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Abstract—Localization is envisioned as a key enabler to satisfy
the requirements of communications and context-aware services
in the fifth/sixth generation (5G/6G) communication systems.
User localization can be achieved based on delay and angle
estimation using uplink/downlink pilot signals. However, hard-
ware impairments (HWIs) (such as phase noise and mutual
coupling) distort the signals at both the transmitter and receiver
sides and thus affect the localization performance. While this
impact can be ignored at lower frequencies with less severe
HWIs, and less stringent localization requirements, modeling
and analysis efforts are needed for high-frequency bands to
assess degradation in localization accuracy due to HWIs. In this
work, we model various types of impairments for a mmWave
multiple-input-multiple-output communication system and con-
duct a misspecified Cramér-Rao bound analysis to evaluate HWI-
induced performance losses in terms of angle/delay estimation
and the resulting 3D position/orientation estimation error. We
also investigate the effect of individual and overall HWIs on
communications in terms of symbol error rate (SER). Our
extensive simulation results demonstrate that each type of HWI
leads to a different level of degradation in angle and delay
estimation performance, and the prominent impairment factors
on delay estimation will have a dominant negative effect on SER.

Index Terms—Localization, 5G/6G, hardware impairment,
mmWave MIMO, CRB, MCRB.

I. INTRODUCTION

Localization refers to the process of estimating the position
(and possibly orientation) of a user equipment (UE), which is
expected to have a tight interaction with communications in
future wireless systems [1]. More specifically, localization can
benefit from a large array dimension and wide bandwidth of
high-frequency signals (e.g., mmWave and sub-THz) provided
by communication infrastructure [2]. In return, the position
and orientation information can improve spatial efficiency and
optimize resource allocation for communications [3]. As a
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result, high-accuracy context-aware applications such as the
tactile internet, augmented reality, and smart cities will be
supported in future wireless networks [4], [5].

In global navigation satellite systems (GNSSs) and tra-
ditional cellular networks, range-based algorithms, such as
trilateration, are usually applied for estimating position. When
moving to higher carrier frequencies, more antennas can be
packed in a single array due to shorter wavelengths. As a
consequence, in addition to delay estimation, angle-of-arrival
(AOA) and angle-of-departure (AOD) information can be
exploited for localization, and a variety of new localization
techniques have recently emerged in the fifth/sixth genera-
tion (5G/6G) systems, e.g., [6]–[9], considering localization
with minimal infrastructure requirements. When the UE is
equipped with an antenna array, orientation estimation is also
possible [8]. In Doppler-assisted localization, although new
unknowns (e.g., velocity) are introduced, localization perfor-
mance can be improved because mobility forms a virtual array
with a large aperture compared to the stationary scenarios [9].
Most localization works rely on idealized models of the re-
ceived signals as a function of the channel parameters (angles,
delays, Dopplers) induced by the propagation environment,
based on the assumption of deterministic and sparse channels
in high-frequency systems [1], [6], [8], [10]–[12]. In reality,
however, pilot signals can be distorted due to the presence
of hardware impairments (HWIs) such as phase noise (PN),
carrier frequency offset (CFO), mutual coupling (MC), power
amplifier nonlinearity (PAN), array gain error (AGE), antenna
displacement error (ADE), in-phase and quadrature imbalance
(IQI), etc [13]. Consequently, when algorithm derivation is
based on a mismatched model (i.e., without considering the
HWIs in the channel model), the localization performance is
unavoidably affected.

The effect of HWIs on communications have been stud-
ied extensively in the literature [13]–[16]. In [13], differ-
ent types of impairments have been accurately modeled
and the effects on a multiple-input-multiple-output (MIMO)-
orthogonal frequency-division multiplexing (OFDM) system
are discussed. In [14], an aggregate statistical HWI model con-
sidering PAN, local oscillators with PN, and finite-resolution
analog-to-digital converters (ADCs) is derived and validated
with numerical simulations. The residual additive transceiver
hardware impairments, caused by direct current offset, MC,
IQI and quantization noise, are discussed in [15], with the
derived spectral efficiency to quantify the degradation caused
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by the HWIs. In addition to modeling and analysis of the
HWIs, research has also been conducted on impairment miti-
gation algorithms. By incorporating signal distortions caused
by hardware impairments, beamforming optimization is per-
formed to maximize the received SNR at the destination [16].
A channel estimation algorithm is designed by taking into
account the transceiver impairments in [17], showing superior
performance than the conventional algorithms in terms of bit
error rate and normalized mean-squared-error. Contrary to
model-based solutions, channel estimation under HWI can also
be formulated as a deep learning problem [18]. Nevertheless,
these works focus only on communication performance.

Research on localization and sensing (here, sensing includes
detection, angle, and delay estimation, as well as tracking of
passive targets) considering HWIs is recently drawing atten-
tion. The effect of PN on monostatic sensing [19], [20], MC
on AOA estimation [21], IQI on mmWave localization [22],
and PAN on joint radar-communication systems [23] have
been studied. However, these works only consider one or two
types of impairments and cannot provide a thorough analysis
in real scenarios. In [24], [25], the impairments are modeled
as additional Gaussian noise, with the variance determined by
an ad hoc HWI factor, from which the error bounds for 3D
localization are discussed. The effects of HWIs considering
clock synchronization error are discussed in [26]. However,
the approaches in [24]–[26] fail to capture the contribution
of each individual HWI. In [27], which forms the basis of the
current paper, a simplified synchronized single-input-multiple-
output (SIMO) uplink system is considered for 2D positioning,
and the results show that different types of impairments affect
angle and delay estimation in different ways. Nevertheless,
the perfect synchronization assumption is impractical, and the
impairments such as array calibration error and IQI are not
considered. Besides analyzing the effect of HWIs on local-
ization or communications alone, more recent works consider
the HWIs in joint localization and communication systems
and use learning-based methods to mitigate the performance
degradation [28], [29]. Nevertheless, only a limited number of
impairment types are discussed (MC and ADE in [28], IQI
and DC offset in [29]). In addition, no theoretical analysis
is performed in these works, and the relative importance of
each HWI on communications compared to localization is
unknown. Hence, there is a need for a more systematic study
that evaluates the effect of different types of HWI on both
communication and localization performance.

In this paper, we investigate the problem of estimating the
3D position and 3D orientation of a multiple-antenna UE using
several multiple-antenna BSs (a typical uplink localization
scenario) in a mmWave communication system under a wide
variety of HWIs. Specifically, we consider an OFDM-based
system by rigorously modeling the impact of various HWIs
on the received observations, and assume that the correspond-
ing channel estimation and localization algorithms have no
knowledge about these HWIs, resulting in degradation of lo-
calization and communication performance. The misspecified
Cramér-Rao bound (MCRB) [30]–[32] is employed to quantify
the estimation performance loss due to model mismatch. In
addition, the effect of HWI on communications is evaluated

numerically in terms of symbol error rate (SER) based on the
developed model for a hardware-impaired channel under the
same HWI levels, which allows a fair comparison of the impact
of HWI on communication and localization performance. The
contributions are summarized as follows:

• Channel model with multiple HWIs: Based on the ideal
MIMO model (mismatched model (MM)) with perfect
hardware, we develop a more general channel model
for the considered mmWave system (true model (TM))
that can accommodate a variety of HWI types (including
PN, CFO, MC, PAN, AGE, ADE, and IQI) in a 3D
environment. To the best of the authors’ knowledge, this
is the first study to derive a comprehensive and real-
istic signal model for localization and communications
that provides explicit modeling of major HWIs that are
likely to affect 5G/6G communication systems at high-
frequency operation.

• Analytical performance prediction of channel param-
eter estimation and localization under HWIs: We
leverage MCRB analysis to evaluate the effect of indi-
vidual and combined HWIs on the estimation of channel
parameters (AOD, AOA and delay estimation) and on
the corresponding localization performance (3D position
and 3D orientation estimation). Such analysis quantifies
the impact of different types and levels of HWIs on
localization key performance indicators (KPIs) (e.g., po-
sition and orientation estimation error bounds), which can
serve as guidelines for the accuracy requirements of HWI
calibration and mitigation strategies in 5G/6G wireless
systems supporting emerging applications.

• Performance evaluation and comparison with com-
munications: Extensive simulations are performed to
verify the performance analysis of the effect of HWI
on localization and communication performance1 The
performance evaluation of both localization and com-
munications in the face of HWIs serves two purposes:
i) determine a reasonable level of HWIs based on the
SERs under different levels of HWIs (the evaluation
of HWI-introduced localization error on communications
is beyond the focus of this work); ii) demonstrate the
different impacts of certain HWIs on the performance
of communication and localization, and provide valuable
insights on the system design considering various KPIs
(e.g., array calibration error cannot be ignored although
it has limited effect on communications). We notice that
the dominant factors that affect delay estimation will
also affect communications, whereas the impairments
that only affect AOA, AOD have a limited impact on
communications.

The rest of this paper is organized as follows. Section II
reviews the system models with and without HWIs. Section III
describes the channel estimation and localization algorithms.

1Note that a communication system does not require localization functions.
Specifically, communication tasks require the estimation of the end-to-end
channel, while localization tasks aim to extract the geometrical parameters
from the channel (e.g., angle and delays that are used for estimating locations).
However, the channel (including HWIs) is identical for both communications
and localizations, which motivates this study.
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Received symbol:
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Fig. 1. Block diagram of the hardware impairments considered at transmitter and receiver (highlighted in shaded regions). When the localization algorithm
does not have perfect knowledge of the generative model, it operates under model mismatch. PN (phase noise), CFO (carrier frequency offset), MC (mutual
coupling), PAN (power amplifier non-linearity), AGE (array gain error), ADE (antenna displacement error), and IQI (in-phase and quadrature imbalance) are
considered.

Theoretical performance analysis is carried out in Section
IV. Next, the simulation results are presented in Section V,
followed by the concluding remarks in Section VI.

Notations and Symbols: Italic letters denote scalars (e.g. a),
bold lower-case letters denote vectors (e.g. a), and bold upper-
case letters denote matrices (e.g. A). (·)⊤, (·)H, (·)∗, (·)−1,
tr(·), and ∥·∥ represent the transpose, Hermitian transpose,
conjugate, inverse, trace, and ℓ-2 norm operations, respec-
tively; A⊙B, A⊗B, a ◦b are the Hadamard product, Kro-
necker product, and outer product, respectively; [·, ·, · · · , ·]⊤
denotes a column vector; tr(·) returns the trace of a matrix,
[·]i,j is the element in the ith row, jth column of a matrix,
and [·]a:b,c:d is the submatrix constructed from the ath to the
bth row, and the cth to dth column of a matrix.

II. SYSTEM MODEL

In this section, we start with a MIMO channel model (HWI-
free model) and then describe the model considering the HWI.

A. Geometric Model

The block diagram of considered HWIs and localization
procedures are shown in Fig. 1. An uplink MIMO system
consisting of a UE and L base stations (BSs) is considered.
The BSs and UE are equipped with an uniform planar array
(UPA) (antennas lie on the local YZ plane) driven by a
single radio-frequency chain (RFC). The number of antenna
elements at the l-th BS and the UE arrays is denoted as
NB,l = NB,l,z × NB,l,y and NU = NU,z × NU,y where Nz
and Ny are the number of antennas on the Z and Y axes,
respectively. The BSs are perfectly synchronized while a clock
offset BU exists between the UE and the BSs. We denote
the array center and orientation of the l-th BS as pB,l ∈ R3

and oB,l ∈ R3 in the global coordinate system. Similarly,
the position and orientation of the UE can be denoted as
pU,oU. Since the orientation represented by an Euler angle
vector is not unique, we use rotation matrices RB,l ∈ SO(3)
and RU ∈ SO(3) in orientation estimation (more details can
be found in [1], [8]). In localization, channel estimations
are performed at each BS (receiver), and all estimates are
combined to estimate the UE (transmitter) state parameter
vector s = [p⊤

U , BU, vec(RU)
⊤]⊤ ∈ R13, containing the UE

position pU, clock offset BU, and rotation matrix RU, as
shown in Fig. 1. The single-UE setup can be extended to
multi-UE scenarios by allocating orthogonal frequency and
time resource blocks for positioning pilot signals [33].

B. Hardware Impairment-free Model

Considering the transmitted OFDM symbol2 at the g-th
transmission and k-th subcarrier, xg,k, with an average trans-
mit power E{|xg,k|2} = P/NU, its observation at a specific
BS (the index l is omitted for convenience) can be formulated
as

yg,k = w⊤
g Hkvgxg,k + ng,k, (1)

where wg ∈ CNB is the combiner at the BS for the g-th
transmission and vg ∈ CNU is the precoder at the UE,
both with unit amplitude entries, ng,k ∈ CN (0,wH

gwgσ
2
n)

is the noise vector with each entry following a complex
normal distribution, with σ2

n = N0W (N0 is the noise power
spectral density (PSD) and W = K∆f is the total bandwidth
with K subcarriers and subcarrier spacing ∆f ). We assume
Hk remains the same during G transmissions (within the
coherence time). The channel matrix at subcarrier k is given
by

Hk = αdk(τ)aB(φB)a
⊤
U (φU)︸ ︷︷ ︸

LOS path

+

P∑
p=1

αpdp,k(τp)aB(φB,p)a
⊤
U (φU,p)︸ ︷︷ ︸

NLOS paths

,
(2)

where for the line-of-sight (LOS) path, α = ρe−jξ (with ρ
and ξ as the amplitude and phase, respectively) is the complex
channel gain assumed to be identical for different subcarriers,
dk(τ) = e−j2πk∆fτ (∆f is the subcarrier spacing) as a
function of the path delay τ , while aB(φB) and aU(φU) are the
receiver and transmitter steering vectors as a function of the
AOA φB = [ϕB, θB]

⊤ (azimuth angle ϕB and elevation angle
θB), and AOD ϕU = [ϕU, θU]

⊤. A steering vector a(φ) of an
N -element array is a function of the direction of the (incoming

2For communications, different modulations (e.g., 16-QAM) can be
adopted. While for positioning, constant modulus pilots are typically used [1],
[6]–[8], [8], [10].
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or outgoing) signal and the locations of the antenna elements,
which can be expressed as [1]

a(φ) = ej
2πfc

c Z⊤t(φ), (3)

where we apply the exp operator element-wise, Z ∈ R3×N is
the matrix containing the position of the N antennas in the
local coordinate system (all zeros in the first row of Z) and
t(φ) = [cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ)]⊤. For the NLOS
paths, each path can correspond to single or multi-bounce
reflections, or diffuse scattering. Hence, the NLOS path will
not be utilized for the positioning of the UE in this work. We
further make the assumption that the LOS path is resolvable
with respect to the NLOS paths (though the NLOS paths may
be mutually unresolved). This is a reasonable assumption3 for
5G/6G systems, due to large bandwidth and a large number
of antennas [10]. Without significant loss of generality, the
channel matrix for the kth subcarrier can thus be simplified as

Hk = αdk(τ)aB(φB)a
⊤
U (φU). (4)

Correspondingly, the channel geometric parameter vector of
the LOS path between a BS and the UE is defined as ηch =
[η⊤

1 , . . . ,η
⊤
L ]

⊤ with ηl = [φ⊤
B,l,φ

⊤
U,l, τl, ρl, ξl]

⊤ ∈ R7 for the
lth BS. For later analysis, we define a vector by removing all
the nuisance parameters (i.e., complex channel gain for each
path, as we do not exploit the signal strength for localization)
as cch = [c⊤1 , . . . , c

⊤
L ]

⊤ with cl = [φ⊤
B,l,φ

⊤
U,l, τl]

⊤ ∈ R5. The
relationships between the channel parameters vector c and the
state parameters s can be expressed as

φB =

[
ϕB
θB

]
=

[
arctan 2(tB,2, tB,1)

arcsin(tB,3)

]
, (5)

φU =

[
ϕU
θU

]
=

[
arctan 2(tU,2, tU,1)

arcsin(tU,3)

]
, (6)

τ =
∥pU − pB∥

c
+BU, (7)

where c is the speed of light, tB = [tB,1, tB,2, tB,3]
⊤ and

tU = [tU,1, tU,2, tU,3]
⊤ are the direction vectors in the local

coordinate system that can be expressed using global direction
vectors and rotation matrices as

tB = R−1
B

pU − pB

∥pU − pB∥
, tU = R−1

U
pB − pU

∥pB − pU∥
. (8)

Finally, by concatenating all the received symbols into a
column, we obtain the received symbol block y ∈ RGK as
y = [y⊤

1 , . . . ,y
⊤
g , . . . ,y

⊤
G]

⊤, where yg = [yg,1, . . . , yg,K ]⊤

can be expressed as

yg = α(w⊤
g a(φB)a

⊤(φU)vg)d(τ)⊙ xg + ng, (9)

in which d(τ) = [d1(τ), . . . , dK(τ)]⊤, xg =
[xg,1, . . . , xg,K ]⊤, and ng = [ng,1, . . . , ng,K ]⊤.

C. Hardware Impairments

In this work, several types of HWIs are considered as shown
in Fig. 1. We study the effects of PN, CFO, MC, PAN, AGE,

3For example, with a bandwidth of 1 GHz and 8 × 8 BS arrays, a delay
resolution of 30 cm and an angle resolution of 22 degrees is achievable. Unless
the UE is very close to a reflector, multipath can be resolved in the combined
range-angle domain.

ADE, and IQI. Note that the impairments such as PN, CFO,
MC, AGE, ADE and IQI exist both at the transmitter and
the receiver, while the PAN appears only at the transmitter.
The HWIs are usually compensated during offline calibration
or online with dedicated signals and routines, depending
on whether the impairment is static or time-variant. In this
work, we model all the HWIs except the PAN as random
perturbations around the nominal values that correspond to
the residual errors for time-variant impairments (i.e., PN and
CFO) after calibration [34]–[36], and corresponding to an
ensemble of devices for static impairments (i.e., MC [37],
AGE [38], ADE [18], and IQI [22]). The PAN is fixed in
order to evaluate the effect of different types of pilot signals.
The imperfections of ADC, digital-to-analog converter (DAC),
low-noise amplifier, and mixer are not considered.

1) Phase Noise and Carrier Frequency Offset: Imper-
fect local oscillators (LOs) in the up-conversion and down-
conversion processes add PN to the carrier wave phase. In ad-
dition, when the down-converting LO in the receiver does not
perfectly synchronize with the received signal’s carrier [39],
CFO occurs. In general, both PN and CFO are estimated and
compensated by the receiver [40], so we only consider the
residual PN and residual CFO at the receiver. With PN and
CFO, the observation, yg,k, is modified as in [36]

yg,k → f⊤k EgΞgF
Hyg, (10)

Eg = ej
2πϵgKtot

K diag([1, ej
2πϵ
K , . . . , ej

2π(K−1)ϵ
K ]), (11)

Ξg = diag([ejνg,1 , . . . , ejνg,K ]), (12)

where yg is the received signals of the ideal model without PN
or CFO (i.e., from (1)), F = [f1, f2, . . . , fK ] is the FFT matrix.
The CFO matrix Eg considers both inter-OFDM symbol phase
changes as well as inter-carrier interference [36], [41]. More
specifically, Ktot = K + Kcp with Kcp as the length of the
cyclic prefix, and ϵ is the residual CFO with ϵ ∼ N (0, σ2

CFO).
Ξg is the residual4 PN matrix with νg,k ∼ N (0, σ2

PN). In
(10), the vector yg is converted to the time domain by FHyg ,
where the successive PN samples, as well as the CFO, are
applied. Finally, f⊤k extracts the k-th subcarrier after applying
an FFT to EgΞgF

Hyg . Note that the residual CFO ϵ is fixed
for each realization (e.g., one localization measurement with
G transmission), while the PN νg,k is different for all the
subcarriers and OFDM symbols.

2) Mutual Coupling: MC refers to the electromagnetic
interaction between the antenna elements in an array [21]. For
a UPA, we adopt the MC model as in [37] by assuming the
antenna is only affected by the coupling of the surrounding
elements. As a result, the MC matrix can be expressed as

C =


C1 C2 0 · · · 0
C2 C1 0 · · · 0

...
. . . . . . . . .

...
0 · · · C2 C1 C2

0 · · · 0 C2 C1

 . (13)

4Note that νg,k and ϵ represent residual PN and CFO that remains after
the carrier synchronization process processing (e.g., [42], [43]). Hence, νg,k
is assumed to be independent across time.
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Here, C ∈ CNzNy×NzNy is the MC matrix with sub-matrices
C1 = Toeplitz([1, cx, 0 . . . , 0]) ∈ CNy×Ny and C2 =
Toeplitz([cx, cxy, 0, . . . , 0]) ∈ CNy×Ny , where cx and cxy
are the coupling coefficients between a specific antenna and
its surrounding antennas with 0.5 and

√
2/2 wavelengths

distance, respectively [37]. For convenience, we use one
variable σMC to denote the severity of the MC such that
cx ∼ CN (0, σ2

MC) and cxy ∼ CN (0, σ2
MC/4). The MC leads

to the following substitution of the channel matrix

Hk → CBHkC
⊤
U . (14)

3) Power Amplifier Nonlinearity: For the PA nonlinearity,
we consider a Q-th order memoryless polynomial nonlinear
model [13] with a clipping point xclip ∈ R as

hPA(x̌t) =

{∑Q−1
q=0 βq+1x̌|x̌|q |x̌| ≤ xclip,∑Q−1
q=0 βq+1

x̌
|x̌| |xclip|q+1 |x̌| > xclip,

(15)

where x̌t = xt/R denotes the voltage of the transmitted time-
domain signal (R is the load impedance in Ohms) in the
time domain and β1, . . . , βQ are complex-valued parameters.
We assume that (15) models both the effect of digital pre-
distortion and power amplifier, and we use non-oversampled
signals as input to PA for tractable localization performance
analysis5. Note that the PA affects the time domain signals and
each antenna at the Tx has a separate PA, and the PA model
in (15) does not consider the out-of-band emissions (only the
in-band distortion). For simplicity, the models are the same
for different PAs and hPA(x̌t) returns the time domain signal
vector (by operating point-wise on each of the elements) with
PA nonlinearity introduced.

4) Array Calibration Error (AGE and ADE): The array
calibration errors are caused by the variations in array gain
and antenna displacement. To model the AGE, we define the
complex excitation coefficient of the n-th antenna at direction
φ as [38]

bn(φ) = (1 + δa)e
jδp , (16)

where δa ∈ N (0, σ2
AA), and δp ∈ N (0, σ2

AP) are the relative
amplitude error and phase error, respectively. Regarding the
ADE, we assume the n-th antenna position has a displacement
on the 2D plane of the local coordinate system as

z̃n = zn + [0, δn,y, δn,z]
⊤, (17)

with zn ∈ R3 is the ideal position of the nth antenna in
the local coordinate system, δn,y, δn,z ∈ N (0, σ2

ADE) are the
displacement error. The steering vector is then modified as

a(φ) → b(φ)⊙ ej
2π
λ Z̃⊤t, (18)

where Z̃ = [z̃1, . . . , z̃N ] contains the geometry information
of all the antennas. The array calibration error is fixed for a
certain array and varies across different devices.

5) In-phase and quadrature imbalance: IQI operates on
the time domain signal and the transmitted symbol vector is
modified as [22]

xg → F(αUF
Hxg + βUF

Hx∗
g) = αUxg + βUx

∗
g, (19)

5In order to fully characterize the effect of PAN, an oversampled model is
needed, which also captures the intersymbol interference introduced by the
nonlinearity, in addition to the symbol distortion (see (25) in [44]).

where the FFT matrix F and IFFT matrix FH switch be-
tween time and frequency domain, αU = 1

2 + 1
2mUe

jψU ,
βU = 1

2 − 1
2mUe

jψU with mU and ψU as the amplitude and
phase imbalance parameters at the UE side. We assume that
the IQI is compensated in the system, leading to a residual
impairment and the imbalance parameters can be modeled as
mU ∼ N (1, σ2

IA) and ϕU ∼ N (0, σ2
IP). Similarly, the IQI at

the receiving BS can be expressed as

yg → αByg + βBy
∗
g . (20)

More accurate frequency-dependent IQI models can be found
in [45], [46], which is beyond the scope of this work.

D. Hardware-impaired Model

Considering all types of HWIs described in Sec. II-C and
substituting (10)–(20) into (9), the observation can be rewritten
in the frequency domain.

1) Transmit Signal under HWI: The precoded transmitted
signal across subcarriers and antennas is modified from Xg =
xgv

⊤
g ∈ CK×NU to

X̌g = FhPA(EUΞU(αUF
Hxg + βUF

Hx∗
g)v

⊤
g︸ ︷︷ ︸

precoded time domain signal before PA

). (21)

2) Channel under HWI: The channel is modified from
Hk = αdk(τ)a(φB)a

⊤(φU) ∈ CNB×NU in (4) to

Ȟ = αdk(τ)CB(bB(φB)⊙ ej
2π
λ Z̃⊤

B tB(φB)︸ ︷︷ ︸
steering vector ãB(φB)

)

× (bU(φU)⊙ ej
2π
λ Z̃⊤

U tU(φU)︸ ︷︷ ︸
steering vector ãU(φU)

)C⊤
U .

(22)

3) Received Signal under HWI: The received signal is
modified from yg ∈ CK×1 to (23)6 as

y̌g = F(αB(EB,gΞB,gF
H(X̌gȞ

⊤wg ⊙ d(τ)))

+βB(EB,gΞB,gF
H(X̌gȞ

⊤wg ⊙ d(τ)))∗) + ng.
(23)

E. Summary of the Models

To summarize, we have defined a MM in (1) without consid-
ering the HWI, which will be used for algorithm development.
With HWIs introduced, the impaired model defined in (23) will
be used as the TM. In the following section, we will evaluate
the impact of using the MM to process data generated by TM
on localization performance. For the sake of convenience in
performance analysis, we use µg(η) and µ̄g(η) to denote the
noise-free observation of (1) and (23), respectively.

III. LOCALIZATION ALGORITHM

Based on the models described above, a two-stage local-
ization7 problem can be formulated such that the channel

6The signal model considering all the HWIs provides a more accurate
analysis compared to simply adding the effect of individuals as they do not
hold a linear relationship. In addition, equations (21) to (23) provide flexibility
in evaluating the contribution of individual HWIs compared to the overall
HWIs to identify dominant components that degrade the system performance.

7In contrast, the direct localization estimates the state vector s from the
observed signal vector y directly. Considering the high complexity involved,
we adopt two-stage localization in this work.
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parameter vectors η̂ch = [η⊤
1 , . . . ,η

⊤
L ]

⊤ are firstly estimated
based on the received signals ŷ1, . . . , ŷL from all the BSs,
and then the state vector ŝ is determined from η̂ch.

A. Mismatched Maximum Likelihood Estimator

The maximum likelihood estimation (MLE) can be em-
ployed when the observation y is generated from the same
model used by the algorithm. If y ∼ fTM(y|η̄), the MLE of
the UE position and channel gain is

η̂MLE = argmax
η̄

ln fTM(y|η̄), (24)

where ln fTM(y|η̄) is the log-likelihood of the TM. However,
if the estimator does not know the existing mismatch, the
MLE boils down to mismatched maximum likelihood estima-
tion (MMLE) (i.e., y ∼ fTM(y|η̄) while the estimator uses
fMM(y|η) ̸= fTM(y|η̄)), given by

η̂MMLE = argmax
η

ln fMM(y|η). (25)

More specifically, equation (25) formulates the MMLE for
channel parameters extraction, which can also be implemented
in position and orientation estimation with known or approx-
imated likelihood function. A practical approach is to use the
gradient descent method with an initial point, which will be
detailed in the following subsections.

B. Channel Parameters Estimation

The channel parameters estimation will be performed with a
coarse estimation using ESPRIT, which provides a good initial
point for a refined estimation using (25).

1) Coarse Estimation using ESPRIT: We aim to obtain an
initial estimate of the channel parameters with a low com-
plexity, which can be solved using tensor-based beamspace
ESPRIT8 algorithm [11]. To implement the beamspace ES-
PRIT algorithm, we reformulate a beamspace channel matrix
H(b) (for tensor decomposition) based on (1) as

H
(b)
k = αdk(τ)W

HaB(φB)a
⊤
U (φU)V (26)

where W = T1⊗T2 ∈ CN1N2×M1M2 and V = (T3⊗T4)
∗ ∈

CN3N4×M3M4 are the combining matrix and precoder matrix
and the total number of transmissions G = M1M2M3M4.
Here, Ti is the codebook containing Mi steering vectors of the
i-th dimension (i.e., azimuth/elevation of AOA/AOD). Since
the first row of the antenna position matrix Z̃ is all zeros (see
Sec. II-A and (3)), we can express the steering vector as

aB(φB) = a(M1)(ω1)⊗ a(M2)(ω2), (27)

with

ω1 = π sin(ϕB) cos(θB), ω2 = π sin(θB), (28)

a
(M1)
B (ω1) = ej

2πfc sin(ϕB) cos(θB)

c z̃B,2 = ej
2
λc
ω1z̃B,2 , (29)

a
(M2)
B (ω2) = ej

2πfc sin(θB)

c z̃B,3 = ej
2
λc
ω2z̃B,3 . (30)

Here, z̃⊤B,2 ∈ C1×NB and z̃⊤B,3 ∈ C1×NB are the second and
third row of the matrix Z̃, respectively. The combining matrix

8While this work considers only the LOS channel, the ESPRIT also works
for the scenarios with NLOS paths.

can then be defined in terms of a grid of the spatial frequencies
ω̄1 = [ω̄1,1, . . . , ω̄1,M1 ] and ω̄2 = [ω̄2,1, . . . , ω̄2,M2 ] as

T1 = [a(N1)(ω̄1,1), . . . ,a
(N1)(ω̄1,M1

)]⊤ ∈ CN1×M1 , (31)

T2 = [a(N2)(ω̄2,1), . . . ,a
(N2)(ω̄2,M2

)]⊤ ∈ CN2×M2 , (32)

where ω̄1,m and ω̄2,m are decided by beamforming directions
(detailed in Sec. V). A similar reasoning applies to the steering
vectors a(M3)

U (ω3) and a
(M4)
U (ω4) at UE to define T3 and T4,

with

ω3 = π sin(ϕU) cos(θU), ω4 = π sin(θU). (33)

We further define b(Mn)(ωn) = TH
na

Nn(ωn) ∈ CMn for
n ∈ {1, 2, 3, 4} and b(M5)(ω5) = d(τ) (ω5 = 2π∆fτ ), and
the beamspace channel matrix in (26) can be represented by
a tensor H ∈ CM1×M2×···×M5 as [6]

H(b) = αb(M1)(ω1) ◦ . . . ◦ b(M5)(ω5). (34)

In practice, the estimated beamspace channel matrix can
be estimated with known pilot signals as vec(Ĥ(b)

k ) =
[ŷ1,k/x1,k, . . . , ŷG,k/xG,k]

⊤. By rearranging the estimated

channel into a tensor Ĥ
(b)

shown in (34), the beamspace
tensor-based ESPRIT method can then be used to estimate ω1

to ω5 and obtain the AOA, AOD, and delay accordingly [6],
[11].

2) Fine Estimation using MMLE: From ESPRIT, we can
obtain an initial estimate of the channel parameters η̂0. The
refinement of the initial estimate can be formulated as an
optimization problem, based on (25), as

η̂ = argmin
η

∥y − µ(η)∥2. (35)

Since α appears linearly in the noise-free observation µ, we
further define γ(η) = µ(c)/α with c = [φ⊤

B ,φ
⊤
U , τ ]

⊤. By
setting ∂∥y − µ(η)∥2/∂α = 0, we can have

ĉ = argmin
c

∥y − γH(c)y

∥γH(c)∥2
γ(c)∥2. (36)

In this way, the nuisance parameters can be removed, which
reduces the dimension of the unknown parameters.

C. Localization Algorithm

1) Coarse Estimation: Given the estimated geometric pa-
rameter vector cl (1 ≤ l ≤ L) for all the channels, the
least squares solution for coarse estimation of position and
orientation as [47]

R̂U,LS =

{
UVT, if det(UVT) = 1,

UJVT, if det(UVT) = −1,
(37)

[p̂U,LS, B̂U,LS]
⊤ = (Q⊤

3 Q3)
−1Q⊤

3 q, (38)

where J = diag([1, 1,−1]), U and V are the unitary basis
matrices of the singular value decomposition of the matrix
Q1Q

⊤
2 , together with Q3,q are given by
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Q1 = −[RB,1t(φ̂B,1), . . . ,RB,Lt(φ̂B,L)], (39)

Q2 = [t(φ̂U,1), . . . , t(φ̂U,L)], (40)

Q3 =

I3 RB,1t(φ̂B,1)
...

...
I3 RB,Lt(φ̂B,L)

 , (41)

q =

 p
(1)
B +RB,1τ̂1t(φ̂B,1)

...
pB,L +RB,Lτ̂Lt(φ̂B,L)]

⊤

 . (42)

The estimator for position and clock offset in (38) does not
require the orientation of the UE RU, which is still sufficient as
a coarse estimate, as will be shown in the simulation section.

2) MMLE: Once the initial position and orientation results
are obtained, joint position and orientation estimation using
MMLE can be formulated as

ŝ = argmin
s

L∑
l=1

(cl(s)− ĉl)
⊤Σ−1

cl
(cl(s)− ĉl), (43)

which can be solved using the manifold optimization toolbox
Manopt [48]. Note that the covariance matrix may not be
accurately obtained in practice. We formulate localization as
an MMLE problem with two purposes: (a) to evaluate the
performance improvement with known covariance matrices
compared to the coarse estimation; (b) to validate the derived
bound, which will be detailed in Sec. IV.

IV. LOWER BOUND ANALYSIS

In the next, we derive the CRB for MM, as well as the
MCRB for the mismatched estimator in (25).

A. CRB Analysis for the Mismatched Model

Based on the defined channel parameter vector η and state
vector s, the signal model in (1) and y ∼ fMM(y|η), the
channel estimation CRB of the MM for the lth channel can
be obtained as I(ηl)−1 ∈ R7×7 with [49]

I(ηl) =
2

σ2
n

G∑
g=1

K∑
k=1

Re

{(
∂µg,k
∂ηl

)H (
∂µg,k
∂ηl

)}
. (44)

Here, Re{·} extracts the real part of a complex variable.
Consequently, the Fisher information matrix (FIM) of all the
channel parameters ηch can be formulated as

I(ηch) = blkdiag(I(η1), . . . ,I(ηL)). (45)

where blkdiag(·) returns the block diagonal matrix created by
aligning the input matrices. The FIM of the state vector I(s) ∈
R13×13 can then be formulated as

I(s) = M(M⊤ J⊤
S I(cch)JS M)−1M⊤, (46)

where I(cch) ∈ R5L×5L is the equivalent FIM of non-
nuisance parameters cch obtained from I(ηch), JS ≜ ∂cch

∂s
is the Jacobian matrix using a denominator-layout notation,
M = blkdiag(I4×4, M̄) with M̄ as [8]

M̄ =
1√
2

−r3 03×1 r2
03×1 −r3 −r1
r1 r2 03×1

 , (47)

where r1, r2, and r3 are the first, second, and third columns
of the UE rotation matrix RU.

Based on I(η) in (44), we can define the AOD error bound
(ADEB), AOA error bound (AAEB), and delay error bound
(DEB) of the link between the UE and the lth BS) as

AAEB =
√

tr([I(ηl)−1]1:2,1:2), (48)

ADEB =
√

tr([I(ηl)−1]3:4,3:4), (49)

DEB =
√
([I(ηl)−1]5,5). (50)

Similarly, based on I(s), we can define the position error
bound (PEB), clock offset error bound (CEB) and orientation
error bound (OEB) as

PEB =
√

tr([I(s)−1]1:3,1:3), (51)

CEB =
√
([I(s)−1]4,4), (52)

OEB =
√

tr([I(s)−1]5:13,5:13). (53)

The bounds from (48)–(53) will be used to evaluate the
channel estimation and localization performance. In the next
subsections, we will first formulate the MCRB for channel
estimation, and then the mismatched lower bound for position
and orientation estimation will be derived.

B. Misspecified CRB of Channel Parameters

For a given channel model, the model is said to be mis-
matched or misspecified when y ∼ fTM(y|η), while the
estimation is based on the assumption that y ∼ fMM(y|η)),
where fTM(y|η) ̸= fMM(y|η).

The lower bound (LB) of using a mismatched estimator can
be obtained as [31]

LB(η̄,η0) = A−1
η0

Bη0
A−1

η0︸ ︷︷ ︸
=MCRB(η0)

+(η̄ − η0)(η̄ − η0)
⊤︸ ︷︷ ︸

=Bias(η0)

, (54)

where η̄ is the true channel parameter vector, η0 is the pseudo-
true parameter vector (which will be introduced soon), and
Aη0

,Bη0
are two possible generalizations of the FIMs. The

LB is a bound in the sense that

E{(η̂MMLE − η̄)(η̂MMLE − η̄)⊤} ⪰ LB(η̄,η0), (55)

where the expectation is with respect to fTM(y|η). What re-
mains is the formal definition and computation of the pseudo-
true parameter η0 and Aη0

,Bη0
.

1) Pseudo-true Parameter: Assume the probability density
function (PDF) of the TM, where the observation data come
from, is fTM(y|η̄), where y is the received signals and η̄ ∈ R7

(7 unknowns for this case) is the vector containing all the
channel parameters. Similarly, the PDF of the MM for the
received signal y can be noted as fMM(y,η). The pseudo-true
parameter vector is defined as the point that minimizes the
Kullback-Leibler divergence between fTM(y|η̄) and fMM(y|η)
as

η0 = argmin
η
DKL(fTM(y|η̄)∥fMM(y|η)). (56)



8

We define ϵ(η) ≜ µ̄(η̄)−µ(η), and the pseudo-true parameter
can be obtained as [32]

η0 = argmin
η

∥ϵ(η)∥2 = argmin
η

∥µ̄(η̄)− µ(η)∥2. (57)

Hence, η0 can be found by solving (35) with the observation
y = µ̄(η̄), which can be accomplished using the same
algorithm in Sec. III, initialized with the true value η̄.

2) MCRB Component Matrices: The matrices Aη0
and

Bη0
can be obtained based on the pseudo-true parameter

vector η0 as [32]

[Aη0
]i,j =

ˆ
∂2lnfMM(y|η)

∂ηi∂ηj
fTM(y|η̄)dy

∣∣∣∣
η=η0

=
2

σ2
n

Re

[
∂2µ(η)

∂ηi∂ηj
ϵ(η)− ∂µ(η)

∂ηj

(
∂µ(η)

∂ηi

)H
]∣∣∣∣∣

η=η0

(58)

and

[Bη0
]i,j =

ˆ
∂lnfMM(y|η)

∂ηi

∂lnfMM(y|η)
∂ηj

fTM(y|η̄)dy
∣∣∣∣
η=η0

=
4

σ4
n

Re
[
∂µ(η)

∂ηi
ϵ(η)

]
Re

[
∂µ(η)

∂ηj
ϵ(η)

]
+

2

σ2
n

Re

[
∂µ(η)

∂ηj

(
∂µ(η)

∂ηi

)H
]∣∣∣∣∣

η=η0

. (59)

C. Absolute Lower Bound (ALB) for Localization

Another way to interpret the LB specified in (54) is that the
estimated channel parameter vector from an efficient estimator
follows a nonzero-mean multi-variable Gaussian distribution
as

η̂l ∼ N (η0,l,A
−1
η0,l

Bη0,l
A−1

η0,l
), (60)

while the assumed distribution of the MMLE is

η̂l ∼ N (ηl(s̄), I(ηl)
−1), (61)

where s̄ is the true state of the UE. As a result, the position and
orientation estimation (from the channel parameter vectors of
all the paths) of the two-stage localization problem is another
mismatched problem and the bound follows as

LB(s̄, s0) = MCRB(s0) + (s̄− s0)(s̄− s0)
⊤︸ ︷︷ ︸

Absolute lower bound (ALB)

. (62)

Similar to (54), s̄ is the true state parameter vector, s0 is the
pseudo-true state parameter vector.

It is possible to derive the localization LB constrained
MCRB [50]; however, considering the high complexity when
involving 3D orientation estimation, we will focus on the
bias term, defined as the absolute lower bound (ALB) of the
localization performance as ALB = (s̄− s0)(s̄− s0)

⊤, which
can sufficiently evaluate the effect of HWIs on localization
as will be shown in Sec. V-C2 Following a similar derivation
in (57). The pseudo-true parameters for state vector s can be
obtained as

s0 = argmin
s̄

∑
l

(η0,l − ηl(s̄))
⊤I(ηl)(η0,l − ηl(s̄)), (63)

where η0,l = argminη ∥µ̄(η̄l) − µ(ηl)∥2 is the biased
mapping obtained by calculating the pseudo-true parameters

of the lth channel from (57), and I(ηl) is the inverse of the
covariance matrix that can be obtained from (44).

D. Summary of Different Bounds

In this section, we introduced different types of lower
bounds. For channel geometric parameters, the CRB and LB
are derived for AOA, AOD, and delay. For state parameters,
the CRB and ALB are derived for the position, orientation, and
clock offset. Considering the error bound calculation requires
the inverse of the FIM, it is challenging to derive a closed-
form expression accounting for all the HWIs for performance
analysis, and hence only numerical results for localization are
presented. All types of the lower bounds are summarized in
Table I, which will be used in Sec. V Numerical Results.

TABLE I
SUMMARY OF DIFFERENT LOWER BOUNDS

Types Parameters Remarks
AOA AOD Delay Channel Parameters

CRB AAEB ADEB DEB (48)-(50)
LB AALB ADLB DLB (54)

Position Orientation Clock Offset State Parameters
CRB PEB OEB CEB (51)-(53)
ALB PALB OALB CALB (62)

V. NUMERICAL RESULTS

A. Default Parameters

We consider a 3D MIMO uplink scenario with one UE
and two BSs. The carrier frequency, bandwidth, and subcarrier
spacing of the system are set as fc = 60GHz, W = 200MHz,
and ∆f = 240KHz, respectively. We utilize 12% of the total
number of subcarriers Kcom = 833 for localization, resulting
in K = 100 subcarriers as pilot signals. The amplitude of the
channel gain is calculated as ρ = λ

4πcτ . The rest of the system
parameters9 can be found in Table II. Note that the selection of
these parameters is to show the performance of the estimator
in comparison to the derived bound, and the analysis of each
HWI type is also discussed in the simulation results.

Regarding the evaluation of communication performance,
only the first BS is considered, and 16-quadrature amplitude
modulation (QAM) modulation is adopted. Different from
localization, where BS-UE beam sweeping is needed, we
evaluate the effect on communications with fixed precoder
and combiner vectors across different transmissions. By con-
sidering all HWIs, we assume the channel can be perfectly
estimated (with a sufficient number of pilots) as Ĥ = Ȟ =
âBâU with âB =

√
αCBãB(φB) and âU =

√
αãU(φU)C

⊤
U

from (22). In order to maximize the SNR with the amplitude
constraints of the precoder and combiner, we choose w and
v respectively as the conjugate of âB and âU with each of the
elements normalized to a unit amplitude. For each realization
(500 in total), 20 OFDM symbols are sent with data drawn
randomly from 16-QAM, and SER is used to evaluate the
effect of HWIs on communications.

For localization, the pilot signal xg,k is chosen with ran-
dom phase and a constant amplitude |xg,k|2 = P/NU. To

9The PA parameters are estimated from the measurements of the RF
WebLab, which can be remotely accessed at www.dpdcompetition.com. Part
of the parameters come from the Hexa-X Deliverable 3.1.

www.dpdcompetition.com
https://hexa-x.eu/wp-content/uploads/2022/02/Hexa-X_D3.1_v1.4.pdf
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assist the beamspace ESPRIT algorithm, we set the number
of sweeping beams as M1 = 4, M2 = 4, M3 = 3,
M4 = 3 with a total number of transmission G = 144.
For a specific spatial frequency vector ω̄n (n ∈ {1, 2, 3, 4}),
we assume the sweeping range as (Mn − 1)∆ω centered
at the location prior ω̊n = ωn + δω , where ωn is defined
in (28), (33), and δω is the error). More specifically, we choose
ω̄n,m = ωn + δω + 2m−Mn−1

2 ∆ω , with ∆ω = 0.15 and
δω = 0.05 in the simulation. The sweeping priority is set
to ‘BS-first’ by default, which means that the UE can change
its precoder vector when the BS finishes the M1M2 = 16
different sweeping beams. Different error bounds (i.e., CRBs,
LBs, ALBs defined in (48)–(53), (54), and (62)) are utilized
as localization performance metrics.

TABLE II
DEFAULT SIMULATION PARAMETERS

Parameters True Model Mismatched Model
BS Positions p1

B = [0, 0, 3]⊤, p2
B = [0, 10, 3]⊤

BS Orientations o2
B = [−30◦, 15◦, 0◦]⊤, o1

B = [0◦, 15◦, 0◦]⊤

BS Antennas N1
B = N2

B = 8 × 8

UE Position pU = [8, 4, 0]⊤, oU = [180◦, 0◦, 0◦]⊤

UE Orientation oU = [180◦, 0◦, 0◦]⊤

UE Antennas NU = 4 × 4
Load Impedance R = 50Ω

Noise PSD N0 = −173.855 dBm/Hz
Noise Figure 10 dB

Phase Noise σPN = 2.0◦ σPN = 0◦

Carrier Freq. Offset σCFO = 2e−4 σCFO = 0
Mutual Coupling σMC = 0.001 σMC = 0

β1 = 0.9798+0.0286j
Power Amplifier β2 = 0.0122-0.0043j n/a

β3 = −0.0007+0.0001j
PA Clipping Voltage xclip = 1V n/a

Array Gain Error σGA = σGP = 0.002 σRA = σRP = 0
Antenna Disp. Error σAD = 5um (1e−3λ) σAD = 0

IQ Imbalance σIA = σIP = 0.02 σIA = σIP = 0

B. The Effect of HWIs on Communications

1) The Effect of HWIs on SER: To have a tangible perfor-
mance evaluation of HWIs on communications, adding Gaus-
sian noise to the transmitted and received signals is usually
used (see [13, (7.9)]). We approximate the HWI-introduced
effect on communications as random noise, which shows a
good alignment between the Monte Carlo-based numerical
evaluation (that considers the true characteristics of HWIs
without any approximation) and the theoretical SER evaluation
(with random noise approximation of HWIs)10. The rationale
behind adopting this approach in our context is grounded in
several key factors. First, we work with OFDM systems with
hundreds of subcarriers, allowing us to leverage the central
limit theorem to effectively model HWIs in the frequency do-
main as Gaussian noise. Second, our focus primarily involves
residual HWIs, which, by their very nature, are inherently
small. It’s worth noting that in a broader context, where HWIs
may assume different characteristics, a more careful approach
to modeling might be needed to comprehensively evaluate
their impact on communication systems. Considering that the

10Minimum Euclidean distance decoding is adopted, and the SER of M-
QAM can be calculated as SERM = 1− (1− 2

√
M−1√
M

Q(
√

3SNR
M−1

))2 [51,
(6,23)], where Q(·) is the Q-function and SNR is effective SNR considering
both approximated HWI noise and background noise.

effects of some HWIs depend on the amplitude of the symbol
(e.g., PAN), we also obtain the minimum and maximum noise
levels across different symbols to evaluate the lower bound and
upper bound of the SER. The SERs of 16-QAM with different
transmit power for different HWI coefficients are visualized
in Fig. 2, where the black solid curve is the benchmark SER
without HWIs. By default, cHWI = 1, and the HWI level is
the same as the parameters in Table II. A value of cHWI = 2
indicates that the standard deviations (e.g., σPN, σCFO) of all
the impairments (except for PAN) are multiplied by 2.

We can see from the figure that the analytical SERs with
approximated noise levels are close to the numerical SERs
under certain HWI levels (see markers and solid curves for
cHWI = 0.1/1/2/3), and both are within the lower and upper
bounds (shaded areas). However, the approximated SERs are
less accurate when the impairment level is high (see cross
markers for cHWI = 5 at high transmit powers). Considering
the communication systems may not work properly at such a
high HWI level (where SER > 0.1), the approximation of the
HWI-introduced effect on communications as Gaussian noise
in this work is reasonable in a practical setting. We can also see
from Fig. 2 that the selected impairment level (i.e., cHWI = 1)
has limited effects on communications. Nevertheless, we will
show the localization performance will be affected by the same
level of HWIs in Sec. V-C.
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2) The Effect of Individual HWIs on SER: We are also
interested in the effect of individual HWIs on communications.
By considering PN, CFO, PAN, and IQI one by one, the
SERs under HWI are shown in Fig. 3. Benchmarked by
the solid black curve without HWIs, these factors degrade
SERs. We also performed simulations by including MC, AGE,
ADE at the same time, as shown in the dashed curve with
cross markers, and found their effects on communications are
negligible under the current simulation setup.

3) Insights into the Impact of HWI on Communications:
To gain further insight into the effects of HWI on communi-
cations, we separate the overall system noise into equivalent
HWI noise and background noise. We can see from Fig. 4
that the equivalent HWI noise is determined by the HWI level
and has an approximately linear relationship with the transmit
power (when working within the linear region of the PA). In
addition to the fixed background noise, the overall equivalent
noise level keeps increasing and is dominated by the HWIs at
high transmit power.
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Fig. 4. Visualization of overall system noise, equivalent HWI noise, and
background noise with different transmit power P . The background noise has
a large effect on communications in low transmit power, whereas the HWIs
contribute more in high transmit power.

C. The Effect of HWIs on Localization

Before analyzing the HWIs in detail, we first establish the
validity of the derived bounds by comparing them against the
performance of practical algorithms.

1) Channel Estimation Results: For convenient analysis, we
adopt one specific realization of the HWIs for the system. The
results of channel parameters estimation using ESPRIT (circle,
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Fig. 5. Comparison between channel parameters estimation results (ESPRIT
and MMLE) and different lower bounds (CRB of the MM and the LB of the
mismatched estimator) in terms of AOA, AOD and delay. Due to the HWIs,
the performance starts to saturate when the transmit power exceeds 30 dBm.
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the LB of the mismatched estimator). We noticed that refined results using
MMLE attain the ALBs.

square, and diamond markers) and MMLE (solid curves) are
shown in Fig. 5. The estimators are benchmarked by the CRBs
of the ideal/mismatched model (CRB-MM, dashed curves) and
the LB using a mismatched model (dotted curves with cross
markers). Note that the average transmit power P is calculated
without considering the nonlinearity of the power amplifier
(calculated before the PA). When the transmit power P is low,
the LB is determined by the MCRB (since the bias part is con-
stant, see (54)) and has a similar performance as CRBs. This
indicates that in low transmit power, the mismatched model
will not significantly affect the performance, as the expected
accuracy is low and limited by the noise. With the increase of
transmit power, the contribution of MCRB decreases due to an
increased SNR, and eventually, the mismatched localization is
lower bounded by the absolute lower bound (ALB) (bias part
in (54)). This indicates that the localization performance can
no longer be improved by increasing transmit power, which
cannot be ignored in scenarios requiring high-accuracy local-
ization performance11. Regarding the estimators, the ESPRIT
(using a mismatched model) provides low-complexity results
with limited performance in delay estimation. However, the
refined results using MMLE can reach the LB (solid curves
align well with the dotted curve).

2) Localization Results: Based on the estimated channel
parameters, we are able to estimate the UE position and
orientation. Similar to the channel estimation results, two
estimators (LS and MMLE) and two bounds (CRB and LB)
are evaluated. The results for localization are shown in Fig. 6.
From the figure, we can see that at low transmit powers, the
LB and CRBs coincide, implying that the HWIs are not the
main source of error. At higher transmit powers (10 dBm for
OEB, and 20 dBm for PEB), LB deviates from the CRBs, and
the positioning performance is thus more severely affected by
HWIs. The MMLE (solid curves) in high SNR is close to
the ALB (dotted curves with cross markers), indicating the
validity of the MCRB analysis.

Now that the validity of the bounds has been established,
we rely solely on the bounds to evaluate the effect of HWIs

11Note that the analysis here is under the same level of residual noise (e.g.,
PN, CFO, IQI). In practice, the impairment levels depend on specific HWI
calibration algorithms and transmit power.
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on localization. First, the impairments are studied individually,
then the impact of the waveform type is evaluated, and finally,
the impairment levels are varied.
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Fig. 7. LBs of channel parameter estimation under different types of
impairment with multiple realizations: (a) Phase noise, (b) Carrier frequency
offset, (c) Mutual coupling, (d) Array gain error, (e) Antenna displacement
error, (f) IQ-imbalance.

3) The Effect of Individual Impairments: To understand the
effect of different types of HWIs, we study the LB for AOA,
AOD, and delay estimation by considering one type of HWIs
at a time. The results are shown in Fig. 7 for (a) PN, (b) CFO,
(c) MC, (d) AGE, (e) ADE and (f) IQI. The effect of PA will
be separately discussed in Sec. V-C4. Considering we define
the HWIs as random variables with a fixed impairment level as
shown in Table II, we perform multiple hardware realizations
with a fixed pilot signal and plot all the resultant LBs in the
shaded regions. We can see that different types of the HWIs
affect angle and delay estimation differently. The PN and IQI
introduce noise on the symbols across different subcarriers and
hence affect delay estimation12. The phase changes introduced
by the CFO increase with time (see (11)), and hence, angle
estimation (relying on multiple transmissions) will be affected
more than delay estimation. The rest of the impairments,
namely, the MC, AGE, and ADE distort the steering vectors
and therefore have a more significant effect on the angle
estimation. For all the HWIs, the negative effect on the
performance occurs when the transmit power is high.

12If multiple RFCs or several local oscillators are adopted in the array, PN
may have a larger effect on angle estimation.

One special observation is that the effect of CFO on the
AOA is less pronounced than on AOD in Fig. 7 (b). This is
because the sweeping strategy is ‘BS-first’. For a system with
analog arrays, the estimation of AOA/AOD relies on phase
shifts across consecutive beams over time, meaning the angle
cannot be estimated from a single receive beam, like in a
digital array. If the BS sweeps across different beams while
the UE is using a fixed beam, the AOA can be estimated
in one BS sweep, and the effect of CFO will be minor.
However, the AOD estimation requires multiple BS sweeps,
which increases the effect of CFO. To verify the explanation,
we further changed the sweeping strategy from ‘BS-first’ to
‘UE-first,’ and the results with different array sizes can be
found in Fig. 8. We can see that the AOA is less affected if
the sweeping is ‘BS-first’ (blue curves in (a)) as shown in (11).
Similarly, the AODs are less affected if the sweeping is ‘UE-
first’ (dashed red curves in (b)) with a large UE array size.
However, when the array size is small, sweeping order will
have less impact (i.e., the gaps are small between the dashed
curves in (a) and the solid curves in (b)).
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Fig. 8. The effect of CFO on channel geometrical parameters with different
sweeping strategies. The ‘BS first’ strategy (blue curves) works better for
AOA estimation, while the ‘UE first’ strategy (red curves) works better for
AOD estimation.

4) The Effect of PA with Different Pilot Signals: High peak-
to-average-power ratio (PAPR) is one of the critical issues in
implementing the OFDM signals, and a promising alternative
is to use DFT-S-OFDM [52]. When increasing the transmit
power, the PAN is more likely to happen, as can be seen
in Fig. 9 (a). While delay estimation exploits phase changes
across subcarriers within an OFDM symbol, angle estimation
relies on phase/amplitude changes across multiple symbols in
an OFDM frame for analog arrays, where beam sweeping
is performed over time (i.e., different beams for different
symbols). In addition, signals at different antenna elements
experience similar distortions with identical PAs adopted in
this work (see Fig. 1). Therefore, the effect of signal distortion
due to PAN is less pronounced (at the same level of transmit
power) for angle estimation than for delay estimation. We
compare using the random OFDM symbols and the FFT
version of the benchmark symbols (a special case of DFT-
S-OFDM by choosing an identity mapping matrix [52]), and
the results are shown in Fig. 9. Due to the reduced PAPR by
DFT-S-OFDM, the localization performance can be improved,
as shown in the right figure.

5) Evaluation of HWIs with Different Impairment Levels:
We further evaluate the position and orientation ALBs with
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different levels of HWIs by defining an impairment coefficient
cHWI. With different values of cHWI, the position ALB and
orientation ALB, by considering all the HWIs, and individual
HWIs, are shown in Fig. 10 (a) and (b). All the results indicate
the 75th percentile of the total 100 realizations. We notice that
the effect of PN, MC, AGE, ADE, and IQI on the localization
increases approximately in a linear trend with impairment
level. The CFO has a larger effect in high impairment levels
as the error residue accumulates over time. Based on Fig. 10,
we can quantize the contribution of individual HWIs (e.g., if
the ALBs are much smaller than the current CRB, the negative
contribution of HWI on localization is negligible). In addition,
it can also identify dominant impairment factors for further
compensation (e.g., ADE is one of the dominant factors under
current system parameters).
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Fig. 11. The effect of HWIs on different localization systems.

6) The Effect of HWIs on Different Localization Systems:
We compare the default BS-synchronized system (i.e., BS-
Sync) with the system without BS synchronization (i.e., BS-
Async). Both systems require AOA estimations for position-
ing, but the BS-Sync system provides extra TDOA informa-
tion. We first plot the CDF of PALB of two systems consid-
ering different types of HWIs (similar to Fig. 10) cHWI = 1,
as shown in Fig. 11 (a). We can see the angle-based system
performs slightly better with all types of HWIs (see the dashed
green curve and solid green curve with diamond markers),
and much better when introducing delay-related HWIs (as
shown in the blue curves in Fig. 11 (a)). This is because
the erroneous delay estimation will affect the positioning
performance of the BS-Sync system, indicating that the extra
TDOA measurement under HWI may not always contribute
to localization performance. If we only consider angle-related
HWIs (i.e., CFO, MC, AGE, ADE), the BS-Sync system
performs slightly better (as shown in the two red curves in
Fig. 11 (a)), indicating the synchronization does not contribute
too much when the existing of large angle errors. The gap
between blue curves and red curves shows that in this MIMO
system, the angle-related HWIs affect localization more than
communications (also see the results related to CFO, MC,
AGE, ADE in Fig. 3 and Fig. 7).

Regarding the orientation, it depends on the quality of
position and AOD estimates at the UE and hence shows
a similar pattern with position CDF in Fig. 11 (a) (e.g.,
a better position performance indicates a better orientation
performance). However, due to the contribution of AOD es-
timations being independent of BS synchronization, the gaps
between the dashed curves and the corresponding solid curves
in Fig. 11 (b) are reduced compared to the gaps in (a).

D. Summary of the Effects of HWIs

From the simulation, we found that the HWIs affect both
localization and communications, especially at high transmit
power. However, different types of HWIs affect localization
and communications differently. For communications, the
HWIs distort the transmitted and received signal and hence
affect SER. Based on Fig. 3, CFO, MC, AGE, and ADE have
a limited effect on communications. The distortion introduced
by CFO is a fixed phase shift that accumulates with time
and can be mitigated by more frequent online compensation.
Since communications does not exploit the phase relationship
between antennas (e.g., no sweeping is needed once the
communication link is established), MC, AGE, and ADE also
have less impact on the SER.

As for localization, the distortion of signals affects the
channel parameter extraction from the estimated channel.
More specifically, a bias will be introduced based on the
MCRB analysis (as shown in (54)), which is caused by the
mismatch between the TM and the assumed MM (i.e., the one
used to develop the algorithm). Such a bias will not affect the
localization performance too much when the SNR is low or
when the accuracy requirement is not stringent; however, it
cannot be ignored in high-accuracy localization systems (see
the saturation of the performance in Fig. 5 and Fig. 6). For the
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angle estimation for localization, the performance is strongly
affected by CFO, MC, AGE, and ADE. When talking about
the TOA, it is mainly affected by the factors (e.g., PN and
IQI) that also affect the SER in communications, as shown in
Fig. 7.

It should be noted that the effect of CFO on AOA and
AOD estimation depends on the number of transmissions
and sweeping order (e.g., ‘BS first’ preferred if AOA is
more important), while the effect of PA depends on the
transmit power and the nonlinear region of the amplifier
(e.g., DFT-S-OFDM is preferred for a lower PAPR). Since
different localization systems (e.g., BS-Sync or BS-Async)
and scenarios (3D or 6D localization) may treat angle and
delay estimation differently, the selection of hardware (e.g., a
receiver with a lower PN level) and compensation algorithms
should be considered when performing localization. The effect
of the individual impairment on angle/delay estimation and
communications (i.e., SER) is summarized in Table III (H/L
denotes High/Low).

TABLE III
THE EFFECTS OF HWIS ON LOCALIZATION AND COMMUNICATIONS

Type of HWI AOD AOA TOA SER
Phase Noise L L H H

Carrier Frequency Offset H∗ H∗ L L
Mutual Coupling H H L L

Power Amplifier Nonlinearity H∗ H∗ H∗ H∗

Array Gain Error H H L L
Antenna Displacement Error H H L L

IQ Imbalance L L H H

∗The effect of CFO on angle estimations depends on the sweeping order and number
of transmissions. The effect of PAN depends on the transmit power and the nonlinear
region of the amplifier.

VI. CONCLUSION

As the requirements on localization and communication
performance are more stringent to support new applications,
HWIs become a prominent factor affecting the performance in
5G/6G systems. We have modeled different types of HWIs and
utilized the MCRB to evaluate the localization error caused
by the model mismatch. The effects of HWIs on angle/delay
and position/orientation estimation are evaluated. We found
that PN and IQI have a stronger effect on delay estimation,
while CFO, MC, AGE, and ADE have a more significant effect
on angle estimation. The PAN affects both angle and delay,
which is determined by the transmit power (or amplitude) of
the signals. Furthermore, we evaluated the effect of individual
HWIs on communication performance in terms of SER. The
dominant impairments that degrade SER (i.e., PN, PAN, and
IQI) are in good agreement with the factors that affect delay
estimation.

In summary, the localization and communication perfor-
mance that improves with transmit power in an ideal model
will be saturated due to the effect of HWIs. To fully realize
the potential of localization in 5G/6G communication systems,
a dedicated pilot signal design and algorithms for estimating
and mitigating HWI are needed. Depending on the type of
localization system (e.g., delay- or angle-based), the beam-
sweeping order and weighting factor of delay/angle estimation
should be considered. Further works can consider the effect

of HWIs in multipath and reconfigurable intelligent surface-
aided scenarios, as well as the development of calibration and
mitigation algorithms (including learning-based methods) to
address the performance loss caused by the identified dominant
impairment factors.
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