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Abstract
The Conflict-Free Electric Vehicle Routing Problem (CF-EVRP) is a combinatorial opti-
mization problem of designing routes for vehicles to execute tasks such that a cost function,
typically the number of vehicles or the total travelled distance, is minimized. The CF-EVRP
involves constraints such as time windows on the tasks’ execution, limited operating range
of the vehicles, and limited capacity on the number of vehicles that a road segment can
simultaneously accommodate. In previous work, the compositional algorithm ComSat was
introduced to solve the CF-EVRP by breaking it down into sub-problems and iteratively solve
them to build an overall solution. ThoughComSat showed good performance in general, some
problem instances took significant time to solve due to the high number of iterations required
to find solutions for two sub-problems, namely the Routing Problem, and the Paths Changing
Problem. This paper addresses the bottlenecks of ComSat and presents new formulations for
both sub-problems in order to reduce the number of iterations required to find feasible solu-
tions to the CF-EVRP. Experiments on sets of benchmark instances show the effectiveness
of the presented improvements.

Keywords CF-EVRP · Optimization · Scheduling · Autonomous vehicles

1 Introduction

Scheduling of Autonomous Mobile Robots (AMRs) for just-in-time delivery to the main
assembly line poses a significant problem. The challenges associated with this issue include
the size of the fleet to schedule (De Ryck et al. 2020), as well as ensuring the robots’ ability
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to complete their pick-up/delivery tasks within specified time windows (Yao et al. 2020), as
well as handling scalability concerns. Moreover, depending on the robots’ size and the plant
layout’s geometrical features, areas may exist within the plant where simultaneous transit of
two or more robots leads to conflicts (Pratissoli et al. 2023), i.e., instances where the robots
obstruct each other. Lastly, indoor-operating robots are typically powered by batteries, which
possess limited operating ranges and require non-negligible charging times (Abderrahim et al.
2020).

A suitable scheduler for such a problem should simultaneously satisfy the following
requirements: (i) assign one ormore tasks to each robot, ensuring each task is executed within
its designated time window; (ii) calculate a path for each robot to carry out its assigned tasks;
(iii) schedule the robots along their respective paths to prevent conflicts; and (iv) guarantee
that the robots never run out of charge.

Moreover, an industrial plant is a dynamic environment where frequent changes require
re-scheduling. Therefore it is necessary that a new schedule can be computed quickly (from
seconds to minutes, depending on the specific application). Consequenty, the scheduler must
be sufficiently fast to schedule a possibly large fleet in the limited available time.

Let us focus on the requirements from theprevious paragraphs one at the time. (i)Assigning
all tasks to robots equates to designRoutes for the robots. Typically, the robots are stationed at
one ormultiple depots and tasks are assigned to them in a specified order. Therefore the robots
leave their depot, travel from one task to the next in their ordered assignment, and return to
the depot, thus defining a closed route. (ii) There may be several paths in a plant to travel from
one point to another. The choice of one path over another may have consequences in terms
of travelled length or possibility of conflicting with other robots. (iii) the road segments,
intersections, depots, and workstations are characterized by a capacity based on the number
of robots that can be simultaneously in these areas. Therefore capacity constraints are defined
in order to produce conflict-free schedules. (iv) a robot may not have enough charge to serve
all customers it is assigned to. Hence, after executing some tasks, it may need to return to its
depot and recharge the battery, before it can continue executing the remaining tasks.

In Roselli et al. (2021) we formalized the problem described above and named it the
Conflict-Free Electric Vehicle Routing Problem (CF-EVRP); we listed all its requirements in
detail and formulated a mathematical model for it. Also, we used the Satisfiability Modulo
Theory (SMT) (Barrett et al. 2009; De Moura and Bjørner 2011) solver Z3 (De Moura and
Bjørner 2008) to solve generated problem instances of the CF-EVRP and found that it was
not suitable to schedule large fleets, as it took several minutes to solve instances involving
only few vehicles. Therefore, in Roselli et al. (2022) we presented a compositional algorithm,
ComSat, for solving the CF-EVRP. ComSat breaks down the CF-EVRP into sub-problems
and iteratively solves them to find a feasible solution to the overall problem. Experimental and
analytical evaluation shows that ComSat generates high-quality but not necessarily optimal
solutions.

Briefly,ComSat (seeFig. 1) solves theRoutingProblem, i.e., computes routes to execute all
the tasks, by calling the Router algorithm, and assigns vehicles to the routes (the Assignment
Problem) by calling the Assign algorithm; this part of ComSat is henceforth called Feasible
Routes Search (FRS). Then, ComSat solves theCapacity Verification Problem, i.e., schedules
the vehicles along their paths (initiallyDijkstra’s algorithm (Dijkstra 1959) is used to compute
such paths) by calling the CapacityVerifier algorithm (CV ), so that no conflicts arise among
them. However, it may be that a feasible schedule cannot be found because, using the current
paths, it is impossible to avoid conflicts and meet the time windows; then alternative paths
have to be computed. This is handled in the Conflict-Free Paths Search (CFPS) where the
Paths-Changer algorithm (PC) solves the Paths Changing Problem, i.e., finds alternative
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Fig. 1 Simplified flowchart of ComSat

sets of paths if the current schedule has conflicts, and the CapacityVerifier finds, if possible,
a conflict-free schedule.

Experiments show two bottlenecks in the algorithm, where a large number of iterations
may be required in order to find feasible solutions to the CF-EVRP;

• In the FRS, the number of possible routes grows exponentially with the number of tasks,
therefore even small problem instances can lead to a large number of possible solutions
to the Routing Problem. Many of these sets of routes may not satisfy the Assignment
Problem though, leading to a large number of unnecessary iterations between these two
sub-problems.

• When a schedule has conflicts, the Paths-Changer algorithm will find an alternative set
of paths. Since the Paths-Changer has no information about why the previous paths led
to conflicts among the vehicles, the new paths may lead to the same conflict, or at least
some of them. It may therefore take several iterations to find conflict-free paths.

In this paper we focus on improving the performance of ComSat by ruling out infeasible
solutions before they are computed, hence keeping the number of iterations between sub-
problems low. In our previous work (Roselli et al. 2022), we tackled the bottleneck in the
CFPS by formulating improved versions of the PC and CV . In this work, we generalize
such improvements so that they are applicable to any instance of the CF-EVRP. Moreover,
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we present a tighter formulation of the Routing Problem that prevents the generation of
solutions that will be infeasible when solving the Assignment Problem. We also present a
further improvement where the Routing and Assignment problems are combined into the
E-Routing Problem. This approach allows to avoid iterating between the two sub-problems,
and experiments show that the computation time required to solve the new sub-problem is
not larger than the time required to solve the Routing Problem only.

The sub-problems in ComSat are modelled as Mixed Integer Linear Programming
(MILP) (Kondili et al. 1993), and SMT problems. For the CFPS, polynomial time algo-
rithms exist to find paths in graphs (Arumugam et al. 2016). However, modelling the Paths
Changing Problem as an SMT problem is beneficial as it allows us to define problem-specific
requirements, such as not returning solutions that are already proven infeasible because they
violate the capacity constraints. Moreover, when a problem is infeasible, SMT solvers have
the ability to return a Minimal Unsatisfiable Core (MUC) (Cimatti et al. 2011), i.e., one of
the (possibly many) smallest subsets of constraints that make the problem infeasible. The
MUC can provide useful information about why a problem is infeasible and can therefore be
used to guide the search towards a feasible solution (Selsam and Bjørner 2019). Therefore,
when dealing with the CF-EVRP, the MUC can be extracted when the Capacity Verifica-
tion Problem is infeasible, and used to define additional constraints for the Paths Changing
Problem to increase the chances of finding a feasible schedule.

The contributions in this paper are: (i) improvements on the FRS; (ii) exploitation ofMUC
to extract information about the infeasibility of an SMT formula representing a conflicting
schedule for a VRP and use of such information to find conflict-free schedules; (iii) perfor-
mance comparison between the different versions of ComSat discussed in the paper over a
set of the CF-EVRP problem instances.

The remainder of the paper is organized as follows. Section 2 presents an overview on the
topic and introduces existing publications this work is built on. Section 3 provides prelimi-
naries, together with a full description of ComSat. Sections 4 and 5 present the mathematical
models of the sub-problems that form the FRS andCFPS, respectively, how they are improved
to reduce the number of iterations and the computation time. Proof of soundness and com-
pleteness of the procedures is provided in Section 6. In Section 7, the results of the analysis
over a set of problem instances are presented. Finally, conclusions are drawn in Section 8.

2 Literature review

The CF-EVRP is an extension of the well-known Vehicle Routing Problem (VRP) (Dantzig
and Ramser 1959), a combinatorial optimization problem that involves designing routes for
vehicles to visit specific locations, with the objective of minimizing the total length of these
routes. Several extensions of the original VRP exist (Kucukoglu et al. 2021) that tackle
different aspects of the problem and originate from different real world applications. For
instance, the VRP with TimeWindows (Desrochers et al. 1992) extends the original problem
to include, for each task, an earliest and latest arrival time i.e., a time window in which the
task has to be executed. Another extension is the Multi Depot VRP (Lim and Wang 2005)
where there can be several depots the vehicles are dispatched from.

For battery powered vehicles, there has been a growing attention to formulating VRPs
that account for limited operating range and non negligible charging time. In Schneider et al.
(2014) the Electric VRP (E-VRP) is first introduced. In this work, vehicles can return to the
depot to fully recharge their batteries (partial charging is tackled in subsequent works Keskin
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and Çatay 2016; Cortés-Murcia et al. 2019) after which theymay be dispatched again to com-
pletemore tasks.The authors present a hybrid heuristic that combines neighbourhood (Hansen
and Mladenovi 2005) and tabu (Glover 1989) search to solve problem instances involving
up to 500 tasks.

Thus far, theVRPs discussed are characterized by the ability of travelling directly from any
task’s location to any other, and the movement of one vehicle is unaffected by the presence
of other vehicles. These VRPs are suitable for applications such as routing of cars or trucks
on public roads, where in most cases vehicles can avoid obstructing each other’s path simply
by adhering to the traffic rules. Furthermore, vehicles are still widely operated by humans,
whose decision-making ability to resolve conflicts can help in those cases where traffic rules
alone are insufficient.

On the other hand, a plant layout can be a challenging environment to drive in, due to less
space available to maneuver. Also, AMRs typically do not have the same decision-making
skills as human drivers. Therefore the problem of computing conflict-free schedules for
fleets of AMRs is addressed by several works. There have been attempts to find exact solu-
tions to conflict-free routing problems by means of general purpose solvers. For instance, in
Murakami (2020), a MILP formulation to design conflict-free routes for capacitated vehicles
is presented. An SMT formulation is introduced in Roselli et al. (2018). The size of such
formulation in terms of the number of variables and constraints grows exponentially with the
number of vehicles, tasks, and the size of the plant; only very small instances can be solved
to optimality within reasonable time.

Alternatively, approximate methods can be used to solve larger problem instances. One
early such work (Krishnamurthy et al. 1993) uses column generation to compute conflict-
free routes for vehicles on a bidirectional network. An ant colony algorithm is applied to the
problem of job shop scheduling and conflict free routing of vehicles by Saidi-Mehrabad et al.
(2015); in Yuan et al. (2016), paths are computed for one vehicle at a time using a modified
A∗ (Hart et al. 1968) to find paths that overlap as little as possible with the paths already
computed for other vehicles. This, in combination with collision resolution rules, allow to
relieve traffic congestion. A heuristic approach to solve the conflict-free routing problemwith
storage allocation is presented by Thanos et al. (2019). In Zhong et al. (2020) is presented
a hybrid evolutionary algorithm to deal with conflict-free vehicles scheduling in automated
container terminals; finally, in Daugherty et al. (2018) the problem of conflict-free routing
of vehicles is handled by a heuristic algorithm based on local search.

A typical way to trade optimality for computational speed, is to decompose the prob-
lem into sub-problems. For example, in Corréa et al. (2007), the problem is divided into
first assigning the tasks to the vehicles, and then route the vehicles through the plant. Com-
Sat (Roselli et al. 2022) is another example of a compositional algorithm to solve this problem.
A main difference with Corréa et al. (2007) is that ComSat accounts for the recharge of the
vehicles.

In conclusion, the CF-EVRP involves a number of challenges deriving from the different
features that characterize it, such as vehicles’ limited operating range and non-negligible
charging time, time windows for the execution of the tasks, and above all, limited capacity
of the road segments of the plant layout. As the CF-EVRP is an extension of the VRP,
several studies exist on the topic, and each of the additional features (battery charge, capacity
constraints on the routes, time windows, etc.) have been tackled previously. Whatever the
objective function (total travelled distance, number of robots, etc.) finding optimal solutions
fast is only tractable for small problem instances. Hence several approximate methods have
been used to solve larger problem instances fast. In our previous work (Roselli et al. 2018)
we claimed the novelty of the CF-EVRP as, to the best of our knowledge and at the time of
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publication, no other formulation included all the requirements the CF-EVRP did. We hence
developed the compositional algorithm ComSat to quickly solve larger problem instances,
and in this work, we present an improved version of it.

3 Preliminaries

In the CF-EVRP the plant layout is represented by a finite, strongly connected, weighted,
directed graph, where edges represent road segments and nodes represent either tasks’ loca-
tions or intersections between road segments. A task is defined by a unique (numerical)
identifier, a location, and a time window, i.e., a lower and upper bound that represent the
earliest and latest arrival time allowed to execute the task. Edges have two attributes, the first
representing the road segment’s length, and the second its capacity. The capacity is 2 if two
vehicles can simultaneously travel in opposite directions, 1 otherwise.

The following logical operators are used as a shorthand to express cardinality constraints
(Sinz 2005) in the SMT sub-problems:

⊕
i∈I(xi , n) : exactly n variables xi are true ∀i ∈ I;

If(c, o1, o2) : evaluates to o1 if c is true, else o2.

Moreover, in theMILP sub-problems, the big-M method (Trespalacios andGrossmann 2015)
is used to model alternatives, hence the need for a big enough integer M .

The following definitions are provided:

• Node: a location in the plant. A node can only accommodate one vehicle at a time unless
it is a hub node that can accommodate an arbitrary number of vehicles.

N : a finite set of nodes.
NH ⊆ N : the set of hub nodes.

• Depots: nodes at which one or more vehicles start and must return to after completing the
assigned tasks. A depot can accommodate an arbitrary number of vehicles at the same
time, thus all depots are hubs.

∅ ⊂ D ⊆ NH : the set of depots.
DS = { sk | k ∈ D}: the set of dummy tasks representing the start from depot k.
DF = { fk | k ∈ D}: the set of dummy tasks representing the arrival at depot k.

The setsDS andDF are disjoint with each other and with the set of tasksK (see below).
• Edge: a road segment that connects two nodes.

E ⊆ N × N : the finite set of direct edges.
ē: the reverse edge of edge e ∈ E .
|e| ∈ R

+: the length of edge e ∈ E .
ge ∈ {1, 2}: the capacity of edge e ∈ E .

• Time horizon: a fixed, continuous point in time when all tasks have ended.

T: the time horizon.

• Task: Entity representing a place to be visited exactly once by a vehicle in order to pickup
or delivery material. A task is always associated with a node where the pickup/delivery
takes place, and has a time window indicating the earliest and latest time at which the
node can be visited. Unless explicitly given, the time window is the entire time span
[0, T ]. Moreover, each task has a precedence list that indicates other tasks that must be
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executed before the task itself. This so, since the tasks represent pickups and deliveries,
hence a vehicle has to deliver the goods after it has picked them up.

K: the finite set of all tasks. Let K+ = K ∪ DS ∪ DF .
lk, uk ∈ R

+, k ∈ K: the time window’s lower (lk) and upper (uk) bound for task k
such that uk > lk .
τk ∈ R

+: the service time of task k.
Lk ∈ N , for k ∈ K: location of task k.
Qk ⊂ K, k ∈ K: the set of tasks to execute before task k.

In order to execute a task, the vehicle assigned to it will (unless the task’s locations
coincides with the vehicle’s initial location) visit nodes and edges in the graph other than
the node where the task is located.

• Vehicle: an AGV, that is able to move between locations in the plant and perform pickup
and delivery operations. Battery-powered vehicles have a limited operating range, travel
at constant speed or are stationary, and their energy consumption is linearly proportional
to the distance travelled; they have the ability to recharge at the depot they are dispatched
from, but not at other depots1. Charging, when executed, restores the battery to its full
charge capacity; therefore, partial charging is not permitted. This restriction, inspired by
Schneider et al. (2014), is necessary to formulate the routing problem of Section 4.2.
Finally, we assume that a vehicle’s remaining charge is directly proportional to the
vehicle’s remaining operating range and, in order to simplify the notation, we only talk
about the latter.

V: the finite set of all vehicles.
Vk ⊆ V, ∀k ∈ K: set of vehicles eligible for task k.
ψ ∈ R

+: the vehicles’ maximum operating range when their battery is fully charged
(distance).
C ∈ R

+: the charging coefficient (increase of remaining operating range per time
unit).
� ∈ R

+: vehicle speed (constant) while moving.

• Route: a sequence, starting and ending at the same depot, with unique tasks in-between
that may have the same depot embedded:

R j = 〈d, k1, k2, . . . , d . . . , kn−1, kn, d〉 where d ∈ D, ki ∈ K
ki �= k j for i �= j , and n ≤ |K|, since a route can at most include all tasks.

• Route set: a set of routes such that each task belongs to exactly one route, thus guaran-
teeing that all tasks are served.

R = {R1, . . . , Rm}, m ≤ |K|
A route contains at least one task, hence 0 < m ≤ |K|.

• Pair Set of route R: set containing the sequence of tasks of a route R = 〈k1, . . . , km〉,
grouped as pairs in sequence.

PR = {〈k1, k2〉, 〈k2, k3〉, . . . , 〈km−1, km〉}
• Path: ordered set of unique nodes. It is used to keep track of how vehicles are travelling
among tasks of routes, since each pair of tasks in a route is connected by a path.

1 This restriction was necessary to formulate the previous versions of ComSat, and to make a fair comparison
it applies also to the latest version presented in this work. It may, however, be relaxed in future work.
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θp = 〈n1, . . . , nm〉, p ∈ PR, m ≤ |N |,
ni ∈ N , i = 1, . . . ,m

• Edge sequence: ordered set of unique edges for a given path θp .

δp = 〈e1, . . . , em〉, p ∈ PR, m = |θp| − 1,
ei ∈ E, i = 1, . . . ,m

3.1 Recap of ComSat

In order to understand the changes to ComSat introduced in this work, let us recap how it
works, and what sub-algorithms it is composed of. The initial step involves computing a set
of the (possibly many) shortest paths between each pair of tasks, hereafter referred to as the
current paths CP. The first time, the computation of the CP is performed using Dijkstra’s
algorithm, hence CP will be the shortest paths between the tasks, and are part of the input
for the Router algorithm. When the Router is called, neither the vehicles’ availability nor the
segment capacities are considered; the goal is simply to design routes to execute tasks within
the time windows. At this point, the need for specific paths CP is that, through the constant
speed �, it is possible to infer the arrival time at the tasks’ locations in order to guarantee
that time windows are respected. If the Routing problem is infeasible, the whole problem is
infeasible, since the tasks cannot be executed within n their time windows.

If the Routing Problem is feasible, Router returns a non-empty set of routes R and for
each route R ∈ R the latest time ϒR at which R can start, while still meeting all the time
windows of its tasks. R is stored in the set PR so that each time Router is called, PR can be
used to rule it out. In the next step, Assign will determine which vehicle is assigned to each
route based on the routes’ requirements for specific types of vehicles, their latest start time,
and the vehicles’ operating range and charging rate; also for the Assignment Problem there
can be more feasible solutions, therefore it is important to store the current assignment A in
the set PA to be able to rule it out the next time Assign is called. If the Assignment Problem
is infeasible the algorithm backtracks and solves the Routing Problem again, generating new
routes that might be assignable; otherwise, ComSat proceeds to the Capacity Verification
Problem.

At this point, routes have been assigned vehicles to execute them, and start timesβR, ∀R ∈
R have been computed to meet the vehicles’ need for charging. Hence it is possible to verify
if the execution of the routes is possible without violating the capacity constraints. If that
is the case, the overall problem is feasible and ComSat terminates and returns a feasible
schedule. On the other hand, if this step is infeasible, ComSat will try to find alternative
paths (currently the shortest paths are used as CP) for the vehicles to execute the routes by
solving the Paths Changing Problem.

If the Paths Changing Problem is feasible, the new paths found become the current paths
CP and ComSat backtracks to verify whether a conflict-free schedule exists by solving the
Capacity Verification Problem again; if not, the PC algorithm is called again. Otherwise,
if the Paths Changing Problem is infeasible, the algorithm backtracks and looks for a new
assignment.

Whenever the Assignment Problem is infeasible, all possible assignments for the current
set of routesR have been explored. In the same way, whenever the Paths Changing Problem
is infeasible, all possible paths for the current assignment A have been explored. Therefore,
the set of previous paths PP is emptied because these paths are only eligible for the current
assignment, and the shortest paths are set as current paths to compute the next assignment.
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Note that the complete version ofComSat also involves an additional sub-problem, namely
the Routes Verification Problem, where it is verified whether the previously computed routes
are still feasiblewhen using the newly computed paths. However, discussing this sub-problem
is out of the scope of this paper since the sub-problem is very quick to solve and does not
constitute a bottleneck; instead, the reader is referred to Roselli et al. (2022) for further
details.

3.2 Theminimal unsat core

For infeasible problems, a subset of the constraints that conflict, i.e., they cannot all simulta-
neously be satisfied, can be identified. Such a subset is called an UnsatCore. An UnsatCore
with the property that removing any one of the constraints makes the UnsatCore feasible, is
said to be minimal.

Formally, given anSMTformulaϕ and a set of conflicting constraintsC ⊆ ϕ,C is aMinimal
UnsatCore (MUC) of ϕ if removing any constraint Ci ∈ C makes C \Ci no longer infeasible;
removing Ci removes the particular conflict represented by the MUC. Consequently, for an
infeasible problem with a MUC C, adding to the problem a constraint that prevents all the
constraints in C to be simultaneously active will resolve this particular conflict.

The naïve approach to MUC extraction, Dershowitz et al. (2006), successively removes
constraints and solves the problem again; if the problem is still infeasible after a constraint
has been removed that constraint does not belong to a MUC. There exist more efficient
approaches; the MUC (Huang 2005) algorithm based on efficient manipulation of Binary
Decision Trees guarantees the extraction of a minimal UnsatCore. Nadel (2010) presents an
algorithm based on the resolution graph (Kroening and Strichman 2016) forMUC extraction.
Nadel et al. (2013) improves the resolution based algorithm using model rotation and path
strengthening.

In Section 5we discuss how to use theMUC to extract information about conflicts onwhen
the Capacity Verification Problem is infeasible, in order to guide the search for alternative,
feasible paths by defining additional constraints for the Paths Changing Problem.

4 The feasible routes search

As mentioned in Section 1, experiments showed that for some problem instances Router can
generate a large number of solutions to the routing problem R that lead to the Assignment
Problem being infeasible. In this section we present first a tighter formulation to break the
symmetry of different solutions, and then an approach that involves merging the Routing and
Assignment problems, to deal with this bottleneck.

4.1 A tighter formulation to break the symmetry among solutions

The Routing problem as formulated in Roselli et al. (2022) does not permit charging during
the routes. Therefore, in this section, routes are defined as sequences that starts and end at
the same depot, with unique tasks in between and with no depot embedded.

The problem is formulated using 0–1 variables σrk1k2 (k1, k2 ∈ K+, r = 1, . . . , |K|) that
represent that a route R includes direct travel from task k1 to k2. Let ς = {σrk1k2 | k1, k2 ∈
K+, r = 1, . . . , |K|} be the set of all variables σrk1k2 , then the optimal solution to the Routing
Problem found at iteration h is R∗ = {σrk1k2 ∈ ς | σrk1k2 = 1}; also, let PR∗ be the set
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containing the optimal solutions R∗ found until the (h − 1)-th iteration. Finally, note that it
is possible to compute R from R∗ and vice versa. Subsequently, it is possible to compute
PR from PR∗ and vice versa.

Let us clarify this conceptwith an example.Assume thatwe have solved aRoutingProblem
involving four tasks such that K = {k1, k2, k3, k4} and one depot d such that DS = {sd}
and DF = { fd}. One extreme case is that all tasks are executed in one route, while another
extreme case is that the solution involves four routes, each including only one task. These
solutions, and all the others in between, might or might not be feasible, depending on the
task locations, their time windows, and other parameters (see Roselli et al. (2022) for further
details). Let us assume that a possible solution in terms of the variables σrk1k2 would be the
following:

R∗ = {σ1sd k1 , σ1k1k2 , σ1k2 fd , σ2sd k3 , σ2k3k4 , σ2k4 fd }. (1)

FromR∗ we can computeR = {〈sd , k1, k2, fd〉, 〈sd , k3, k4, fd〉}. Note that the first index
of each σ variable represents the route number, and is used to keep track of the route the
tasks are assigned to in order to compute R from R∗.

In general, a feasible Routing Problem results in a number of the σ variables being set to
1, thus defining a set of routes R. If the Assignment Problem fails for this set of routes, the
Router is called again, with the additional requirement that at least one of the σ variables
that were previously set to 1, should now be set to 0. In Roselli et al. (2022) we enforced this
requirement using the following constraint:

∑

σrk1k2∈R∗
σrk1k2 ≤ |R∗| − 1, ∀R∗ ∈ PR∗. (2)

Assuming Eq. 1 is a solution to the Routing problem, in the next call of Router, con-
straint Eq. 2 expands to:

σ1sd k1 + σ1k1k2 + σ1k2 fd + σ2sd k3 + σ2k3k4 + σ2k4 fd ≤ 5.

This call of Router may then return the solution:

R∗ = {σ1sd k1 , σ1k1k2 , σ1k2 fd , σ3sd k3 , σ3k3k4 , σ3k4 fd } (3)

Solutions Eqs. 1 and 3 are identical except for the route index. Therefore, if one is infeasi-
ble, the other will be as well. In order to avoid generating such identical solutions, a constraint
is defined that forbids a particular sequence of tasks visited for every route index. For the
example above, such a constraint would be ∀r = 1, . . . , 4:

(σrsd k1 + σrk1k2 + σrk3 fd ≤ 3) ∨ (σrsd k3 + σrk3k4 + σrk4 fd ≤ 3)

In general, a Routing Problem solution may involve up to |K| routes, and at the h-th call
of Router, there are h − 1 solutions R∗ stored in PR∗. As mentioned before, R∗ is the set
containing the σ variables that evaluated to 1 when solving the Routing Problem and it is
possible to compute R from R∗. For h = 1, . . . , |PR∗|, let R∗

h be the h-th solution to the
Routing Problem, from which it is possible to computeRh ; let R ∈ Rh be a route computed
in the h-th call of Router, and kn the task coming after task kn−1 in R; then, in order to avoid
identical solutions, the following additional decision variables are required:

• XRh is a 0 − 1 variable that is assigned value 1 if route R of the solution h is forbidden,
0 otherwise.

• ιRhr is a 0 − 1 variable that is assigned value 1 if route index r is forbidden for route R
of the solution h, 0 otherwise.
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Therefore the constraints to rule out previous solutions can be defined as:

XRh ≤ ιRhr ∀r = 1, . . . , |K|, h = 1, . . . , |PR∗|, R ∈ Rh (4)

∑

k∈R

σrkn−1kn ≤ |R| − 1 + (1 − ιRhr ) M

h = 1, . . . , |PR∗|, R ∈ Rh, r = 1, . . . , |K| (5)

∑

R∈R
XRh ≥ 1 ∀h = 1, . . . , |PR∗| (6)

Constraints Eqs. 4 and 5 enforce the definitions of variables X and ι, respectively; Eq. 6
states that at least one route in each of the previous solutions is forbidden. For the reminder
of the paper, we will call the version of ComSat presented in Roselli et al. (2022) ComSat1,
and the version using constraints Eqs. 4-6 ComSat2.

4.2 Merging the routing and assignment problems

While the constraints presented in Section 4.1 can help break the symmetry of the solutions,
sets of routes might still be infeasible for other reasons, and having to enumerate them,
unnecessarily prolongs ComSat’s running time. For instance, in a solutionR there might be
two routes R1 and R2 whose lengths are 20 and 30 distance units respectively, and whose
latest start times ϒ are 0 and 15, respectively. Also, R1 and R2 can only be executed by
vehicle v1, whose speed � is one distance unit per time unit. Clearly, R1 and R2 overlap
in time, since R1 will start at time 0 and end at least at time 20 (depending on the service
times at the tasks included in R1), while R2 cannot start later than time 15. Therefore the
Assignment Problem will be infeasible for R

Moreover, even if they do not overlap in time, they might still be too close in time for one
vehicle to execute them. For instance, in the example above, assume that ϒR2 = 30 and that
the operating range ψ = 40. Even though v1 can finish R1 before it needs to start R2, it does
not have enough charge to execute both routes and hence needs to recharge in between them.
With the charging coefficient C = 1 it will not be able to fully charge before time 30, hence
the Assignment Problem will be infeasible for R.

The reason for infeasibility discussed in the previous paragraph may be generalized to
an arbitrary number of routes and vehicles, e.g., three routes need the same type of vehicles
but only two such vehicles are available. It is possible to define constraints that rule out
the possibility of generating such routes. However, this would imply the enumeration of a
large number of possible solutions, since the possible scenarios that lead to infeasibility are
numerous. This might as well turn out to be as time-consuming (or more) as iterating between
Router and Assign until a feasible set of routes is found.

When considering possible causes of infeasibility of the Routing Problem, it becomes
clear that the lack of knowledge about the vehicles’ operating range and the non-negligible
time to recharge significantly affect the generated solutions. Therefore, it may be beneficial
to extend the Routing Problem to include the vehicles’ limited operating range, and the
possibility to recharge batteries at the charging stations. Such a new problem, henceforth
called the E-Routing Problem, would at once compute the routes to execute the tasks and
assign them to the vehicles. The model we present is an extension of the problem formulation
for the E-VRP presented in Schneider et al. (2014).
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Because actual vehicles are considered in the E-Routing Problem, and recharging is
allowed, the decision variables used to formulate a model for the Routing Problem in Roselli
et al. (2022) have to be adjusted or replaced:

• σvk1k2 : 0–1 variable that is 1 if vehicle v is travelling from the location of task k1 to the
location of task k2, 0 otherwise.

• γk : non-negative real variable that represents the time when task k is served.
• εvk : non-negative real variable that represents the remaining operating range of vehicle

v when it is at the location of task k.

Moreover, let DC = { ck | k ∈ D} be the set of dummy tasks representing the arrival at
a charging station; for each vehicle, its charging station is the station it is dispatched from
(and has to go back to). For each depot, a trivial upper bound on the number of dummy
tasks (each representing the possibility of recharging once) is the number of tasks |K|. Also,
let K� = K+ ∪ DC , and let Vk = V \ Vk . With some abuse of notation, we can define the
distance between two arbitrary tasks’ locations as |k1k2| instead of |Lk1Lk2 |. Let�k be the set
of mutually exclusive tasks for task k (i.e. vehicles eligible for task k are not eligible for any
of the task in �k due to requirements on the vehicle type); let �k be the set of permutations
of tasks that belong to Qk , thus, each element λ ∈ �k is the list of tasks in Qk sorted in a
unique way. �k is used to model that pickup tasks can be performed in different orders. Note
that not all elements λ result in correct orderings of tasks. However, these invalid orderings
will be eliminated out by the other constraints in place. Let �λk be a 0–1 variable that is 1 if
the permutation λ of Qk is selected, 0 otherwise. Finally, let ki be the task coming after task
ki−1 in λ.

Then the formulation of the E-Routing Problem is as follows:

min
∑

k2∈K

∑

k1∈DS

∑

v∈V
σvk1k2 +

∑

k1∈K

∑

k2∈DC

∑

v∈V
σvk1k2 (7)

σvkk = 0, ∀k ∈ K�, v ∈ V (8)

σvk1k2 = 0, ∀k1 ∈ K, k2 ∈ DS , v ∈ V (9)

σvk1k2 = 0, ∀k1 ∈ DF , k2 ∈ K, v ∈ V (10)

σvk1k2 = 0, ∀k1, k2 ∈ K+, v ∈ Vk2 (11)

εvk ≤ ψ, ∀k ∈ K�, v ∈ V (12)

γk ≥ γk′ , ∀k ∈ K, k′ ∈ Qk (13)

lk ≤ γk ∧ γk ≤ uk, ∀k ∈ K+ (14)

γk2 ≥ γk1 + τk1 + |k1k2|/� − M(1 − σvk1k2), ∀k1, k2 ∈ K+, v ∈ V (15)

γk2 ≥ γk1 + (ψ − εvk)/C + |k1k2|/� − M(1 − σvk1k2),

∀k1 ∈ DC, k2 ∈ K+, v ∈ V (16)

εvk2 ≤ εvk1 − |k1k2|/� + M(1 − σvk1k2), ∀k1 ∈ K+, k2 ∈ K�v ∈ V (17)

εvk2 ≤ ψ − |k1k2|/� + M(1 − σvk1k2), ∀k1 ∈ DC, k2 ∈ K�, v ∈ V (18)
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∑

v∈V

∑

k2∈K
σvk1k2 = 1, ∀k1 ∈ K�, k1 �= k2 (19)

∑

v∈V

∑

k1∈K�

σvk1k2 ≤ 1, ∀k2 ∈ DC, k1 �= k2 (20)

∑

k2∈K
σvk1k2 ≤ 1, ∀k1 ∈ DS , v ∈ V (21)

∑

k1∈K
σvkk1 =

∑

k2∈K
σvk2k, ∀k ∈ K�, v ∈ V (22)

∑

k∈K�

σvk1k =
∑

k∈K�

σvkk2 , ∀k1 ∈ DS , k2 ∈ DF , v ∈ V (23)

∑

v∈V
σ

vk
′
n−1k

′
n

≥ �λk, ∀k ∈ K, λ ∈ �k, k
′ ∈ λ (24)

∑

λ∈�k

�λk = 1, ∀k ∈ K (25)

∑

σvk1k2∈R∗
σvk1k2 ≤ |R∗| − 1, R∗ ∈ PR∗ var (26)

The cost function tominimizeEq. 7 is the total number of routes (this is donebyminimizing
the number of direct travels from the depots) plus the number of visits to the charging stations;
Eq. 8 forbids to travel from and to the same location; Eqs. 9 and 10 express that a vehicle
can never travel to the start, nor travel from the end: start and end referring to the same
depot are physically located at the same node, but they play different roles in the Routing
Problem, hence two different tasks; Eq. 11 expresses that there cannot be direct travel among
mutual exclusive tasks. Equation 12 restricts the remaining operating range to be lower than
or equal to the maximum operating range; Eq. 13 guarantees that precedence constraints
among tasks are enforced. Equation 14 constrains the earliest and latest arrival time to the
tasks locations; Eq. 15model the case when a vehicle is travelling directly between two tasks’
locations and constrain the arrival time at the location of the second task based on its distance
from the previous task’s location, and the speed �. Equation 16 models the case when a
vehicle is travelling directly between a charging station and a task k ∈ K+. This constraint
accounts for the charging time spent at the charging station to restore full battery (the term
(ψ − εvk)/C), and the time required to travel to the next customer’s location; Eqs. 17 and 18
model the decrease of remaining operating range based on the distance travelled. Equation 19
expresses that each task’s location must be visited exactly once; Eq. 20 constrains the visit
to charging stations, i.e. a vehicle can visit the location of each dummy task at most once;
Eq. 21 restricts each vehicle to travel to at most one location from a depot. Since vehicles
are only allowed to travel to/from their depot, and task locations can only be visited once,
this constraint implies that a vehicle can execute at most one route before returning to the
depot it was dispatched from; Eq. 22 guarantees the flow conservation between start and
end; Eq. 23 ensures that the number of vehicles leaving the depots equals the number of
vehicles returning to them. Since each vehicle can only visits its own depot, each vehicle will
return to the depot it started from; Eqs. 24 and 25 state that some tasks have to be executed
sequentially, when they represent pick-up and delivery of goods; Eq. 26 allows to rule out
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the previously computed sets of routes as a solution. This is necessary as this optimization
sub-problem may be called multiple times during the execution of ComSat.

Based on the model described above, the algorithm E-Router takes the set of current paths
CP, the set PR (from which PR∗ is computed), the set of tasks K� and the set of vehicles
V and returns the current assignment A containing the routes R (computed from R∗), the
vehicle executing each route R ∈ R, and the starting time βR time of the route; if and only
if the E-Routing Problem is infeasible, A = ∅.

If the Routing and the Assignment problems are merged, ComSat has one less step to
execute to find a feasible solution to the CF-EVRP. We call this version of the compositional
algorithm S-ComSat. Figure 2 shows how the E-Router is now the algorithm that takes
care of solving the FRS. If it returns a non-empty A, this solution is checked against the
capacity constraints by the CV . The CFPS takes place as before and, if there is no set of
paths that makes the Capacity Verification Problem feasible, then the E-Router is called
again. S-ComSat terminates either when CV returns a feasible schedule or when E-Router
is infeasible.

Fig. 2 Flowchart of S-ComSat
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5 The conflict-free paths search

In this section the two sub-problems that form the CFPS are presented. The Capacity Verifi-
cation Problem is modelled as a Job Shop Problem (JSP) (Manne 1960), in order to exploit
the good performance of the SMT solver Z3 (Bjørner et al. 2015) in dealing with JSPs, as
demonstrated in Roselli et al. (2018). The Paths Changing Problem formulation is inspired
by Aloul et al. (2006).

5.1 The capacity verification problem

TheCapacity Verification Problem aims to find a feasible schedule for the vehicles, where the
routes that the vehicles are assigned to satisfy the capacity constraints on nodes and edges.

In this work the Capacity Verification Problem, as defined in Roselli et al. (2022), has
been extended to account for pairs as well, since the information about conflicts must be
related to a specific pair to define additional constraints in the PC. The following example
clarifies how the concept of pairs, introduced in Section 3 is used to formulate the Capacity
Verification Problem.

Example of routes, pairs, nodes, and edges

Let ne be the node visited before edge e, and let en be the edge visited before node n. Similarly,
let ne be the node visited after edge e, and let en be the edge visited after node n . Let p0R be
the first pair of route R and n∗

R be its starting node.
Let K = {k1, . . . , k7}, N = {n1, . . . , n20}, and a depot d . Let Lk1 = n1 and Lk2 = n7,

and assume two routes are computed to execute all tasks: R1 = 〈sd , k1, k2, k5, k7, fd〉, R2 =
〈sd , k3, k4, k6, fd〉.

In order to clarify the notation introduced above, let us analyze R1. First, the set of pairs
for R1 is defined as

PR1 = {〈sd , k1〉, 〈k1, k2〉, 〈k2, k5〉, 〈k5, k7〉, 〈k7, fd〉}.
Then, let us assume that the path and edge sequence for pair 〈k1, k2〉 are the following:
θ〈k1,k2〉 = 〈n1, n2, n4, n5, n7〉,
δ〈k1,k2〉 = 〈〈n1, n2〉, 〈n2, n4〉, 〈n4, n5〉, 〈n5, n7〉〉.
Then p0R1

= 〈k1, k2〉 and n∗
R1

= n1. Also, let e = 〈n1, n2〉, then ne = n1, and ne = n2;
for n = n1, en = 〈n1, n2〉, and for n = n2, en = 〈n1, n2〉.

For a specific pair p = 〈k1, k2〉 of a specific route R, the first and last nodes ni and n j are
the locations of a task k1 and k2 respectively. Then lk1 , the earliest arrival time of task k1, is
equal to lni and uk1 , the latest arrival time of task k2, is equal touni . Similarly, lk2 = ln j , and
uk2 = un j . The same applies also to the service times of tasks k1 and k2, i.e., τk1 = τni and
τk2 = τn j . For all the other nodes n ∈ p, ln = 0, un = T and τn = 0. The same applies to
every pair of every route. Finally, letμ > 0 be a small real constant used to prevent swapping
of vehicles’ positions between a node and the previous or following edge.

The decision variables for the SMT model of the Capacity Verification Problem are:

xRpn : non-negative real variable that models the time when a vehicle executing route R
starts using node n in pair p;
yRpe: non-negative real variable that models the time when a vehicle executing route R
starts using edge e in pair p.
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The model for the Capacity Verification Problem is:

xRp0Rn∗
R

≥ βR, ∀R ∈ R (27)

yRpe ≥ xRpne + τne , ∀R ∈ R, p ∈ PR, e ∈ δp (28)

xRpn = yRpen + |en |/�, ∀R ∈ R, p ∈ PR, n ∈ θp (29)

ln ≤ xRpn ∧ xRpn ≤ un, ∀R ∈ R, p ∈ PR, n ∈ θp (30)

xRpn ≥ yR′ p′en + μ ∨ xR′ p′n ≥ yRpen + μ,

∀R, R′ ∈ R, R �= R′, p ∈ PR, p′ ∈ PR′ , n ∈ θp ∩ θp′ , n /∈ NH (31)

yRpe ≥ yR′ p′e + μ ∨ yR′ p′e ≥ yRpe + μ,

∀R, R′ ∈ R, R �= R′, p ∈ PR, p′ ∈ PR′ , e ∈ δp1 ∩ δp2 (32)

yRpe ≥ yR′ p′e′ + |e′|/� ∨ yR′ p′e′ ≥ yRpe + |e|/�,

∀R, R′ ∈ R, R �= R′, p ∈ PR, p′ ∈ PR′ ,

e ∈ δp, e′ ∈ δp′ , e = ē′, ge = ge′ = 1 (33)

Equation 27 constrains the start time of a route; Eqs. 28 and 29 define the precedence
among nodes and edges to visit in a route; Eq. 30 enforces time windows on the nodes that
correspond to the tasks; Eq. 31 prevents vehicles from using the same node at the same time,
μ is a small positive number to prevent swapping; Eqs. 32 and 33 constrain the transit of
vehicles over the same edge. If two vehicles are using the same edge from the same node,
one has to start at least μ after the other, and if two vehicles are using the same edge from
opposite nodes one has to fully transit before the other one can start.

Based on the model described above, the algorithmCV is defined, that takes a set of routes
R, the start times in βR,∀R ∈ R, and the current set of paths CP as input and returns:

• CFS is a list of triplets where each triplet contains the information of a vehicle (first
element), a node (second element) and a time-step (third) element. Vehicles that are
unscheduled vehicle have only one triplet, as they do not change location. In contrast,
scheduled vehicles generate as many triplets as there are nodes in the paths forming the
routes the vehicles travel. In each triplet, the third elements indicates when the vehicle
reaches the node. The list is empty if, and only if, the problem is infeasible.

• C̄, the UnsatCore relative to constraints Eqs. 31-33 (see Section 5.3); this is empty if the
problem is feasible.

5.2 Paths changing problem

In the Paths Changing Problem, alternative paths are computed to connect the consecutive
tasks of each route. Finding alternative paths may be necessary when, for a given set of routes
R and starting times β, no feasible schedule exists. The Capacity Verification Problem may
be infeasible due to the current set of paths that connect the tasks’ locations, therefore a
different set may lead to a feasible solution. A route is defined as a sequence of tasks, and for
any two consecutive tasks there is a path (a sequence of edges) connecting them. Therefore,
for a route containing i + 1 tasks we will have i paths and for each path we can define a
start and an end node, ξi and πi , respectively. The sets of outgoing and incoming edges for
a certain node n are denoted On and In , respectively.

The decision variables used to build the SMT model of the Paths Changing Problem are:
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wRpn : Boolean variable that represents whether the pair p of route R is using node n;
zRpe: Boolean variable that represents whether the pair p of route R is using edge e;

This problem can be split into R · i sub-problems (assuming all routes have i + 1 tasks)
that find paths for each route separately; simpler and smaller models are faster to solve.
Unfortunately it may be necessary to explore different combinations of paths, so to retain the
information we have only one model. Therefore, let the set of all variables z be Z = {zRpe |
R ∈ R, p ∈ PR, e ∈ E} and let the optimal solution to the Path Changing Problem found at
iteration h be CP∗ = {z ∈ Z | z is True}. Finally, let PP∗ be the set containing the optimal
solutions found until the (h − 1)-th iteration. Note that it is possible to compute CP from
CP∗ and vice versa. Subsequently, it is possible to compute PP from PP∗ and vice versa.
The model is then:

min
R∈R, p∈PR , e∈E

∑
If(zRpe, |e|, 0) (34)

wRpξp ∧ wRpπp , ∀p ∈ PR, R ∈ R (35)
⊕

e∈Oξp

(zRpe, 1), ∀p ∈ PR, R ∈ R (36)

⊕

e∈Iξp

(zRpe, 1), ∀p ∈ PR, R ∈ R (37)

zRpe �⇒ ¬zRpē, ∀p ∈ PR, R ∈ R, e ∈ E (38)
∨

zRpe∈CP
¬zRpe, ∀CP ∈ PP∗ (39)

∧

n∈N ,
n �=ξp ,

n �=πp

If

(

wRpn,
⊕

e∈On

(zRpe, 1) ∧
⊕

e∈In

(zRpe, 1),
⊕

e∈On

(zRpe, 0) ∧
⊕

e∈In

(zRpe, 0)

)

,

∀p ∈ PR, R ∈ R (40)

The cost function Eq. 34 to minimize is the cumulative length of the used edges; Eq. 35
guarantees that, for each path of each route, the start and end nodes are used; Eqs. 36 and 37
make sure that exactly one outgoing (incoming) edge is incident with the start (end) node of a
route; Eq. 38 makes sure that a path is not allowed to use both an edge and its reverse; Eq. 39
rules out all the previously found solutions; finally, Eq. 40 guarantees that if a node (different
from the start or end) is selected, exactly one of its outgoing and one of its incoming edges
will be used. On the other hand, if a node is not used, none of its incident edges will be used.
Based on the model described above the algorithm PC is defined, that takes the previous
paths PP (from which PP∗ is computed) as input and returns a new set of paths NP. If and
only if the Paths Changing Problem is infeasible then NP = ∅.

5.3 Exploiting theMUC

Experiments reported in Roselli et al. (2022) show that ComSat performswell for many prob-
lem instances, however, for some specific instances ComSat failed to find feasible solutions
in reasonable time. Investigations revealed the PC to be the culprit. The reason is that the PC
searches blindly through the possible paths that connect any two tasks, while minimizing the
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paths’ cumulative length. A conflict-free solution may involve paths that are longer than the
current ones though, and the PC may have to explore many shorter solutions before finding
the longer one. Improving the performance of the PC would be beneficial for the overall
performance of ComSat, and letting theMUC guide the paths changing does indeed improve
the search in many cases, even though not all.

When extracting theMUC, it is possible to track specific constraints. This feature can be
exploited to focus only on the capacity constraints violations. In fact, since time windows
and service time are not flexible, it is of little to no use to track constraints represented by
Eqs. 27-30. Also, an infeasible formula ϕ may have multiple MUCs; in the CF-EVRP this
means that conflicts may arise at different locations in the plant. In order to catch all of them,
it is possible to iteratively relax the conflicting constraints from the initial formula and solve
it again, until it becomes feasible. The formula will indeed become feasible eventually, since
it is based on a feasible solutionR and only the capacity constraints can make it infeasible; in
the worst case all such constraints will be removed during the iterations. Note that, since not
all constraints are tracked, the set of constraints C̄ returned is not an actual UnsatCore, since
C̄ would only make the problem infeasible in conjunction with the untracked constraints.
Nonetheless, it provides the information about the conflicts needed to guide the search of
paths.

Let ϕ0 be the conjunction of constraints Eqs. 27-33. Assume that ϕ0 is infeasible, and let
C̄0 be the subset of aMUC retrieved by tracking constraints Eqs. 31-33. Then let ϕ1 = ϕ0\ C̄0,
also infeasible, and let C̄1 be the subset of aMUC retrieved by tracking constraints defined by
Eqs. 31-33, not including the ones in C̄0. In general, the constraints in C̄i−1 can be iteratively
relaxed to obtain a new formula ϕi , until a feasible ϕn = ϕ0 \ (C̄0 ∪ . . . ∪ C̄n−1) is found.
Then C̄ = C̄0 ∪ . . . ∪ C̄n−1 contains all the conflicts due to the capacity constraints.

Each constraint represented by Eqs. 31-33 is defined over two routes r1 and r2 and their
pairs p1 and p2 for a specific node/edge; therefore, based on the constraints in C̄, it is possible
to identify a sequence of nodes θcp1 ⊆ θp1 and/or edges δcp1 ⊆ δp1 where the conflict took
place. If the conflict was generated by a set of constraints from Eq. 31, then the following
constraint is added to Eqs. 34-39:

¬
⎛

⎜
⎝

∧

n∈θpc1

wr1 p1n

⎞

⎟
⎠ ∨ ¬

⎛

⎜
⎝

∧

n∈θpc2

wr2 p2n

⎞

⎟
⎠ . (41)

On the other hand, if the conflict was caused by a set of constraints from Eq. 32 or Eq. 33,
the following constraint is added to Eqs. 34-39:

¬
⎛

⎜
⎝

∧

e∈δpc1

zr1 p1e

⎞

⎟
⎠ ∨ ¬

⎛

⎜
⎝

∧

e∈ypc2
zr2 p2e

⎞

⎟
⎠ . (42)

Constraints Eqs. 41 and 42 force at least one of the routes involved in the conflict to
avoid at least one of the nodes (edges, respectively) that was involved in such conflict when
computing new paths. The constraint is formulated so that the choice of the route to change
is left to the solver, including the possibility of changing both routes; since the problem is
an optimization, the solver will choose the change that leads to the shortest cumulative paths
length.

Note that in our previouswork (Roselli et al. 2022) constraints Eqs. 41 and 42were slightly
different, forbidding all conflicting nodes and edges to be used by both routes. While this
would be a stronger restriction and could be more effective to find feasible paths, it can only
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work in some situations, e.g., when it is possible to completely change the path from one task
to another. For this reason we generalized the constraints so that they work for any instance
of the CF-EVRP.

Based on the model described by Eqs. 34-42, the function MUC-Guided-Paths-Changer
(GPC) is defined, that takes the previous paths PP and C̄ as input and returns a new set of
paths NP. If and only if the Paths Changing Problem is infeasible NP = ∅.

Since the constraints added to the GPC are based on the constraints in C̄, it is imperative
that the UnsatCore returned when the CV is infeasible is minimal. This is so because if the
UnsatCore is not minimal, it could contain constraints that are not actually causing capacity
conflicts. These constraints would in turn lead to defining constraints Eqs. 41 and 42 in the
GPC that may remove feasible solutions.

Figure 3 summarizes the steps required to find a conflict-free scheduleCFS, if such exists,
using the improved paths searching algorithm GPC. As mentioned, it is assumed that routes
R and their start times βr , ∀r ∈ R have already been computed. The shortest paths between
any two tasks are computed using Dijkstra’s algorithm and then set as the current paths CP.
Also, CP are added to the list of previous paths PP.

Then theCV will check such routes against the capacity constraints; if this sub-problemhas
a feasible solution the algorithm terminates and a conflict-free schedule is returned.Otherwise
C̄ is extracted as described in the previous paragraph and theGPC algorithm is invoked.GPC
will use the information about previously computed paths PP and the information about
conflicts from C̄ to compute new paths NP, which will be set as the current paths and stored
in PP. At this point the CV is run again using the new paths. The iterations between the two
algorithms continue until either the CV is feasible, or the GPC is infeasible, i.e., there are no
feasible, conflict-free paths to execute the routes R.

6 Proof of soundness and completeness

In this section, we provide proof of soundness and completeness ofComSat2 and S-ComSat.
Since soundness and completeness of the previous version ofComSat has already been proven

Fig. 3 Flowchart of the MUC-Guided-CFPS
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in Roselli et al. (2022), soundness and completeness of the new versions can be proven by
showing that:

• in the FRS, E-Router is able to enumerate all possible assignments that would originate
from calling Router and Assign;

• in theCFPS,GPC can enumerate at least asmany feasible solutions of thePathsChanging
Problem as PC.

Observation 1 All the problem classes presented in this work are decidable. This is true
because they are all combinations of decidable first-order theories and therefore the Nelson-
Oppen theory combination method (Tinelli and Harandi 1996) applies. In fact the Routing
and E-Routing problems are a combination of linear arithmetic and propositional logic,
the Assignment Problem and the Capacity Verification Problem all fall into the category
of difference logic (a fragment of linear arithmetic), and the Paths Changing Problem is a
propositional logic problem.

Observation 2 The optimization problems solved in ComSat, i.e., theRouting andE-Routing
problems, and the Paths Changing Problem, are bounded. The Routing and E-Routing prob-
lems involve a finite number of decision variables that are either integers with a finite domain
({0, 1}), or non-negative reals and the objective is minimization, with an objective function
involving only non-negative coefficients. The Paths Changing Problem involves only a finite
number of Boolean variables, so the problem domain is finite.

6.1 Soundness and completeness of the FRS

In order to prove soundness and completeness of S-ComSat we are going to show that
E-Router can compute the same solutions to the FRS as the combination of Routing and
Assignment problems.

Lemma 1 The FRS has a finite number of feasible solutions.

Proof By the definition of route given in Section 3, a route contains an ordered set of unique
tasks from K. Also, a route must start and end at the same depot, and may include up to |K|
dummy tasks representing charging events at the depots. If we do not consider D, a set of
routesR to execute all tasks in K is a partition of K. The number of partitions of the setK is
the Bell Number (Comtet 1974), B|K| < ∞. Given |D| depots, in the worst case, there may
be 2|D| combinations of depots and partitions of K. Also, for each of these combinations,
there can be a any number of extra visits, between 0 and |K|, to the depots for charging.
Finally, for each solution to the Routing Problem, there can be as much as 2|V| assignments
to vehicles. Therefore, there may be B|K| · 2|D| · |D| · 2|V| < ∞ solutions to a FRS with |K|
tasks, |V| vehicles, and |D| depots, assuming that for each depot there can be |K| charging
stations. ��
Lemma 2 Repeated calls to E-Router will enumerate all feasible solutions before returning
infeasible.

Proof Let ϕ0 be a conjunction of the constraints Eqs. 7-26, and let A0 be a solution to ϕ0.
Then, if another solution A1 for ϕ0 exists, it can be found by solving ϕ0 ∧ ¬A0 = ϕ1. In
general, the n-th solution can be found by solving ϕ0 ∧ ¬A0 ∧ . . . ∧ ¬An−1 = ϕn . Because
of Lemma 1, we know that the number of solutions to ϕ, i.e., S(ϕ) < ∞ and we enumerate
all by solving ϕ0, . . . , ϕS(ϕ)−1. ��
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Observation 3 Following the same reasoning used in Lemma 2, Routing and Assign together
can enumerate all feasible solutions to the FRS before returning infeasible, since the number
of route setsR to serve a set of tasks K is finite (Lemma 1) and so is the number of vehicles
that can be assigned to them.

One important difference between theRouting andE-Routing problem is constraint Eq. 21
that allows atmost one route to be assigned to a vehicle. This so since in theE-RoutingProblem
vehicles are allowed to go back to the depot to recharge,while in theRoutingProblem vehicles
can be assigned multiple routes and the battery recharge is performed in between routes and
handled by Assign. On the other hand, in the Routing Problem a route’s length cannot exceed
the operating range of the vehicle, since charging is not included. For instance, let us assume
ComSat is solving an instance of the CF-EVRP; it calls Router which would compute the
routes R1 = 〈sd , k1, . . . , ki , fd〉, and R2 = 〈sd , ki+1, . . . , k j , fd〉 both only executable by
vehicle v, available in the fleet. Now let us assume that the time windows of tasks k1, . . . , k j
are all [0,T] and T is large enough so that Assign is able to assign vehicle v to both routes.
If the same instance of the CF-EVRP was to be solved by S-ComSat, a call to E-Router
may compute the route R1 = 〈sd , k1, . . . , ki , zd , ki+1, . . . , k j , fd〉 and directly assign R1 to
vehicle v. Therefore Router + Assign can compute the same solution that E-Router would
compute and vice versa. Let us now generalize this concept to any solution.

Lemma 3 Router + Assign can compute any solution that E-Router would compute.

Proof Trivially, if tasks can be served without having to recharge, Router computes the same
routes as E-Router. Otherwise, an assignment computed by E-Router may look like (v, R1)

with R1 = 〈sd , k1, . . . , ki , zd , ki+1, . . . , k j , fd〉 with a length exceeding the operating range
ψ , since charging can be performed at the depot d . The route can be divided into as many
routes as charging tasks included in the route, i.e., R2 = 〈sd , k1, . . . , ki , fd〉, and R3 =
〈sd , ki+1, . . . , k j , fd〉. The resulting routes are disjoint subsets of K of length shorter than
the vehicle’s operating range. Hence they can form a solution computed byRouter. Moreover,
since R1 is computed by E-Router, R2 and R3 can be assigned to one vehicle, namely v;
hence (v, R2) ∧ (v, R3) can form a solution computed by Assign. ��
Lemma 4 E-Router can compute any solution that Router + Assign would compute.

Proof Trivially, if tasks can be served without having to recharge, E-Router computes
the same assignment as Assign to the routes computed by Router. Otherwise, if two
routes starting at the same depot d are assigned to the same vehicle v, they look like
R2 = 〈sd , k1, . . . , ki , fd〉, and R3 = 〈sd , ki+1, . . . , k j , fd〉. Since the length of each of
these is at most as long as the operating range of vehicle v, they could be merged into a single
route R1 = 〈sd , k1, . . . , ki , zd , ki+1, . . . , k j , fd〉. This can be true for an arbitrary number of
routes that are assigned the same vehicle. Moreover, since they were both assigned the same
vehicle, it means that v has enough time to recharge its battery in between the execution of
the routes. Therefore (v, R1) = 〈sd , k1, . . . , ki , zd , ki+1, . . . , k j , fd〉) can be computed by
E-Router. ��
Theorem 1 S-ComSat in Fig. 2 is sound and complete.

Proof Because of Lemmas 3 and 4, any solution to the FRS computed by one method, can
be computed by the other. Thus, since ComSat is sound and complete (Roselli et al. 2022),
so is S-ComSat. ��
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6.2 Soundness and completeness of ComSat2

The proof for soundness and completeness of the CFPS builds on the following. There exists
a finite number of solutions to the Paths Changing Problem; the GPC can enumerate at least
all feasible solutions to the Paths Changing Problem; if a solution that satisfies the Capacity
Constraints does exist, the GPC will eventually find it, otherwise it will declare the problem
infeasible.

Let S be the set of possible solutions to a Paths Changing Problem; divide S into the set
of conflict-free solutionsF and the set of conflicting solutions U . In other words, a solution to
the Paths Changing Problem from F will make the Capacity Verification Problem feasible,
while a solution from U will not. If the CFPS is infeasible, then S = U and F = ∅.

In case the CFPS is feasible, though, in order to prove completeness it is necessary to
guarantee that at least all feasible solutions F can be found by GPC. This is proven for
the PC, since each call of the PC function will find the next optimal solution to the Paths
Changing Problem, whether it belongs to F or not, until all solutions have been enumerated.
However, in the GPC there are additional constraints that may remove feasible solutions. In
the proof below it is shown that such additional constraints only remove infeasible solutions.

Observation 4 Given a finite, directed, weighted graph, the number of paths that connect two
arbitrary nodes is finite.

Proof By definition, a path is an ordered set of nodes such that no node appears more than
once. If the number of nodes in the graph is finite, there cannot be an infinite number of
paths. ��
Lemma 5 For a given set of routesR and start times in β, repeated calls to the PC function
will enumerate all feasible solutions to the Paths Changing Problem, either belonging to F
or U , before returning infeasible.

Proof Let ϕ0 be the conjunction of constraints Eqs. 35-40, a relaxation of the Paths Changing
Problem, and let CP0 be a solution to ϕ0. Then, if another solution CP1 for ϕ0 exists, it can
be found by solving ϕ0 ∧ ¬CP0 = ϕ1. In general, the n-th solution can be found by solving
ϕ0 ∧ ¬CP0 ∧ . . . ∧ ¬CPn−1 = ϕn . Because of Lemma 4, we know that the number of
solutions to the Paths Changing Problem, | S |, is finite and we can enumerate them all by
solving ϕ0, . . . , ϕ|S|−1. ��
Lemma 6 Using the PC and CV is a sound and complete procedure to solve the CFPS.

Proof Because of Observation 4 we know there is a finite number of solutions to the Paths
Changing Problem, and because of Lemma 5 we know that the PC function can enumerate
them all. If a solution that belongs to F exists, the PC will find it, otherwise it will return all
solutions belonging to U ; the CV will then check whether they are conflict-free. Therefore,
using the PC and CV in combination will correctly solve the CFPS. ��
Lemma 7 For a given set of routes R, the GPC is able to find at least all solutions in F .

Proof For each set of current paths CP, C̄ only contains constraints defined by Eqs. 31, 32,
and 33. The constraints in C̄ are iteratively retrieved from UnsatCores that are minimal and
thus represent combinations of nodes and edges that are actually involved in conflicts. Since
the constraints defined by Eqs. 41 and 42 address the constraints from C̄, Eqs. 41 and 42
only define constraints over nodes or edges that cause conflicts. Hence these constraints only
remove solutions of the Paths Changing Problem that belong to U . ��
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Theorem 2 Using the GPC and CV is a sound and complete procedure to solve the CFPS.

Proof The PC and the GPC are identical, except for constraints Eqs. 41-42, and because of
Lemma 7, we know that the addition of these constraints only removes solutions from U .
Thus, since the CFPS using the PC is sound and complete (Lemma 6), so is the CFPS using
the GPC. ��

7 Experiments

To evaluate the efficacy ofComSat2 and S-ComSat, as well as to compare their performance
withComSat1, problem instances are designed and used for testing. The algorithms called by
ComSat used the SMT solver Z3 4.11.2 and theMILP solver (Gurobi 2023) 9.1.2 to compute
solutions to the sub-problems the CF-EVRP is decomposed into. All the experiments2 were
performed on an Intel Core i7 6700K, 4.0 GHZ, 32GB RAM running Ubuntu-18.04 LTS.

The first set of experiments is run over one of the benchmark sets of the CF-EVRP
presented in Roselli et al. (2022). Instances are characterized by the following parameters:

• NVK indicates the number of nodes N in the graph that represents the plant layout, the
number of vehicles V, and the number of tasks K ;

• Nodes Connection refers to the connectivity of the graph. The graph in the instances is
grid-like (e.g. for N = 15 the graph is a 3 × 5 grid) and the value of Node Connection
100 means that all edges needed to form a grid (in both directions, e.g. from Node 1 to
Node 2 and from Node 2 to Node 1) are present. For a Node Connection value of 90, ten
percent of the edges are removed from the original graph, and for a Node Connection
value of 80, twenty percent of edges are removed. In both cases edges are removed so
that the graph remains connected;

• the time horizon T ;
• a Seed connected to the random generation of parameters such as tasks location, time
windows, charging coefficients and operating range.

In this test, the overall running time for termination is compared for ComSat1, ComSat2,
and S-ComSat. In the evaluation, the number of calls of Router and E-Router is also con-
sidered. Repeated calls to Router might be necessary for two reasons; either the Assignment
Problem is infeasible, or the Capacity Verification Problem is. Conversly, when repeated
calls of E-Router are made, it is solely because the previous ones rendered the Capacity Ver-
ification Problem infeasible. The maximum number of routes is capped at 200; if a solution
is not found or infeasibility is not confirmed by the 200th call of Router (or E-Router), the
instance is declared unknown. A total of 180 instances is generated combining NVK values
of 15-3-10 and 25-4-14, Nodes Connection values of 100, 90, and 80, and T values of 20,
25, 30, 40, 50, and 60. For each combination of these values, five instances are generated
using different seeds. Table 1 shows, for each combination of parameters, calculated over
the five instances with different seeds, the number of them that where feasible (or infeasible,
respectively), the average solving time in seconds for both the feasible and the infeasible
instances, and the average number of Router (or E-Router) calls for both the feasible and
the infeasible instances. It is important to note that the average values for solving time and
the number of calls to Router (or E-Router) are calculated only over the instances that were
actually solved, not the unknown ones.

2 The implementation of the models presented in Sections 4 and 5, and the problem instances are available at
https://github.com/sabinoroselli/VRP.git.
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The results show that, for each category of instances, ComSat2 is able to solve more
instances than ComSat1. For the infeasible instances, this often leads to a higher number
of R.Calls and a longer average solving time for ComSat2, since the harder instances are
simply not solved byComSat1 and therefore not counted in. On the other hand,ComSat1 and
ComSat2 can solve roughly the same number of feasible instances, but ComSat1 requires
a larger number of R.Calls and, therefore, a longer solving time. It is also possible to see
a correlation between the solving time and the number of R.Calls for both ComSat1 and
ComSat2. The time required for a single iteration of ComSat2 is generally longer compared
to ComSat1, but since the number iterations required is smaller, its overall performance is
better.

On the other hand, S-ComSat could solve all instances from all categories except five
in less than one second. The categories in which the overall execution took longer than one
second are the ones that requiredmore than one call ofE-Router. Hence, merging theRouting
and Assignment problems into one and solving this problem using E-Router is the preferred
choice in terms of solving time. Moreover, it is interesting to note that the computation time
saved is not only due to a limited number of calls of E-Router compared to Router. In fact,
even when comparing the time required for one call, E-Router’s solving time is in the same
order of magnitude as Router.

Overall, ComSat1 is able to solve 109 instances, with an average time of about 1 second
for the feasible instances, 0.1 second for the infeasible ones, and 46 seconds for the unknown
ones; on the other hand, ComSat2 is able to solve 168 instances, taking on average about
half a second for the feasible instances, 1.78 seconds for the infeasible ones, and about 350
seconds for the unknown ones; finally S-ComSat is able to solve all 180 instances, taking
about 0.3 seconds for the feasible ones and 0.1 seconds for the infeasible ones. Table 2 shows
the results discussed in this paragraph. Note that the geometric mean is used instead of the
arithmetic mean in order to get rid of biases due to outliers.

Aside for the previously described benchmark sets, we have also tested S-ComSat on
randomly generated, increasingly larger instances, in order to evaluate its scalability. The
largest generated instance had NVK equal to 200-30-50. Of course, different instances of
the same size may require different solving time, but the solving time of the sub-problems
can still provide insights on scalability. Of the three sub-problems, E-Router is the least
sensitive to the increase in the instance size, while the CapacityVerifier and especially the
Paths-Changer become significantly slower as the problem sizes grow. Already for problems
withNVK equal to 100-15-25 a Paths-Changer call can take over a minute. AboveNVK 150-
20-30 also a single call of CapacityVerifier takes on average one minute, and for the largest
instances even the solving time of E-Router is measured in minutes. Overall, if S-ComSat

Table 2 Comparison of ComSat1, ComSat2, and S-ComSat average solving time (in seconds) and number
of instances solved, after sorting the instances according to their feasiblity

ComSat1 ComSat2 S-ComSat

# Instances Sol. Time # Instances Sol. Time # Instances Sol. Time

Feasible 71 1.10 77 0.47 77 0.31

Infeasible 38 0.08 91 1.78 103 0.19

Unknown 71 46.55 12 359.23 0 -
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does not require several iterations through the sub-problems to find a solution, it can solve
instances with hundreds of nodes and tens of vehicles and tasks within a fewminutes, at most.
When iterations are required, the Paths-Changer remains the bottleneck of the algorithm,
especially when the problem instance involves a large graph.

In the second set of experiments, the goal is to compare the search for alternative paths,
therefore additional instances are designed in such a way that there is only one feasible set of
routes R to execute the tasks and the shortest paths to execute the routes cause infeasibility
of the Capacity Verification Problem.

Table 3 shows the results of the evaluation of five problem instances of the CF-EVRP
solved using ComSat1. Each instance was solved three times, once using the PC, once
using the GPC as defined in Roselli et al. (2022), henceforth called GPC∗, and once using
the GPC as described in this work; in each case, the number of iterations and the time (in
seconds) required to find a feasible solution is reported. The problem instances presented
are increasingly hard to solve, in terms of plant size (represented by the number of nodes),
number of routes, and number of tasks in each route. The tasks’ locations and time windows
are set so that conflicts will arise due to the capacity constraints when the shortest paths
are used and a search for alternative paths will be necessary in order to find a conflict-free
schedule.

Results from Roselli et al. (2022) differ from the results of Table 3 in terms of running
time for theGPC∗ and both running time and the number of iterations for the PC. We believe
this to be related to using a different version of Z3 (4.8.9 in Roselli et al. (2022)) since the
implementation and computer used in both cases are the same. For this reason, in order to
make a fair comparison, we solved all instances again.

When solving instances 1 through 4 GPC takes less time and fewer iterations than PC.
However, for instance 5, PC can find a solution in only five iterations and 69 seconds, while
GPC takes 23 iterations and 353 seconds. GPC∗ is able to solve all instances in only one
iteration.Moreover, it seems that the additional constraints inGPC∗ slow down the search for
a solution to the Paths Changing Problem, whereas forGPC there is no noticeable difference
in the time required for one iteration, compared to PC.

These results do not come unexpectedly.GPC∗ has strong restrictions on nodes and edges
that routes can use since each node/edge involved in a conflict must be avoided by one of the
two routes that use it. Hence it may be hard to find a feasible solution and it takes a longer

Table 3 Comparison of the PC and GPC over a set of instances of the CF-EVRP

Inst. |N | |R| |K| Iterations Time

PC GPC∗ GPC PC GPC∗ GPC

1 3 2 4 2 1 1 0.12 0.08 0.07

2 8 3 6 8 1 5 1.18 0.26 0.4

3 5 4 8 53 1 25 6.15 0.53 2.71

4 64 4 28 12 1 6 177.56 96.06 92.14

5 64 4 28 5 1 23 69.05 68.92 353.03

For each instance, the number of iterations and the total running time (in seconds) required to find a feasible
solution are reported
The bold entries are used to highlight the best results for each category
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time to do so. On the other hand,GPC does not have such strong restrictions, and the solving
time for one iteration is barely affected by the additional constraints when compared to PC.
In turn, because of the less restrictive constraints, it takes more iterations to find feasible
solutions. Instance 5 shows that GPC may fail to reduce the number of iterations compared
to PC.

On the other hand, GPC is guaranteed to find a feasible solution, if such exists, for any
instance of the CF-EVRP, while GPC∗ only works if it is possible to avoid all edges/nodes
involved in a conflict. In general, GPC∗ might be useful for graphs with high connectivity,
where a different path can likely be found; unfortunately, determining beforehand whether a
graph is suitable for GPC∗ might be a hard problem itself.

8 Conclusion

In this paper, we presented improvements on the compositional algorithm ComSat, first
presented in Roselli et al. (2022). The algorithm is designed to solve instances of the CF-
EVRP (Roselli et al. 2021), a vehicle routing problem involving capacity constraints on
the road segments and vehicles’ limited operating range. Our previous work on the topic
highlighted bottlenecks in ComSat that, for some problem instances, led to relatively long
solving time. These bottlenecks are the Feasible Routes Search (FRS), performed through
iterations between the algorithms Router and Assign within ComSat, and the Conflict-Free
Paths Search (CFPS), performed through iterations between the PC and CV algorithms.

For the FRS, we introduced a new version of Router including a tighter constraint to rule
out previous solutions, as well as a new algorithm that deals with routing and assignment,
i.e., FRS, simultaneously. For the CFPS, we presented new versions of PC and CV that
make use of the Unsat Cores to guide the search for feasible paths. We proved soundness
and completeness of the different versions of ComSat originating from replacing the existing
algorithms with the ones presented in this work.

We also compared the performance of the proposed algorithms that form part of ComSat,
to the previous ones presented in Roselli et al. (2022). For the FRS, both ComSat2 and
S-ComSat outperformed ComSat1, with S-ComSat being the fastest, sometimes by more
than one order of magnitude. For the CFPS, the GPC needed fewer iterations and less time
than the PC to find conflict-free paths in four cases out of five. In comparison, the previous
version of the GPC presented in Roselli et al. (2022) shows a stronger impact on reducing
the number of iterations, although it is not always guaranteed to return feasible solutions, if
such exist. In conclusion, this method for the CFPS shows potential, but further investigation
is needed to assess its actual effectiveness.
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