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A B S T R A C T   

The use of continuum damage models is state of the art for the finite element modelling of progressive damage 
and failure under compressive loading in composites during e.g. crash and impact simulations. However, after 
failure initiation the compressive stress is quickly degraded to zero alternatively to a plateau with constant stress 
and at a certain point the element needs to be deleted due to the damage level or large element deformation. This 
effectively represent a void in the material which contrasts with reality where a fully formed kink band would be 
expected to have compressive properties similar to the transverse direction of the ply. To better represent this 
physical behaviour is here a kinking formulation developed that instead of the common constant stress plateau 
after initial softening features a stiffening at larger strains. This formulation has been implemented in a com
mercial FE-code complemented by criteria for kinking initiation and kink band broadening. The results presented 
show the novelty of the model in that it describes a chain of events starting with initiation of kinking, progressing 
to the growth of kink bands through the element and finally including an increase in stress that initiate kinking in 
adjacent elements.   

1. Introduction 

Advanced composite materials with continuous fibres are commonly 
employed in structures within e.g. the energy and marine sectors but 
also in more high performance applications within sports equipment, 
aeronautical and automotive industry. For most applications, the 
structures are designed to not fail under static and fatigue loads using 
finite element analysis with suitable failure criteria and safety factors. 
For cars and aircrafts there are also requirements on the crashworthiness 
of the structure, i.e. requirements on the integrity and energy absorption 
characteristics of the structure under crash loadings. For composites this 
involves several damage and fracture mechanisms as fibre tensile and 
compressive fracture, matrix cracking and delaminations rather than the 
plastic deformations seen in metallic structures. In order to model this 
within a finite element setting, continuum damage mechanics models 
are applied where the regular fracture initiation criteria are com
plemented by a damage evolution law to model the progressive damage 
response and represent the gradual softening of the material all the way 
up to complete loss of load bearing capacity [1–3]. The damage law is 
commonly a linear reduction of the stress with increasing strain after 
fracture initiation and the reduction rate is determined so that the 

energy dissipated during the damage process is equal to the fracture 
toughness [1,2]. This is used also for compressive failure although this 
way of modelling represents the formation of a crack in the structure and 
hence effectively introduces a void in the structure. To account for the 
case where crushing of a composite structure is analysed, e.g. in crash
worthiness simulations of energy absorbing structures, the traditional 
linear stress reduction for compressive failure has been complemented 
with a plateau at constant stress, with the aim to obtain a correct 
resulting crushing stress [2,3]. The crush stress plateau value needs to be 
calibrated against crushing data. However, it does not only depend on 
the intralaminar ply behaviour but also on the laminate lay-up and, in 
many cases, also the structural geometry. Therefore, it can not neces
sarily be determined for one lay-up and then used for another. Consti
tutive models that include a stress plateau in compression is also 
implemented in commercial FE-codes, i.e. mat054 and mat058 in Ls- 
Dyna [4]. 

The compressive failure of composites is attributed to fibre kinking 
and growth of kink bands [5,6]. Compared to crack propagation in 
tension, the broadening of the damage height during growth of kink 
bands makes it difficult to measure the intralaminar fracture toughness 
in compression [7]. An alternative to measure the intralaminar fracture 
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toughness is the use of micro-mechanical based kinking models that 
predict the softening behaviour from the 3-D stress state and the shear 
stress–strain behaviour of the composite [8,9]. The foundation of this 
theory is based on analysis of the shear stresses that are required for 
equilibrium of miss-aligned fibres under compressive load. Argon [10] 
introduced this kind of model and derived an expression for the 
compressive strength as function of fibre miss-alignment and shear 
strength. Budiansky [11] used an elastic-perfectly plastic model which 
also included the kink band angle β. This model was later extended to 
include hardening plasticity and the effect of global shear loads [12]. 
More general non-linear stress–strain relations for the shear behaviour 
has also been used to predict compressive failure due to kinking [13,14]. 

Kink bands are described in terms of an angle to the load direction β 
and a band width. Studies into kinking failure show the formation of 
multiple kink bands [15–17] and controlled deformation experiments 
have shown that kink bands can increase in width (kink band broad
ening), either without fibre breaks in the case of ductile fibres [18,19] or 
by formation of new kink bands adjacent to the existing ones [20,21]. 
Models that can predict the compressive stress necessary to sustain this 
kink band broadening mechanism has been developed and compared to 
experimental results [18,22]. 

Fundamentally the use of continuum damage mechanics models, 
where the stiffness is degraded to a low value or even zero, implies that 
large compressive deformations can take place with low or no resistance. 
As the large compressive strains are not compensated with deformations 
in other directions, this also means that the volume of the material is 
decreasing. In a finite element setting this is amplified due to the dele
tion of elements with large deformations or low stiffness due to damage. 
An addition of a stress plateau to the compression response as described 
in Ref. [3] delays but does not prohibit the element deletion. Physically 
the kinking failure will lead to an initial softening when the kink band is 
formed but a considerable stiffness remains and will prohibit large 
compressive deformations. This work presents a compressive failure 
formulation based on a kinking model developed with this specific 
behaviour in mind. The objective with the compressive failure formu
lation is therefore not to predict the kinking failure in detail, instead it is 
developed in order to model the compressive response beyond the fail
ure initiation, i.e. for simulation of confined compaction or crushing. 
The developed kinking model displays a stiffening behaviour at large 
compressive strains which prohibits excessive deformations that other
wise would result in element deletion to avoid a significant reduction of 
critical time step size in the explicit FE simulations. The kinking 
formulation is similar to the theory in Ref. [12] but uses a different ki
nematic which takes into account the effect of the kink band angle β on 
the volume and transverse kink band stress which gives a more realistic 
stress state in the kink band at large deformations. The model in
corporates the softening phase similar to other models but instead of a 
long constant plateau as in i.e. Ref. [23], the compressive stress in
creases again for large compressive strains. The model has been imple
mented in a commercial, explicit FE-code and is complemented by a 
criterion for kink band initiation and a mechanism for kink band 
broadening that allows the kink band to grow through the element at a 
constant stress during sustained crushing. Similar to the formulation in 
Ref. [23], no experimentally determined fracture toughness is necessary 
to fit the model but only the composite stiffness and the compression and 
shear strengths are required. The results presented in this paper illus
trate the novelty of the proposed model in that it is capable of describing 
a chain of mechanisms including compressive failure initiation, initial 
softening due to kink band formation, a subsequent constant stress 
plateau at kink band broadening followed by a stiffening that leads to 
kinking initiation in adjacent finite elements. Combined these features 
of the model allows simulation of large compressive deformations 
without premature element deletion and thereby contributes signifi
cantly to the advancement of the simulation of constrained compression 
failure and crushing of composites. 

2. Description of the kinking model 

2.1. Implications of volume change due to kink band rotation 

The geometry of a kink band is commonly defined in terms of 
inclination angle β and width w, see illustration in Fig. 1. Within the 
band, the fibres are rotated by an angle with regard to the fibre direction 
outside of the band. The maximum rotation angle, as measured e.g. in a 
test specimen after kinking failure, is called the lock-up angle ϕ̂. For 
modelling purposes, the rotation angle is often divided into an initial 
misalignment angle ϕ and a rotation due to loading ϕ, see illustration in 
Fig. 1. Many experimental studies have identified that the inclination 
angle β of the kink band is related to the lock up angle ϕ̂ of the fibre 
rotation within the band, often measure after unloading as ϕ̂ ≈ 2β 
[13,24]. It has previously been proposed that the relation between β and 
ϕ̂ can be explained via volumetric considerations [25] which, together 
with experimental observations, is the key motivation for that this 
relation has been used in modelling of kink bands [18,22]. To see this, 
consider the geometry of a section of a shear deformed kink band of 
length L0 and height H in Fig. 2. The volume V of the kink band for a 
fibre rotation angle ϕ and an inclination angle β is 

V = L0cos(ϕ − β)
H

cosβ
.

From this expression, it can be seen that the change of volume during 
kink band evolution (increasing ϕ) under planar deformation can be 
determined as 

V
V0

− 1 =
cos(ϕ − β)

cosβ
− 1 = ε1 + ε2. (1)  

Here, ε1 and ε2 are the strains in and transverse to the fibre direction in 
the kink band, respectively. See also Fig. 2. With the assumption that the 
fibres are much stiffer than the matrix, the strain in the fibre direction is 
assumed negligible in comparison to the transverse strain, whereby 
Equation (1) reduces to 

V
V0

− 1 =
cos(ϕ − β)

cosβ
− 1 = ε2 (2)  

It can be noted that this expression for the transverse strain ε2 is the 
engineering strain equivalent of the expression for the transverse strain 
in Ref. [12]. 

The transverse strain ε2 from Equation (2) is plotted in Fig. 3 as 
function of kink band rotation angle for three different inclination an
gles β. For a β = 0, the transverse strain is always negative. For larger β 
angles, the transverse strain is first positive and then negative, being 
zero at ϕ = 2β. For β values above 15–20◦, the predicted maximum 
transverse strain is larger than the typical transverse failure strain of a 
UD lamina. This has been used by Matsou [14] to predict the variation of 
the β angle for samples tested in compression at a range of temperatures 
by using temperature dependent properties and stipulating that the lock- 
up angle is determined by transverse tensile failure in the kink band. 

If the experimentally determined relation between rotation and 
inclination angles is due to volume effects, it could, as an extension, be 
argued that the rotation and inclination might develop simultaneously 
as the kink band progresses. This assumption has been used in Ref. [18] 
where it was also supported by experimental data showing that the end 
of the kink band had a shallower inclination angle and was less wide 
than the fully formed band. This is consistent with that the kink band 
propagates through a point in the material by initiation of kinking 
transverse to the main fibre direction, followed by rotation and 
widening of the kinked material as the band develops. 

Although not conclusive from the literature, there are strong in
dications that the values of kink band inclination angle β and fibre 
rotation angle ϕ are coupled due to the volume effect discussed above. 
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The derivations above show that the fibre transverse stress and strain in 
the kink band are strongly related to the change in kink band volume, 
and hence in turn also to the values of angles β and ϕ. This will be uti
lized in the formulation of the kinematics of the equilibrium kink model 
as described in Section 2.3. 

2.2. Equilibrium and displacement continuity conditions for a kink band 

For a shear band, kink band or an embedded band with different 
material properties than the bulk material, equilibrium of tractions and 

continuity of the displacements over the interface are required, see 
Fig. 4. Specifically, it can be noted that continuity of displacement also 
requires that the stretching is continuous over the interface. 

Equilibrium requires that the traction vectors over the interface are 
equal for the two materials, i.e. in terms of the stress tensors in the bulk 
and band material and with the use of the normal n from Fig. 5 

n*σbulk = n*σband (3)  

Using the global coordinate frame and the geometry in Fig. 5, we 
introduce the band normal and the 2D matrix representation of the stress 
in the bulk and the band as 

n = (cosβ, sinβ), σbulk =

[
σX τXY
τXY σY

]

,

σband =

[
σ̂X τ̂XY
τ̂XY σ̂Y

] (4)  

Which gives the two equilibrium equations 

cosβ*σX + sinβ*τXY = cosβ*σ̂X + sinβ*τ̂XY (5)  

cosβ*τXY + sinβ*σY = cosβ*τ̂XY + sinβ*σ̂Y (6) 

Fig. 1. Geometry of a kink band with inclination angle β and width w and illustration of fibre rotation angle ϕ within the kink band.  

Fig. 2. Geometry for calculation of kink band volume.  

Fig. 3. Transverse kink band strain as function of band rotation.  
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It can be noted that the stress tensors in the bulk and band are equivalent 
for β ∕= 0 and σY = σ̂Y . Such an assumption would be logical for small 
fibre rotations where the global stiffness matrices for the two material 
states are very similar. For larger fibre rotations the correctness of such 
an assumption is more doubtful considering the equal stretch condition 
along the interface. 

The large fibre rotation during kinking progression will give rise to a 
large axial compaction of the kink band (X-direction in Fig. 5) but also a 
simple shear type sliding as illustrated by the difference in Y direction 
displacement of the two sides of the kink band in Fig. 5. In a finite 
element setting, these kink band deformations, as well as the inclination 
angle β, can potentially be predicted using very detailed FE-models, see 
e.g. [26]. Another alternative would be to use a mesh size equal to the 
kink band width and model the case β = 0 geometrically. However, this 
would require including the effect of the β angle implicitly in the 
element kinematics in order to alleviate the volume effect on the local 
transverse strain. For larger element sizes more relevant for structural 
simulations, the kink band would need to be embedded within the 
element formulation. In this work is a smeared crack type model applied 
for this purpose. The sliding deformation from the fibre rotation is dis
regarded in the formulation for two reasons. Firstly, it simplifies the 
implementation greatly as only displacement compatibility between the 
bulk and kink band in the normal direction needs to be considered. 
Secondly, it reduces the risk for numerical issues due to large element 
deformations in combined compression and shear. 

2.3. Derivation of kinking model based on equilibrium 

In view of the discussion about volume changes in Section 1; if one 
considers the compressive failure process once initiated as a growth of 
the kink band into the undamaged region, the crucial aspect is the 
deformation state in the fully formed band. Naturally, in the transition 
zone from undamaged to kinked, the deformation and stress states are 
strongly influenced by e.g. the local flexibility around the kinking re
gion. This is something that is challenging to describe. However, if one 
only considers possible end states when the band is fully formed and 
consider the angle β to take the value that is energetically the most 
favourable, one can see that the band can deform uncoupled from the 

bulk deformation in both the normal direction of the band and in the 
direction transverse to rotated fibres. Given a constrained strain state, 
varying angles β can result in both compressive and tensile transverse 
stresses depending on the amount of fibre rotation, as evident from 
Equation (2) and in the results shown in Fig. 3. 

For the equilibrium-based kinking model derived in this subsection, 
the following assumptions are made:  

• The effect from the shear type sliding, as illustrated by the difference 
in Y-displacement between the bulk parts to the left and right of the 
kink band in Fig. 5, on the local stress and strain state in the bulk is 
not explicitly included in the formulation. Nevertheless, this does not 
automatically exclude the sliding effect to be incorporated on the FE- 
element level, even if this is not included in the current work.  

• The global transverse stress in the bulk part and in the kink band are 
assumed equal. 

The assumption of equal global transverse stress, i.e. σY = σ̂Y in 
Equation (6), is based on the assumption that the kink band orients itself 
to fulfil this condition. 

By assuming that the global transverse stress is equal in the bulk and 
in the kink band (i.e. σY = σ̂Y ) in Equation (6), Equations (5) and (6) 
combined give that the stress tensors in the bulk and in the kink-band are 
equal for all values of β. This means that the stress state expressed in the 
kink band local fibre coordinate system is just obtained as the rotated 
bulk stress tensor: 

σ1 = σXcos2(ϕ)+ 2τXY sin(ϕ)cos(ϕ), (7)  

σ2 = σXsin2(ϕ) − 2τXY sin(ϕ)cos(ϕ), (8)  

τ12 = − σXsin(ϕ)cos(ϕ)+ τXY
(
cos(ϕ)2

− sin(ϕ)2 )
, (9)  

where 1, 2 are the local material axes of the kink band. 
The axial kinking stress is, as in many other kinking models cf. e.g. 

[5,12,27,28], determined by the shear stress τ12 required for driving the 
rotation of the fibres in the kink band, see illustration in Fig. 6 and 
Equation (9). As the kinking induced shear strain is equal to the fibre 
rotation angle, and the shear stress is known through the constitutive 
behaviour, the kinking stress can be directly determined as function of 
fibre rotation angle from Equation (9). As the interest here is the com
posite behaviour at large rotation angles, beyond the strain levels 

Fig. 4. Illustration of equilibrium and continuity conditions for an 
embedded band. 

Fig. 5. Kink band geometry with interface normal used for stress equilibrium.  

Fig. 6. Illustration of shear stresses necessary for equilibrium in off-axis UD 
composite under axial loading. 
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usually measured in shear tests, the shear stress is assumed to be con
stant (ideal plastic) at τyield. Hence, the model is suitable for rotation 
angles corresponding to shear strains above 5–10 %, see typical shear 
stress–strain curves in Refs. [8,29]. 

Generally, the hydrostatic pressure has an influence on the plastic 
stress–strain behaviour for polymers. Here, this is modelled by modi
fying the ideal plastic response to τ12 = τyield − μσ2, where μ is a friction- 
like coefficient describing the influence of the transverse stress on the 
shear yield stress. The expression for the yield stress, together with 
Equation (9), allows the compressive kinking stress to be determined 
from the rotation angle and the bulk shear stress as 

σX =
τyield − τXY

(
cos(ϕ)2

− sin(ϕ)2
− 2μsin(ϕ)cos(ϕ)

)

μsin2(ϕ) − sin(ϕ)cos(ϕ)
. (10)  

2.4. Derivation of kinking model based on energy rates 

In this subsection, an alternative kinking model is presented based on 
the requirement of balance between the power applied to the kink band 
and the strain energy rate within the same. Here, it is assumed that the 
strain energy rate in the band is dominated by the shear contribution. If 
the contribution to the strain energy rate from other stress–strain com
ponents is positive (i.e. no unloading), the compressive kinking stress 
predicted by the current model is the absolute minimum required to 
drive the fibre rotation. 

Using the kinematics in Fig. 7, the displacement of the band interface 
in the fibre direction of the bulk part is 

u = w((1 − cos(ϕ + ϕ) ) − (1 − cos(ϕ) ) ), (11)  

After differentiation with respect to time, and multiplication with the 
compressive bulk stress σener

X , the boundary power P is obtained as 

P = σener
X *u̇ = σener

X *w*sin(ϕ+ϕ)ϕ̇ (12)  

The strain energy rate density due to the shearing from fibre rotation is 
constant through the band. By assuming that the shear strain is equal to 
the total fibre rotation, integrating over the band width w gives the 
strain energy rate E as 

E = w*τ12ϕ̇ (13)  

Now, equating the boundary power with the shear strain energy rate 
within the band (P = E), and rearranging terms, the compressive stress 
predicted from the energy rate balance is given by 

σener
X =

τ12

sin(ϕ + ϕ)
(14)  

Note that as u is defined positive also the stress is defined as positive in 
compression and that, as for other kinking models, an initial imperfec
tion is needed to avoid prediction of an infinite stress for zero rotation 
angle. For the current application, where only large rotation angles are 
considered and τ12 = τyield is used, a split of the two rotation angles is not 
meaningful and only the sum is considered. 

2.5. Kinking response results 

In Fig. 8, the kinking stress–strain relations predicted by three 
different model configurations are shown for the case of a shear yield 
stress of 70 MPa; the energy rate kinking model from Section 2.4, the 
equilibrium kinking model from Section 2.3, and the equilibrium kink
ing model from Section 2.3 with an additional pressure coefficient of 
0.30. The same data is plotted again in Fig. 9 but this time versus the 
compressive strain in the band. The compressive strain is a sum of the 
strain from the fibre rotation determined as u/w from equation (11), 
plus the elastic deformation due to compaction of the kink band in the 
local transverse direction, see Section 5.1 for details. The predicted 
kinking stress is similar for all three models at lower deformations 
which, considering the basis for the energy rate formulation, shows that 
the initial softening part is controlled by the stress required to drive the 
fibre rotation. For larger deformation the kinking stress from the energy 
rate model is slowly but continuously decreasing whereas the equilib
rium models reach a plateau value and then start to increase. The in
crease in shear yield stress from the pressure coefficient leads to a higher 
plateau value at a lower shear angle. With a typical kink band inclina
tion angle β of 20–25◦, a shear angle (or fibre rotation angle) at lock-up 
of 40–50◦ is expected which is in the span of the plateau values for the 
two equilibrium predictions. 

In addition, the local fibre and transverse stresses for the kinking 
model with pressure are plotted as function of the shear angle in Fig. 10. 
As can be expected, the transverse compressive stress increases and the 
compressive fibre stress decreases with increasing shear (or fibre rota
tion) angle. At around 60◦ shear angle, the axial stress increases sharply 
which causes the magnitude of the fibre stress to increase again. This 
displays that the chosen kinematic of the equilibrium model leads to a 
physical behaviour with the load increasingly carried by transverse 
compression as the fibre rotation angle increases, which in turn also 
means that a lock-up point can be predicted based on strength or when 
the surrounding material start to kink. 

The results for the equilibrium model in Fig. 8 and Fig. 9 were 
generated for zero applied global shear stress. In Fig. 11, similar results 
are shown for the equilibrium model (no pressure dependence) for 
different levels of applied global shear stress. It is clear that, with the 
addition of the global shear stress, the curves are shifted towards lower 
shear angle values. 

3. Kinking initiation 

The kinking models described above are only valid for larger shear 
angles and need to be complemented with a kinking initiation criterion. 
Here, we adopt the original Budiansky-Fleck (B-F) model [12]. The B-F 
model is here used with two different sets of assumptions: (a) the angle β 
is zero and the transverse stress σt can be neglected, (b) the angle β is 
determined from that the transverse strain εt (and hence the volume 
change) is equal to zero, cf. setting the right hand side of Eq. (2) equal to 
zero. The latter also implies that the transverse stress is zero. For 
completeness, the Budiansky-Fleck kinking stress [12] is stated as 
function of shear stress τ12, kink band angle β, imperfection angle ϕ, 
fibre rotation angle ϕ and applied global shear stress τXY , under the 

Fig. 7. Illustration of compressive deformation of kink band due to fibre rotation and kink band deformation u due to applied compressive load.  
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condition σt = 0, as 

σB− F
X =

τ12cos(β − ϕ − ϕ) − τXY cos(β + ϕ + ϕ)
cos(β)sin(ϕ + ϕ)

(15)  

Considering β, ϕ and τXY as fixed parameters, the kinking stress can be 
determined as function of ϕ for a known constitutive relation τ12(ϕ). In 
this work, the shear stress–strain data from Ref. [29] are used, see 
Fig. 12. The kinking initiation stress is taken as the maximum value of 
σB− F

X with an initial imperfection angle of 3.6◦. The latter was deter
mined for the case of τXY = 0 by calibration against the compressive 

strength of 626 MPa obtained by Bru et al. [29]. 
How the predicted kinking initiation stress varies as function of 

global applied shear stress is presented in Fig. 13 for the two cases β =
0 and εt = 0. For comparison, a linear relation between compressive and 
shear strength, as used in Ref. [30] and in the LARC05 criterion applied 
in e.g. Ref. [9], is also included. Finally, the graph is complemented with 
the relation between kinking stress and applied shear stress for the 
equilibrium kinking model with μ = 0.30 at 10 % shear strain. As can be 
observed, the difference between the two assumptions for the Budinsky- 
Fleck model is small and the results are also close to the linear model. 

Fig. 8. Axial (kinking) stress as function of shear (fibre rotation) angle for the energy rate kinking model (Energy) and the equilibrium kinking model with μ =
0 (Constant) and μ = 0.30 (Pressure infl.) using a yield stress of 70 MPa. 

Fig. 9. Axial (kinking) stress as function of compressive strain for the energy rate kinking model (Energy) and the equilibrium kinking model with μ = 0 (Constant) 
and μ = 0.30 (Pressure infl.) using a yield stress of 70 MPa. 
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For higher shear stress values, the Budiansky-Fleck initiation stress is 
lower than the kinking stress from the equilibrium model. This can be 
explained by the pressure coefficient effect included in the equilibrium 
model but not in the Budiansky-Fleck formulation. 

The fact that the Budiansky-Fleck initiation stress is lower than the 
kinking stress from the equilibrium model for large, applied shear 
stresses is an issue as the kinking stress would need to increase when the 
kink band is compressed from the initiation point to the compressive 
strain corresponding to 10 % shear strain. To assure that the kinking 
stress always initially decreases with increasing compressive strain, the 
initiation value is taken as the maximum between the Budinsky-Fleck 
model initiation stress or 110 % of the stress from the kinking model. 
The full kinking stress response as function of compressive strain in the 

kink band is then obtained:  

• From the kinking model for compressive strains corresponding to 
shear strains above 10 %  

• Interpolated between the initiation stress and the kinking stress at 
shear strains below 10 %. 

The resulting kinking stress curves for different applied global shear 
stress values are shown in Fig. 14. 

4. Kink band broadening 

From fractographic investigations, it is known that multiple kink 

Fig. 10. Local fibre and transverse normal stress in the kink band as function of shear angle.  

Fig. 11. Axial (kinking) stress as function of shear angle for μ = 0 and different levels of global shear stress.  
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bands can form on top of each other [15–17]. The term kink band 
broadening, first introduced in the work of [18,19] analysing the 
compressive failure of a IM7 carbon fibre PEEK material, describes this 
mechanism, where the width of a kink band grows under further loading 
in the post peak regime. In that work it was observed that due to the high 
strain to failure of the fibre, and the relatively small fibre rotation during 
kinking (attributable to the high strength matrix), the fibres in the kink 
band did not fail and the kink bands broadens by that the length of the 
straight part of the kinked fibres progressively grows. In about the same 
time, similar experiments were performed with carbon fibres with lower 
strain to failure [20,21] and a similar band broadening was identified. 
However, in this case the fibres break into multiple kink bands with 
practically constant width. 

Expressions for the prediction of kink band broadening has been 
developed by both Budiansky and Fleck et al. [22] and Moran et al. [18]. 
Moran developed the model based on an energy balance between 
external load from the constant band broadening stress and the dissi
pation and stored elastic energy due to the shearing from fibre rotation. 

To arrive at a closed form solution, an elastic–plastic law was applied 
based on a perfectly plastic response up to a certain shear strain, fol
lowed by a linear hardening at even higher strains. In Budiansky [22], a 
more elaborate way of formulating the problem using the principle of 
virtual work and including the effect of fibre bending, was shown to give 
the same result as an energy balance approach developed in the same 
paper. It can be noted that the energy balance approach by Budiansky in 
principle is equivalent to the approach by Moran and that it is used also 
here. 

The external energy Ee from the constant band broadening at a stress 
σb is given as 

Ee = σb*w*(1 − cosϕ) (16)  

The internally dissipated and stored energy comes from the local shear 
(dissipated) and transverse (stored) stresses and strains in the kink band. 
Assuming a homogenous state in the kink band gives 

Ei = w*
(∫ θ

0
τ(ϕ)dϕ+ σ2*

ε2

2

)

, (17)  

which allows the broadening stress to be calculated from 

σb =

∫ θ
0 τ(ϕ)dϕ + σ2*ε2

/
2

1 − cosϕ
. (18)  

Here, the shear stress integral is evaluated using the stress strain curve in 
Fig. 12. The result is used together with the local transverse stress as 
shown in Fig. 10 and a transverse modulus E2 = 9.15 GPa [29] to 
calculate the band broadening stress as function of max kink band 
rotation angle ϕ. The result is plotted in Fig. 15, together with the 
kinking stress for zero global shear stress. As the band broadening stress 
is the average stress required to grow the kink band, it should be 
determined based on the lock-up angle, i.e. the fibre rotation value at 
final failure of the composite. As the prediction of final failure is not 
included in the present work and experimental values for the kink band 
angle β is not available for the material in Ref. [29], a lock up angle of 45 
degrees is assumed. This gives a band broadening stress of approxi
mately 220 MPa. 

The calculation here does, similarly to the Budiansky and Moran 
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Fig. 12. Shear stress–strain curve used for the prediction of kinking initiation, 
data from Ref. [29]. 

Fig. 13. Prediction of kinking initiation using two variants of the Budiansky-Fleck model compared to a linear failure model and the stress from the kinking model at 
10 % shear strain. 
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models, not consider fibre bending and fracture. However, the low 
fracture toughness of carbon fibres, typically in the order of 25–50 J/m2 

[31], means that fibre fracture energy is negligible compared to the 
toughness of kinking failure (magnitude of approximately 22–50 kJ/kg 
[6,29,32]) for realistic increases in kink width, unless additional large 
plastic dissipation occurs during the fibre fracture process. It can be 
noted that the current model predicts a fracture toughness of 29 kJ/m2 

for 0.4 mm kink band width when the global shear stress is assumed to 
be zero. 

5. Finite element implementation 

5.1. Strain decomposition and stress degradation 

The equilibrium-based kinking model is to be implemented as a user 
material in the explicit FE-code Ls-Dyna. To facilitate the implementa
tion in a 3D stress and strain setting, the kinking model needs to be 
integrated with a standard, orthotropic constitutive model in a smeared 
crack type formulation. To facilitate the combination of an elastic 
orthotropic response next to the kink band with that of a softening 
response within the kink band, the element strain in the fibre direction is 
decomposed into one elastic part (for the surrounding bulk material) 
and one kink band part. The decomposition is based on the relation 
between the kink band width and the element length in the direction 

Fig. 14. Kink stress curves from the kinking model with values at lower strains interpolated from the initiation stress.  

Fig. 15. Calculated band broadening stress as function of max fibre rotation angle during kinking and kink stress for zero global shear stress.  
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perpendicular to the kink band orientation, see illustration in Fig. 16. 
This requires a few simplifying assumptions to be made for the imple
mentation that are in-line with the assumptions made earlier for the 
kinking model, see Section 2.3. 

In the equilibrium model the stress state in the kink band is the same 
as in the bulk part. The implementation here is done for β = 0 geomet
rically and the continuity of the stretch gives that also the transverse 
strain is equal in the kink band and in the bulk. Moreover, the shear 
deformation in the bulk due to the shear type sliding deformation over 
the kink band is neglected, see Fig. 5 and Section 2.3. This implies that 
the shear deformation is assumed unaltered by the introduction of the 
kink band and consequently that the shear strain is equal in the bulk and 
in the kink band. 

Within the context of implementation, any direction reference is 
made with regard to the lamina (bulk) when not explicitly stated. Also, 
standard notation of 1, 2, 3 for fibre, transverse and through thickness 
direction respectively are used. The fibre kinking can be both in-plane 
and in the through thickness direction depending on the material 
structure (e.g. waviness) and loading [33]. This is considered in the 
model by that the combined magnitude of the in-plane and through 
thickness shear stresses is used for the prediction of kinking: 

τkink =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

τ2
12 + τ2

13

√

(19)  

Consequently, the transverse and through thickness directions are 
treated alike and the only strain that is different in the bulk and in the 
kink band is in the fibre direction. 

The kink band model is one dimensional in that it gives a prediction 
of the compressive stress in the 1-direction from the compaction of the 
kink band. However, a generalisation of the formulation to a 3D state 
needs to consider that the stress in the fibre direction is influenced not 
only by the fibre strain but also by the transverse and through-thickness 
strains. However, if the influence on the kinking process from the 
transverse and through-thickness strains can be neglected, the evalua
tion of the non-linear response can be simplified. With this in mind, the 
stress strain relation is written as 

σ = d • C • ∊, (20)  

where C is the linear elastic stiffness matrix for the lamina, ∊ is the 
average strain vector as determined from the deformation gradient and 
d is a damage type matrix with 

d11 = 1 − d
(

∊11, τkink);

dii = 1(i ∕= 1); dij = o(i ∕= j).
(21)  

Here, ∊11 is the strain component in the fibre direction. The component 
d11 is introduced to reduce the elastic stiffness in the fibre direction such 

that the resulting compressive stress equals the kinking stress. Using the 
kinking model in Eq. (10) together with the global shear stress from Eq. 
(19), an expression for the kinking stress (with a different nomenclature) 
is obtained as: 

σkink =
τyield − τkink

(
cos(ϕ)2

− sin(ϕ)2
− 2μsin(ϕ)cos(ϕ)

)

μsin2(ϕ) − sin(ϕ)cos(ϕ)
, (22)  

whereby the damage type factor d11 (21) can be calculated as 

1 − d11 =
σkink

σel
11
. (23)  

Here, σel
11 is the elastic stress determined for uniaxial straining using the 

compressive strain in the kink band. Note that as the kinking model is 
assumed to be 1D, the simplification of uniaxial stress and strain is used 
throughout to calculate the stress and strain measures for the strain 
decomposition and the determination of d11. 

To decompose the compressive strain, we first note that the total 
deformation of the kink band in the bulk fibre direction is caused by a 
combination of a contribution from the rigid fibre rotation 

εkink
rot = 1 − cos(ϕ) (24)  

and a contribution from the compression of the kink band (εkink
comp). To 

determine the latter, we first note that the elastic strains in the kink band 
local material system can be calculated from the local stresses in Eqs. (7) 
and (8) as 

εkink
1 = S11*σkink

1 + S12*σkink
2 ,

εkink
2 = S21*σkink

1 + S22*σkink
2 ,

(25)  

where Sij are components of the compliance matrix. Here, it should be 
noted that the assumption is that the compression after the rotation does 
not introduce any extra shear deformations, but that these are already 
included in the rotation. 

The added straining in the bulk fibre direction, coming from the local 
strains in the kink band, is then calculated from the regular strain 
transformation equations as 

εkink
comp = εkink

1
cos(ϕ)2

+ εkink
2 sin(ϕ)2

, (26)  

and the total strain in the kink band is obtained from 

εkink
tot = εkink

rot + εkink
comp. (27)  

For the decomposition of the strain in the fibre direction, a division into 
two element layers is used as shown in Fig. 16, the bulk layer (1) and the 
kink layer (2). The other nomenclature shown in Fig. 16 is the height of 
one kink band w and the element length in the fibre direction Le 

The average strain, which is the elemental strain in the 1 direction, 
can be written as 

εav
11 = εbulk

11

(

1 −
w
Le

)

+ εkink
tot

w
Le
, (28)  

with the bulk strain from 

εbulk
11 =

σkink
11

C11
, (29)  

where C11 is the 11 component of the stiffness matrix C. 
The kinking stress can then be easily calculated from Eq. (22), and 

the average compressive strain from Equations (24) to (29) for known 
values of fibre rotation angle and global shear stress. In the imple
mentation, however, the average strain is known and the kinking stress 
that gives the correct average of bulk and kink band strains need to be 
found. In practice, this means to determine the rotation angle. As an 
analytical solution is difficult to find, and although it’s possible to 

Fig. 16. Division of structure into two areas (1) bulk and (2) kink band.  
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numerically iterate to find the rotation angle, an interpolation procedure 
is applied here for efficiency and convenience. To do so, first a set of 
piecewise linear curves, describing the relation between σkink and εkink

tot , 
are generated from a range of fibre rotation angles and global shear 
stresses using Eq. (22) and Equations (24) to (29). Also, as will be 
evident later, values of the stiffness related to the εkink

comp strain 

Ckink
11 = σkink

/
εkink

comp (30)  

will be required. Therefore, a set of piecewise linear curves with Ckink
11 

versus εkink
tot is also generated in a similar fashion. 

With the use of linear interpolation, the kinking stress between two 
strain points can be written as 

σkink
11 = K1 +K2*εkink

tot , (31)  

with the constants K1 and K2 being determined from fitting Eq. (31) to 
two σkink

11 , εkink
tot pairs of the piecewise linear curve. Solving for εkink

tot from 
Eq. (31), and using the result together with Eq. (29) in Eq. (28), allows 
the kinking stress to be calculated as 

σkink
11 =

εav
11 +

K1w
K2Le

1
C11

(

1 − w
Le

)

+ w
K2Le

=
εav

11
Le
w + K1

K2

1
C11

(
Le
w − 1

)

+ 1
K2

. (32)  

In practice, the implementation requires a possibility to iterate, as σkink
11 

determined using the interpolation needs to be between the stress values 
of the two σkink

11 , εkink
tot pairs used for the determination of K1 and K2. For 

this iteration, it can be noted that the value of εkink
tot is bounded by the 

cases of i) equal strain in bulk and kink band (εkink
tot = εav) and ii) all strain 

localised to the kink band (εkink
tot = εav • Le/w). Thereby, these two 

bounds can be used as upper and lower limits on the strain during the 
iteration to determine the kinking stress. 

As a final note, we emphasise that kinking failure will lead to large 
values of εav

11, and consequently also to an unwanted, large impact on the 
transverse and through thickness stresses through the 12 and 13 terms of 
the stiffness matrix C. This happens since only the stress in the fibre 
direction is reduced by d in Eq. (20). To correct for this, an elastic strain, 
corresponding to the compressive stress, is used to determine the 
transverse and through-thickness stresses using the relation in Eq. (20). 
In line with the 1D calculation of the damage variable d11, this elastic 
strain is determined as 

∊el
11 = εbulk

11

(

1 −
w
Le

)

+ εkink
comp

w
Le

=
σkink

11

C11

(

1 −
w
Le

)

+
σkink

11

Ckink
11

w
Le
. (33)  

Here, it is also noted that, during kink band broadening the kinking 
stress is constant and hence also εkink

tot and the increase in kink width w 
can be directly determined from Eq. (28) using σkink

11 = σb. 

5.2. Large deformation effects 

In the derivation above, the stress and strain measures are the en
gineering (small) stress and strain. However, for the implementation in 
LS-Dyna the Second Piola Kirchoff stress S and the Green Lagrange 
strains are used to accommodate for larger deformations. As a conse
quence, due to the large compressive deformation during kinking, the 
difference between the two sets of stress and strain measures needs to be 
compensated for in order to get the intended kinking response. 

To do so, we first note that the kinking response based on the strain 
decomposition in Eq. (32) actually is determined by the total deforma
tion over the kink band, even though it is expressed in terms of engi
neering strain. With a direct use of Green Lagrange strains, the 
expressions in Eq. (24) and Eq. (28), along with others, are no longer 
representative of the kink band kinematics. This is explained by that 

these expressions are derived based on the total displacement over a 
certain distance, i.e. the kink band width or element height. As it is 
generally not possible to calculate engineering strains directly from 
Green Lagrange strains, the engineering strains need to be estimated. To 
do so, it is assumed that only the strain in the fibre directions is large (all 
other strain components are small), whereby an estimate of the engi
neering strains to be used can be made based on (nearly) uniaxial 
deformation. By using the definition of engineering and GL-strain for a 
uniaxial displacement u in the direction of X, an approximation of the 
engineering quantity is obtained as: 

ε11 =
du
dX

;GL11 =
du
dX

+
1
2

(
du
dX

)2

; ε11 =
du
dX

= − 1+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2*GL11

√
. (34)  

To clarify, the expression in Eq. (34) is used to estimate ε11 used in the 
kinking evaluation from GL11. 

Further, in this work the engineering stress is interpreted as the First 
Piola Kirchoff stress P, which is related to the second Piola Kirchoff 
stress S through the deformation gradient as 

P = F • S (35)  

Clearly, there is a difference between the stress measures for large ma
terial stretches as e.g. for the compressive deformations seen during 
kinking. As once more the intended kinking response is defined in terms 
of the engineering quantity (here interpreted as P), the kinking stress 
needs to be properly scaled with the deformation to obtain the correct 
second Piola Kirchoff stress S as output from the model. Using Equation 
(35), together with the requirement that the scaled second Piola Kirchoff 
stress component in the kinking direction Ŝ11 should give the correct 
first Piola Kirchoff stress component P11 for a uniaxial kink deformation, 
gives 

P11 = Ŝ11

(

1+
du
dx

)

Ŝ
⇒11

= P11

/

(1+ e11) (36)  

In practice this is used in the calculation of the damage type variable d11 
introduced in (21) to end up at 

d11 =
σkink

11

C11 • GL11 • (1 + e11)
(37)  

An illustration of the schematic for the subroutine implementation is 
shown in Fig. 17. 

5.3. Ls-Dyna implementation and input data 

The kinking model as described above has been implemented as a 
user material in the explicit FE-code Ls-Dyna. Model parameters as the 
material stiffness properties for the bulk lamina, the broadening stress 
limit σb and the initial kink band width w are input in the user material 
deck. Other necessary data are input as curves: The kink initiation stress 
and the strain and axial stiffness at start of band broadening are input as 
function of the global shear stress. The kinking stress and stiffness are 
input as function of total kinking strain with separate curves for different 
levels of global shear stress. 

In Fig. 18 the stress–strain behaviour for a single element test is 
shown for a 1 mm element with an initial kink band width of 0.6 mm, a 
band broadening stress of 220 MPa and an applied shear stress of 10 
MPa. The strain used in the plot is the engineering compressive strain 
calculated from the element displacement. Similarly, the stress is 
determined from the reaction forces of the element nodes. In Fig. 18 are 
the stages in the kinking evolution indicated. After the initial, elastic 
response and initiation of kinking (Eq. (15) there is a softening phase 
ending with a plateau and a slight upturn (Eq. (22)). When the kink 
stress has increased to the kink band broadening limit, the upturn is 
interrupted and the stress is constant while the width w of the kink band 
increases (Eq. (28)) until it spans the full element. Finally, the stiffness of 

N. Jansson and M. Fagerström                                                                                                                                                                                                               



Composite Structures 329 (2024) 117755

12

the kink band increases substantially as kinking continues and when the 
element is compressed by ~60 % the stress level is back to the kink 
initiation level so that the kinking potentially could be initiated in a 
neighbouring element. 

6. Results 

6.1. Compression test example 

A simple compression analysis is used to evaluate the performance of 
the kinking model including sustained crushing stress and stiffening as 

Fig. 17. Illustration of the schematic for the subroutine implementation.  

Fig. 18. Stress–strain response for compressive deformation of a single 1 mm high element with a 0.6 mm wide kink band.  
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well as the influence of different element sizes. The dog-bone shape of 
the compression specimen used for the analysis has dimensions as shown 
in Fig. 19. The thickness is 2 mm. It is emphasised that this geometry is 
not based on test standards but rather used to illustrate the behaviour of 
the model. 

The dog-bone is discretised with standard first order continuum el
ements using two different mesh sizes: 0.6 and 1.2 mm also resulting in 4 
and 2 elements through the thickness, respectively. The mesh with 
smaller elements is shown in Fig. 19. 

The elastic material properties and the kink band properties for the 
UD ply are shown in Table 1 where μ is the pressure coefficient, σb is the 
broadening stress, ϕ is the imperfection angle for the kinking initiation 
and Xc is the compressive strength of the ply. All properties are taken 
from Ref. [29] except μ and σb. σb is calculated from Eq. (18) as 
described in Section 4 and μ is estimated from that the yield plateau 
increases in the same way with normal stress as the shear strength. The 
value is obtained from the recommendations for carbon/epoxy com
posites in Ref. [34]. A kink band width of 0.3 mm is specified based on 
the fractographic pictures in Ref. [35] where the same composite ma
terial is in Ref. [29] was used. 

The loading of the compression specimen is defined in terms of a 
prescribed velocity of the upper edge of the specimen, using a slow si
nusoidal ramp-up to get a smooth increase in stress and strain before 
failure initiation. During the velocity ramp up, also a small rotation is 
applied to the upper edge in order to give a small but nearly constant 
difference in strain between the two sides of the specimen. The applied 
rotation is constructed such that the axial strain at the right side is 
approximately 10 % higher than at the left side at initial failure of the 
specimen. The lower edge of the specimen is fully constrained in all 
three directions. 

The reaction force versus applied edge displacement response is 
shown for the two different meshes in Fig. 20. No filtering has been 
applied to the results. A linear response is seen up to kink band failure 
initiation, where a kink band initiates at the side with the slightly higher 
axial strain. This kink band then quickly propagates through the width 
of the specimen during the load drop as shown in Fig. 21. The sudden 
load drop seen after kind band initiation leads to an unstable, dynamic 
response before the load stabilises and thereafter starts to gradually 
increase again during the kink band evolution. The plateau just below 6 
kN corresponds to the steady crushing during the kink band broadening 
followed by stiffening when the kink band spans the full element height. 

In Fig. 22 is the specimen shown just before (left) and just after 

(right) the second load peak in Fig. 20. The left specimen contains a 
single row of compressed elements with kink bands whereas the spec
imen to the right also has a full second row of elements containing kink 
bands. Upon further loading the strain field is no longer homogenous 
across the width, whereby a new kink band initiates at a lower reaction 
force. The subsequent kinking failure progress that follows is then un
stable, as shown in Fig. 23. From the results shown in Fig. 20, the 
response of the 1.2 mm model is very similar. Failure initiates at the 
same point, the plateau corresponding to the kink band broadening is 
longer as the kink band widens from 0.3 to 1.2 mm rather than to 0.6. In 
contrast to the 0.6 mm model, the kinking failure in the 1.2 mm model 
grows into the radius of the specimen and consequently displays a lower 
force level at the second peak due to a less homogenous strain field. After 
the third load peak the kink band failure is unstable also in the 1.2 mm 
model. 

6.2. Flexure test example 

Unfortunately, there are no data available from flexural tests with 
UD lay-up for the material used to calibrate the current kinking model. 
Similarly, we have no access to the necessary shear stress – shear strain 
data to calibrate the model for another material system for which flex
ural test data exists. Therefore, no direct comparison can be made to 
experimental results. The model results presented here are instead 
comparing general features observed in flexure testing of other carbon 
fibre-epoxy systems. 

Due to the lower strain to failure in compression compared to ten
sion, a strength analysis in bending will predict failure on the 
compressive side. However, flexure specimens are often reported to fail 
in tension and at loads considerably higher than simulation predicted 
failure loads. As an example, the FE-analysis of a 4-point flexure test in 
Ref. [36] underpredicted the failure load by 17 %. Furthermore, even 
though the model predicted a compressive failure, the experimental 
results showed tensile failure below the loading points. Furthermore, 
Burgani [37] analysed 3-point bending test data from the literature 
using FE simulations with different strength criteria. The Tsai-Wu cri
terion showed the best correlation with experimental test data, under
predicting the failure load with 6 %, 9 % and 14 % for the three different 
material systems. This despite that the compressive stress component at 
failure was 9 %, 25 % and 10.5 % above the fibre compressive strength, 
explained by the interaction between fibre and transverse stresses in the 
Tsai-Wu criterion. In addition, [38] used a 4-point flexure set-up to 
study the effect of thickness on strain to failure. All geometrical di
mensions except for the width, but including the rig and load cylinder 
diameter, were scaled two and four times. For the two lower thicknesses 
the failure was in tension, whereas the 4 times scaled specimen failed in 
compression under the loading points. A similar result was seen in the 3- 
point flexure results in Ref. [39] where a transition from tensile to 
compressive failure could be seen when moving from 2 to 4 mm thick
ness up to 6–7 mm. 

Here, the 4-point flexure set-up used in the simulation are based on 
the geometry used in Ref. [38], see Fig. 24, the lay-up is UD with the 
fibres oriented in the beam length direction. The 5 mm specimen width 
in the FE-model is half of that of the test specimen (10 mm), employing 
symmetry constraints along the symmetry plane. The 1 mm thick rubber 
pads used in the original experiments between the specimen and the 
loading cylinders are modelled with a linear material with Young’s 
modulus 200 MPa and a Poisson’s ratio of 0.40. The composite prop
erties used are the same as in the previous example, so is also the base 
kink band width of 0.3 mm and the element length of 0.6 mm. The 
element height used is 0.3 mm as a trade-off between resolution and 
element aspect ratio for the 1-point integration solid element formula
tion used. Contact conditions are applied both between the rubber pads 
and the specimen and between the pads and the rigid shells representing 
the loading cylinders. Note that the thickness applied to the rigid shells 
is considered in the contact formulation and that the shells therefore are 

Fig. 19. Geometry and dimensions of compression specimen and the 0.6 mm 
mesh. The thickness is 2 mm and with 4 elements through the thickness. 
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offset w.r.t. the pads in Fig. 24 and the following result plots. The loads 
are defined in terms of a prescribed velocity with a slow, sinusoidal 
ramp-up applied to the top loading cylinders, while the lower ones are 
fixed. It was verified that the chosen loading rate was slow enough so 
that no dynamic effects could be seen on the stress and strain distribu
tions before failure. 

Results presented in the following are for the base model as described 
above, the same model but with a kink band width of 0.15 mm and a 
model with all dimensions scaled 4 times. For the latter, the mesh size is 
left unchanged, while the applied velocity is scaled 4 times to keep the 
approximate time to failure load unchanged. In all models (also the 
scaled), one of the lower supports is moved 5 mm inwards to disturb the 
symmetry and prevent simultaneous failure on both sides. 

In Fig. 25, the load versus displacement of the centre of specimen is 
shown for the three models. It can be noted that the scaled specimen is 
less stiff in the initial part, which is explained by the somewhat longer 
span due to the 5 mm in-wards displacement of one support in all 
models. Comparing the model with reduced kink width to the base 
model, compressive failure is initiated at the same applied displacement 
but the fact that the softening at kinking takes place over a shorter 
displacement leads to a larger first load drop. For the scaled specimen, 
the load at initiation is lower than for the base model. This is explained 

by that the upper-most integration point is in relative measures closer to 
the surface (absolute distance is 0.15 mm in all models) for the thicker 
specimen. Also here is the drop in load large. This larger load drop is 
probably attributed to the relatively lower displacement to failure for 
the scaled specimen, as the finer discretization otherwise would be ex
pected to give a more gradual response. 

In all cases, the failure is initiated underneath the load cylinders; first 
on the side with the displaced support and soon thereafter also below the 
second load cylinder. Damage can also be found in the centre of all 
specimens, but only for the scaled specimen there is a clear compressive 
failure that develops. Furthermore, the maximum compressive stress at 
the initial failure point is very similar in all models and corresponds to 
kinking initiation with a shear stress of ~10 MPa. This local shear stress, 
introduced by the transverse load, explains that the failure is initiated 
underneath the supports and not in the centre of the specimen. 

In Fig. 26 the compressive strain is plotted for the base and scaled 
models at a prescribed roller displacement of ~7 mm. The relatively 
lower element and kink length in the scaled specimen leads to higher 
compaction of the elements and to higher compressive strains. At the 
max strain level of − 0.27 in the base model the kink band is broadening 
whereas the − 0.4 strain in the scaled model corresponds to the start of 
stiffening. Even a strain of − 0.4 is far from the kinking initiation stress 

Table 1 
Elastic and kinking model properties used for the UD-ply [29].  

Elastic ply properties 

E1 E2 E3 ν12 ν13 ν23 G12 G23 G31 

[GPa] [GPa] [GPa]    [GPa] [GPa] [GPa] 

136 9.15 7.7 0.28 0.35 0.36 4.4 3.7 3.018 
Kinking model and failure properties 

τyield μ* σb* ϕ Xc     

[MPa]  [MPa] ◦ [MPa]     

70 0.30 220 3.6 626     

* Estimated or calculated property. 

Fig. 20. Force versus displacement for compression specimens with mesh 0.6 mm and 1.2 mm.  
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(see Fig. 18) which is explained by that the stress discontinuity over the 
kinking element is large so that the compressive stress is well below the 
initial failure stress when the neighbouring elements start to kink. 

In Fig. 27, the failure ratios, i.e. the ratio between maximum stress to 
uniaxial strength values, are shown for the axial tensile and through 
thickness shear stress components. The tensile strength is taken as 1,781 
MPa and the through thickness shear strength 56 MPa, both values from 
Ref. [29]. The results in Fig. 27, including data both for the base model 
and the scaled model, are to be used below for a discussion of failure 
modes and comparison to literature. As can be seen, both the tensile and 
shear stress make a jump when kinking develops, with the shear stresses 
increasing more than the tensile stresses. There is basically no difference 
in the tensile response between the models, whereas the shear increases 
more for the base model than for the scaled model. In Fig. 28, the stress 
distribution at a failure ratio close to 1 is plotted for both axial tensile 
and through thickness shear. 

As no experimental data exists the results from the analyses are here 
evaluated against general findings from literature. The maximum values 
in the load–displacement graph in Fig. 25 are ~10–15 % above the 

failure initiation loads which, considering the distance of the integration 
point to the surface, means that the predicted maximum load is ~20–25 
% higher than the failure load predicted by analytical means or by FE 
models assessing failure initiation at the upper surface. This is well in 
line with the results in Refs. [36–39]. Considering the results in Fig. 27, a 
failure mode of combined compression and shear is to be expected as the 
failure ratio in shear is higher than in tension. However, considering that 
e.g. the material used in Ref. [39] has a specified interlaminar shear 
strength of 100 MPa, or almost 80 % higher than the shear strength from 
Ref. [29], a tensile failure would most likely be predicted for that ma
terial. Hence, the proposed modelling of compression failure, incorpo
rating a stress plateau and stiffening at large strains, will predict final 
failure by either tension or compression/shear depending on the ratio 
fibre tensile/shear strength of the composite material. These are the 
same failure modes that are seen in experiments [36,38,39] but further 
work is needed to asses if the proposed modelling can predict the correct 
failure mode for different materials. Though, the results presented here 
give no indication that there is an increased tendency for combined 
shear and compressive failure with increasing thickness as seen in 

Fig. 21. Growth of kink band across the thickness in the 0.6 mm model during the load drop at the first load peak in Fig. 20.  

Fig. 22. Compressed first kink band in the 0.6 mm model just before and creation of a second band at the second load peak in Fig. 20.  
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Fig. 23. Unstable growth of kink band failure in the 0.6 mm model close to the final peak in Fig. 20.  

Fig. 24. Flexure simulation test set-up and geometry.  

Fig. 25. Force displacement plots for the base model, the base model with lower kink band width and the 4 times scaled model.  
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experiments [38,39]. It remains to be investigated if implementation of 
a mechanism for final failure in compression would influence this 
finding. 

7. Conclusions and outlook 

The application of continuum damage models that employ element 
erosion in composite crash and impact analyses effectively results in a 

loss of material volume and an introduction of voids in the material 
during damage evolution. This is a consequence of that in such models 
the stress is quickly reduced to a lower constant plateau value (or even 
zero), whereafter the element is deleted due to low stiffness or excessive 
deformations. In this work, an engineering model to describe kink band 
formation and growth is proposed, which includes a stiffening at larger 
strains thereby prohibiting excessive compressive deformation. In that 
way, there is no need for elements to be deleted. Instead, the increasing 

Fig. 26. Compressive strain plot for the base model (top) and the scaled model at a displacement of ~7 mm showing high strain values localized to areas with 
kinking failure. 

Fig. 27. Failure ratio of maximum axial tensile stress and maximum through thickness shear stress as function of beam displacement.  

N. Jansson and M. Fagerström                                                                                                                                                                                                               



Composite Structures 329 (2024) 117755

18

load at high strains (mimicking compaction of damaged material) 
naturally allows the spreading of kink bands to adjacent elements. 

The base of the current kinking formulation is similar to other widely 
applied kinking theories, but the kinematics are different due to as
sumptions made regarding how the influence of kink band angle β and 
its effect on the kink band volume is included in the model. The 
assumption on the effect of kink band angle on the kinking behaviour is 
also carried forward to facilitate a 3D FE-implementation with a strain 
decomposition based on kink band width. Together with an addition of a 
model for kink band broadening, the proposed total model also allows 
the kink band to grow through the element before the element stiffens 
due to the large compressive strains. Complemented with a failure 
initiation criterion that includes the effect of global shear stress, the 
model and its implementation display the following characteristics and 
advantages:  

• The model is physically-based and requires only standard material 
properties as input and requires no intralaminar fracture toughness 
test data for calibration. 

• After initial softening the kinking stress starts to increase progres
sively with increased compressive strain. As demonstrated in a uni
axial case, at ~60 % compression, the compressive stress is again 
high enough to initiate kinking failure in adjacent elements.  

• The fibre rotation in the kink band at the point when the compressive 
stiffness starts to increase again is ~35◦. At the initiation of kind 
band broadening, this angle is ~50◦. Interestingly enough, typical 
values of lock-up angles reported in the literature are most often 
within this interval.  

• In both the kinking formulation and the FE implementation, the 
sliding of the top and bottom of the kink band – due to the fibre 
rotation in the kink band – is neglected. This allows a pure 
compressive deformation of the elements during kinking under large 
deformations, without any spurious element shear deformations. 

• The model for kink band broadening, together with the imple
mentation of growth of kink band width using a strain decomposition 
in the element, results in an element size dependent length of the 
plateau with constant stress. This in turn significantly decreases the 
mesh dependence of results when modelling crushing.  

• Regularisation of the kinking response based on the initial kink band 
width makes the formulation mesh objective.  

• A large deformation formulation based on Green-Lagrange strains is 
used for the implementation. With some modifications it is shown to 
give a response in accordance with the underlying kinking model.  

• For compressive failure under high shear loads, the kinking model is 
predicting higher values at 10 % compressive strain than what is 
predicted at failure initiation by the Budiansky and LARC05 
compressive failure criteria. 

The objective with the compressive failure model presented here is 
not to model the kinking failure in detail, including the direct effect of 
fibre rotation in the kink band and the angle of the kink band on the local 
deformations. It is instead developed to model the compressive response 
beyond the failure initiation, for confined compaction or crushing using 
less details. Due to the stiffening at large compressive strains, the model 
prohibits element deletion e.g. due to excessive deformations that 
without element deletion would result in a significant reduction of 
critical time step size in the explicit FE simulations. 

Presented numerical results shows the ability of the model to transfer 
progressive kinking between elements, but also the possible impact from 
including confined compression effects on the predicted response of 
composite structures loaded in bending. Moreover, although the model 
is physically inspired when considering the simplifications performed it 
is positive that it still predicts an increase in compressive stress close to 
the expected lock-up angle. 

It should be emphasised that the failure initiation criterion needed 
modification, since the compressive stress required to drive the kinking 
process for larger values of applied shear stress was higher than the 

Fig. 28. Plots of axial stress (top) and through thickness shear stress (bottom) at the time of predicted failure.  
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failure stress predicted by the Budiansky failure initiation criterion. 
However, as the validation and improvement of models for predicting 
the dependence of applied shear stresses on the kinking initiation stress 
is out of scope of this study, it remains to be investigated how the 
kinking results under high shear stress match experimental data. If the 
kinking predictions would match, new or modified theories for 
compressive failure under large shear stresses, consistent with the cur
rent kinking formulation, would need to be further developed. 

The ultimate objective of the work presented here is to develop a 
constitutive formulation suitable for modelling compressive failure for 
the case when the composite material is confined in the crushing region, 
thereby experiencing large compaction. This would constitute an 
important development for the finite element simulation of progressive 
damage and failure in composites and the results presented in this paper 
shows that the kinking model goes a long way to model this type of 
compressive failure. However, such a model also needs a mechanism for 
final failure. A mechanism that allows the material to shear off in the 
through-thickness direction when neighbouring plies are not able to 
provide sufficient support (e.g. due to delamination). Conceptually, this 
could be the full cross-section of the laminate shearing away or single 
laminas separated by delaminations to show more of a brooming mode 
of failure. The development of this type of failure mechanism is planned 
as the next part of the current work. 
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