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ABSTRACT 

Introduction: In the last few years, new road safety issues have emerged with the growing 

popularity of novel micromobility vehicles (MMVs). The term ‘novel MMV’ includes, in 

addition to electrically assisted bicycles, electric kick scooters (e-scooters) and Segway balance 

scooters (Segways)—which are usually distinct in appearance and operation from traditional 

MMVs (conventional bicycles). Developing validated models that offer a comprehensive 

understanding of the behavior of these new types of MMVs is crucial to inform the design of 

new, safer MMVs, active safety systems, infrastructure, and the making of regulations. This 

licentiate thesis includes two studies that shed light on how MMV riders perform longitudinal 

and lateral control of both traditional and novel MMVs at an operational and tactical level. 

Methods: Study 1 analyzed field test data and compared the longitudinal control (i.e., 

accelerating and braking) of bicycles, an electrically-assisted bicycles (e-bicycle/e-bike), a 

light personal electric kick scooters, and a Segway balance scooters. Study 2 conducted field 

tests and compared both the longitudinal and lateral (i.e., steering) maneuvers in a rear-end 

collision avoidance scenario. A larger e-scooter from the public sharing systems replaced the 

Segway in the test. Comparisons were made among different types of vehicles, maneuvers, and 

urgency levels (i.e., maneuver comfortably as daily riding, or harshly as avoiding close danger), 

to determine the extent to which these novel MMVs, compared to traditional bicycles, 

demonstrate constraints in maneuverability, safety, and comfort.  

Results: The results showed differences in longitudinal performance across vehicles, while no 

statistically significant differences were observed in lateral performance. Novel MMVs 

demonstrated poorer braking capability than bicycles and were perceived as less safe and 

maneuverable. Among the two e-scooters, the larger one could achieve shorter braking 

distances. Additionally, riders were able to improve their collision-avoidance performance by 

compromising comfort when urgency increased. Two kinematic models, linear and arctangent, 

were derived to predict MMV trajectories. 

Conclusion: Compared to bicycles, novel MMVs demonstrate statistically significantly poorer 

in braking performance, which usually constrains the rider’s collision avoidance capability. No 

statistically significant difference was observed in steering. The findings of this thesis have 

implications for improving road safety for MMVs by informing MMV design, infrastructure 

planning, policy-making, and consumer assessment programs. For example, EuroNCAP can 

incorporate the findings to design test scenarios for this new group of vulnerable road users 

(VRUs). They can also support the development of active safety systems and automated driving 

features for automobiles, enabling more accurate and acceptable system activations with 

respect to timing and magnitude in interactions with MMVs. 

  



ii 

 

 

  



iii 

 

 

 

 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to my supervisor Marco Dozza, and co-supervisor 

Jordanka Kovaceva, for their continuous and invaluable guidance and support throughout the 

whole Driver Interaction with Cyclists and E-scooterists at Intersections (DICE) project and 

my academic life at Chalmers.  

I would like to thank Toyota Motor Europe (TME) for funding the DICE project. Many thanks 

to the project colleagues from TME, Tjark Kreuzinger, Audrey Bruneau, and Yusuke Ouchi, 

for making the collaboration a pleasant experience. I also want to thank our project colleague, 

Shin Tanaka, from Toyota Motor Corporation (TMC), for the insightful discussions. It was an 

unfortunate that the DICE project had to be ended prematurely but the journey had been filled 

with valuable lessons.  

Many thanks to Marco, and my new co-supervisor, Fredrik Bruzelius, for bringing the E-model 

project to life and helping me transit to the new project seamlessly. I would also like to thank 

Fredrik and my examiner, Bengt Jacobson, for patiently guiding me into the realm of vehicle 

dynamics. 

A big thanks goes to all the colleagues at the divisions of Vehicle Safety and Vehicle 

Engineering and Autonomous Systems at Chalmers, for creating a fun and inclusive work 

environment, and always being supportive and willing to share.  

Finally, I want to thank my family, my human and furry friends, for supporting and helping me 

in other aspects of life.   



iv 

 

 

  



v 

 

CONTENTS 

ABSTRACT ............................................................................................................................................. i 

ACKNOWLEDGEMENTS ................................................................................................................... iii 

CONTENTS ............................................................................................................................................ v 

1. INTRODUCTION .......................................................................................................................... 1 

1.1. Micromobility vehicles and road traffic crashes ..................................................................... 1 

1.2. Existing research ..................................................................................................................... 2 

1.2.1. Demographic profile of MMV users ............................................................................... 2 

1.2.2. MMV Crash causation .................................................................................................... 2 

1.2.3. Potential crash prevention measures and recommendations ........................................... 4 

1.2.4. Advanced driver assistance systems (ADAS) and autonomous driving (AD) ................ 5 

1.2.5. Literature reviews ........................................................................................................... 6 

1.2.6. Research gaps .................................................................................................................. 7 

1.3. Aims and project outline ......................................................................................................... 8 

2. METHODOLOGY ....................................................................................................................... 11 

2.1. Methodology overview ......................................................................................................... 11 

2.2. DICE field experiments ........................................................................................................ 12 

2.2.1. Vehicles and instrumentation ........................................................................................ 12 

2.2.2. Test environment........................................................................................................... 14 

2.2.3. Experimental protocol ................................................................................................... 15 

2.3. Field data analysis ................................................................................................................. 17 

2.3.1. Vehicle data .................................................................................................................. 17 

2.3.2. LIDAR data ................................................................................................................... 17 

2.3.3. Kalman filtering with Rauch-Tung-Striebel (RTS) smoother ....................................... 18 

2.3.4. Fitting models and generalized linear mixed-effect (GLME) analysis ......................... 18 

3. SUMMARY OF APPENDED PAPERS ...................................................................................... 21 

3.1. Paper I: How do different micromobility vehicles affect longitudinal control? Results from a 

field experiment ................................................................................................................................ 21 

3.2. Paper II: Modeling collision avoidance maneuvers for micromobility vehicles................... 22 

4. DISCUSSION ............................................................................................................................... 25 

4.1. Methodology for field data collection ................................................................................... 25 

4.2. The use of MMV models for threat assessment in ADAS and AD systems ......................... 26 

4.3. Implications for traffic safety ................................................................................................ 28 

4.4. Limitations and future work .................................................................................................. 29 

5. CONCLUSIONS ........................................................................................................................... 33 

REFERENCES ..................................................................................................................................... 35 

APPENDED PAPERS .......................................................................................................................... 41 



vi 

 

 



1 

 

 

 

 

1. INTRODUCTION  

This chapter introduces the background of this licentiate thesis and presents a brief literature 

review focused on micromobility crashes and their causes and countermeasures, addressing 

several research gaps in existing studies. The aims and objectives, as well as the project outline, 

are also presented. 

1.1. Micromobility vehicles and road traffic crashes 

The term micromobility vehicle (MMV) can refer to a wide range of transportation products 

and solutions but has no commonly agreed definition or classification criteria. Several 

authoritative organizations define and categorize MMVs by considering a human-powered or 

electrically-assisted vehicle’s curb weight and maximum speed as key criteria. According to 

SAE International [SAE, 2019], an MMV should have a curb weight ≤ 500 lb. (227 kg) with a 

top speed of 30 mph (48 km/h). The International Transport Forum (ITF) defines an MMV as 

a vehicle with no more than 350 kg mass and a top speed of 45 km/h [ITF, 2020]. In this 

licentiate thesis, a ‘traditional MMV’ is a human-powered bicycle; ‘novel MMV’ refers to 

electrically assisted bicycles (e-bikes), electric kick scooters (e-scooters), and Segway balance 

scooters (Segways). 

Micromobility solutions as a means of personal transportation have seen rapid growth in recent 

years. Compared to motorized vehicles, MMVs such as electric bicycles and electric kick 

scooters (and their sharing systems) can offer cheaper, more flexible, and more sustainable 

travel compared with privately-owned motorized vehicle [Abduljabbar et al., 2021]. MMVs 

are particularly efficient for first-mile and last-mile trips within urban areas. Additionally, 

compared to mobility by walking, MMVs can offer reduced transport time and less muscle 

effort. 

As MMVs continue to evolve and are introduced to the market in ever larger numbers, new 

types of crashes and injuries have also begun to emerge, creating new concerns and challenges 

[Abduljabbar et al., 2021]. A recent study has shown that the crash risk of riding an e-scooter 

is ten times higher than riding a bicycle [Fearnley et al., 2020]. E-scooter crashes often result 

in serious injuries which are different from the injuries experienced by cyclists; a high 

percentage of the former involve head injuries and concussions with loss of consciousness 

[Cicchino et al., 2021; Yang et al., 2020]. Upper and lower extremities are also commonly 

injured in e-scooter crashes [Serra et al., 2021]. Further, overcrowding and parking-rule 

violations caused by dockless MMVs (which can be left anywhere within a defined area) create 

safety concerns for other road users (e.g., pedestrians) in addition to being a public nuisance 

[Bai et al., 2022]. Thus, novel MMVs, especially e-scooters, face significant opposition from 

both the administration and other road users who share the infrastructure [Glavić et al., 2021; 

Maiti et al., 2022].  
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1.2.  Existing research  

In this section, existing research from various aspects (i.e., MMV users, crashes, and potential 

countermeasures) is briefly introduced. At the end, several existing literature reviews are 

recommended, and current research gaps are addressed.  

1.2.1. Demographic profile of MMV users 

Studies from different parts of the world have profiled MMV users. Reck et al. (2021) 

conducted a large-scale survey of shared e-scooter users in Zürich, Switzerland. They found 

that although shared e-scooters were the most expensive MMV option, they remained popular, 

which suggests that disposable income and price are not the main factors in the choice of 

transportation mode. The study’s results also confirm previous research showing that 

innovators (i.e., the group of people who have the lowest threshold of resistance to the adoption 

of new ideas [Roggers, 1995]) and early adopters are often young, educated, relatively wealthy 

males. Additionally, dockless e-bikes and e-scooters included more older users than the docked 

sharing services; vehicle (i.e., e-bikes and e-scooters) owners and (public transport) season 

ticket owners of public transport are also more likely to use shared MMVs (both docked and 

dockless) than non-owners. Another study conducted in Taiwan has shown that young adults 

who are seen as potential catalysts for change toward travel by e-scooters. Additionally, 

females were found to be more likely to adopt and maintain the use of sharing e-scooters 

[Eccarius et al., 2020]. It was also found that the motivation for e-scooter use was balanced 

between necessity and leisure. “Necessity” users were more likely to live in urban areas with 

over 100,000 inhabitants, while “leisure” users were more likely to live in smaller areas [della 

Mura et al., 2022]. 

1.2.2. MMV Crash causation 

Studies have found that MMV crashes often occur due to hazardous road surfaces, loss of 

balance, or vehicle malfunctions; e-scooter crashes are more frequent during summer, on 

weekends, and between noon and 9:00 p.m. The incidence of serious crashes increases after 

7:00 p.m., suggesting that poor visibility (i.e., insufficient lighting, obstruction on the road), 

impairment caused by alcohol, and adverse weather conditions each play a role [Karpinski et 

al., 2022; Cicchino et al., 2021; Shah et al., 2021; Stigson et al., 2021; Liu et al., 2019]. 

However, when analyzing and interpreting MMV crashes, it is important to consider exposure 

as well (e.g., MMV exposure, hazard exposure, etc.). In traffic safety research, ‘exposure’ is 

the frequency, time, or spatial coverage of certain traffic events (e.g., number of MMVs per 

population, number of kilometers riden on MMVs, percent of time riding MMVs on sidewalk, 

the number of collisions per the number of vehicles present, etc.), some of which may create 

risk and opportunities for a crash to occur. By relating both the crash and exposure data to the 

risk assessment, we can better understand the causative factors of the crashes and develop 

countermeasures [Wolfe, 1982].  

In Sweden, many MMV crashes occur during recreational activities or school commutes, 

particularly among youth and children who use bikes as toys, perform stunts, or lack biking 

skills [Axelsson et al., 2019]. Maintenance issues or distractions may also result in crashes 

[Kröyer, 2021]. Collisions between bicyclists and motorized vehicles usually occur in urban 

areas, where bicycle exposure is greatest [Boufous et al., 2011; Isaksson-Hellman, 2012]. Right 

turns by large vehicles pose a significant threat to MMV riders, primarily due to blind spots, 
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and these crashes tend to be severe [Pokorny et al., 2017]. On the other hand, for novel MMVs, 

crashes which involve only the users themselves are the most common type [Schepers et al., 

2018; Stigson et al., 2020]. For e-scooter crashes in particular, only around 10% of the injuries 

involved other road users (such as pedestrians), which are often due to collisions or falling 

caused by improperly parked scooters [Stigson et al., 2020] and collisions with e-scooters in 

wrong-way-riding [Das et al., 2023]; in half of these cases, pedestrians were hit by the e-scooter 

[Trivedi et al., 2019].  

Tian et al. (2022) found that males who are frequent e-scooter users had a statistically 

significantly higher risk of crashes, while female users were more likely to be involved in injury 

crashes, as they had a greater tendency to ride on sidewalks and unpaved surfaces. In fact, 

riding an e-scooter on the sidewalk almost doubled the risk of injury, and riding in a bike lane 

decreased it. However, despite the risks, many riders still prefer to ride on sidewalks—due to 

a fear of motor vehicles, inaccessibility to bike lanes, and low awareness of regulations [Bloom 

et al., 2021]. Yang et al. (2020) found that children and senior e-scooter riders were more likely 

to suffer severe injuries, while the increased risk for the seniors starts at about 40–55 years of 

age and rises dramatically for older groups. Falling-off incidents and fatal crashes were more 

likely at night, while female riders were found to be involved in more falling-off crashes than 

males. Zhao et al. (2022) also found that age groups under 30 and over 60 were at significant 

risk in MMV-related crashes. 

Crashes between MMVs and motorized vehicles were found to be frequent [Fang, 2022]. Even 

though only partially confirmed, research indicates that car drivers may react more slowly to 

e-scooters than to cyclists—and that drivers may perceive an e-scooter rider as a pedestrian, 

which may result in underestimating the rider’s speed, thus increasing the collision risk [Das 

et al., 2023]. Additionally, e-scooters were found to be clearly distinguished from bikes in 

natural light, but less so in artificial light (i.e., at night) [della Mura, 2022]. MMV crashes 

involving motorized vehicles always result in more severe injuries [Fang, 2022], and males 

experience the majority of fatal crashes. 

More crowded roads are associated with increased crashes between MMVs and other VRUs or 

other MMV riders [Gehrke et al., 2022; Folco et al., 2023; Tice, 2019]. Shin et al. (2022) 

identified road intersections, sidewalks, subway entrances, and land use mix index as 

significant factors in MMV-pedestrian crashes. According to a study by Maiti et al. (2022), e-

scooter-pedestrian collisions are more likely in zones with higher encounter counts, and more 

unpleasant encounters between pedestrians and MMVs on university campuses were observed 

during lunch and commuting time than at other times. In Sweden, MMV-pedestrian collisions 

make up around 1%-2% of crashes, with the pedestrians incurring the majority of injuries 

[Kröyer, 2021]. 

Infrequent helmet usage is a grave concern, given the high speeds that these devices can reach 

(many crashes are reportedly due to excessive speed [Høye, 2018]). A substantial number of 

crashes involve alcohol and occur at night with bad lighting conditions [Das et al., 2023]. 

Riding under the influence of alcohol or drugs (RUI) increases the risk of MMV crashes: a 

significant proportion (7%-21%) of fatally injured bicyclists are intoxicated [Kröyer, 2021]. 

Depending on the dataset analyzed, the percentage of RUIs in e-scooter crashes ranges from 

4.1% [Yang et al. 2020] to 38% [Kobayashi et al., 2019]. However, unified regulations 

regarding RUI for e-scooter riders are still lacking [Yang et al., 2020].  
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Infrastructure also plays a significant role in MMV crashes. Asphalt, concrete, and rough-

painted tile provide adequate friction for MMV users, with skid resistance values between 55 

and 75; asphalt and concrete are preferred, due to lower variability and vibration [López-

Molina et al., 2022]. Painted cobblestone and smooth-painted tile pavement have low skid 

resistance, increasing the risk of crashes and traffic conflicts. Pavement defects such as pebbles, 

potholes, or cracks often trigger MMV crashes [Fang, 2022]. For e-scooter in particular, this is 

usually because the vehicle has small wheels and simple suspension which do not dampen 

vertical vibration very much [della Mura et al., 2022]. 

In summary, many factors may contribute to the occurrence of MMV crashes: the vehicles 

themselves, the riders’ misbehaviors, the interactions with other road users, insufficient helmet 

usage, riding under toxication, and the infrastructure. It is also worth noting that safety concerns 

may evolve as MMV users and other road users gain experience with these means of transport. 

1.2.3. Potential crash prevention measures and recommendations 

Several studies have proposed potential solutions for MMV safety regarding the 

abovementioned factors—such as enhanced infrastructure, amended policies (e.g., speed limits, 

restricted zones, enhanced safety education, and requirement for helmets), and improved MMV 

designs (e.g., better braking systems and wheels, mandatory turn indicators) [Fang, 2022; della 

Mura et al., 2022; Prencipe et al., 2022; Glavić et al., 2021; Das et al., 2023; Tian et al., 2022; 

Tice et al., 2019].  

Infrastructure that can better accommodate MMVs is frequently discussed. López-Molina et al. 

(2022) suggested using appropriate pavement materials for different types of bike lane (e.g., 

protected bike lane, sidepath) where MMVs are riden, and conducting further research on the 

influence of pavement condition and paint type on skid friction. Tice et al. (2019) highlighted 

the need for walk audits to include evaluations of the frequency of curb ramps and surface 

discontinuities. Kröyer (2021) concluded that infrastructure issues (e.g., inclement weather, 

gravel) should be addressed to improve safety by reducing the single-rider crashes. Maiti et al. 

(2020) and Gehrke et al. (2022) proposed better planning and infrastructure enhancement to 

reduce stress and crowding in traffic facilities.  

Urban planners and transport administrators can also put effort to reduce MMV crashes from 

a policy and legislation-making perspective. Folco et al. (2022) proposed a new tool for 

optimizing for new micromobility track generation, travel demand, and riding safety. Models 

for evaluating MMV safety efficiency of urban areas were proposed by Prencipe et al. (2022) 

for identifying infrastructural improvements and the needs for stricter speed limits. Bai et al. 

(2022) proposed a shared responsibility framework including the public, city government, and 

private licensees, with the ability to use crowdsourced feedback to identify issues (e.g., park-

related violations), adjust regulations, and modify user instructions. Shin et al. (2022) 

suggested using speed bumps, rumble strips, and traffic calming measures in highly dense areas 

to reduce MMV-pedestrian crashes. 

In discussions among EU countries, a pan-European benchmark for e-scooter regulation was 

suggested. Areas to be harmonized could include technical requirements, safety elements, and 

sustainability. A joint EU framework should address the responsibilities of commercial e-

scooter operators, particularly concerning issues like collisions and reckless parking 

[Sokolowski, 2020]. Yang et al. (2020) stressed the importance of mandatory helmet use; 
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innovative solutions are needed, since existing ones (e.g., embedded helmet box, helmet selfie) 

do not prevent helmetless users from riding shared MMVs [Serra et al., 2021]. Tian et al. (2022) 

addressed the need for public education, rider training, and stricter traffic violation sanctions. 

Reduced or adaptive (e.g., spatial, temporal) speed limits have also been also discussed [Tice 

et al., 2019; Kröyer, 2021].  

MMV engineers and manufacturers should address the mechanical characteristics and 

performance of e-scooters (including acceleration, braking, and vibration) before introducing 

new products onto the market [della Mura et al., 2022; Das et al., 2023]. The crash risk could 

be reduced by increasing the visibility of MMVs, perhaps with appropriate lights and reflective 

parts. Reliable braking systems and adequate tires for MMVs also play important roles [Kröyer, 

2021]. Further, communication between MMVs and motorized vehicles using vehicle-to-

everything (V2X) technology could be a good investment for providers of shared MMVs 

[Baqer et al., 2022]; the technology could effectively prevent and right-angle collisions.  

1.2.4. Advanced driver assistance systems (ADAS) and autonomous driving (AD) 

The development of car ADAS and AD systems also plays an essential role in preventing 

MMV-to-car crashes. ADAS and AD systems aim to increase road safety efficiently by 

preventing crashes with cars and mitigating the injuries. Threat assessment is a sub-system in 

ADAS/AD that evaluates potential threats to aid the car in collision avoidance. Threat 

assessment algorithms are implemented to perceive and analyze the surrounding environment 

and inform the decision-making strategy, which dictates the vehicle’s response (such as a 

braking or steering-control intervention). Such systems measure risks through factors like 

distance, speed, and acceleration relative to the surrounding environment. If certain conditions 

are violated, the car will issue a warning to alert the driver and assist the driver in collision 

avoidance via overriding systems [Hamid et al., 2018].  

Current threat assessment systems are classified as mainly physical model-based or data-driven 

(e.g., machine learning) based on the decision-making process. Physical model-based methods 

can be further divided into single-behavior threat metrics (e.g., time-to-collision, required 

acceleration), optimization-based, formal, and probabilistic approaches [Dahl et al., 2018]. 

These methods are often computationally inexpensive but may lack robustness and long-term 

accuracy due to simplification in the dynamic models. On the other hand, data-driven methods 

have attracted interest for the development of ADAS and AD systems, particularly for image 

segmentation. Much research in AD has been conducted on the detection and classification of 

pedestrians and bicyclists, utilizing the combination of deep learning and computer vision-

based methods, such combination demonstrated relatively good performance [Apurv et al., 

2021; Gilroy et al., 2022]. However, the detection of e-scooter riders has been largely 

overlooked. Moreover, these algorithms always require rich, large training data sets, and pose 

challenges related to computational power and memory allocation for real-time deployment. In 

addition, their applicability to core safety features requires further development, especially in 

the interpretability of the decision-making process [Dahl et al., 2018] and interference-

resistance capability [Nassi et al., 2020].  

Current threat assessment approaches in active safety systems face a trade-off between high 

performance and precision. Kinematic and dynamic models of other road users are key input 

for threat assessment systems. This input may be beneficial in predicting a nearby object’s 

trajectory and intention [Mohammadi et al., 2023] while reducing the probability of false 
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alarms, which may also ease the high computational or training costs. Thus, by integrating new 

kinematics and dynamics models of novel MMVs into the ADAS and AD systems, as well as 

ADAS/AD’s development process (e.g., simulation and virtual verification), the threat 

assessments may be further improved and thus the collisions between motorized vehicles and 

MMVs can be reduced. 

One consumer rating program, the European New Car Assessment Programme (Euro NCAP), 

has been developing test criteria and scenarios for new car safety over the last two decades. As 

an advocate for safer cars, Euro NCAP has highlighted ADAS and AD technologies and raised 

awareness of their benefits in recent years [Roadmap 2025]. They will also react to the safety 

concerns brought by the emerging micromobility solutions [Roadmap 2030]. Thus, it is highly 

possible that novel MMVs will appear in the future test catalogue as distinct from traditional 

bicycles, inspiring the development of more comprehensive ADAS/AD systems in new cars.  

Moreover, exploring the driving patterns and behaviors of individuals or groups is of great 

relevance in the development of ADAS and the evolution of AD systems from semi- to fully 

autonomous [Vilaca et al., 2017]. According to Michon et al. (1985), a driver’s problem-

solving tasks in traffic and transportation can be categorized into three behavioral levels: the 

strategic level (e.g., planning the goal, route, and transport modes of a trip), the tactical level 

(e.g., maneuvers of obstacle avoidance and overtaking), and the operational level (e.g., the 

basic control skills of accelerating, braking, and steering). We believe that understanding the 

tactical and operational behaviors of MMV users involved in traffic interactions can benefit car 

ADAS. In our study, we will not focus on the strategic level (planning).  

1.2.5. Literature reviews 

MMV safety is a novel research field which has witnessed the emergence of many studies. This 

section describes several literature reviews for interested readers to pursue further reading, 

especially for the aspects that are not focused on in this thesis, such as the history of MMVs, 

the development of sharing systems, the impact of MMVs on human travel behavior, etc.  

Abduljabbar et al. (2021) conducted a systematic literature review (SLR) on micromobility, 

aiming to cover micromobility’s history, challenges, barriers, and success factors using global 

case studies. The authors examined 328 publications from 2000 to 2020, providing insights 

into current trends and identifying future research directions that might overcome identified 

challenges and limitations. 

Hossein Sabbaghian et al. (2023) conducted a comprehensive literature review to identify 

research gaps in safe micromobility infrastructure. The review includes 76 articles, with most 

studies conducted between 2020 and 2022 and e-scooters being the most researched mode. The 

review aims to inform micromobility designers and operators about safety considerations for 

different micro-vehicles on cycle paths, offering best practices to enhance safety. Şengül et al. 

(2021) reviewed 29 scientific articles after 2016 to analyze the impact of electric micromobility 

on travel behaviors, energy consumption, the environment, and safety regulations. The review 

also expects a significant increase in future studies within the relatively new field. 

Orozco-Fontalvo et al. (2022) conducted a systematic review of electric micromobility (EM), 

particularly dockless shared electric scooters (DSES) and electric scooters for private use. The 

review includes 70 articles published since 2018. Various attributes were covered in the review, 

including e-scooter history, operation, user experiences, regulation, environmental impact, 
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safety concerns, and pricing. The authors noted that research on e-scooters is relatively scarce 

due to their recent emergence. They also observed a shift in the nature of research, with more 

robust studies, including surveys and modeling approaches, being published after 2021. 

Elmashhara et al. (2022) presented an overview of micromobility sharing system (MSS) users’ 

(macroscopic) behavioral patterns by reviewing 203 academic research articles published 

between 2011 and 2020. The review identifies 25 key factors influencing MSS user behavior, 

categorized as temporal, spatial, weather-related, system-related, or user-related. Similarly, 

Liao et al. (2022) reviewed the literature on the usage patterns of MSS and the influential 

factors but also included electric car sharing.  

Moran et al. (2020) conducted a literature review on the spatial arrangement and regulation of 

shared MMVs, exploring geofence tracking and spatial coverage analysis methods. Marques 

et al. (2022) presented a critical literature review on micromobility to evaluate its relationship 

with various research topics, including demanding populations, device manufacturing, 

infrastructure, safety, security, renewable energy sources, big data analysis, and mobility as a 

service (MaaS). The authors proposed a life-cycle thinking (LCT) approach to analyze 

micromobility. 

1.2.6. Research gaps 

Riding an e-scooter may lead to various types of crashes and injuries [Beck et al., 2020; 

Cicchino et al., 2021]. In fact, several studies have demonstrated that riding an e-scooter is 

riskier than riding a bicycle [Fearnley et al., 2020; Badeau et al., 2019]. Most research on MMV 

safety has primarily focused on analyzing crash reports that are gathered after the crashes 

occurred, typically by the police, hospitals, news, or insurance companies. Although these data 

provide information about the aftermath of a crash, they do not reveal the events that transpired 

immediately before or during the crash, meaning they may not offer insights into the causes of 

the crash. Additionally, these data often have limitations, such as underreporting and bias in 

the datasets [Kröyer; Yang; Bai; Maiti]. Studies on post-crash data have concluded that 

enhancing MMV design, infrastructure, and regulations is essential to accommodate these new 

modes of transportation. They have also proposed valuable recommendations and analytical 

tools for stakeholders. However, there is uncertainty regarding how these factors (i.e., vehicle 

dynamics and rider behaviors) may quantitatively impact MMV safety and the extent to which 

adaptations (i.e., in the vehicle design, infrastructure planning, and policy-making) should be 

described physically and mathematically. 

A useful complement to post-crash data is the data collected in real-world settings, either 

through naturalistic observation [Dozza et al., 2014] or controlled experiments [Kovácsová et 

al., 2016]. Such data can complement the retroactively collected crash data and contribute to 

our understanding of why MMV crashes happen — and how they can be prevented [Dozza et 

al., 2022]. Naturalistic riding data provide a valuable opportunity for understanding riders’ 

natural behavior due to its high ecological validity (e.g., the presence of various environmental 

factors such as road and light conditions [Ehsani et al. 2021]). However, naturalistic studies of 

riding MMVs are still very few, and the dataset is relatively small and lacks standards [I van 

Schagen et al., 2012]. On the other hand, field tests are conducted in a manner that is more 

controlled, thereby enabling the acquisition of a greater amount of data from pertinent scenarios. 

Even though field data collection could result in data with less variety and naturalness, it is still 

an efficient way in the early modeling stage to identify, extract, and study specific riding 
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patterns, which may inform the standardization and contextualization for future data collection 

and analysis. Several field studies on e-scooter kinematics have helped us take the first step in 

modeling riding maneuvers (such as braking and slalom) of e-scooters from a top-down 

perspective [Garman, 2020; Klinger et al., 2022; Asperti et al., 2021; Vella, 2023]. However, 

these studies either based the modeling of MMVs on traditional bicycle models or 

experimented on a very small scale—in terms of participants, vehicle models, and riding 

maneuvers. These limitations make the models less effective for improving MMV safety, such 

as developing new threat assessment methods and planning safer infrastructure.  

1.3.  Aims and project outline 

The primary research gaps in the field of MMV collision avoidance have been identified as 

follows: there is a lack of research concerning the dynamics of both the MMVs themselves and 

the behavior of the riders maneuvering them, and the interaction between these two 

components (e.g., how the rider controls the vehicle, and how the vehicle’s response influence 

the rider’s perception) as an interconnected system is still unknown. 

To address these gaps, we formulated three main objectives of the overall Ph.D. studies: 

1) Model behavior of MMV rider’s longitudinal and lateral maneuvering in specific traffic 

scenarios from a top-down (“inductive”) perspective. (Data are collected from field 

tests. Rider and vehicle are treated as an integrated system.)  

2) Model e-scooter and rider-body dynamics in routine riding from a bottom-up 

(“deductive”) perspective. (Data are collected from laboratory tests. The rider and the 

vehicle are treated as two standalone modules within in the rider-vehicle system.)  

3) Develop a benchmark model that integrates both models derived from the studies on 

the first two objectives, utilize the models to create a simulation environment, 

summarize and verify the models and the simulation results, and validate with field test 

and naturalistic data.  

The overall structure of the Ph.D. project, as depicted in Figure 1, includes several dynamic 

and behavioral models that tackle the aforementioned objectives. In this licentiate thesis, 

PAPERS I and II address the first objective by developing kinematic models for MMV-rider 

systems during braking and steering maneuvers and compares the models of bicycles, different 

e-scooters, and a Segway balance scooter. PAPERS III and IV, which are part of the future 

work from the licentiate to the Ph.D., will tackle Objectives 2 and 3. PAPERS I and II present 

kinematic models of the MMV motion of specific maneuvers within a limited timeframe on 

the tactical level, showcasing how e-scooters differ from bicycles in maneuverability. A 

proposal follows for the re-examination of MMV design, infrastructure planning, policy 

making, and active safety system development. PAPERS III and IV may shift the focus to the 

MMVs and their riders’ operational-level behaviors (i.e., dynamics and control), as well as the 

interconnected rider-vehicle system in generic riding maneuvers. PAPERS I and II were 

developed within the project DICE, funded by Toyota Motor Europe. PAPERS III and IV will 

be within the project e-Model, which Chalmers University of Technology funds through the 

cooperation of the Vehicle Safety and the Vehicle Engineering and Autonomous Systems 

divisions.  
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Figure 1. The overall framework of the Ph.D. studies. Four papers are planned, which will address the three objectives. Papers 

III and IV are future work for the second part of the Ph.D. project. In the first part of the project (Objective ①) we treat each 

rider and each of the vehicles as one system and model the kinematics of the MMVs in longitudinal and lateral manoeuvres. 

Then, we will modularize the system and study the two modules, respectively. We will, study 1) the e-scooters themselves 

from a vehicle dynamic perspective (Objective ②), and 2) the rider’s body motion and control while riding the e-scooters 

(Objective ③).  

In this licentiate thesis, we aim to delve into the first research objective with the help of field 

data. Since field data are collected in a controlled manner, we are able to efficiently derive 

quantitative kinematic models for specific scenarios (e.g., braking, overtaking, turning) in the 

data analysis phase. The models, after further validation, may inform the countermeasures for 

MMV crashes and shed light on: 

1) The development of safer MMVs.  

2) The development of ADAS/AD (i.e., to reduce uncertainties in threat assessment by 

improving accuracy of trajectory prediction). 

3) The planning of the infrastructure (i.e., to optimize the width, pavement, curvature, and 

visibility of the road). 

4) The making of policies (i.e., lower speed limits, requirements for helmet use and rider 

education). 

5) The rating programs (i.e., assist the design of test scenarios for car-to-MMV crash 

avoidance).  
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2. METHODOLOGY 

This thesis includes two field experiments conducted in Gothenburg, Sweden, to study rider 

control of MMVs from a top-down perspective. This chapter introduces the general 

methodology, the design of the experiments, data collection, data analysis, and the 

mathematical models used to describe MMVs’ longitudinal and lateral control.  

2.1.  Methodology overview 

As mentioned above, we addressed the research questions using data collected in field 

experiments on a test track. Field data are collected in a real-world setting, often according to 

an experimental protocol that constrains the parameters and variables such as riding maneuvers, 

velocities, and road surfaces [Mullen et al., 2011]. Field data are usually collected at a dedicated 

site (e.g., a closed test track), using vehicles instrumented with sensors [Boda, Dozza, et al., 

2018; R. Kiefer et al., 2003; Najm and D. L. Smith, 2004]. Laboratory experiments (using 

driving/riding simulators) and naturalistic studies are two other common approaches in 

transportation research. The former are conducted in artificial settings where the researchers 

rule out as many extraneous variables as possible, resulting in high internal validity, and the 

possibility to study behaviors that are unsafe to study on real roads [Shinar, 2017; Boyle, 2020]. 

On the other hand, naturalistic studies allow the collection of vast amounts of data in the real 

world without constraining the variables: the riders perform their usual daily activities, often 

without being aware of the ongoing experiment [Shinar, 2017]. Naturalistic data has the highest 

ecological validity of the real human behaviors and may support the virtual safety assessment 

(e.g., a counterfactual simulation that virtually compares the performance of collision 

avoidance with/without a specific active safety system, which usually includes mathematical 

models of the driver and vehicle [Bärgman, et al., 2017]) of new active safety systems. 

Generally, field experiments offer a higher ecological validity than laboratory experiments 

since the experimental setting is highly realistic, and the tasks are usually contextual and similar 

to the participants’ natural behavior (outside the experiments). Compared to naturalistic studies, 

field experiments also guarantee an easier manipulation of related variables and the control of 

the extraneous ones.  

However, there are also challenges in field experiments. Firstly, the selection criteria for 

participants, vehicles, and test scenarios create biases in the data (and an inevitable poorer 

generalizability of the results). Sometimes, the participants may not behave naturally since a 

field test is still experimental, and the setting may not be fully realistic [Green, 2000; Hoffman 

et al., 2002]. They may act in a way they think the researchers expect or be unconsciously 

affected by the potential learning effect. Even though field experiments ensure a high control 

over the variables, they may still be interrupted by certain uncontrollable extraneous ones, such 

as weather conditions. Comprehensive preparation well in advance of the experiments is 

needed to address some of the challenges. These preparations include, but are not limited to, 

the design and installation of a robust data logging system, a prudently designed experimental 
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protocol validated in a pilot phase, an ethical approval by an ethics review board, and 

countermeasures for potential risks (e.g., insurance that covers any possible injuries).  

Our ethical application No. 2022-00314-01 was reviewed and approved by the Swedish Ethical 

Review Authority (Etikprövningsmyndigheten, referred to as “the Authority”) well before the 

field tests began. The major ethical concern identified by the Authority was: 1) The research is 

carried out according to a method that may affect the research subject physically or 

psychologically, or the research involves an obvious risk of harming the research subject. In 

other words, the participants might fall off the vehicle and hurt themselves, and on some 

occasions, they might feel uncomfortable performing the given tasks (e.g., to not brake/steer 

until the researchers give a signal). In practice, before the field tests started, we explicitly 

explained the potential risks and gave the participants enough time and training to feel 

comfortable with the equipment. We also offered protective gear and let them read the terms 

of the pre-purchased commercial insurance. The participants had the right to abort the 

experiments at any time. In addition, we did not accept people who had previously been in 

serious traffic crashes, to avoid potential psychological harm. Another concern of the Authority 

was: 2) The research will collect sensitive personal data and make exclusion criteria based on 

certain biometric information (e.g., height, weight). When participants sign up for the 

experiments, we would ask them to provide health and biometric data. Such data could make 

one able to uniquely identify a person; the data are thus sensitive and should be handled in a 

highly confidential manner. Before requesting these data from the participants, we indicated 

that the participants have the right (informed consent) to not provide them; all the data are 

collected only on a hard copy (handed to the participants), which will be physically locked up 

in the Chalmers facility and are accessible only to the experimenter(s). As for the exclusion 

criteria, we would exclude a participant only if his/her height and weight exceed the 

minimum/maximum safety limits of the equipment. However, we must admit such limitations 

that only the “average” humans within certain height, weight, and age ranges, are studied. 

Future study must adapt in the design, equipment, and protocol to include the “minority” in the 

data collection and analysis, but not to ignore them. 

To summarize, this licentiate thesis presents two field experiments within the DICE project. 

The experiments employed similar protocols but studied different MMVs and riding behaviors 

in different maneuvers and used different fitting models in the data analysis. Future Ph.D. work 

could also employ laboratory and naturalistic studies. In the following Section 2.2, the field 

experiments will be presented in detail.  

2.2.  DICE field experiments 

2.2.1. Vehicles and instrumentation 

Table 1 shows the specifications of the vehicles used in the experiments. In Study 1, we used 

the MONARK bike (the same one bicycle used in both assisted/unassisted modes), the small 

personal e-scooter (hereafter s-scooter), and the Segway balance scooter (Segway). Study 2 

used the MONARK bike, the s-scooter, and the larger public-sharing e-scooter (l-scooter).  

On each vehicle, we installed several sensors controlled by a single-board computer. Figure 2 

shows the configurations for the tested MMVs. A Raspberry Pi 3 model B gathered all the 

inputs from IMUs (PhidgetSpatial 3/3/3 1044_B, sampling rate 125Hz) and a potentiometer 
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that measures the steering angle if the vehicle has a center column. The signal from the 

potentiometer was converted by an analog-to-digital converter (ADC) module. 

Table 1. Specifications of the vehicles used in the experiments.  

 Bike E-bike S-scooter L-scooter* Segway** 

Model MONARK Karin 3-VXL 
Segway 

Ninebot ES2 

Segway Max 

Plus X 

Segway 

Ninebot S 

Weight [kg] 17.8 21.8 11.3 31.5 12.8 

Power N/A 
250W 

Front motor 

300W 

Front motor 

400W 

Rear motor 

2 x 400W 

Transverse 

Drive mode Pedaling 
Front wheel 

assisted pedaling 

Pure electric 

FWD 

Pure electric 

RWD 

Pure electric 

AWD (2WD) 

Max. speed 

[km/h] 
N/A 25 25 25 16 

Braking 

system 

Front disc 

Rear coaster 

Front electric 

Rear fender 

Front electric + 

drum 

Rear electric + 

drum 

Electric 

Wheels 
28’’ 

Pneumatic tires 

8’’ Front 

7.5’’ Rear 

Solid rubber 

tires 

11.5’’ Front 

10’’ Rear 

Rubber + gel 

filled tires 

10.5’’ 

Tubeless tires 

* The L-scooter was only used in Study 2.  

** The Segway was only used in Study 1.  
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Figure 2. Data loggers installed on the four vehicles used in two experiments.  

2.2.2. Test environment 

In both experiments, the participants were asked to ride different types of MMVs and perform 

specific riding tasks on a test track. Sensors used for data collection were installed on the 

vehicles (i.e., IMUs: inertial measurement units and potentiometers) or placed by the side of 

the test area (i.e., LIDAR: light detection and ranging sensor and a camera).  

The LIDAR with a camera sensor was placed at a fixed position by the side of the test area. A 

LIDAR measures distances and detects objects by transmitting laser pulses and measuring their 

return time. In our experiments, a HOKUYO UXM 30LAH EWA single thread LIDAR was 

placed by the right side of and facing the test track (Figure 3). The distance between the LIDAR 

and the center of the test track is 5m in Study 1 and 3m in Study 2. A camera sensor was 

attached to the LIDAR to record image data.  
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Figure 3. Photo of the test area.  

2.2.3.  Experimental protocol 

Both experiments took place on a straight paved road that was long and flat enough to ride 

MMVs comfortably, with little to no traffic nearby. In both experiments, the participants were 

asked to complete specific maneuvers with two levels of urgency, planned comfortable and 

harsh. In planned comfortable maneuvers, the rider performs a riding task such as accelerating, 

braking, or steering as comfortably as possible. In the planned harsh maneuvers, the rider was 

asked to take action as late as possible without endangering themselves by crashing or falling 

off. Specifically for Study 1, a third urgency level, “unplanned harsh”, was included. In the 

unplanned harsh maneuvers, the experimenter would give out an auditory signal at random 

time and the participant was asked to respond by braking as hard as possible.  

Study 1: Longitudinal control 

The first study was a continuation of the data analysis from the master’s thesis [Billstein et al., 

2021] “Evaluating the Safety and Performance of Electric Micro-Mobility Vehicles Comparing 

E-bike, E-scooter and Segway Based on Objective and Subjective Data from a Field 

Experiment.” Figure 4 shows the riding tasks in Study 1. Each participant was asked to perform 

the three braking tasks (two planned and one unplanned) on each of the four vehicles 

configurations (12 tasks in total). In every task the participant was asked to firstly accelerate 

the vehicle to a speed of 17-20km/h (the speed was visible to the participant via a screen on the 

vehicle) and try to keep the speed as constant as possible. For the planned braking maneuvers, 

a line was marked on the ground; the participant was asked to stop the vehicle by braking before 

the line, however whether he/she stopped before or after the line at last did not matter. The 

distance between the position where the participant stopped and the where the line would be 

extracted and analyzed later as an indicator for the braking performance. The order of the 

vehicles and tasks was balanced for each participant, and we revealed the next task after the 

participant had finished the previous one. All trials were completed for each vehicle before the 

rider rode a different vehicle.  
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Figure 4. Experimental protocol in Study 1. Panel A: accelerating and braking comfortably. Panel B: accelerating and braking 

harshly. Panel C: braking harshly in response to a command from the experimenter; in this condition, the ridden distance was 

greater than in the other conditions (100 m vs 50 m) to increase the variability of the braking command time. 

Study 2: longitudinal and lateral control 

The four vehicles tested in Study 2 were the bicycle (with/without electrical assistance), the l-

scooter and the s-scooter. The second experiment modified the protocol proposed in Study 1: 

- An obstacle made of cardboard and wrapped with an image of the back of a car was 

placed 15m before the end of the test track. This fake car obstacle was soft and would 

not hurt a rider if a collision happened. However, if a rider crashed into the obstacle, 

we would ask them to repeat the riding task until they could either safely stop in front 

of it or overtake it.  

- In all the trials, the rider was asked to accelerate to a speed over 15km/h and keep the 

speed as constant as possible before performing the maneuvers. The riders could see 

the speed on the vehicle display.  

- Two lateral overtaking maneuvers, differing in level of urgency (whether the steering 

was comfortable or harsh), were added to the task list. The rider was asked to perform 

the steering maneuver without using the brake and to overtake the cardboard car on the 

left side.  

- In addition to the four normal maneuvers (i.e., comfortable/harsh, braking/steering, 

each was performed once), each participant was asked to perform one task thrice 

(comfortable braking/steering on non-assisted bike or l-scooter) at the beginning, 

middle, and end of their experiment session to record a potential learning effect.  

Figure 5. shows the proposed experimental protocol in Study 2.  
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Figure 5. Experimental protocol in Study 2. For each vehicle, the four tasks, comfortable and harsh braking and steering, were 

shuffled for every participant. Each participant performed 19 trials in total. The 1st (Learn 1), 10th (Learn 2), and 19th (Learn 

3) trials, equal for each participant, were used to control for a learning effect. 

2.3. Field data analysis 

The data was preprocessed before further analysis. The times of the on-vehicle sensors and the 

LIDAR were synchronized by removing the difference in time between the flag events (i.e., 

the recorded button-press events when the experimenter tried to press the buttons on the 

vehicle-logger and the LIDAR-logger at the same time, with one hand for each of the buttons). 

There was a loss of accuracy due to the asynchronous hand actions and a discrepancy between 

the logging-systems’ response times, but the deviation was less than 0.5s. Calibrations between 

the frames of reference for the IMU and potentiometer and that of the vehicle were applied to 

the signals, to remove the offset at the zero point. A rotational transformation was also applied 

to eliminate the effect of gravitational acceleration components acting on the longitudinal and 

lateral directions due to pitch (mainly the Segway) and roll.  

2.3.1. Vehicle data 

The vehicle data were processed in four steps: 

1) Low-pass filtering on all the signals.  

2) Segmentations in terms of time were applied based on specific thresholds for velocity, 

acceleration, and lateral offset, in order to identify and extract braking and steering 

maneuvers.  

3) Mean correction of the steering angle.  

4) A Madgwick filter with IMU measurements was used to estimate orientation.  

Velocity and position data were derived by integrating the measurements of the IMUs. This 

approach worked for our data across a relatively short time span (i.e., a few seconds for each 

maneuver), before the accuracy dropped significantly as the errors accumulated.  

2.3.2. LIDAR data 

The LIDAR data consist of 2D point clouds. The field of view was limited to ±50m in the 

longitudinal direction of the test track and [2m, 9m] in the lateral direction, to avoid potential 

“noise” clusters from the environment. A DBSCAN algorithm [Ester et al., 1996], which 
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clusters point-cloud data based on density, was tuned and used to cluster the LIDAR data. The 

center of the identified rider-vehicle cluster was used to represent the MMV. Velocity, 

acceleration, and jerk data were calculated by deriving the center’s position.  

2.3.3. Kalman filtering with Rauch-Tung-Striebel (RTS) smoother 

Combining vehicle and LIDAR data allowed the trajectories to be reconstructed more 

accurately than they would be with only one data source. A Kalman filter with RTS smoother 

was used to reconstruct the trajectories. This filter is an iterative algorithm that approximates 

the current condition of a dynamic system by merging predictions from a system model and 

sensor measurements. It incorporates a noise covariance matrix to accommodate uncertainty in 

both the process (system) and measurement models. The RTS smoother is a continuation of 

the Kalman filter that operates after the filtering process. It enhances state approximations by 

considering previous and future measurements, resulting in a more refined, precise estimation 

of the complete states over time [Rauch et al., 1965]. In essence, the Kalman filter focuses on 

the present, while the RTS smoother enriches it with hindsight and foresight to generate a 

smoother state approximation. For the longitudinal maneuvers (i.e., accelerating and braking), 

a one-dimensional (distance) prediction model was used in RTS, while for lateral maneuvers, 

a two-dimensional model was used.  

2.3.4.  Fitting models and generalized linear mixed-effect (GLME) analysis 

Study 1: Linear models 

We followed previous research [Kovácsová et al., 2016; Lee et al., 2020] that used linear 

regressions to characterize the acceleration and deceleration maneuvers (i.e., constant 

acceleration assumptions) in the five tasks (readers can refer to Figures 3 and 4 in the appended 

Paper I for more details). The goodness of fit of the linear models was assessed by calculating 

the coefficient of determination (R2). The maneuver segments with the linear models applied 

were defined as follows:  

1) Braking: starting when the vehicle speed falls below 16 km/h (12 km/h for the Segway) 

and ending when it drops below 2.5 km/h.  

2) Acceleration: starting when the vehicle speed exceeds 2.5 km/h and ending when it 

exceeds 16 km/h (12 km/h for the Segway).  

Additionally, the distance traveled to achieve a complete stop during braking maneuvers was 

logged. The deviation between the marked line and the actual stopping position of the 

participants was also analyzed, to evaluate their ability to estimate their braking distance 

accurately. Furthermore, the response time for the unexpected braking task was computed, to 

investigate whether the type of vehicle influenced the time it took for the participants to initiate 

deceleration after receiving the stop command. The reaction time in the unexpected braking 

maneuver was defined as the period starting when the experimenter issued the stop command 

and ending when the speed had decreased by 1 km/h. 

Study 2: Arctangent models 

Several studies have shown that jerk, the change rate of acceleration, is widely used in threat 

assessment of cars and motorcycles, aggressive driver identification, and optimal trajectory 

planning in automated vehicles and robots [Galvani, 2013; Piprek, 2020]. To further explore 

the accuracy and naturalness of the kinematic MMV models, in Study 2 we explored the 
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maximum achievable jerk as a parameter of the rider’s control during braking and steering 

maneuvers. We compared the linear model with an arctangent model to determine which better 

described the kinetics.  

Like the linear models, the braking and steering maneuvers were segmented based on velocity 

thresholds. Additionally, two thresholds (for acceleration and jerk) were added, since we no 

longer assumed that the acceleration was constant, or the jerk was zero.  

We could efficiently compute the maximum instant acceleration and jerk by fitting the 

trajectory and velocity profiles with arctangent functions. We also explored the four 

coefficients of the arctangent models.  

Generalized linear mixed-effect (GLME) analysis 

Several GLME models were created to ascertain the outcomes’ significance in the comparisons. 

These models incorporated participant ID as a random effect and considered age, sex, vehicle 

type, and emergency level as fixed factors. We also created GLME models to study a potential 

learning effect based on the three extra trials performed by each participant. Whenever a factor 

with more than two categories displayed significance, post-hoc tests were conducted on the 

model’s outcomes. The threshold for statistical significance was set at α = 0.05, adjusted using 

the Bonferroni correction to manage multiple tests across diverse analyses with uncorrelated 

measures.  

Subjective data 

Upon completing all tasks, participants were asked to respond to a questionnaire. The 

questionnaire sought to obtain two types of information: (1) the participants’ demographic 

details and their level of previous experience with the MMVs used in the experiment, and (2) 

their evaluations of the MMVs’ performance throughout the experiment. For the second part, 

participants were asked to rank the four vehicle configurations on a 7-point Likert scale [Dawes, 

2008], with 1 indicating “very poor” performance and 7 indicating “exceptional.” Six 

performance categories were assessed: mounting and dismounting, maintaining balance, 

sustaining a constant speed, braking capability, steering capability, and acceleration from a 

standstill. Furthermore, participants were asked to assign a score, using the same Likert scale, 

to each vehicle configuration based on their perceptions of its overall comfort, maneuverability, 

stability, and safety.  
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3. SUMMARY OF APPENDED PAPERS 

The rise of novel micromobility vehicles (MMVs) like electric kick scooters (e-scooters) is 

reshaping city travel, offering potential solutions to congestion and pollution. However, safety 

concerns arise as e-scooters pose a higher crash risk than bicycles, leading to different types of 

injuries. Existing safety studies rely mostly on post-crash data, which offer limited insights into 

why these accidents happen. Field data through controlled field experiments could help us 

understand the causes behind crashes, since the data can be used to quantitatively model both 

MMVs and rider behavior. 

Understanding the unique kinematics of MMVs is crucial for the safety of all road users. 

Advanced Driving Assistance Systems (ADAS) have been effective in reducing road fatalities, 

but to enhance road safety further they need a better grasp of MMV users’ behavior. Current 

ADAS models do not account for MMVs, since the latter have evolved quickly and there is 

still a lack of research in this area. To address this gap, it is crucial to develop a method to 

model and compare the braking and steering controls of novel MMVs and bicycles, in order to 

obtain crucial insights for ADAS threat assessment and, in turn, improve road safety. 

3.1. Paper I: How do different micromobility vehicles affect longitudinal 

control? Results from a field experiment 

This study compares longitudinal control among different MMVs, focusing on improving 

threat assessment of active safety systems and understanding how novel MMVs differ from 

bicycles. A field experiment was designed to investigate how riders perform longitudinal 

control (i.e., acceleration and braking) in different urgencies on different MMVs, and to create 

a potentially appropriate model to describe and predict MMV trajectory mathematically.  

Thirty-four participants took part in a controlled field experiment, repeatedly performing five 

maneuvers on a closed test track: comfortable and harsh acceleration and comfortable, planned 

harsh, and unplanned harsh braking. They rode four different vehicle setups: a bicycle in either 

human-powered or electrical-assisted mode, a light personal e-scooter, and a Segway balance 

scooter. The participants were asked to fill in a questionnaire to record their qualitative 

feedback (e.g., perceived safety, controllability). 

The analysis of the collected data shows that the performance of acceleration and deceleration 

varies among the vehicles; the e-scooter and the Segway have less efficient braking capability 

than bicycles. The electrical assisted (the e-bike) or powered (the e-scooter and Segway) 

vehicles demonstrated greater acceleration from a standstill in both comfortable and harsh 

acceleration maneuvers than the non-assisted bicycle. In the experimental emergency situation 

(the unplanned, harsh braking condition), riders could perform braking maneuvers at 

approximately twice the deceleration rate of their comfortable maneuvers, for all vehicles. The 

bicycle (in either mode) was perceived as safer, more stable, and more maneuverable than the 

Segway or the e-scooter. Finally, the linear regression models assuming constant acceleration 
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for acceleration and braking could accurately describe the MMVs’ kinematics during those 

maneuvers. 

This study highlights how different MMVs influence rider behavior and vehicle control. We 

also found that the participants performed poorly on the Segway in the field experiment, 

implying the need for adequate training before novice users ride in traffic. The linear 

acceleration and braking models are sufficiently accurate for use in predicting trajectories for 

safety systems like automated emergency braking (AEB). These models could also help 

consumer rating programs, such as Euro NCAP, design test protocols for crash avoidance 

systems. This study emphasizes the growing need to model human behavior as novel MMVs 

enter the increasingly automated and connected transport systems nowadays. Future research 

should also investigate the role of infrastructure design and regulations in improving the safety 

of MMV riders and other road users.  

3.2. Paper II: Modeling collision avoidance maneuvers for micromobility 

vehicles 

Braking may not be the optimal collision-avoidance strategy for some novel MMVs (e.g., e-

scooters); under certain circumstances, lateral maneuvers could be a better option. This study 

extends the study in Paper I by adding a lateral maneuver (steering), with the aim of refining 

the linear kinematic models by considering both longitudinal and lateral jerk as key indicators 

for threat assessment. This study also includes a large, public-sharing e-scooter, as the e-scooter 

sharing system has seen significant growth in recent years, and these models are very different 

from personal e-scooters.  

Following the methodology in the prior investigation, we conducted a comparative analysis of 

a large e-scooter and a small e-scooter in relation to a bicycle (in both assisted and non-assisted 

modes) during field trials in a rear-end collision scenario. The aim was to ascertain whether e-

scooters exhibit distinct limitations in maneuverability when attempting to avoid a rear-end 

collision through braking or steering. Thirty-six participants were recruited for the experiment, 

during which they were asked to repeatedly perform controlled braking and steering maneuvers, 

both comfortably and harshly, on each of the four vehicles. Additionally, a questionnaire was 

distributed to gather qualitative feedback from each participant. 

The results show that the braking capabilities of the various vehicle types differ in terms of 

deceleration and jerk. Bicycles exhibit better braking performance than both e-scooters, and 

the larger e-scooter demonstrated better braking performance than the smaller one. However, 

there was no statistically significant difference in the vehicles’ steering performance. Both e-

scooters were perceived as less stable, maneuverable, and safe than bicycles. Moreover, this 

study introduces arctangent kinematic models (for both braking and steering).  

The findings of this research indicate that the maneuverability features of the new MMV 

solutions deviate considerably from those of bicycles. In a near-rear-end collision situation, 

steering may be a more effective strategy to avoid crashes than braking for an e-scooter. 

Importantly, educating e-scooter riders to adapt their behavior accordingly (steering away 

rather than braking) could improve their safety. Furthermore, it is suggested that the arctangent 

models can be implemented in ADAS to prevent collisions between cars and MMV users by 

anticipating the trajectories of MMVs. Understanding these differences could provide valuable 

insights for designing infrastructure and formulating traffic regulations. Finally, further 
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research is needed to determine if jerk is an appropriate parameter for modeling MMV rider 

behavior and improving threat assessment engineering. Future studies should also focus on 

improving the models of the vehicles’ inherent dynamics and developing interconnected 

vehicle-rider systems. 
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4. DISCUSSION 

4.1.  Methodology for field data collection 

In Studies 1 and 2, we employed a consistent approach to vehicle instrumentation, field data 

collection, and data processing [see Lee, et al., 2020; Billstein & Svernlöv, 2020]. The selection 

of vehicles for the field test experiment was based on factors such as popularity, availability, 

maintainability, ease of sensor installation, and rideability. The chosen vehicles represented the 

most common micromobility transportation modes, including those that can be privately owned 

and those available in public sharing systems. However, the electric-assisted bicycle in human-

powered mode (with the electric motor turned off) is different than a “real” non-assisted bicycle 

in terms of sitting position, load distribution, and braking. These differences could affect the 

dynamics of the riding maneuvers.  

Overall, the logging system demonstrated a relatively high accuracy, robustness, and 

adaptability to different vehicle configurations. Future improvements should include assuring 

higher availability of the data. Methods to achieve valid time synchronization between the 

vehicle and the stationary LIDAR should be explored, as these components were the primary 

cause of data loss (some data had to be discarded due to synchronization failure).  

The experimental protocols for the field tests were solid and comprehensive, demonstrating 

good repeatability and suitability for future data collection. The protocols covered different 

maneuvers and urgency levels, representing several common scenarios (i.e., accelerating, 

braking, and steering) in MMVs’ general riding and collision avoidance activities. As expected, 

both studies identified statistically significant distinctions in the collision avoidance 

performance during different riding activities on different MMVs: the e-scooters demonstrated 

statistically significantly poorer braking performance compared with the bikes but no 

statistically significant difference in steering. The e-scooters were also perceived as statistically 

significantly less stable and maneuverable than the bikes.  

In Study 1, we could easily extract accelerating and braking maneuvers and make comparisons. 

The linear models in Study 1 achieved high accuracy and succeeded in describing the 

longitudinal maneuvers with short computation time due to its simplicity (i.e., riders accelerate 

and brake with constant acceleration). The models could be used to predict stopping distance 

and estimate whether a rider can brake and stop in time to avoid a collision.  

In Study 2, modifications and expansions were made to the experimental protocol and 

modeling approach from Study 1. A lateral maneuver (steering to avoid a frontal collision) was 

introduced, in addition to a new publicly shared e-scooter model for the field test. This 

additional testing provided evidence that steering may be a safer option than braking for e-

scooter riders when it comes to collision avoidance, as e-scooters demonstrated poor braking 

performance. Furthermore, the inclusion of jerk (the third derivative of position) in this study 

resulted in another descriptive model (the arctangent model) for collision avoidance maneuvers. 
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The coefficients of the models in Study 2 offer the potential to predict even more information 

(i.e., higher derivatives such as jerk) than the linear models used in Study 1 without introducing 

too much extra computational expense. 

Questionnaires were used in both studies to collect qualitative feedback regarding perceived 

safety, stability, comfort, maneuverability, and performance. The subjective data obtained from 

the questionnaires demonstrate that riders perceive that e-scooters and Segways are less stable 

and secure than bicycles. As anticipated, the l-scooter received significantly higher scores than 

the s-scooter did. This difference could be attributed to the more advanced suspension, braking, 

and propulsion systems of the l-scooter. Furthermore, the riders also scored both e-scooters 

lower in steering, braking, and maintaining balance; these results were statistically significant. 

They demonstrate the significant differences perceived by the riders in the operation of e-

scooters. Thus, rider education, e.g., how to operate novel MMVs, may be needed.  

4.2.  The use of MMV models for threat assessment in ADAS and AD systems 

In Study 1, linear models were developed that were able to describe the longitudinal maneuvers 

of accelerating and braking. The predictable nature of accelerative and braking maneuvers on 

MMVs, owing to constant accelerations, means that these models could prove valuable for 

ADAS and AD systems and automated vehicles. The linear coefficients can anticipate stopping 

distance, allowing the systems to estimate whether a rider can brake and yield in time to prevent 

a collision. The investigation further highlighted the importance of vehicle classification in 

achieving accurate predictions, as braking and acceleration performances differ significantly 

across various MMVs. Furthermore, it was revealed that riders can accelerate and brake more 

rapidly (i.e., they can decelerate at approximately twice the deceleration than when braking 

comfortably) when prioritizing urgency over comfort. Braking capabilities were comparable 

for the bicycle in both assisted and unassisted states, but inferior for both l- and s- scooters and 

Segways. ADAS systems can use the deceleration data along with other MMV-recognition 

technologies to assess maneuvering responses and the risk of crashing in real time with 

relatively high accuracy.  

Study 2 demonstrates a rapid method for calculating the minimum required deceleration, jerk, 

and the maximum lateral offset as well as the steering jerk in order to model the braking and 

steering maneuvers of MMVs. Using an arctangent function to fit the velocity curve, instead 

of a constant acceleration or a constant jerk model, provides a more natural description of the 

braking process. The arctangent function is especially suited for low-speed scenarios. 

Compared with the linear models that identify a maneuver based on thresholds, the arctangent 

models can achieve a broader prediction horizon in a threat assessment algorithm (e.g., before 

or after a braking maneuver when a vehicle coasts without pedaling, so that we can study when 

the rider start preparing for braking). The arctangent models’ coefficients can be used to rapidly 

compute maximum braking and steering acceleration and MMV trajectories, as shown in Table 

2.  

It is worth noting that the linear and arctangent models both lack ecological validity and 

robustness, as they are deterministic and do not account for road user variability or uncertainty 

(unlike, e.g., Bayesian [Huang & Abdel-Aty, 2010] and deep learning [Zhu et al., 2022] 

modeling approaches using large naturalistic databases). However, their simplicity and low 

computational complexity make them suitable for the implementation in ADAS to anticipate 
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the behavior of MMVs. Moreover, the models might improve the communication among road 

users and the infrastructure in extensive V2X road networks. For example, MMVs in a local 

V2X network might broadcast their kinematic models, as well as basic kinematic information 

such as speed and heading angle, in a VRU-awareness message (VAM, [SAE, 2017; ETSI, 

2020]) [Lusvarghi et al. 2023]. The additional information can help car ADASs assess the 

threat of collisions with MMVs individually—compensating for the inaccuracies of GPS, on-

board units (OBUs), and infrastructure sensors [Baqer et al., 2021; Denk et al., 2022]. 

Microscopic traffic simulations [Krajzewicz, 2010] used in traffic research and planning may 

also benefit from including kinematic models of MMVs to create realistic paths and movement 

predictions; for example, bicycle interactions could be simulated by considering bicycle 

dynamics using the social force paradigm [Schmidt et al., 2023].  

Table 2. Comparison between coefficients of the arctangent model and linear model. Kinematic parameters are calculated 

with the coefficients and their combinations. 

Arctangent model  Linear model 

y = aa atan(bax + ca) + da y = alx + bl 

-1.69 ± 0.55 aa · ba 

Min. 

deceleration 

[m s2⁄ ] 

al -1.80 ± 0.31 

5.66 ± 0.62 2 · da 
Initial speed 

[m s⁄ ] 
bl 5.70 ± 2.50 

-0.99 ± 0.80 −3√3 8⁄ · |aa · ba
2| 

Min. jerk 

[m s3⁄ ] 
N/A - 

4.79 ± 1.42 −2 · ca/ba 
Duration 

[s] 
−bl/al 3.25 ± 0.63 

 

As stated in the Introduction section, multiple approaches are being developed and employed 

in ADAS systems for threat assessment. Our studies have produced kinematic models that 

could be utilized to enhance threat assessment systems, particularly those use a physical model-

based method (as classified by [Dahl et al., 2018]). These methods rely on precise dynamic and 

kinematic models of both the host vehicle and the surrounding road users to enhance threat 

assessment. For instance, when an e-scooter approaches an intersection, an ADAS or AD 

system equipped with an accurate, dynamic e-scooter model can anticipate the rider’s actions 

by considering the model’s parameters, such as velocity, acceleration, steering capabilities, and 

minimum required jerk [Viviani & Flash, 1995]. Consequently, the system can predict the e-

scooter’s trajectory, evaluate potential collision risks with the host vehicle, and adjust the host 

vehicle’s path or velocity to minimize risk. The ADAS and AD systems’ more precise threat 

assessments can lead to improved decision-making and enhanced road safety. Integrating these 

methods establishes a resilient framework for mitigating potential risks and safeguarding the 

well-being of all road users.  

While this research focused on physical model-based methods, the kinematic models based on 

data-driven methods could also be fed into the model pretraining process and improve the 

performance of the machine-learning-based threat assessment networks by transferring prior 

knowledge [Ayachi et al., 2020]. Combining both physical model-based and data-driven 
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methods can improve the ADAS’s threat assessment and collision avoidance strategies, making 

ADAS more effective [Dahl et al., 2018]. 

4.3.  Implications for traffic safety 

In addition to informing the development of ADAS systems, our top-down kinematic models 

of MMV maneuvers can benefit traffic safety in many other ways. Including parameters such 

as maximum braking deceleration and minimum turning radius in addition to weight, top speed, 

and peak power in a more comprehensive classification and taxonomy of MMVs can facilitate 

better MMV design, infrastructure, and regulations. Moreover, qualitative factors such as the 

perceived safety of the MMVs by drivers, pedestrians, and MMV users themselves can also be 

included [Tice et al., 2019] .  

The proposed MMV kinematic models can inform consumer rating programs such as Euro 

NCAP in creating appropriate test scenarios. According to Euro NCAP Vision 2030, test 

situations for new crash opponents, including powered-two-wheelers (PTWs), specifically 

powered-standing-scooters (PSS, e.g., the e-scooters we have studied), will be developed. Euro 

NCAP has been reviewing injury patterns, test methods, and criteria for MMVs and crashes at 

lower speeds, and will be adding new tests in 2026 (approximated). Current testing includes 

the following car-to-bicyclist (adult) scenarios: dooring (CBDA), nearside/farside collision 

(CBNA/CBFA), nearside collision obstructed (CBNAO), longitudinal collision (CBLA), and 

“right hook” turning (CBTA). Various test protocols and assessment criteria were developed; 

time-to-collision (TTC) and impact velocity are major indicators for an ADAS system. In 

several car-to-pedestrian and car-to-bicyclist scenarios, a warning (e.g., FCW) should be issued 

or an intervention (e.g., AEB, door retention, emergency-steering-support) should be triggered 

before or at a TTC of 1.7s, to attempt to avoid a collision. However, according to our findings, 

novel MMVs may achieve higher acceleration and speed than traditional bicycles, albeit with 

poorer braking capability, which suggests that the current TTC may be inappropriate. In 

particular, in the CBNA/CBFA and CBDA scenarios, 1.7s may not be enough time for the 

driver to react to the warning, because of the more substantial negative relative velocity due to 

the MMV’s greater maximum velocity. On the other hand, a TTC of 1.7s may be too long—

and more likely to result in a false alarm—in a CBLA scenario, since the relative velocity 

between the car and the rider is lower (greater MMV velocity), which also reduces slower when 

an MMV brakes (MMV’s poorer braking performance). The findings of this thesis may support 

the development of new test protocols and criteria with a more accurate model for predicting 

MMV behaviors. Another application of the model could be planning the speed and trajectory 

of a robot MMV in these new scenarios as an opponent road user, to make the scenarios more 

realistic. 

In addition, these findings may lead to new requirements in infrastructure design. Our field 

experiments have also shown that e-scooters are perceived as less stable and maneuverable, 

and steering may be more effective than braking for e-scooter riders to avoid collisions. Thus, 

an infrastructure designer might increase a bicycle lane’s width and curve angle to provide 

more room for avoidance maneuvers. It is also essential to ensure improved road visibility, 

lighting, lane marking, and road signage to accommodate new MMVs with poorer 

maneuverability (e.g., e-scooters and Segways). Other examples of infrastructure 

improvements that would improve safety include allocating the bicycle lane more properly 

(e.g., to minimize the exposure where the MMVs have to share the road with motorized 
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vehicles and pedestrians) and lowering the curb height at points where the bicycle lane has 

been interrupted to reduce falling crashes [Knight & Charlton, 2022; Jensen et al., 2008].  

Policy-making may also benefit from our results; current policy addresses MMV safety based 

on general, static requirements. Integrating MMV kinematics and maneuverability into 

behavioral models could lead to more comprehensive, systematic regulations tailored to 

individual MMVs’ capabilities and limitations. The collision-avoidance capabilities of e-

scooters (i.e., maximum braking decelerations and lateral offsets) can be taken into account, 

with new speed limits or bans employed accordingly at certain areas (e.g., narrow lanes, sharp 

curves, long downhill stretches). Clear road signs could raise rider awareness of potential 

dangers. Additionally, as it is hard to use hand signals to indicate turning while riding an e-

scooter, mandating the equipping and use of turning indicators may encourage safer 

interactions between MMVs and other road users.  

Rider education is also crucial. As shown in a previous report [Austin Public Health, 2019], 

nearly one-third of e-scooter injuries occur during inexperienced riders’ first journey. This 

statistic indicates that many crashes can be attributed to the riders’ lack of experience or to their 

lack of awareness of the characteristics of new MMVs. Perhaps they are mindlessly assuming 

they can transfer the skills used with traditional bicycles to the new vehicles. According to the 

subjective data we collected, participants may interpret the braking system on the large e-

scooter as similar to a bicycle’s; however, although they may look alike, they function 

differently. Furthermore, understeering of e-scooters was reported by some participants, 

possibly due to their unfamiliarity with the body-leaning required to steer them. Clearly, 

inexperience may lead to mishandling of the vehicle and an increased risk of crashes. In our 

studies, the participants highly appreciated the training sessions before the formal experiment; 

inexperienced e-scooter riders learned to operate the vehicles and overcome their fears. A 

comprehensive program of rider education may reduce MMV crashes by raising rider 

awareness of the limitations of the vehicle.  

Finally, the models devised in this thesis have the potential to be applied in autonomous driving. 

Previous research has suggested that, compared to manually driven vehicles, autonomous 

vehicles may need a more cautious driving approach when encountering VRUs [Rasch, 2023]. 

To gain the driver’s trust, autonomous vehicles should maintain longer distances to VRUs than 

those calculated by the AD systems as safe distances, similar to those maintained by human 

drivers, and aim for comparable speeds [Abe et al., 2017]. Our models can be employed to 

constrain the control units of the vehicle in order to achieve such careful behavior. Moreover, 

the models from this thesis can be useful for local V2X networks, as prior study has 

demonstrated that alerts generated through vehicle-to-micromobility communication could 

effectively prevent right-hook and right-angle collisions. The models could be rapidly 

implemented using a threshold of MMVs’ minimum stopping sight distance [Baqer et al., 2021], 

a distance defined by a quadratic equation using the vehicle’s speed [AASHTO, 1993]. Alerts 

incorporating the models from this thesis can be more individualized. For example, instead of 

one specific universal equation for all types of MMVs, new systems using these models can 

consider the kinematics and stopping distances of individual MMV types and models.  

4.4.  Limitations and future work 

Both studies had limitations in data collection, the datasets, and data analysis.  
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In Study 1, only 25 out of 34 participants felt comfortable riding the Segway, while only 14 

participants could provide reliable sensor data for modeling. Additionally, up to 20% of the 

data obtained from the other vehicles was lost because participants encountered challenges 

controlling their speed per the instructions. While such data loss is typical in field experiments, 

it is plausible that this loss resulted in a dataset that exhibits a bias toward the subset of 

participants who are particularly athletic or adventurous (especially regarding the Segway). 

These biases were lessened in Study 2 due to a more flexible speed requirement and the 

Segway’s absence. However, not regulating the initial velocity has been identified as a major 

limitation of Study 2: the comparisons of the braking and steering capabilities of the various 

vehicles were less accurate and valid, since the initial speed parameter may influence braking 

and steering performance indicators, including braking distance, acceleration, and maximum 

steering rate. In future field data collections, these influences should be addressed by manually 

controlling the desired constant speed (e.g., limiting throttle positions) or giving clearer 

prompts when riders enter or exit the desired speed range.  

While we have not encountered any other research project involving more participants in e-

scooter field tests, it is important to note that our sample size of around 30 individuals might 

not accurately represent individuals of all sexes, ages, and geographical locations. Test 

scenarios in both studies were also simplified and idealized to represent only longitudinal 

collision situations without involving other road users or infrastructure. Future field data 

collections should widen the ranges of demographic and traffic scenarios, e.g., building real-

world infrastructure and involving oncoming or approaching road users. Generally, future 

research should also focus on standardizing MMV data collection, and database maintenance, 

[Karpinski et al., 2022]. At the same time, researchers need to understand the context and 

limitations of data, choose risk metrics that align with specific research questions, and then try 

to improve database accessibility, quality, complexity, completeness, and comprehensiveness. 

In Study 2, hardware failures happened to the button controlling the logging start/stop and the 

one synchronizing the on-vehicle and LIDAR data loggers (temporal synchronization should 

have been done by pressing the two buttons on the loggers as simultaneously as possible after 

logging has started). The failures, possibly due to the deterioration of the older data loggers on 

the bicycle and the small e-scooter, resulted in incomplete vehicle data and asynchronous 

signals from the vehicles and the LIDAR. Manually recovering the damaged data was 

impossible. Therefore, we disregarded the vehicle data and relied exclusively on the LIDAR 

data; sensor fusion in the data processing phase was thus not possible. In other words, the 

velocity, acceleration, and jerk were computed indirectly from the derivations of the position 

data collected by the LIDAR at a relatively low sampling rate (20Hz), which treated the 

vehicle-rider system as a central point within a clustered point cloud. As a result, the 

inaccuracies arising from the indirect method used to measure the kinematics of vehicles in 

data collection and analysis could not be corrected. In order to enhance the precision of the 

models, further research could incorporate additional direct measurements, such as wheel speed 

obtained using an optical encoder with a higher sampling rate. These measurements can then 

be fused with the LIDAR measurements to model and predict MMV trajectories more 

accurately. A better synchronization module, e.g., wireless communication, may be needed to 

control manual synchronization, which may induce some noise and errors. Additionally, the 

positioning of the LIDAR in Study 2 posed a minor limitation, because the LIDAR could not 

continuously track the riders’ steering maneuvers after they had overtaken the cardboard car. 
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This issue could be resolved by placing the LIDAR to the left of the test track instead, so that 

the cardboard car does not interfere with the LIDAR’s line of sight. 

The significant limitations in data validity, and the consequent indirect measuring approaches 

required, reduced the models’ accuracy. Future work should implement newer, more robust 

logging systems. Ideally, the logging system would enable sensor fusion and enrich the 

information in the data by creating redundancies in sensing and data transmission. One example 

is measuring vehicle speed: fusing the data from the LIDAR and the IMU can correct the error 

from each sensor (e.g., drift errors from the IMU and angular errors from the LIDAR). 

Additionally, use of wheel-speed sensing (e.g., an optical encoder) and throttle/brake lever 

position sensing in the vehicle speed measurements could further improve the accuracy by 

including information on energy transfer and wheel lock. Redundancy in data transmission (i.e., 

by using both wired and wireless communication) can reduce data loss when either system fails. 

In future work within the Ph.D. project, logging systems should be improved by using global 

control for temporal synchronization while creating redundancies in direct and indirect 

measuring approaches.  

In the two field experiments presented in this thesis, ecological validity might have been 

constrained in several ways. First, the experiments took place on road stretches that did not 

represent a real, open-road environment. Not only were very few other road users and a wider-

than-usual space for riding, but neither the cone marks nor the cardboard car was fully realistic. 

Second, there was bias in the selection of participants (the criteria were “average” persons 

whose height and weight were within certain ranges, and fewer female participants were 

recruited) and in the vehicles (recall that the participant needed to pretend to ride a non-assisted 

bicycle while on an e-bike with the motor off). Third, the riding tasks might also differ from 

what the participants would do in real life. For example, the auditory signal used in the 

unplanned braking task in Study 1 might demonstrate better ecological validity than asking the 

riders to brake as late as possible for anticipating riders’ response in emergency situations. 

However, using an auditory signal still predetermined the occurrence of such “emergencies” in 

the riders’ minds when the instruction of the experiment was given. Fourth and lastly, the 

information loss due to the measuring methods and tools also reduced the ecological validity. 

In general, higher validity would enable us to derive more accurate and robust results from the 

tests. One example of the benefit of higher an ecological validity could be the partially 

confirmed phenomenon that, in the tests of drivers’ hazard perception assessment (i.e., the 

process of detection, evaluation, and response to road hazards [Crundall et al., 2012]), 

increased ecological validity enhances the test’s sensitivity to variations in driving expertise 

[Malone & Brrünken, 2016]. 

Previous studies have shown significant differences between the types of crashes and injuries 

incurred by male and female riders on e-scooters [Tian et al., 2022; Yang et al., 2020]. However, 

we found no statistically significant differences between male and female riders in the 

longitudinal control (braking) of bicycles, e-bicycles, e-scooters, or Segways. Moreover, in 

Study 1, braking distances and response times were comparable regardless of gender, and the 

proportion of female participants who successfully completed the experiment with the Segway 

was similar to the proportions for the other vehicles. None of our findings support the 

prevailing notion that male riders exhibit more aggressive riding behavior or engage in riskier 

actions than female riders. This lack of significance between male and female riders’ behaviors 
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may be due to the small number of female participants (9 out of 34 in Study 1 and 13 out of 36 

in Study 2).  

After this licentiate and up to the final Ph.D. thesis, the focus will shift to modeling MMVs 

from the vehicle dynamic and human rider’s control perspectives in a bottom-up manner. The 

rider-vehicle system will be modularized, where the vehicle and the rider will be studied as two 

standalone modules. In the first step, we will develop dynamic models for the e-scooter, 

drawing inspiration from the concepts presented in the research by Meijaard et al. (2007) and 

Moore (2012). Instead of field trials, laboratory experiments are planned and will be conducted 

at Chalmers FUSE’s Physiology lab using a treadmill and high-speed motion capture system. 

New experimental protocols will be designed in which participants riding e-scooters on the 

treadmill will perform routine riding maneuvers, such as balancing, leaning, and following a 

line. The main features we intend to incorporate into these models are the torque generated by 

the steering assembly and the adjustments to the center of gravity resulting from shifts in the 

driver’s position. This work will heavily rely on geometric principles, measurable data, and 

parameters previously identified in existing literature and benchmark models, such as moments 

of inertia and tire stiffness. Kinematic data and riders’ body movements will be captured at the 

same time. From these data, a new benchmark model dedicated to e-scooter dynamics will be 

developed and presented in the following papers. The next step will be to model the rider’s 

body motions in the controlling of e-scooters. Various model architectures will be examined to 

find one that best strikes a balance between complexity, degrees of freedom (DOF), and bio-

fidelity. These models (and those developed before this licentiate thesis) will be integrated into 

the benchmark e-scooter model and validated with naturalistic data.  

We should conduct a parametric investigation into the vehicle characteristics to conduct a more 

profound comprehension and measurement of the factors that influence the performance of the 

e-scooter and its rider, proposing potential modifications to the design of e-scooters to improve 

safety. Voi (a shared e-scooter service provider) and Chalmers have been collecting naturalistic 

data since 2021, so a substantial dataset should be available for our studies. The intention is to 

select specific situations and compare the recorded kinematics to those predicted by our model. 

Finally, in addition to the dynamics, future studies may also consider variables encompassing 

implicit and explicit communication by the riders (e.g., head orientation, indicating whether 

they are planning to turn). This information is essential for predicting the interactions between 

riders and their surroundings from the riders’ perspective, such as how they perceive and react 

to critical events (e.g., involving oncoming/lateral traffic).  
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5. CONCLUSIONS 

This thesis represents an early-stage exploration of MMV safety research regarding 

methodology and MMV behavioral modeling at the operational and tactical levels. The 

significance of field data in ensuring the secure integration of micromobility into the 

transportation system is emphasized by the results of this thesis. The two field experiments 

highlight how the characteristics of different MMVs affect their kinematics and, as a 

consequence, rider behavior. The results suggest that e-scooter riders may be better off 

executing steering maneuvers instead of braking (as one example)—in contrast to cyclists, who 

rely more on braking maneuvers. Study 1 also reveals that Segways performed poorly in field 

tests, indicating the necessity of proper training for inexperienced users before riding in traffic. 

Moreover, it was also found that the linear accelerating and braking models, which demonstrate 

that riders maintain consistent accelerations and decelerations, can be employed to predict 

trajectories for safety systems such as automated emergency braking (AEB) as well as for 

automated driving.  

The collision avoidance behaviors of braking and steering exhibited by bike and e-scooter 

riders were examined in Study 2. It was found that larger public-sharing e-scooters exhibit 

superior braking performance than smaller, privately owned ones. However, steering 

maneuvers were consistent across all types of vehicles. In order to enhance the effectiveness 

of ADAS systems and improve our understanding of e-scooter safety, Study 2 put forth an 

arctangent model that provides a more accurate representation of MMV kinematics. This model 

enables the calculation (and thus the prediction) of the maximum acceleration/deceleration and 

jerk, the lateral clearance achieved by the riders, and a more precise prediction of MMV 

trajectories. Both the linear and arctangent models demonstrated satisfying performance in 

describing short-term kinematics of MMVs, although the latter are perhaps best suited to 

describing comfortable maneuvers (which are less linear). Specifically, the linear model has 

two parameters and (usually) a time complexity of O(n); the arctangent model has four 

parameters, and the time complexity can vary significantly from O(n) to higher, depending on 

the fitting approach used. However, the arctangent model is still computationally efficient for 

most state-of-the-art computational units. Both models may prove useful to consumer rating 

programs like Euro NCAP, as they can help design test protocols and assessment criteria for 

threat assessment and crash avoidance systems.  

To extend the ecological validity of the models, future research should compare other MMV 

models in diverse traffic scenarios, while considering additional road users. Furthermore, 

future research should focus on improving the models for e-scooter kinematics and rider 

behavior and validating the models with naturalistic data. In summary, the first research 

objective (i.e., modeling the behaviors of MMV riders’ longitudinal and lateral maneuvering 

in specific traffic scenarios from a top-down perspective) of the Ph.D. project has been 

addressed and as results, two descriptive models of MMV collision avoidance maneuvers have 
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been proposed. Lastly, this thesis may provide evidence for the necessity of rider education in 

MMV operation and regulations tailored for MMVs to enhance road safety. 

In conclusion, this thesis sheds light on future research directions and knowledge gaps in the 

field of MMV safety. The significantly poorer braking capability demonstrated by the e-

scooters in the field tests emphasize the need for advancement in the threat assessment process 

of active safety systems to better handle the car-MMV interaction in potential collisions. New 

evaluation criteria for car-to-MMV scenarios in consumer rating programs for new car safety 

may also be of interest to encourage car manufacturers in further reducing collisions with 

MMVs. A new taxonomy that classifies novel MMVs supported by knowledge of their 

kinematics and maneuverability could ensure that future infrastructure design and the policy-

making lead to improved traffic safety. Our results in the distinctions between e-scooters and 

bicycles may align with the crash patterns presented in the statistics. More single falling crashes 

and misbehaviors due to fear and lack of experience and the potential design faults are 

frequently occurring, confirming that riding an e-scooter is riskier than riding a bicycle. 

Furthermore, even though steering maneuvers did not reveal significant differences in 

maneuverability across MMVs, they were still perceived differently. More knowledge about 

the interactions between the rider and the vehicle during steering maneuvers is needed, 

especially on an operational level. On the other hand, the proposed kinematic models are 

simplified and subject to specific longitudinal-control (Study 1) and collision-avoidance (Study 

2) scenarios. Future work is needed to refine the models with knowledge about the vehicle 

dynamics and more diverse data modality (e.g., more sensing data such as the brake lever 

pressure, steering torque, and rider monitoring, etc.), in order to achieve better descriptions and 

predictions of MMV behaviors in a broader range of traffic scenarios.  
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