈ G/R.

roof. It will be shown that the following relation R̂ on Ĝ =

∪ (G/R) fulfils the conditions of Definition 2.

ˆ = R ∪ { (s̃, s̃) | s̃ ∈ S/R } ∪ (3)
{ (s, [s]R) | s ∈ S } ∪ { ([s]R, s) | s ∈ S } .

ote that R̂ is an equivalence relation by construction. It is clear
hat condition (i) holds by definition of R and LR. For condi-
ion (ii), let (s, t) ∈ R̂, and let ψ̂ ≡ [s]R̂ V T̂ be an R̂-superblock
tep formula such that s ∈ ECĜ(ψ̂). Also let T = T̂ ∩ S ∈ SB(R)
and ψ ≡ [s]R V T . It is to be shown that t ∈ ECĜ(ψ̂). Consider
four cases.
Case 1: s, t ∈ S. As Ĝ is a disjoint union of G and G/R, it follows
that s ∈ ECĜ(ψ̂) ∩ S = ECĜ(([s]R̂ ∩ S) V (T̂ ∩ S)) = ECG(ψ). As
s, t) ∈ R and R is an RSBS, it holds that t ∈ ECG(ψ). By the
equality above, it also holds that t ∈ ECĜ(ψ̂).
Case 2: s ∈ S, t ∈ S/R. As above, it follows that s ∈ ECG(ψ).
ote that t = [s]R by definition of R̂ so t ⊆ ECG(ψ) as R is an

RSBS. By (1) in Definition 3 it follows that ψ ∈ ΣR. Consider
a positional controller C for G such that C([s]R) = {ψ}. Then
C/Ĝ, [s]R⟩ |H ψ by construction (2) and thus t ∈ [s]R ∈

ECG(ψ) ⊆ ECĜ(ψ̂) as in Case 1.
Case 3: s ∈ S/R, t ∈ S. Then s ∈ ECĜ(ψ̂) ∩ S/R = ECG/R({s} V
(T̂ ∩ S/R)). Let TR = T̂ ∩ S/R and ψR = {s} V TR. Then there
exists Ĉ ∈ CG/R such that ⟨Ĉ/(G/R), s⟩ |H ψR. As Ĉ is deadlock-
free, there exists θ ∈ ΣR such that θ ∈ Ĉ(s) where θ ≡ s Vθ Tθ
for some Tθ ∈ SB(S) by (2).

It is next shown that Tθ ⊆ T̂ . Let t ′ ∈ Tθ . Then [t ′]R ⊆ Tθ
as Tθ ∈ SB(S), and (s, θ, [t ′]R) ∈ δR by (2). As ⟨Ĉ/(G/R), s⟩ |H

ψR ≡ {s} V TR and θ ∈ Ĉ(s), it follows that [t ′]R ∈ {s}∪ TR. Also
s∩Tθ = ∅ as θ is a superblock step formula, so that [t ′]R ∈ TR ⊆

T̂ . Finally, as (t ′, [t ′]R) ∈ R̂ and T̂ ∈ SB(R̂), it follows that t ′ ∈ T̂ .
As θ ∈ ΣR, it follows by (1) that t ∈ s ⊆ ECG(θ ) = ECG(s Vθ

θ ) ⊆ ECG(s Vθ (T̂ ∩ S)) ⊆ ECĜ([s]R̂ Vθ T̂ ). Further, if V = U , then
it follows from ⟨Ĉ/(G/R), s⟩ |H ψR that sω /∈ Fragsω(Ĉ/(G/R)),
hich means (s, θ, s) /∈ δR by (2) and then Vθ = U . Therefore,

t ∈ ECĜ([s]R̂ Vθ T̂ ) ⊆ ECĜ([s]R̂ V T̂ ) = ECĜ(ψ̂).
Case 4: s, t ∈ S/R. This case is trivial as s = t by (3).

Lastly, Definition 2 requires that states in S◦ must be matched
by states in S◦

R, and vice versa, and this follows directly from the
construction of S◦

R and R̂. □

6. Constructing a concrete controller

Given G, G̃ ∈ T such that G ≈ G̃, and a controller C̃ enforcing
an LTL\◦ formula ϕ on G̃, this section shows how to construct a
controller C that enforces ϕ on G. In the case where G̃ = G/R,
this solves the Controller Construction Problem.

As G ≈ G̃, by Definition 2 there exists an RSBS on G ∪ G̃. Then
C̃ can be regarded to enforce ϕ from all states s̃ of G ∪ G̃ that
are initial states of G̃, and C to enforce ϕ from equivalent initial
states s of G. Thus, it is enough to consider an RSBS R on a single
G ∈ T that may be a union transition system, and to consider two
equivalent states (s, s̃) ∈ R. Given C̃ such that ⟨C̃/G, s̃⟩ |H ϕ, the
goal is to construct C such that ⟨C/G, s⟩ |H ϕ.

The solution to the Controller Construction Problem is such
that if C observes a path fragment ρ ∈ S+ with s ⊑ ρ, this path
fragment is mapped by a function M : S+

→ S+ to a nonempty
˜
stutter equivalent path fragment ρ̃ permitted by C , such that
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s̃ ⊑ ρ̃. The control action of C after ρ is then guided by the control
ction of C̃ after ρ̃.
Assume that some path fragment ρ = ρ ′u, with ρ ′

∈ S∗ and
u ∈ S, has been mapped to ρ̃ = ρ̃ ′ũ, with ρ̃ ′

∈ S∗ and ũ ∈ S. If G
under control of C now enters a state v ∈ S in a new equivalence
class, i.e., (u, v) /∈ R, then the construction of M considers all
continuations of ρ̃ = ρ̃ ′ũ permitted by C̃ that remain in the
equivalence class of ũ until reaching a state ṽ equivalent to v,
namely

F (ρ̃ ′ũ, v) =
{
ρ̃ ′ũτ̃ ṽ ∈ Frags∗(C̃,G) | τ̃ ∈ [ũ]∗R and (v, ṽ) ∈ R

}
.

(4)

Then M is defined by choosing one of these paths. The full
recursive definition of M(ρ) for ρ ∈ S+ with s ⊑ ρ is:

M(s) = s̃ ; (5)

M(ρ ′uv) = M(ρ ′u) if (u, v) ∈ R ; (6)

M(ρ ′uv) = τ ∈ F (M(ρ ′u), v) if (u, v) /∈ R ; (7)

where τ is an arbitrary but fixed choice for each ρ ′uv. If M(ρ ′u)
s undefined or F (M(ρ ′u), v) = ∅ in (6) or (7), then M(ρ ′uv) is
ndefined. Later on, the controller C will be constructed so that
(ρ) is defined for all ρ ∈ Frags∗(C,G) with s ⊑ ρ. If M(ρ) is
efined, then M(ρ) ∈ Frags∗(C̃,G), s̃ ⊑ M(ρ), and M(ρ) and ρ
re R-stutter equivalent. Furthermore, M is prefix-preserving,
.e., ρ ′

⊑ ρ implies M(ρ ′) ⊑ M(ρ).
Since C̃ ∈ C, it enforces at least one R-superblock step

ormula ψ from ũ after seeing ρ̃. As u ≈ ũ, the construction
f C can make use of the fact that u, ũ ∈ ECG(ψ) to ensure that a
ath permitted by C visits the same equivalence classes as a path
ermitted by C̃ . Formally, ψ is chosen such that its target set is
he superblock reached by C̃ after ρ̃ = ρ̃ ′ũ, defined by

T ⟨C̃, ρ̃ ′ũ⟩ =

⋃ {
[ṽ]R | ρ̃ ′ũτ̃ ṽ ∈ Frags∗(C̃,G) (8)

where τ̃ ∈ [ũ]∗R and (ũ, ṽ) /∈ R
}
.

he formula ψ is chosen to be the R-superblock step formula
nforced by C̃ after ρ̃ = ρ̃ ′ũ, defined as

Ψ ⟨C̃, ρ̃ ′ũ⟩ ≡

{
[ũ]R W T ⟨C̃, ρ̃ ′ũ⟩, if Fragsω(C̃,G) ∩ ρ̃[ũ]ωR ̸= ∅ ;

[ũ]R U T ⟨C̃, ρ̃ ′ũ⟩, otherwise .

(9)

The superblock reached by C̃ after ρ̃ contains exactly the states in
equivalence classes that can be entered directly after the equiv-
alence class of ũ. The R-superblock step formula enforced by C̃
after ρ̃ is a condition in the form of a weak or strong until
formula that describes how the controller behaves within the
equivalence class of ũ when reached by ρ̃. If C̃ permits some
path fragment that remains in the equivalence class of ũ for-
ever, then the enforced R-superblock step formula is a weak
until formula. Otherwise all permitted path fragments eventually
leave the equivalence class of ũ, and the enforced formula is
instead a strong until formula. In both cases, the source set is the
equivalence class of the current state ũ, and the target set is the
superblock reached after ρ̃, which contains the states that can
be entered after the equivalence class of ũ. The following lemma
shows that Ψ ⟨C̃, ρ̃ ′ũ⟩ is enforceable from ũ.

Lemma 4. Let ρ̃ = ρ̃ ′ũ ∈ Frags∗(C̃,G) with ρ̃ ′
∈ S∗ and ũ ∈ S.

Then ũ ∈ ECG(Ψ ⟨C̃, ρ̃⟩).

Proof. Define a controller C̃ρ̃ : S+
→ 2Σ such that C̃ρ̃(ũτ ) =

C̃(ρ̃τ ) for any τ ∈ S∗. It will be shown that ⟨C̃ /G, ũ⟩ |H Ψ ⟨C̃, ρ̃⟩.
ρ̃

6

Let π = ũu0u1 · · · ∈ Fragsω(C̃ρ̃,G), and note that ρ̃ ′π ∈

Fragsω(C̃,G). Either all the states ui are equivalent to ũ or not.
If they are, then ρ̃ ′π ∈ Fragsω(C̃,G) with π ∈ [ũ]ωR, and π |H

[ũ]R W T ⟨C̃, ρ̃⟩ ≡ Ψ ⟨C̃, ρ̃⟩ by (9).
If not all ui are equivalent to ũ, then π can be written as

π = ũu0u1 · · · umvπ
′ where (ũ, ui) ∈ R and (ũ, v) ̸∈ R. Then

ρ̃ ′ũu0 · · · umv ∈ Frags∗(C̃,G), and so v ∈ T ⟨C̃, ρ̃) by (8). As
ũu0 · · · um ∈ [ũ]R it is clear that π |H [ũ]R U T ⟨C̃, ρ̃⟩ and then
π |H Ψ ⟨C̃, ρ̃⟩ independently of which case of (9) applies.

Combining the two cases, π |H Ψ ⟨C̃, ρ̃⟩ for every π ∈

Fragsω(C̃ρ̃,G) with ũ ⊑ π . Therefore ⟨C̃ρ̃/G, ũ⟩ |H Ψ ⟨C̃, ρ̃⟩, which
implies ũ ∈ ECG(Ψ ⟨C̃, ρ̃⟩). □

In other words, there exists a (general) controller enforcing ψ
from every state equivalent to the end state ũ of ρ̃. As ψ is an R-
superblock step formula, there exists also a positional controller
enforcing ψ from [ũ]R. By choosing one such positional controller
and using it while staying in the equivalence class of ũ, the control
decision of the concrete controller C can finally be defined. First
let ψ ≡ P V T be a stutter step formula for transition system G.
Let C⟨ψ⟩ ∈ C be such that ⟨C⟨ψ⟩/G, u⟩ |H ψ for all u ∈ P , if such
controller exists. Then the concrete controller can be constructed
as follows:

Definition 4. Let R be a RSBS on G ∈ T , C̃ a controller for G, and
M and Ψ defined as above. The concrete controller CC : S+

→ 2Σ
for G based on C̃ is then

CC (ρ ′u) =

{
C⟨Ψ ⟨C̃,M(ρ ′u)⟩⟩(u), if M(ρ ′u) is defined ;

Σ, otherwise .

Theorem 5 confirms, using Definition 4, that the same LTL\◦

ormulas can be enforced from robust stutter bisimilar states.
orollary 6 lifts this result to robust stutter bisimilar transi-
ion systems, showing the preservation of LTL\◦ synthesis results
nder RSBS.

heorem 5. Let R be a RSBS on G ∈ T , and ϕ an LTL\◦ formula,
hen:

(s̃, s) ∈ R. s̃ ∈ ECG(ϕ) ⇒ s ∈ ECG(ϕ).

roof. Let (s̃, s) ∈ R such that s̃ ∈ ECG(ϕ), and let C̃ be such
controller enforcing ϕ from s̃. To show s ∈ ECG(ϕ), it is shown

hat CC in Definition 4 enforces ϕ from s, i.e., ⟨CC/G, s⟩ |H ϕ.
The proof hinges on showing that M(ρ) is always defined

or path fragments ρ permitted by CC with s ⊑ ρ, and that
C⟨Ψ ⟨C̃,M(ρ)⟩⟩ always exists. It is also shown that M(ρ) ∈

Frags∗(C̃,G), and that ρ and M(ρ) are R-stutter equivalent. This
latter property is used to show that CC and C̃ enforce the same
LTL\◦ formulas.

By induction over ρ, it is shown that M(ρ) is defined, M(ρ) ∈

rags∗(C̃,G), and ρ and M(ρ) are R-stutter equivalent. The base
case follows by construction of M .

For the inductive step, consider ρ = ρ ′uv with ρ ′
∈ S∗ and

, v ∈ S. The inductive hypothesis is that M(ρ ′u) is defined, that
(ρ ′u) = ρ̃ ′ũ ∈ Frags∗(C̃,G), and that ρ ′u and ρ̃ ′ũ are R-stutter

equivalent. There are two cases depending on whether (u, v) ∈ R
or not. In the first case, (u, v) ∈ R, the inductive step follows from
the inductive hypothesis and the construction of M .

In the second case, (u, v) ̸∈ R, it must be shown that
F (M(ρ ′u), v) in (7) is nonempty. Let ψ ≡ Ψ ⟨C̃, ρ̃ ′ũ⟩. As ρ̃ ′ũ ∈

rags∗(C̃,G), it follows by Lemma 4 and Proposition 2 that ũ ∈

ECG(ψ) = ECG(ψ). Since R is an RSBS and (ũ, u) ∈ R, it follows
that u ∈ ECG(ψ). Thus, there exists a controller C⟨ψ⟩ enforcing ψ
from u. By Definition 4 it follows that CC (ρ ′u) = C⟨ψ⟩(u).
Together with ρ = ρ ′uv ∈ Frags∗(C ,G), this implies that uv ∈
C
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Fig. 4. The equivalence classes of the coarsest robust stutter bisimulation for
the robot navigation example.

Frags∗(C⟨ψ⟩,G), and then v ∈ T ⟨C̃, ρ̃ ′ũ⟩ by (9). By (8) there exists
˜ = ρ̃ ′ũτ̃ ṽ ∈ Frags(C̃,G) with τ̃ ∈ [ũ]∗R, and then ρ̃ ∈ F by (4), so
(M(ρ ′u), v) is nonempty. Also, M(ρ) ∈ F (ρ̃ ′ũ, v) ⊆ Frags∗(C̃,G)

by (4) and (7). Lastly, anyM(ρ) ∈ F (ρ̃ ′ũ, v) isR-stutter equivalent
to ρ̃ ′ũṽ, so as (ṽ, v) ∈ R, it follows that ρ ′uv and ρ̃ ′ũṽ and M(ρ)
are R-stutter equivalent. This concludes the induction.

To show that ⟨CC/G, s⟩ |H ϕ, by Theorem 1 it suffices to
show that each infinite path fragment π ∈ Fragsω(CC ,G) with
s ⊑ π is stutter equivalent to some infinite path fragment π̃ ∈

Fragsω(C̃,G) with s̃ ⊑ π̃ . Consider two cases.
In the first case, π can be written as π = ρ ′u[u]ωR. Let

M(ρ ′u) = ρ̃ ′ũ, with ρ̃ ′
∈ S∗ and ũ ∈ S. By Definition 4,

CC (ρ ′u) = C⟨Ψ ⟨C̃,M(ρ ′u)⟩⟩(u), which means that Ψ ⟨C̃,M(ρ ′u)⟩
ust be of the form P W T , which by (9) means that π̃ =

˜
′
[ũ]ωR ∈ Frags(C̃,G). As ρ ′u and ρ̃ ′ũ are R-stutter equivalent,

o are π and π̃ .
In the second case, π does not stay in one equivalence class

orever. Let π̃ be such that for all finite prefixes ρ ⊏ π with
⊑ ρ, it holds that M(ρ) ⊏ π̃ . Since M is a prefix preserving
ap, π̃ is well defined and unique. Furthermore, it holds that
∈ Frags∗(CC ,G), and thus M(ρ) ∈ Frags∗(C̃,G). Because M is

refix preserving, it follows that π̃ ∈ Fragsω(C̃,G), and as ρ and
(ρ) are R-stutter equivalent, so are π and π̃ .
In both cases where an arbitrary infinite path fragment π is

icked from Fragsω(CC ,G), there exists an R-stutter equivalent
ath fragment π̃ ∈ Fragsω(C̃,G). R is an RSBS, so π and π̃ are
tutter equivalent. □

orollary 6. Let G, G̃ ∈ T , let R be a RSBS on G ∪ G̃ and let ϕ be
n LTL\◦ formula. If ∃C̃ ∈ C for G̃ such that C̃/G̃ |H ϕ, then ∃C ∈ C
or G such that C/G |H ϕ.

Constructing as by Definition 4 the concrete controller CC from
controller C̃ for an abstract transition system G̃ that is robust
tutter bisimilar to a concrete transition system G solves the
ontroller Construction Problem.

. Robot navigation example

This section applies the abstraction and controller construc-
ion to a problem inspired by Mohajerani et al. (2021), where
robot navigates a two-dimensional space while avoiding the
bstacle shown in Fig. 4. The main difference to the previous work
s an area, E4, too narrow for the robot to pass due to disturbances.

The robot movement is described by the following discrete-
ime linear equation with disturbances

(k + 1) = x(k) + u(k) + w(k) , (10)

here the state is x ∈ X = ([0, 6] × [0, 5]) \ Obstacle, the control
2
nput is u ∈ U = [−0.6, 0.6] , and the disturbance is w ∈ W =

7

−0.3, 0.3]2. From the dynamics described by (10) a transition
ystem is constructed as G = ⟨X,U, δ, X◦,AP, L⟩ (Tabuada, 2009);
f for u(k) ∈ U , there exists w(k) ∈ W such that x1 = x0 +

+ w then there is a transition (x0, u, x1) ∈ δ. The set of initial
tates S◦ is the top left corner, E0 = [0, 1] × [4, 5]. The set of
ropositions is AP = {Home, Task1, Task2, Task3}, and the state
abelling function L assigns these to the corner sets, see Fig. 4.
he LTL\◦ formula to enforce is:

= □♢Home ∧ □♢Task1 ∧ □♢Task2 ∧ □♢Task3 ,

eaning that the robot should visit each of the four corner
egions infinitely often.

As shown above, the Abstraction Problem can be solved by
onstructing a quotient with respect to a robust stutter bisimu-
ation R. While such a relation R always exists (e.g., the identity
elation), it is desirable to obtain the coarsest robust stutter
isimulation on a given transition system, for which the quotient
as the smallest number of states possible. This can be achieved
y partition refinement (Paige & Tarjan, 1987), where an initial
artition is repeatedly modified by splitting equivalence classes
ntil a robust stutter bisimulation is found. Details can be found
n Krook et al. (2022).

Such a partition refinement applied to G results in a ro-
ust stutter bisimulation R consisting of the twelve equivalence
lasses E0, . . . , E11, see Fig. 4. It is possible to keep the robot
ndefinitely in E0, E1, E2, and E3, since the disturbance cannot push
he robot out of these regions from their centre and the control
nput has higher magnitude than any possible disturbance. For
xample E0 W ∅ is enforceable from all states in E0, i.e., E0 ⊆

ECG(E0 W ∅) and thus E0 W ∅ ∈ ΣR.
The region between the corners is split into eight equiva-

lence classes. E4 is split off from the other regions because it is
so narrow that, despite the control input, the disturbance may
push the robot into the Obstacle from anywhere within E4, and
onsequently there is no R-superblock step formula from E4
in ΣR. From all other regions some enforceable R-superblock
step formula exists. The two equivalence classes E5 and E6 are
dissimilar since the robot can be forced from E5 to E0 without
visiting another region (E5 U E0 ∈ ΣR), but this cannot be
enforced from E6 (E6 U E0 /∈ ΣR). The equivalence classes E7, E8,
E9, E10, and E11 are so small in relation to the disturbance that the
controller cannot force the robot to enter or stay in these classes.
E7 is different from E5, since from E7 the robot can only be forced
into E0, not into E1, so E7 U E1 /∈ ΣR but E5 U E1 ∈ ΣR. The
equivalence classes E8 and E9 are split off from E5 since the robot
can be forced directly into the superblock E6∪E10∪E11 from E8∪E9
but not from E5. Similar reasons cause E10 ∪ E11 to be split off
from E6. Then E8 and E9 are split since the robot can be forced
to E1 from E8 but not from E9. The split of E8 and E9 propagates,
ausing a separation of E10 and E11, for example E11 U (E5 ∪ E9) ∈

ΣR and E10 U (E5 ∪ E8 ∪ E9) ∈ ΣR.
From all the superblock step formulas enforceable from the

welve regions, an abstract transition system G̃ = G/R is con-
tructed as by Definition 3. An abstract controller C̃ is synthesised
or G̃ to enforce ϕ, and from C̃ is then constructed a concrete con-
roller CC according to Definition 4. Fig. 4 shows a path fragment
here the robot completes the three tasks and returns to the
ome region despite the disturbance causing somewhat erratic
ehaviour.

. Conclusions

This paper proposes a method to synthesise controllers that
nforce requirements specified in LTL\◦ for cyber-physical sys-
ems subject to disturbances. This is done by constructing a
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inite-state abstraction of the system and then synthesising a con-
roller for this abstraction. The robust stutter bisimulation relation
s shown to characterise the relevant abstraction accurately, and
t is shown how this relation can be used to construct a concrete
ontroller. Though the main focus is to handle process noise,
obust stutter bisimulation is general and can be used on any
ystem representable as transition systems.
Krook et al. (2022) outline a simple algorithm for computing

he coarsest RSBS for a transition system, and a more efficient
lgorithm for computing the coarsest RSBS is future work.
This paper considers disturbances added to the state transi-

ions, but for some applications there is considerable measure-
ent noise that results in unobservable transitions. Future work
ight investigate how such disturbances can be incorporated in

he abstraction.
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