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Summary
Background The rising global cancer burden has led to an increasing demand for imaging tests such as 
[¹⁸F]fluorodeoxyglucose ([¹⁸F]FDG)-PET-CT. To aid imaging specialists in dealing with high scan volumes, we aimed 
to train a deep learning artificial intelligence algorithm to classify [¹⁸F]FDG-PET-CT scans of patients with lymphoma 
with or without hypermetabolic tumour sites. 

Methods In this retrospective analysis we collected 16 583 [¹⁸F]FDG-PET-CTs of 5072 patients with lymphoma who 
had undergone PET-CT before or after treatment at the Memorial Sloa Kettering Cancer Center, New York, NY, USA.  
Using maximum intensity projection (MIP), three dimensional (3D) PET, and 3D CT data, our ResNet34-based deep 
learning model (Lymphoma Artificial Reader System [LARS]) for [¹⁸F]FDG-PET-CT binary classification 
(Deauville 1–3 vs 4–5), was trained on 80% of the dataset, and tested on 20% of this dataset. For external testing, 
1000 [¹⁸F]FDG-PET-CTs were obtained from a second centre (Medical University of Vienna, Vienna, Austria). 
Seven model variants were evaluated, including MIP-based LARS-avg (optimised for accuracy) and LARS-max 
(optimised for sensitivity), and 3D PET-CT-based LARS-ptct. Following expert curation, areas under the curve (AUCs), 
accuracies, sensitivities, and specificities were calculated.

Findings In the internal test cohort (3325 PET-CTs, 1012 patients), LARS-avg achieved an AUC of 0·949 (95% CI 
0·942–0·956), accuracy of 0·890 (0·879–0·901), sensitivity of 0·868 (0·851–0·885), and specificity of 0·913 
(0·899–0·925); LARS-max achieved an AUC of 0·949 (0·942–0·956), accuracy of 0·868 (0·858–0·879), sensit ivity of 0·909 
(0·896–0·924), and specificity of 0·826 (0·808–0·843); and LARS-ptct achieved an AUC of 0·939 (0·930–0·948), 
accuracy of 0·875 (0·864–0·887), sensitivity of 0·836 (0·817–0·855), and specificity of 0·915 (0·901–0·927). In the 
external test cohort (1000 PET-CTs, 503 patients), LARS-avg achieved an AUC of 0·953 (0·938–0·966), accuracy of 0·907 
(0·888–0·925), sensitivity of 0·874 (0·843–0·904), and specificity of 0·949 (0·921–0·960); LARS-max achieved an 
AUC of 0·952 (0·937–0·965), accuracy of 0·898 (0·878–0·916), sensitivity of 0·899 (0·871–0·926), and specificity of 0·897 
(0·871–0·922); and LARS-ptct achieved an AUC of 0·932 (0·915–0·948), accuracy of 0·870 (0·850–0·891), 
sensitivity of 0·827 (0·793–0·863), and specificity of 0·913 (0·889–0·937).

Interpretation Deep learning accurately distinguishes between [¹⁸F]FDG-PET-CT scans of lymphoma patients with 
and without hypermetabolic tumour sites. Deep learning might therefore be potentially useful to rule out the presence 
of metabolically active disease in such patients, or serve as a second reader or decision support tool.

Funding National Institutes of Health-National Cancer Institute Cancer Center Support Grant. 

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
The global cancer burden is rising,1 and with it, the 
demand for imaging tests to accurately assess the extent 
of disease. For example, the Organization for Economic 
Co-operation and Development’s data show a 
33·5% increase in PET scans between 2015 and 2020, 
based on 21 countries that provided data for both years.2 
However, the number of diagnostic imaging specialists, 
especially those trained in nuclear medicine, remains 
low, particularly in low-income and middle-income 
countries,3 as evidenced by International Atomic Energy 
Agency data.4 This situation has led to an increasing 

workload for imaging specialists, which might delay scan 
reporting and appropriate patient management.3

Artificial intelligence (AI) with deep neural networks 
(DNNs) might be able to better deal with high scan 
volumes while maintaining or increasing diagnostic 
accuracy and confidence, and to potentially provide 
results more rapidly.5 AI-based image analysis has shown 
potential in patient triage, as a decision support tool, and 
as a second reader,6–8 especially when applied to time-
consuming, routine tasks. In oncological imaging, one 
such task is the detection of hypermetabolic tumour sites 
on 2-deoxy-2-[¹⁸F]fluorodeoxyglucose ([¹⁸F]FDG)-PET, a 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(23)00203-0&domain=pdf
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test that is critically important for the diagnostic 
examination of many cancers. Because increased 
[¹⁸F]FDG uptake is observed not only in tumour tissue, 
but also physiologically in areas such as the urinary tract 
and myocardium, in various benign conditions,9 and 
secondary to some treatments,10,11 PET interpretation is a 
task that requires specialty expertise.

Here, we describe the development and evaluation 
of a DNN algorithm that automatically classifies 
[¹⁸F]FDG-PET-CT scans of patients with lymphoma. We 
chose lymphoma as a model disease because 
[¹⁸F]FDG-PET-CT is the test of choice for lymphoma 
according to guidelines, and because the five-point 
Lugano (Deauville) score provides a well-established 
reference standard for distinguishing between 
hypermetabolic and non-hypermetabolic tumour sites, 
which is essential for patient management.12,13 We aimed 
to train our DNN algorithm Lymphoma Artificial Reader 
System (LARS) on a large sample of weakly labelled 
[¹⁸F]FDG-PET-CT scans of patients treated at a cancer 
centre in the USA and to measure the accuracy, 
sensitivity, and specificity for classification of scans with 
or without hypermetabolic tumour sites in internal and 
external test cohorts. 

Methods
Study design and patients
In this retrospective dual-centre study at the Memorial 
Sloan Kettering Cancer Center (MSK), New York, NY, USA, 
and the Medical University of Vienna (MUV), Vienna, 
Austria, patients with biopsy-proven [¹⁸F]FDG-avid 
lymphomas according to the Lugano guideline,12,13 who had 
undergone whole-body [¹⁸F]FDG-PET-CT for routine 

purposes (staging and treatment response assessment) 
were eligible for inclusion. The study was approved by the 
Institutional Review Board of MSK and the Ethics 
Committee of MUV; informed patient consent was waived. 
At MSK, the clinical database was queried for patients with 
the four most common [¹⁸F]FDG-avid subtypes (Hodgkin 
lymphoma, diffuse large B-cell, follicular lymphoma, and 
mantle cell lymphoma) who had undergone PET-CT 
between Jan 1, 2010, and Jan 31, 2021. At MUV, the centre 
providing external test data, a list-based search for patients 
with [¹⁸F]FDG-avid lymphomas was performed by two 
clinicians (MR and PBS), aiming for 500 or more patients. 
At both institutions, exclusion criteria were other cancers in 
addition to lymphoma; non-[¹⁸F]FDG-avid or variably 
[¹⁸F]FDG-avid lymphomas for which [¹⁸F]FDG-PET-CT is 
not recommended;12,13 central nervous system lymphoma; 
blood glucose concentrations greater than 200 mg/dL at 
PET imaging; non-standard PET-CT (eg, radiotracers other 
than [¹⁸F]FDG or single-region PET); and major image 
artifacts or cropped field-of-view (figure 1). Pre-therapeutic 
and post-therapeutic PET-CTs of a patient were regarded as 
independent cases for DNN classifi cation; imaging 
protocols are in the appendix (pp 2–3). The MSK scans 
were randomly split on a patient level into 80% training 
data and 20% held-out test data. 

Procedures
In accordance with the clinical standard of care, 
[¹⁸F]FDG-PET scans were rated as positive for 
hypermetabolic tumour sites when one or more lesions 
showed uptake higher than the liver (Deauville 
score 4–5), or otherwise negative (Deauville score 1–3), as 
determined by a board-certified PET-trained radiologist 

Research in context

Evidence before this study
We searched PubMed for deep learning studies that focused on 
PET in cancer, including articles published before Oct 30, 2022. 
Search terms were (“deep learning” OR “machine learning” OR 
“artificial intelligence”) AND “PET” AND (“cancer” OR “tumor” 
OR “carcinoma” OR “lymphoma”). No language restrictions 
were applied to the search. We identified several studies that 
focused on the development of algorithms for tumour 
segmentation on [¹⁸F]fluorodeoxyglucose-PET, and several 
that focused on PET-based outcome prediction or 
prognostication, most of them using small-to-moderate 
numbers of pre-treatment scans. Few smaller-sized studies 
(fewer than 750 [¹⁸F]FDG-PET scans) reported on the 
performance of algorithms for the detection of hypermetabolic 
tumour sites on a per-lesion level. A single study in different 
cancers trained a deep-learning algorithm to classify [¹⁸F]FDG-
PET scans, that labelled the scans as positive, negative, or 
unclear for the presence of hypermetabolic tumour sites, 
without standardised PET criteria for curation, and without 
external validation.

Added value of this study
Our deep learning algorithm, Lymphoma Artificial Reader 
System, which was trained on four to five times more PET-CT 
scans as previous studies, could distinguish between [¹⁸F]FDG-
PET-CT scans with and without hypermetabolic tumour sites in 
patients with lymphoma. Contrary to most previous studies, we 
included both pre-treatment and post-treatment scans to 
reflect clinical routine, and we used the well established Lugano 
PET criteria in combination with previous and follow-up scans 
and biopsy results to provide a reliable reference standard. Our 
algorithm demonstrated high levels of accuracy, sensitivity, and 
specificity in both internal and external test cohorts, despite 
technical and clinical differences between centres and patient 
cohorts.

Implications of all the available evidence
The strong performance of our algorithm suggests that it could 
potentially be used to rule out hypermetabolic tumour sites 
post treatment, or as a decision support or second reader tool, 
especially when [¹⁸F]FDG-PET-CT scan volumes are high.

See Online for appendix
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or nuclear medicine physician specialising in lymphoma 
(MEM, DL, SC, HZ, or MA). Raters had access to clinical 
reports and full PET-CT examinations, including 
maximum intensity projections (MIP). For equivocal 
findings (eg, tumour vs infection or inflammation), 
previous and follow-up imaging, clinical and laboratory 
data, and correlative biopsy results were considered, 
meaning that, while primarily relying on Deauville 
scores assigned by radiologists, a composite reference 
standard was used as ground truth. Cases that remained 
unresolved (eg, due to absence of biopsy or follow-up 
imaging) were excluded (figure 1). To minimise label 
noise, the internal MSK test cases (20% of the PET-CTs) 
and external MUV test cases were curated by the most 
senior rater (MEM).

We trained LARS on the internal training dataset 
(80% of MSK scans) to classify PET-CTs as positive (=1) or 
negative (=0) for hypermetabolic tumour sites. The 
model consisted of an image feature extractor and a 
classifier (figure 1; appendix p 6). We used a ResNet34 
convolutional neural network for feature extraction;14 
further details are n the appendix (pp 4–5). To reduce 
generalisation error and increase model performance, an 
ensemble model was used for the final scan classification.

Seven DNN variants were constructed: (1) LARS-avg, 
a classification based on the average (mean) probability 
of coronal and sagittal two dimensional (2D) PET MIP 
images, aiming for high accuracy; (2) LARS-max, a 
classification based on the maximum probability of 
coronal and sagittal 2D PET MIP images, aiming for 

Figure 1: Data and deep learning model
(A) The final MSK cohort included 16 583 [¹⁸F]FDG-PET-CTs. For training, the training and tuning cases were randomly re-split 20 times; each split resulted in a 
separate trained model. The external MUV test cohort included 1000 [¹⁸F]FDG-PET-CTs. (B) For the MIP-based model variants (LARS-avg and LARS-max) shown here, 
each 3D PET image stack was pre-processed to two 2D SUV MIP images (one coronal and one sagittal) each used as a one channel network input. (C) Image features 
were extracted using a ResNet34 and were then fed to the classifier, which output probabilities for the presence of hypermetabolic tumour sites. Predictions for 
individual MIP views were aggregated to a single scan-level prediction. (D) The final output during inference was an ensemble of the top-ten performing models from 
the 20 data splits. BCE=binary cross entropy. DICOM=digital imaging and communications in medicine. FDG=fluorodeoxyglucose. FOV=field of view. 
LARS=Lymphoma Artificial Reader System. MIP=maximum intensity projection. MSK=Memorial Sloan Kettering Cancer Center. MUV=Medical University of Vienna. 
SUV=standardised uptake value. 
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high sensitivity; (3) LARS-pt3d, a classification based 
on the probability of the three dimensional (3D) PET 
volume; (4) LARS-ct, a classification based on the 
probability of the 3D CT volume; (5) LARS-ptct, a 
classification based on the probability of the 3D PET-CT 
volume; (6)LARS-avg-ct, a classification based on the 
probability of the separately trained LARS-avg 
aggregated with the probability of LARS-ct; and 
(7) LARS-max-ct, a classification based on the 
probability of the separately trained LARS-max 
aggregated with the probability of LARS-ct. We used a 
2D ResNet (21 million parameters) to analyse MIPs, 
and a 3D ResNet (63 million parameters) for the 3D 
image volumes.

For LARS-avg and LARS-max, probabilities calculated 
for individual MIP views were aggregated to provide a 
single probability per scan; the trained model was the 
same, but prediction aggregation differed. Models were 
trained using a binary cross-entropy loss function; 
hyperparameters were tuned using the best tuning 
dataset area under the curve (AUC). Separately for each 
LARS variant, the top-ten ensemble mean was calculated 
based on aggregated probabilities (appendix p 4). It took 
around 32 ms to classify a single MIP image using the 
2D LARS models.

PET classification and statistical analysis
LARS variants were tested on the previously held-out 
internal MSK test dataset (20% of MSK PET scans), and, 
separately on the external MUV dataset. Receiver operating 
characteristic (ROC) curves were constructed, and the 
AUC, sensitivity, specificity, and balanced accuracy for 
classification of PET-CT scans with or without 
hypermetabolic tumour sites were calculated at the optimal 
threshold determined by Youden’s index.15 95% CIs were 
calculated as the 2·5th and 97·5th percentile of 
1000 bootstraps of the scans. For LARS-avg, misclassified 
cases were assigned to one of six groups by a rater (MEM): 
(1) human labelling error upon review; (2) infection 
or inflammation (eg, pneumonia or osteoarthritis); 
(3) iatrogenic (eg, bone marrow repopulation following 
granulocyte colony-stimulating factor treatment, bowel 
uptake following metformin, post-treatment thymic 
rebound, tracer extravasation, catheter-related uptake, or 
biopsy or surgery-related uptake); (4) metabolically active 
brown fat; (5) other (eg, tracer contamination or muscle 
activity); or (6) unknown. To better interpret misclassified 
cases and highlight image regions responsible for 
prediction, we applied Gradient-weighted Class 
Activation Mapping (Grad-CAM)16 and studied mean 
heatmaps of the top-ten ensemble models. Finally, to 

MSK cohort (n=16 583 PET-CT scans; n=5072 patients) MUV cohort test dataset (n=1000 PET-CT scans; 
n=503 patients)

Training and tuning dataset (n=13 258 scans; 
n=4060 patients)

Test dataset (n=3325 scans; n=1012 patients) Total Negative Positive

Total Negative Positive Total Negative Positive

PET-CT scans 13 258/16 583 
(80%)

6900/13 258 
(52%)

6358/13 258 
(48%)

3325/16 583 
(20%)

1812/3325 
(54%)

1513/3325 
(46%)

1000/1000 
(100%)

554/1000   
(55%)

446/1000   
(45%)

Median age, (IQR) 58 (38–70) 56 (35–69) 61 (42–71) 56 (36–69) 55 (34–68) 59 (38–69) 50 (32–65) 48 (31–63) 50 (33–65)

Sex*

Male 7705/13 258 
(58%)

3895/7705 
(51%)

3810/7705 
(49%)

1949/3325 
(59%)

1053/1949 
(54%)

896/1949 
(46%)

524/1000  
(52%)

282/524  
(54%)

242/524 
(46%)

Female 5553/13 258 
(42%)

3005/5553 
(54%)

2548/5553 
(46%)

1376/3325 
(41%)

759/1376 
(55%)

617/1376 
(45%)

476/1000  
(48%)

272/476  
(57%) 

204/476  
(43%)

Histology† 

Diffuse large B-cell lymphoma 6282/13 258 
(47%)

3221/6282 
(51%)

3061/6282 
(49%)

1560/3325 
(47%)

866/1560 
(56%)

694/1560 
(44%)

263/1000  
(26%)

142/263  
(54%)

121/263 
(46%)

Hodgkin lymphoma 3945/13 258 
(30%)

2228/3945 
(56%) 

1717/3945   
(44%)

1043/3325 
(31%)

586/1043 
(56%)

457/1043 
(44%)

381/1000  
(38%)

208/381 
(55%)

173/381  
(45%)

Follicular lymphoma 1628/13 258 
(12%)

702/1628  
(43%) 

926/1628 
(57%) 

347/3325 
(11%) 

182/347 
(49%) 

192/347 
(51%)

190/1000  
(19%)

94/190 
(49%)

96/190  
(51%)

Mantle cell lymphoma 1403/13 258 
(11%)

749/1403 
(53%)

654/1403 
(47%) 

348/3325 
(10%) 

178/348 
(51%) 

170/348  
(49%)

32/1000  
(3%)

18/32  
(56%)

14/32( 
44%)

Peripheral T-cell lymphomas, 
all types

·· ·· ·· ·· ·· ·· 56/1000 (6%) 34/56(61%) 22/56 (39%)

Post transplant 
lymphoproliferative disease

·· ·· ·· ·· ·· ·· 38/1000 (4%) 31/38 (82%) 7/38(18%)

Burkitt ·· ·· ·· ·· ·· ·· 35/1000 (4%) 23/35 (66%) 12/35 (34%)

Other ·· ·· ·· ·· ·· ·· 5/1000 (1%) 4/5 (80%) 1/5 (20%)

Data are n/N (%) or median (IQR). *Numbers for sex are shown per scan, rather than per patient. †Due to transformation in the course of disease of some patients, histologies are shown per scan, rather than per 
patient. 

Table 1: Patient population characteristics



Articles

6 www.thelancet.com/digital-health   Published online December 21, 2023   https://doi.org/10.1016/S2589-7500(23)00203-0

investigate the extracted image features in more detail, 
we reduced the dimensionality of the 512-dimensional 
features space to two, using uniform manifold approx-
imation and projection (UMAP),17 and visualised the 
reduced feature space.

To evaluate the impact of the training dataset size, and 
the impact of integration of clinical data into the models, 
on classification results, we performed dedicated 
experiments (appendix pp 12–13). 

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
19 721 PET-CT scans of 5466 patients with the four most 
common [¹⁸F]FDG-avid subtypes (Hodgkin lymphoma, 
diffuse large B-cell, follicular lymphoma, and mantle cell 

lymphoma) who had undergone PET-CT between 
Jan 1, 2010, and Jan 31, 2021, were in the MSK database. 
After exclusions, the MSK dataset comprised 
16 583 [¹⁸F]FDG-PET-CT scans of 5072 patients; 
13 258 (80%) scans were used as training and tuning 
dataset, and 3325 (20%) scans were used as an internal 
test dataset (figure 1). After exclusions, the external MUV 
test dataset comprised 1000 [¹⁸F]FDG-PET-CT scans of 
503 patients. Demographic, pathological, and PET-CT 
details are in table 1 and the appendix (p 3), and the 
distribution of Deauville scores and respective model 
accuracies are in the appendix (p 7).

LARS-avg and LARS-max were the overall best-
performing models with AUCs of 0·95 in internal and 
external test datasets, at the maximum Youden index 
(table 2; figure 2). LARS-avg achieved an AUC of 0·949 
(95% CI 0·942–0·956), accuracy of 0·890 (0·879–0·901), 
sensitivity of 0·868 (0·851–0·885), and specificity of 0·913 
(0·899–0·925) in the internal test cohort; and an AUC of 

LARS-avg LARS-max LARS-pt3d LARS-ct LARS-ptct LARS-avg-ct LARS-max-ct

MSK cohort (3325 PET-CTs; 1012 patients)

AUC 0·949 
(0·942–0·956)

0·949 
(0·942–0·956)

0·933 
(0·924–0·941)

0·682 
(0·664–0·701)

0·939 
(0·930–0·948)

0·944 
(0·936–0·952)

0·939 
(0·930–0·948)

Sensitivity 0·868 
(0·851–0·885)

0·909 
(0·896–0·924)

0·827 
(0·808–0·846)

0·544 
(0·518–0·570)

0·836 
(0·817–0·855)

0·872 
(0·855–0·890)

0·993 
(0·989–0·997)

Specificity 0·913 
(0·899–0·925)

0·826 
(0·808–0·843)

0·896 
(0·882–0·910)

0·703 
(0·682–0·723)

0·915 
(0·901–0·927)

0·903 
(0·889–0·917)

0·161 
(0·145–0·178)

Balanced accuracy 0·890 
(0·879–0·901)

0·868 
(0·858–0·879)

0·865 
(0·853–0·877)

0·624 
(0·607–0·640)

0·875 
(0·864–0·887)

 0·888 
(0·877–0·898)

0·577 
(0·569–0·586)

Sensitivity at 95% specificity 0·820 
(0·791–0·848)

0·810 
(0·785–0·834)

0·760 
(0·730–0·792)

0·250 
(0·221–0·278)

0·781 
(0·754–0·816)

0·819 
(0·792–0·846)

0·794 
(0·759–0·824)

Specificity at 95% sensitivity 0·650 
(0·600–0·702)

0·650 
(0·594–0·705)

0·590 
(0·527–0·650)

0·130 
(0·113–0·164)

0·610 
(0·559–0·669)

0·640 
(0·554–0·714)

0·640 
(0·548–0·688)

Number of false positives 158 315 188 536 154 175 1521

Number of false negatives 200 137 261 687 247 193 10

MUV cohort (1000 PET-CTs; 503 patients)

AUC 0·953 
(0·938–0·966)

0·952 
(0·937–0·965)

0·921 
(0·904–0·939)

0·655 
(0·622–0·687)

0·932 
(0·915–0·948)

0·947 
(0·936–0·958)

0·936 
(0·920–0·951)

Sensitivity 0·874 
(0·843–0·904)

0·899 
(0·871–0·926)

0·834 
(0·801–0·869)

0·841 
(0·808–0·874)

0·827 
(0·793–0·863)

0·881 
(0·860–0·902)

0·998 
(0·993–1·000)

Specificity 0·949 
(0·921–0·960)

0·897 
(0·871–0·922)

0·866 
(0·839–0·892)

0·301 
(0·264–0·339)

0·913 
(0·889–0·937)

0·913 
(0·898–0·929)

0·023 
(0·012–0·037)

Balanced accuracy 0·907 
(0·888–0·925)

0·898 
(0·878–0·916)

0·850 
(0·829–0·873)

0·571 
(0·546–0·595)

0·870 
(0·850–0·891)

0·897 
(0·884–0·910)

0·511 
(0·504–0·518)

Sensitivity at 95% specificity 0·862 
(0·819–0·899)

0·858 
(0·811–0·898)

0·777 
(0·731–0·824)

0·176 
(0·128–0·228)

0·786 
(0·741–0·830)

0·854 
(0·828–0·877)

0·787 
(0·715–0·847)

Specificity at 95% sensitivity 0·650 
(0·537–0·777)

0·640 
(0·535–0·784)

0·470 
(0·387–0·596)

0·130 
(0·097–0·178)

0·550 
(0·367–0·706)

0·600 
(0·475–0·710)

0·600 
(0·448–0·711)

Number of false positives 33 57 74 387 48 48 541

Number of false negatives 56 45 74 71 77 53 1

Data are performance metrics (95% CI) or n. 95% CIs are from 1000 bootstraps. AUC=area under the curve. LARS=Lymphoma Artificial Reader System. 
LARS-avg=classification based on mean probability of coronal and sagittal 2D PET maximum intensity projection images. LARS-max=classification based on maximum 
probability of coronal and sagittal 2D PET maximum intensity projection images. LARS-pt3d=classification based on probability of the 3D PET volume. LARS-ct= classification 
based on the probability of the 3D CT volume. LARS-ptct=classification based on the probability of the 3D PET-CT volume. LARS-avg-ct=classification based on the probability 
of the separately trained LARS-avg aggregated with the probability of LARS-ct. LARS-max-ct=classification based on the probability of the separately trained LARS-max 
aggregated with the probability of LARS-ct. MSK=Memorial Sloan Kettering Cancer Center. MUV=Medical University of Vienna.

Table 2: LARS performance metrics for MSK and MUV test cohorts 
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0·953 (0·938–0·966), accuracy of 0·907 (0·888–0·925), 
sensitivity of 0·874 (0·843–0·904), and specificity of 0·949 
(0·921–0·960) in the external test cohort. Recall and 
precision confusion matrices are shown in figure 2, and 
examples of correctly classified cases and respective LARS 
probabilities are shown in figure 3. Of the 358 cases 
misclassified by LARS-avg in the MSK test dataset, 
158 were false-positive; 135 could be explained by uptake 
unrelated to lymphoma, with infection or inflammation 
and iatrogenic effects as the dominant causes (appendix 
p 7). When correcting the labels of the nine cases 
mislabelled by human error in the MSK test dataset, the 
AUC of LARS-avg minimally increased (from 0·949 to 
0·951). In the MUV dataset, the AUC of LARS-avg also 
slightly increased (from 0·953 to 0·961) after correction of 
the seven mislabelled cases. When ROC curve cutoff 
values were modified to increase sensitivity and 
specificity to 0·95, the corresponding specificity and 
sensitivity reduced (table 2). UMAP isolines show that 

features of true-positive and true-negative cases were well 
separated (appendix p 9). Grad-CAM heatmaps indicate 
the pixel-level importance for the prediction (appendix p 10).

 When correcting the labels of the nine cases mislabelled 
by human error in the MSK test dataset, the AUC of LARS-
avg minimally increased (from 0·949 to 0·951). In the 
MUV dataset, the AUC of LARS-avg also slightly increased 
(from 0·953 to 0·961) after correction of the seven 
mislabelled cases (table 2; figure 2). Correcting the nine 
cases mislabelled by human error minimally increased the 
AUC to 0·951. Similarly, in the external MUV cohort, the 
AUC of LARS-max slightly improved from 0·952 to 0·960 
after correction of the seven human-mislabelled 
cases. Again, further improvement of sensitivity or 
specifi city to 0·95 through modification of ROC cut-off 
values resulted in a decrease of the respective specificity 
and sensitivity (table 2).

LARS-pt3d yielded an AUC of 0·933 in the internal 
MSK test dataset and 0·921 in the MUV test dataset, 

Figure 2: Receiver operating characteristic curves for the classification of PET-CTs with or without hypermetabolic tumour sites in the held-out internal MSK 
test dataset, and the external MUV test dataset, using the MIP-based model variants LARS-avg and LARS-max
(A) AUC for both cohorts were 0·95. Sensitivities and specificities at the Youden index (determined by MSK LARS-avg) are shown; shaded areas represent 95% CIs of 
1000 bootstraps. Recall (B) and precision confusion matrices (C) for LARS-avg and LARS-max are shown for the internal MSK and the external MUV test dataset 
(absolute numbers in parentheses). LARS=Lymphoma Artificial Reader System. LARS-avg=classification based on mean probability of coronal and sagittal 2D PET MIP 
images. LARS-max=classification based on maximum probability of coronal and sagittal 2D PET MIP images. MIP=maximum intensity projection. MSK=Memorial 
Sloan Kettering Cancer Center. MUV=Medical University of Vienna.
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based on the LARS-avg Youden index (table 2). By 
comparison, LARS-ct performance was unsatisfactory 
with AUCs of 0·682 in MSK, and 0·655 in MUV test 
datasets. LARS-ptct, the jointly trained 2-channel 3D PET 
plus CT model, achieved higher AUCs of 0·939 in the 
MSK test dataset and 0·932 in the MUV test dataset, 

showing a slight superiority over LARS-pt3d particularly 
with regard to specificity (0·92 in the MSK and 
0·91 in the MUV dataset). The best-performing com-
bination model was LARS-avg-ct, with AUCs of 0·944 for 
the MSK test dataset and 0·947 for the MUV test dataset, 
and an overall similar, but not superior, performance 
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Figure 3: Examples of true-positive and true-negative PET scans (SUV range 1–10) in the MSK test cohort, including ensemble probabilities and classification 
results for the MIP-based model variants LARS-avg and LARS-max
Each MIP view is labelled with the mean probability of that view over the top-ten models. The ensemble probability threshold was set to 0·3614, determined by the 
Youden index of MSK LARS-avg. Hypermetabolic tumour sites on true-positive scans are marked with arrowheads (A–E). PET-negative cases were correctly predicted 
despite different patterns of physiologic uptake, such as cervical muscles (F), brown fat (G), bone marrow activation (H), marked focal FDG excretion via ureters as well as 
esophagitis (I), and focal bowel uptake (F, J). FDG=fluorodeoxyglucose. LARS=Lymphoma Artificial Reader System. LARS-avg=classification based on mean probability of 
coronal and sagittal 2D PET MIP images. LARS-max=classification based on maximum probability of coronal and sagittal 2D PET MIP images. MIP=maximum intensity 
projection. MSK=Memorial Sloan Kettering Cancer Center.



Articles

www.thelancet.com/digital-health   Published online December 21, 2023   https://doi.org/10.1016/S2589-7500(23)00203-0 9

relative to LARS-avg (table 2). Although LARS-max-ct 
achieved the highest sensitivity of all models (0·99–1 in 
both test datasets), specificity was poor (2–16%; table 2).

DNN model performance improved with an increased 
training dataset size, from an AUC of 0·74 at 1% of the 
training data, to 0·95 at 100%, whereas integration of 
clinical information into the model did not improve 
results (appendix pp 12–13).

Discussion
With a sample size of 17 583 [¹⁸F]FDG-PET-CT scans in 
5575 patients with lymphoma, this study is, to our 
knowledge, currently the largest study to apply deep 
learning to PET-CT and, by extension, also PET-CT in 
oncology. The largest previous study to apply deep 
learning to [¹⁸F]FDG-PET-CT focused on tumour 
segmentation and included 3664 scans in patients with 
lung cancer and lymphoma.18 LARS, our DNN algorithm 
for classification of PET-CT scans with or without 
hypermetabolic tumour sites, achieved an AUC of 0·95 
in both internal and external test datasets, with a 
balanced accuracy of 87–91% when using PET MIPs as 
input. These results were achieved despite real-world 
technical differences between the two centres: while at 
MSK, virtually all PET-CTs were performed on GE 
Healthcare device models, and with a fixed radiotracer 
dosage, PET-CTs at MUV were performed on Siemens 
devices, and with the radiotracer dosage adapted to 
patient body mass. Additionally, the MSK cohort 
included patients with the four most common [¹⁸F]
FDG-avid lymphoma subtypes (Hodgkin lymphoma, 
diffuse large B-cell lymphoma, follicular lymphoma, 
and mantle cell lymphoma), whereas the MUV cohort 
also included other [¹⁸F]FDG-avid subtypes, such as 
peripheral T-cell lymphoma and Burkitt lymphoma. 
LARS might, therefore, be able to generalise and yield 
robust performance across centres, scanners, and 
histologies, and (although tested exclusively on 
lymphoma in our study for reference standard 
consistency) might possibly also be applicable to other 
FDG-avid cancers.

There are several potential applications of LARS to aid 
radiologists and nuclear medicine physicians in clinical 
practice, especially when PET-CT scan volumes are high. 
First, LARS might be useful to rule out the presence of 
hypermetabolic tumour sites, for instance in a post-
treatment setting. Based on this information, 
preliminary reports could be generated automatically, 
for example when high scan volumes prevent imaging 
specialists from providing the final reports in time (eg, at 
the time of patients’ visits with clinicians). This approach 
could possibly reduce delays in management decisions 
for many patients, allowing imaging specialists to 
prioritise scans with a higher likelihood of FDG-avid 
disease. For such an application, an algorithm would 
require high sensitivity to minimise false-negative 
predictions. LARS-max, the algorithm version using 

maximum probability aggregation to achieve a 
sensitivity of 91%, might be useful in such a scenario. To 
serve as a true replacement for human readers, however, 
an even higher sensitivity would probably be desirable in 
clinical practice, to match the performance levels of 
human experts. For the latter however, few comparative 
data exist at present. Alotaibi and colleagues analysed 
4099 PET-CT reports generated over an 18-month period 
at a tertiary care centre, and found that 2·2% contained 
an addendum that revealed a retrospectively discovered 
diagnostic error.19 The true error rate for PET-CT reports 
by physicians, which would also include errors that go 
unnoticed, remains unknown, but is probably higher, 
given that for radiology tests in general, a human error 
rate of 3–5% has been estimated.20 To achieve comparable 
sensitivity levels (eg, 95%) with our model, modification 
of the cutoff value between positive and negative scans, 
at the expense of specificity, might be an option (table 2).

Another application would be to use LARS as a second 
reader, to further improve physicians’ accuracy and 
diagnostic confidence, or help maintain a high accuracy or 
confidence despite an increased workload. Because such 
an application requires a balance between good sensitivity 
and specificity, LARS-avg, with its 87% sensit ivity and up 
to 95% specificity, or alternatively, LARS-ptct or LARS-avg-ct, 
both of which offered a similar performance, appear to be 
reasonable choices, and might assist in shortening reading 
times. Visualisation techniques such as Grad-CAM 
(appendix p 10) might facilitate integration of such an 
application into clinical practice.

Finally, due to their high specificities, LARS-avg, or 
alternatively, LARS-ptct, might also be useful as decision 
support tools, for instance, in equivocal cases (eg, tumour 
vs infection or inflammation), because these models 
were not trained using information from merely the 
current, but also from previous and follow-up scans, and, 
if available, biopsies.

Previous studies used deep learning for lesion 
detection or classification,18,21–23 segmentation,18,21–22,24–29 
and outcome prediction or prognostication on 
[¹⁸F]FDG-PET.27,30 A comprehensive overview of such 
applications in lymphoma was provided by Hasani and 
colleagues in 2022.31 Contrary to these applications, we 
focused on a specific, routine task that radiologists and 
nuclear medicine physicians perform in their day-to-day 
practice, in a multitude of cancers: distinguishing 
between PET-CTs with, and those without, hyper-
metabolic tumour sites, before and after treatment. We 
believe that this simple task (ie, disease detection on a 
per-scan, rather than on a per-lesion basis) is the first 
step towards fully automated AI-based image 
interpretation, upon which specific applications, such as 
automated tumour segmentation, response assessment, 
and outcome pre diction or prognostication, can build. 
To our know ledge, only a single study in a mixed 
oncological population evaluated a deep learning 
approach similar to ours for [¹⁸F]FDG-PET classification. 
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However, in that study, the algorithm was trained to 
classify PET scans not only as positive or negative, but 
alternatively, also as equivocal (22% of cases) for 
hypermetabolic tumour sites,32 which might hamper its 
clinical applicability. Furthermore, no fixed criteria (such 
as Deauville scores) for PET curation were specified, and 
no external validation was performed.

We analysed 2D and 3D PET, as well as 3D CT data, to 
generate and compare different one-modality and 
two-modality LARS variants. The PET MIP-based models 
(LARS-avg and LARS-max) allowed us to use a smaller 
network with fewer parameters, which decreased 
computation time (classification of a single MIP took 
only approximately 32 ms), and thereby also energy 
consumption and carbon footprint. MIPs are commonly 
included in PET examinations, providing less noisy 
image representations than 3D volumes and offering an 
overview of disease status. DNN predictions of the 
sagittal and coronal MIP views were aggregated to form a 
case-level prediction. The risk with this approach is that 
tumour-related uptake may be obscured by other high-
uptake structures such as the heart, the urinary tract, and 
the bowel, occasionally even on both sagittal and coronal 
views (appendix p 11). We took this into consideration by 
creating a second DNN version with modified MIP 
aggregation, which used the maximum probability for 
FDG-avid tumour sites of the two MIP views (LARS-max), 
rather than the average (LARS-avg), for classification. 
LARS-max was therefore designed to increase model 
sensitivity at the cost of lower specificity, and yielded a 
sensitivity of 90–91% (vs 87% with LARS-avg), while 
retaining an acceptable specificity of 83–90% (vs 
91–95% with LARS-avg).

Surprisingly, neither the 3D PET model (LARS-pt3d) 
nor the different PET-CT models (including the 2-channel 
3D PET plus CT model, LARS-ptct) were superior to the 
PET MIP-based models. Since the same type of DNN 
architecture (ResNet34) was used for all models (the only 
difference being the use of 3D convolutions for 3D image 
data) we hypothesise that the lower image noise on MIPs 
and the lower model complexity (21 M parameters for 
both LARS-avg and LARS-max vs 63 million for 
LARS-pt3d) were responsible for our results. The 
additional 3D CT information within LARS-ptct slightly 
improved results relative to LARS-pt3d, especially with 
regard to specificity (table 2). This finding is 
understandable because several causes for false-positive 
results on PET, such as brown fat or metformin-related 
bowel uptake, do not have a CT correlate. Otherwise, the 
contribution of CT to the performance of our models was 
limited, probably because for post-treatment scans of 
FDG-avid lymphomas, tumour site evaluation is based 
exclusively on [¹⁸F]FDG-PET findings.12,13 Notably, a 
previous study in lung cancer and lymphoma also 
suggested that CT adds little to [¹⁸F]FDG-PET regarding 
lesion detection and classification.21 However, inclusion 
of CT in DNN models might potentially be of greater 

importance in other cancers, where PET results are less 
relevant, or less well-established, than in lymphoma.

Our study has several limitations. Compared with 
PET-CT scans of healthy individuals (eg, with benign 
lesions), the PET-negative cases in our study were 
arguably more difficult to classify correctly due to 
frequent increased FDG uptake resulting from 
systemic treatment or interventions (eg, biopsies or 
lymphadenectomy). The latter reasons for increased 
FDG uptake might lead to not only false-positives, but 
also to false-negatives when lesions are obscured by 
FDG uptake related to treatment or intervention. While 
these effects probably decreased our model performance, 
they might also affect human visual interpretation, and 
reflect clinical reality, because [¹⁸F]FDG-PET is 
frequently used after treatment. Therefore, to perform 
well under real-world conditions, a DNN must learn to 
distinguish such iatrogenic patterns of [¹⁸F]FDG uptake 
from malignancy. The exclusion of a substantial number 
of unresolved cases from the MSK cohort, for which no 
biopsy or follow-up imaging were available, means that 
we might have overstated our models’ performances in 
this cohort to some degree, because difficult to classify 
cases might potentially have been omitted. However, 
because the number of such unresolved, excluded cases 
was quite low in the MUV cohort, but model 
performance was very similar to that in the MSK cohort, 
overestimation of our models’ performances was 
probably limited. Contrary to many previous studies 
that focused on a single lymphoma subtype,22,23,26–30 our 
cohort was a mix of Hodgkin and FDG-avid, aggressive, 
and indolent, B-cell and T-cell non-Hodgkin lymphomas. 
This mixture clearly made the classification task more 
difficult, given that patterns of involvement and degree 
of [¹⁸F]FDG uptake differ between lymphoma subtypes.33 
However, this mixture of lymphoma subtypes again 
reflects the day-to-day work of radiologists and nuclear 
medicine physicians, and if our algorithm was to be 
applied to other cancers, complexity would increase 
even further. Our models were designed for binary 
classification, rather than for PET-based four category 
Lugano response classification, so that, in post-
treatment scans with hypermetabolic tumour sites, a 
more granular response assessment by physicians is 
required. Finally, as classifiers, our models also do not 
provide pixel-level tumour localisations or direct 
quantification of tumour volumes. Lacking lesion 
annotations, LARS could therefore possibly be 
combined with previously published lymphoma 
segmentation models.18

In conclusion, we have presented a DNN model 
capable of distinguishing between [¹⁸F]FDG-PET scans 
with and without hypermetabolic tumour sites in patients 
with lymphoma, as a model disease for FDG-avid 
cancers. Our algorithm could potentially be used to rule 
out hypermetabolic tumour sites, for instance in a 
post-treatment setting, and thereby serve as a basis 
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for automatically generated (preliminary) reports. 
Furthermore, our algorithm might possibly be useful as 
a second reader or decision-support tool, potentially 
helping radiologists to deal with high scan volumes. 
Because our PET MIP-based models were not inferior to 
3D PET and CT-based models, they might be a reasonable 
choice, especially also regarding speed, hardware 
requirements, and energy consumption. Prospective 
evaluation of our models is, however, clearly required, to 
determine whether they can be used to truly rule out 
hypermetabolic tumour sites on PET-CT in lymphoma 
and other FDG-avid cancers in clinical practice, and to 
investigate their impact on reading times, accuracy, 
diagnostic confidence, and incurred risk.
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