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Abstract

Plenty of computer vision applications involve assessing the position and orientation,
i.e. the pose, of one or several cameras, including object pose estimation, visual
localization, and structure-from-motion. Traditionally, such problems have often
been addressed by detection, extraction, and matching of image keypoints, using
handcrafted local image features such as the scale-invariant feature transform (SIFT),
followed by robust fitting and / or optimization to determine the unknown camera
pose(s). Learning-based models have the advantage that the they can learn from
data what cues or patterns are relevant for the task, beyond the imagination of the
engineer. However, compared with 2D vision tasks such as image classification and
object detection, applying machine learning models to 3D vision tasks such as pose
estimation has proven to be more challenging.

In this thesis, I explore pose estimation methods based on machine learning and
optimization, from the aspects of quality, robustness, and efficiency. First, an efficient
and powerful graph attention network model for learning structure-from-motion is pre-
sented, taking image point tracks as input. Generalization capabilities to novel scenes
is then demonstrated, without costly fine-tuning of network parameters. Combined
with bundle adjustment, accurate reconstructions are acquired, significantly faster than
off-the-shelf incremental structure-from-motion pipelines. Second, techniques are
presented for improving the equivariance properties of convolutional neural network
models carrying out pose estimation, either by intentionally applying radial distortion
to images to reduce perspective effects, or via a geometrically sound data augmen-
tation scheme corresponding to camera motion. Next, the power and limitations of
semidefinite relaxations of pose optimization problems are explored, notably leading
to the conclusion that absolute camera pose estimation is not necessarily solvable
using the considered semidefinite relaxations, since while they tend to almost always
be tight in practice, counter-examples do indeed exist. Finally, a rendering-based
object pose refinement method is presented, robust to partial occlusion due to its
implicit nature, followed by a method for long-term visual localization, leveraging
on a semantic segmentation model to increase the robustness by promoting semantic
consistency of sampled point correspondences.

Keywords: Camera pose estimation, structure-from-motion, machine learning,
optimization.
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CHAPTER 1

Introduction

Key to human perception is vision, that is, the ability of observing and navigating the
world around us through rays of light imaged on the retinas of our eyes. Much effort
has been put into understanding the processes involved and attempting to replicate
them artificially, enabling robots and machines to see as well. The sensory part of the
problem, image capture, has to a great extent been resolved by the art of photography,
pioneered by Joseph Nicéphore Niépce and his photograph View from the Window
at Le Gras taken in 1826 (Figure 1.1). Succeeding the sensory problem comes the
problem of perception, that is, the ability to understand the contents and meaning
of an image by extracting higher-level information from its raw data, which in itself
is nothing more than a spatial distribution of light intensity and color. The field of
computer vision, sometimes referred to as ‘inverse computer graphics’, has since the
1960s led researchers to take on the challenges of visual perception, constructing
models to infer properties such as semantics and 3D geometry from image data.

Later on came the deep learning era, revolutionizing many computer vision chal-
lenges by the introduction of learned models such as convolutional neural networks
(CNNs) [2], [3] – most prominently semantic tasks such as image classification.
However, learning 3D vision tasks such as camera pose estimation has proven more
challenging, and is still actively researched. The pose of a camera can be characterized
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Chapter 1 Introduction

Figure 1.1: View from the Window at Le Gras (1826), the earliest known photograph to survive
until this day. Image source: [1].

as its position and orientation, and estimating it involves geometrical reasoning, which
is not always easy to learn with a black box model. One way to handle this is to
divide the task into separate modules carrying out sub-tasks of lower complexity,
some or all of which may be learned. Examples of such sub-problems are detection,
extraction, or matching of sparse or dense local image features. Another example is
object detection.

For many years in the last decade, CNN model architectures dominated the field, and
were applied almost universally on a plethora of vision tasks. More recently, attention-
based architectures such as the Transformer [4] have been widely proposed, beyond
their initial success in natural language processing (NLP), and with immpressive
results. In fact, computer vision is one of the major applications other than NLP,
and attention-based architectures such as the Vision Transformer (ViT) [5], Swin
Transformer [6], and Masked Autoencoder (MAE) [7] have shown great promise. In
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NLP, transformer-based large language models such as ChatGPT [8] have dramatically
shifted the common expectation of what machine learning at scale can achieve, among
the public and academia alike. Another recent deep learning research trend – denoising
diffusion models – has also shown remarkable results in image generation, not the
least when combined with language models to perform tasks such as text-to-image
generation [9], [10], which is also how the cover page illustration of this thesis
was conceived. In fact, aside from their impressive performance, one of the main
advantages of transformer-like architectures is their flexibility. Unlike CNNs, which
are inherently associated with feature processing on grids, transformers can operate
more seamlessly on data from diverse domains, by means of cross-attention [4].
Nevertheless, the translation equivariant CNN model provides a powerful inductive
bias in many contexts, and can be more efficient than transformers, both in terms of
memory, computation, and capability of generalization from small amounts of training
data. CNNs are often used as a low-level feature extractor for the tokenization of
vision transformers.

From a more traditional viewpoint, 3D vision tasks such as various forms of camera
pose estimation can often be posed as an optimization problem. These problems are
however not convex, one reason being that the constraint set of pose optimization
involves restriction to the rotation manifold. While iterative optimization methods
can converge to local optima, there is therefore no guarantee that the solution is
globally optimal. Convex relaxations can be employed to solve an easier convex
optimization problem, called a relaxation, which for very special problem settings
(e.g. point cloud registration with unit quaternion parameterization) or when the noise
level is limited, come with global optimality guarantees. Sometimes, it is feasible
to characterize every local optimum, by solving systems of polynomial equations
corresponding to the first-order optimality conditions, leading to multiple candidates
for the global optimum, all of which one can compare to determine the best one(s),
see e.g. [11]–[13].

In this thesis, I focus on camera pose estimation and explore pose estimation
methods based on machine learning as well as optimization, with a primary focus on
the former. The methods are explored in three different aspects:

1. Quality

2. Robustness

3. Efficiency

5



Chapter 1 Introduction

1.1 Thesis Outline

The thesis consists of two parts. In Part II, five research papers, which constitute
the thesis contributions, are included in reverse chronological order. Part I consists
of five chapters, where this introduction is followed by Chapter 2, providing some
fundamental background on deep learning and geometry. Chapter 3 proceeds to
present the camera pose estimation problems considered in the contributions, while
discussing various tools and techniques relevant for solving them. Chapter 4 then
presents the thesis contributions, by giving a summary of each of the included articles,
before proceeding to the conclusions in Chapter 5.

1.2 Notation

This section describes the mathematical notation used in Part I of the thesis. Plain
letters, e.g. x, y, z, λ are denote scalar variables, while boldface letters, e.g. x,v,
are used to denote vectors, or, when capitalized, matrices, e.g. P,X,R. Vectors of
homogeneous coordinates are denoted with bars, e.g. x̄, ȳ, z̄. In context of matrix-
vector multiplications, vectors are in general regarded as single-column matrices.
Vector or matrix subscripts are used to extract individual elements, while matrix
superscripts, e.g. P3 or P1:2 are used to extract a row or range of rows, stacked
column-wise.

6



CHAPTER 2

Background

In this chapter, I present some fundamental background in machine learning and
geometry of relevance to the thesis, including neural network architectures, their
equivariance properties, representations of three-dimensional rotations, and projective
geometry preliminaries.

2.1 Deep Learning

A recurring theme of this thesis is machine learning, which regards the development
of algorithms to perform tasks without explicit instructions. Unlike unsupervised
learning techniques such as clustering algorithms and autoencoders, in this thesis,
supervised learning is utilized to learn to estimate camera pose in various ways. In
supervised learning, a parameterized model is trained, i.e. guided or tuned, to perform
a task based on its performance on an annotated set of training images. In computer
vision, examples of such tasks can be image classification, semantic segmentation,
object detection, optical flow estimation, or even 3D inference tasks such as object
pose estimation, visual localization and structure-from-motion.

In order to train the model, a loss function is defined and minimized w.r.t. the
parameters. The loss function may for instance be cross-entropy for classification

7



Chapter 2 Background

tasks, or squared errors for regression tasks. If fθ(x) is the output of a parameterized
model fθ applied on an input x, let l(fθ(x),y) be the loss function comparing
the predicted output with the ground-truth value y. Training the model amounts
to minimizing the average loss on an entire training set of input samples xi, i =
1, . . . , N and corresponding ground-truth outputs a.k.a. target values yi. Regarded
as an optimization problem, this minimization is in general non-trivial, but often
works well if using suitable model architectures, e.g. artificial neural networks, and
appropriate optimization methods such as stochastic gradient descent (SGD) and its
many derivatives. SGD-like optimizers are first order methods which, instead of
calculating the full gradient of the entire loss function, takes only one or a few training
samples into account at each iteration, replacing the actual gradient with the gradient
of the corresponding truncated loss. In addition to accelerating the optimization by
speeding up each iteration, stochastic optimization methods are less prone to getting
stuck at suboptimal local minima [14].

Unfortunately, even if the loss function has been minimized on the training set,
there are still no guarantees that the model acquired will generalize well to novel
examples, which, of course, is the ultimate goal of the entire endeavor. The problem
is known as overfitting, and for this reason a separate set of annotated samples should
always be left out from training and dedicated solely to validating the model’s ability
to generalize. If one faces too much overfitting, one may need to acquire more training
data, apply data augmentation, use models with suitable inductive biases, or apply
regularization techniques.

In the rest of this section, selected model architectures of particular importance
for the thesis contributions will be presented. They all belong to the deep learning
paradigm, that is, they all belong to the broad class of machine learning model
architectures known as deep neural networks, i.e. multi-layer artificial neural networks.
Artificial neural networks were pioneered many years ago, notably by the biologically
inspired Perceptron [15] in the 1960s, but not until the last 10 to 15 years has their
remarkable potential been made undisputably evident by the deep learning revolution.
The general idea of deep neural networks is to stack so-called ‘linear’ layers (more
precisely, learned affine transformations) and to interleave them with non-linear so-
called activation functions, inspired by the synapses of our brains, typically applied
in an element-wise fashion. Each layer then consists of a number of features, which
we call ‘activations’. When a deep architecture is fitted to data, the typical behavior
is that early layers capture simple features, while deeper layers allow for increasing
levels of abstraction [16]. The neural network architecture holds universal function
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2.1 Deep Learning

approximation properties [17], [18].
Several factors have led up to the deep learning revolution, including the rise of

general-purpose computing on graphics processing units (GPGPU) and the increasing
availability of large amounts of annotated data. Architectural innovations have also
been important facilitators for training deep architectures, in particular improved
gradient flow via activation functions like the Rectified Linear Unit (ReLU) [19]–[21],
and furthermore by residual connections [22] later on.

Convolutional Neural Networks

One of the biggest success stories for machine learning in computer vision has been
the convolutional neural network (CNN) [2], [3], [16]. Explained in simple terms,
if a regular so-called ‘vanilla’ feedforward neural network works on feature vectors
and consists of stacked linear layers (interleaved with non-linear activation functions),
a CNN works on feature maps and replaces the linear layers with convolutional
layers. A feature map is simply a rasterized image, i.e. a grid, typically with multiple
channels, and every layer in a CNN holds its activations in such a feature map. Similar
to how a linear layer propagates information from one layer to the next by multiplying
an input feature vector with a learned weight matrix, a convolutional layer carries out
convolution between an input feature map and learned spatial filtersa, often of very
limited extent for sake of efficiency. Unlike vanilla neural networks, for CNNs it is
the feature maps, not the parameters, that dominate the memory consumption. Thus,
in order to limit the memory as well as computational demand, it is common practice
to gradually downsample the feature maps.

Group Equivariance

Except for boundary effects, the convolutional layers carried out in CNNs hold the
property of translation equivariance. That is, if f is a convolutional layer applied on
a feature map X (where boundary effects are disregarded by letting X be infinitely
defined), then f(TtX) = Ttf(X), where the operator Tt carries out translation by
t. In other words, convolution commutes with translation, which is a well-known
result. What this means for us in practice is that CNN models generalize what they
have learnt – beyond the training images themselves also to shifted versions. In

aEach channel of the output feature map is the result of convolution with a unique corresponding filter.
Furthermore, each of these filters is vector-valued, and, rather than multiplications, carries out scalar
products across the input feature map channels before summing up the filter response.
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contrast, direct application of a vanilla neural network on an input image requires
flattening all pixels to a vector representation, essentially disregarding the spatial
structure, typically leading to high sensitivity and poor generalization [16]. If there
are symmetries in the data that can be described reasonably well by translations, a
CNN will therefore provide a more efficient learner.

While a translation can be intuitively understood as uniformly shifting spatially
distributed data, the set of all translations also constitutes a group, and with this point
of view the translation equivariance is a particular instance of group equivariance,
meaning that the equivariant function commutes with so-called group action for any
element of the group in question. Without going into too much detail (for more
information see e.g. [23]), just as group elements can be multiplied with each other,
one may also define the action of a group element (e.g. a particular translation) on the
domain on which the data is defined, e.g. a grid. The domain is often considered as a
vector space or a subset of a vector space, and the group action is represented by a
matrix-vector multiplication with invertible matrices, known as the representation of
the group. Thus, equivariance can be defined for many different groups and domains,
e.g. any matrix group acting on a vector space. For instance, by imposing certain
restrictions on the matrix structure, convolution as well as translation can be regarded
as matrix-vector multiplication (albeit, strictly speaking on a vector space of infinite
dimension to avoid boundary effects).

While still a growing research field, there are already concrete examples of group
convolutional neural network models beyond standard CNNs for more exotic groups,
for instance roto-translations with discrete rotations [24] or even continuous rigid
planar motion (SE(2)) using steerable filters [25]. Another group worth mentioning
is the symmetric group Sn, as equivariance w.r.t. this group, i.e. permutation equivari-
ance, is a very beneficial property for machine learning models that process unordered
sets of points, see e.g. Deep Sets [26].

The Attention Mechanism and Transformers

Another family of permutation equivariant neural network models are attention ar-
chitectures, the most famous example being the Transformer [4]. The attention
mechanism is a technique used to define neural network layers which dynamically
‘attend’ to varying degree to different so-called ‘tokens’, which can be thought of as
symbols or points, or in particular architectures as nodes in a graph neural network
(see the following section). In recent years, not only have attention models such
as [5]–[7] challenged the conventional CNN backbone models for image classification

10
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and other computer vision tasks, attention models are also the fundamental architec-
tural building block of the large language models of today, which have demonstrated
performance beyond anticipation (e.g. [8]).

In an attention layer, information is propagated by the same logic from each input
token using shared network parameters, which is what provides the permutation
equivariance. While this may sometimes be a very desirable property, for many
scenarios it is actually intentionally circumvented by augmenting the features of the
tokens with so-called positional encodings. This is common practice for language
models as well as vision transformers, since in both cases there are natural spatial
relationships between the tokens, not to be ignored. Attention layers deviate from the
otherwise common practice of using linear layers interleaved with point-wise non-
linear activation functions, as they are neither linear nor merely point-wise non-linear.
I believe that this contributes to their power.

Graph Neural Networks

Finally, another family of deep learning architectures of relevance to this thesis are
the Graph Neural Networks (GNNs). This term is relatively broad, and thus there
are many flavors of GNN model architectures in the literature, see e.g. [23], [27] for
examples.

A relatively general formalization of graph neural networks is the Message-Passing
Neural Network (MPNN) [28], [29], which is built upon the following feature aggre-
gation layer:

ht+1
u = ϕ

(
ht

u,
⊕

v∈Nu

ψ(ht
u,ht

v)
)
, (2.1)

where
⊕

is a permutation-invariant function (e.g. summation), hu are the target node
features, and hv are the features of the source nodes v ∈ Nu, neighboring u. The
functions ϕ and ψ are learned in general, commonly using linear layers or shallow
feedforward neural networks. Furthermore, edge features euv may also be passed
as an additional argument to ψ, and possibly the edge features themselves may be
updated similarly to the node features [28]. A message-passing layer is permutation-
invariant in the sense that information is aggregated in an identical manner from each
of the neighbors.

Another type of powerful GNN layer also incorporates the attention mechanism
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discussed in the previous section, and can be defined as follows:

ht+1
u = ϕ

(
ht

u,
⊕

v∈Nu

αuvψ(ht
v)
)
, (2.2)

where

αuv = exp(a(ht
u,ht

v))∑
w∈Nu

exp(a(ht
u,ht

w)) (2.3)

are softmax-normalized attention weights determined by a learned function a(ht
u,ht

v).

2.2 Three-Dimensional Rotations

In order to represent camera orientation, we define it as the relative rotation between
a camera reference frame and a global reference frame. There are, however, a few
different ways to represent a 3D rotation. A classic representation is with so-called
Euler angles, i.e. a sequence of three angles corresponding to a set of three chained
rotations about some predetermined axes. Alternatively, a single axis is enough
if the axis is not fixed, leading to the so-called axis-angle representation, which
represents any rotation as an angular displacement α about an axis of revolution
v, |v| = 1. Consequently, the scalar-vector multiplication αv provides a compact
3-parameter representation of the rotation. Furthermore, the axis of revolution is
uniquely determined, save for singularities.

Another representation is 3 × 3 rotation matrices, which explicitly define the
(positively oriented) orthonormal basis corresponding to the change of reference.
While this representation has its benefits, the 9 matrix elements constitute a redundant
overparameterization of a rotation, which has only 3 degrees of freedom, thus requir-
ing additional constraints on the matrix elements. A rotation matrix is any matrix
R ∈ R3×3 which satisfies orthonormality (RT R = I) and has positive orientation
(det R = 1). The set of all such matrices, SO(3), is a three dimensional manifold
in the space of R3×3. Furthermore, any rotation matrix R is the matrix exponential
expA for a skew-symmetric matrix

A =

 0 −az ay

az 0 −ax

−ay ax 0

 ,
where a = (ax, ay, az) is exactly the axis-angle representation αv of R. This matrix
exponential-logarithm relationship associates elements R ∈ SO(3) with elements
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A ∈ so(3), where so(3) is the so-called Lie algebra of the Lie group SO(3), the
rotation manifold, and also defines its tangent space at the identity element R = I .

Finally, another established representation of 3D rotations is by unit-length quater-
nions. Quaternions are a generalization of complex numbers with one real and three
imaginary dimensions, usually referred to as the scalar and the vector part of the
quaternion. Considering all 4 dimensions, we may think of quaternions as elements
of R4, and of unit quaternions as elements of the 3D hyper-sphere S3. Aside from a
sign-ambiguity, every rotation can be associated with a unit quaternion by defining
the scalar part as cos α

2 and the vector part as v sin α
2 , where α,v is the axis-angle

representation mentioned previously. Furthermore, just as for complex numbers, multi-
plication is well-defined for quaternions, and the result of multiplying unit quaternions
corresponds exactly to chaining rotations.

2.3 Projective Geometry

Projective geometry is a beautifully simple extension of Eucliden geometry which
unlocks a surprisingly rich toolbox for theoretical reasoning and computation regard-
ing projective relations. More often than not, however, at first sight the unfamiliar
constructions and representations used in projective geometry may seem arbitrary or
meaningless, but rest assured, they merely take some leap of faith to get used to. In
this section, I will give a brief introduction to projective geometry, focusing on a few
core elements of particular interest for the rest of the thesis. For a more complete
introduction, see for instance [30].

Point Representation in Projective Space

A (realb) projective space Pn is in many ways similar to the familiar Euclidean space
Rn, but differs in two major regards worth emphasizing:

Points at Infinity The projective space is slightly “larger”: Rn ⊊ Pn. This is
due to that in addition to all of the finite (yet infinitely many) Euclidean points, we
also consider so-called ideal points, a.k.a. points at infinity or simply infinity points.
The ideal points are all infinitely far away from the origin, but are distinguished from

bI only consider projective spaces over the real numbers in this thesis, and use the terms ‘projective space’
and ‘real projective space’ interchangeably.
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one another depending on in what direction they are infinitely far awayc. A famous
consequence of this extension is that in the projective plane P2, unlike R2, every pair
of distinct lines have a unique intersection, even in the case of parallel lines, in which
case the intersection is at an ideal point.

Homogeneous Coordinates To be able to represent ideal points as well, ev-
ery point in projective space is represented by so-called homogeneous coordinates,
meaning that 1) they have one more coordinate than the cartesian coordinates we are
normally used to and 2) the scale of the representation is arbitrary, in the sense that
rescaling a homogeneous vector does not alter which point is represented by it.

In concrete terms, a 2D point (x, y) ∈ R2 is in homogeneous coordinates repre-
sented by any vector (λx, λy, λ) ∈ P2, where λ > 0 is an arbitrary scaling factor.
For noting that two homogeneous coordinate vectors x̄1 = (λ1x, λ1y, λ1) and and
x̄2 = (λ2x, λ2y, λ2) are rescaled versions of one another, and thus represent the
very same projective point, we use the notation x̄1 = x̄2. Ideal points are those with
homogeneous coordinate representation (λx, λy, 0), i.e. those with final coordinate
0. For a finite point with homogeneous coordinates (a, b, c), c > 0, note that conven-
tional cartesian coordinates can easily be extracted by what is known as “perspective
division”, which simply amounts to normalizing the final coordinate by division of
itselfd: (a, b, c) ∼ (a/c, b/c, 1). We can then identify the point as (a/c, b/c) in
cartesian coordinates. Analogously, the homogeneous coordinate representation of a
finite 3D point (x, y, z) ∈ R3 is given by (λx, λy, λz, λ) ∈ P3, in addition to which
there are also ideal points at infinity. Finally, note that a homogeneous coordinate
vector is a valid representation of a projective point if and only if not all coordinates
are 0.

Point Transformations

Next, we will see what happens when a homogeneous coordinate vector undergoes a
matrix multiplication. As it turns out, a whole hierarchy of relevant transformations
can be represented in this way, ranging from rotations, translations, and scalings to
linear / affine transformations as well as what is known as projective transformations.

Starting with the general case, a projective transformation in n dimensions (a.k.a.
projectivity or homography) can be identified (up to scale) with an invertible (n +
1) × (n+ 1) matrix H. Applying the transformation on a point x̄ ∈ Pn is as simple

cOpposing points are, however, collapsed to and identified as a single ideal point.
dThere are strong connections between perspective division and perspective projection.
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as a matrix multiplication with its homogeneous coordinate vector: y ∼ Hx̄. Note
that H is a homogeneous representation: H ∼ λ, ∀λ ̸= 0. While seemingly linear,
the implied perspective division needed to extract cartesian coordinates can result
in dramatic perspective effects and heavy distortions. Despite such distorsions, a
projective transformation is characterized by always mapping a line to a line, making
it a so-called collineation. Put in other words, lines are preserved by the mappinge.
Furthermore, for any real projective space of dimension n ≥ 2, there are in fact no
other collineations than the homographies.

As we will see next, by imposing various further restrictions on H (beyond being
invertible), a whole hierarchy of transformations is acquired. The homogeneous
matrix representation is indeed very useful for expressing many simple and more
familiar transformations such as translations, which could not be expressed by matrix
multiplication on cartesian coordinates.

Affine transformations of Pn can be represented by matrices with the structure

H ∼
[

A t
01×n 1

]
, A ∈ Rn×n, t ∈ Rn, (2.4)

and are characterized by preserving parallelity between lines, planes, and subspaces
in general. Another case of interest is when A is a scaled rotation;

A = sR, s ̸= 0, RT R = I, det R = 1, (2.5)

in which case H is a similarity transformation, characterized by the preservation of
angles. If furthermore |s| = 1, H is a Euclidean transformation, which additionally
preserves scale, and if s = 1, H is also orientation-preserving, and known as a
(proper) rigid transformation. Each of these types of transformations also corresponds
to a group – the projective linear group, the affine group, the isometry group, the
Euclidean group, and the special Euclidean group.

Modeling Camera Projection

So far, we have only considered mappings from a projective space to itself, but a central
concept in computer vision is naturally that of camera projection. The most widely
used camera model is the projective camera [30], which can be defined as a mapping
from P3 → P2, represented by a full rank 3 × 4 camera matrix P, a homogeneous
entity just like the homogeneous representations of points and homographies covered

eIn fact, not only lines, but any projective subspace is preserved.
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already. The camera matrix can be applied directly on a homogeneous 3D point
X̄ ∈ P3, and by simple matrix-vector multiplication, a projection x̄ ∼ PX̄ ∈ P2 is
acquired. As an example, the cartesian coordinates x may be the very pixel coordinates
of a digital photography.

A projective camera carries out central projection, a.k.a. rectilinear or perspective
projectionf, meaning that a 3D point X̄ is projected onto an image plane along the
line connecting X̄ and a special point C̄, called the center of projection, or simply
the camera center. A key property of central projection is that lines in 3D space are
also projected onto lines in the imageg. The normal vector of the image plane, in
the direction not facing the camera centerh, is known as the principal axisi of the
camera. The distance between the camera center and the image plane determines its
focal length. The simplest projective camera is the canonical camera

[
I 0

]
, which

is centered at the origin and takes the z-axis as its principal axis.
In general, the camera center of a camera P can be determined in homogeneous

coordinates according to C̄ ∼ P, i.e. the (one-dimensional) null space of P. A
projective camera P =

[
A t

]
is finite if and only if C̄ is not an ideal point, which

is the case exactly when A is invertible, and the camera center can be conveniently
determined in cartesian coordinates by C = −A−1t.

There is much to be said regarding different camera models, and I will not discuss
them all, but focus on what is more relevant for this thesis. In particular, I will from
now on exclude cameras at infinity. In practice, it is often more useful to factorize the
camera matrix P into ‘extrinsic’ camera parameters, defining the physical position
and orientation, and another set of ‘intrinsic’ camera parameters. The factorization
reads

P ∼ KP̃, K =

αx s x0
0 αy y0
0 0 1

 , P̃ =
[
R t

]
. (2.6)

The extrinsic parameters consist of a rotation matrix R and a translation vector
t, bundled together in a so-called calibrated (a.k.a. normalized) camera matrix
P̃, and define a proper rigid transformation from global coordinates to the camera
coordinate system. That is, given a finite 3D point X = (X,Y, Z)T expressed
in a homogeneous coordinate vector X̄ = (X,Y, Z, 1)T (normalized with final
coordinate 1), the simple multiplication X̃ = P̃X̄ provides the cartesian coordinates

fCentral projection is also strongly related to the gnomonic map projection, its restriction on the sphere.
gWith the exception of lines that intersect the center of projection, which instead collapse into points.
hFor the particular case of cameras at infinity, the sign of this direction is undefined.
iAlso known as principal ray or optical axis.
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X̃ = (X̃, Ỹ , Z̃)T of the very same 3D point expressed in the camera coordinate
system. Now, to carry out central projection on the image plane Z̃ = 1, we may
simply interpret these coordinates as homogeneous coordinates of a 2D point ¯̃x ∼
(X̃, Ỹ , Z̃)T ∼ (X̃/Z̃, Ỹ /Z̃, 1)T , i.e. the perspective division carries out the central
projection. We refer to the extrinsic parameters P̃ as the pose of the camera – the
center of attention for this entire thesis.

The intrinsic parameters consist of an upper triangular matrix K, a.k.a. the calibra-
tion matrix, and allows us to change the frame of reference within the image plane,
e.g. using pixel coordinates rather than metric units. It is almost as general as an
affine transformation, but ensures the direction of the x-axis to be preserved. It is
also typically the case that αx, αy > 0, and so no reflection occurs. Other common
restrictions on the intrinsics are that the skew parameter s = 0 and that there is a
fixed focal length f = αx = αy

j. The principal point (x0, y0) is the projection of the
optical axis in pixel coordinates, and is usually roughly centered in the image.

Note how the relationship x̄ ∼ PX̄ of the central projection camera model, also
known as the camera equation, is elegantly linear in homogeneous coordinates (al-
though there is a hidden non-linearity in the perspective division). It should however
be noted that this linear model has its limitations in that it does not account for
lens distortion. In reality, camera lenses are at best approximately rectilineark, and
so-called fish-eye lenses are even by design not rectilinear, for the benefit of a wider
field of view. The most important lens distortion models are radial distortion models.
These are applied on the calibrated image points ¯̃x ∼ K−1x̄ ∼ P̃X̄ and amount to a
radial rescaling, meaning they can be expressed as (non-linear) functions mapping
distorted radial distances to undistorted distancesl.

jIf αx ̸= αy the focal length is ambiguous, but if f = αx = αy , one can think of f as the distance
between the camera center and the image plane. Equally well, and more generally, αx and αy can be
thought of as scaling factors from metric to pixel units on the canonical image plane at depth 1.

kA rectilinear lens is a lens that makes straight lines in 3D space project onto straight lines in the image.
lRadial distance refers to the distance of an image point from the origin (the normalized principal point).
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CHAPTER 3

Pose Estimation

The purpose of this chapter is to present the pose estimation problems considered in
this thesis, while discussing various tools and techniques commonly used to solve
them, providing relevant context to more novel approaches like the learning and
optimization methods proposed or investigated in the contributed research articles.
The pose estimation problems I have considered can be broadly categorized as 1)
absolute camera pose estimation and 2) structure-from-motion, and I will present the
problems in that order. The methods and techniques commonly used to solve these
problems are to a large extent overlapping, and many of these will therefore first be
presented in the context of absolute pose estimation, and then referred back to when
discussing structure-from-motion.

Before proceeding, I would like to clarify that within the scope of this thesis and
all included articles, the term ‘pose’ explicitly refers to rigid pose, meaning a position
and an orientation in 3D space. Typically, we are interested in the pose of one or many
cameras, described precisely by their extrinsic camera parameters. In other contexts,
the term ‘pose’ may have a slightly different meaning. For instance, in the computer
vision tasks of hand pose or human pose estimation, ‘pose’ refers to the configuration
of joints and limbs, and in the context of capsule neural networks it has an abstract
meaning as a set of properties of a vector-valued neuron [31].
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The chapter begins to present the absolute camera pose estimation problem and its
applications, followed by an introduction to correspondence-based pose estimation
and robust fitting using random sample consensus (RANSAC). Next, the relative
camera pose estimation and structure-from-motion (SfM) problems are presented,
before concluding with one section about pose optimization and another one about
pose regression.

3.1 Absolute Camera Pose Estimation

One of the fundamental problems in computer vision is that of absolute camera pose
estimation, a.k.a. calibrated camera resectioning, meaning that given a photograph,
the pose of a camera, i.e. its location and orientation in 3D space, is to be determined
relative to a 3D reference model. This is in contrast to relative camera pose estimation,
where the problem is instead to estimate relative poses between cameras without any
reference model. In the most typical formulation of absolute pose estimation, a
reference coordinate system is assigned to the 3D model, and one is establishing
a set of point correspondences between 3D keypoints residing on the model, and
their respective projections observed in the camera view, i.e. 2D image pointsa. In
many cases, the intrinsic camera parameters are known, and the image points can be
converted (‘normalized’) from pixel coordinates to meaningful physical units, such
that each normalized image point can be interpreted as a viewing ray with a precise
direction in 3D space. With as few as three of these 2D-3D point correspondences,
one can eliminate all camera poses but a finite set of at most 4 solutions which can
explain the projective relationship. If the camera intrinsics are not known, they can
be solved for as well in addition to the camera pose, in which case the problem
is known as (uncalibrated) camera resectioning, which requires at least 5.5 point
correspondences. Even if there are enough measurements for uncalibrated camera
resectioning, it is always preferable to use any existing knowledge of the camera
intrinsics if the measurements are subject to noise.

An essential aspect of absolute pose estimation is that apart from observing an
image projection, one has additional knowledge of a 3D reference model of some
sort. The representation for encoding this knowledge, however, need not necessarily
be in the particular form of 2D-3D point correspondences, but other representations,
explicit or implicit, may be utilized, e.g. a set of reference images with annotated

aFor relative camera pose estimation, one would instead establish 2D-2D correspondences, between
image points in one view and another.
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poses. Finally, note that there are also extensions of the problem to multiple cameras,
e.g. a stereo camera system, calibrated such that the relative camera poses are known
a priori.

There are two applications considered in this thesis which fall into the absolute pose
estimation category: 1) Visual localization and 2) Object pose estimation. Each of
these will be elaborated on in the following, after which a few approaches relevant to
absolute pose estimation are presented. Another important application of absolute pose
estimation, which can be seen as an instance of object pose estimation, is to calibrate
the extrinsic parameters of a camera relative to a scene, via partial knowledge of the
3D geometry of the scene, or by placing a calibration object with known geometry
into the scene.

Application: Visual Localization

In visual localization, the problem is to determine the position of a camera relative
to a reference map, given one or many photographs. A typical use case is navigation
of an autonomous robot or vehicle on which a camera has been mounted. There are
many variations to the problem, possibly involving tracking over time or the presence
of other sensors than the camera itself, e.g. global navigation satellite system (GNSS)
transceivers, inertial measurement units (IMUs), light detection and ranging (LIDAR)
units, or odometers, but a relatively common problem formulation is to determine the
camera pose (position and orientation) given a single image and a reference scene
representation.

One common representation of the scene is a sparse 3D point cloud, where each
point is stored along with an associated image feature descriptor (e.g. SIFT fea-
tures [32]). Another common representation of the reference model is slightly more
implicit: A collection of reference images with known associated camera poses,
possibly together with a 3D point cloud as well as annotations of which 3D points
are visible in which images. Note that the image feature descriptors in the first rep-
resentation are conceptually straight-forward to extract also in this case. Common
approaches to determine both reference poses and a 3D reference model together are
via SfM (see Section 3.3), or, in indoor environments, via RGB-D cameras based
on structured light together with corresponding 3D mapping algorithms. The visual
localization problem is central in Paper E, and also considered in Paper B.
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Application: Object Pose Estimation

Another instance of absolute pose estimation is the task of estimating the pose of
a camera relative to an object observed in its image, known as (rigid) object pose
estimation, or often simply as 6D pose estimation. Conceptually, this problem is
the same as visual localization, and differs mostly in the characteristics of the 3D
reference model: Instead of a large reference map out of which typically only a
small part is visible from a particular view, the reference model is now an object of
limited spatial extent, often entirely within the field-of-view. This does not imply,
however, that estimating pose is less challenging in this scenario than for localization.
In particular when the object is small, it gets more challenging to maintain high
precision, especially regarding the relative position estimate in the depth direction.

A well-known use-case of object pose estimation is for industrial robots to precisely
detect the position and orientation of an object such as an assembly component,
allowing it to be grasped and manipulated, without the need to spatially organize
items in grids or similar structures. The problem is considered in Papers B and D.

3.2 Correspondence-Based Pose Estimation

As touched upon already, a common approach to absolute pose estimation is to
establish a set of 2D-3D point correspondences, and search for a pose which makes
the 3D keypoints project as close as possible to the corresponding measured 2D
points. This all works very well, assuming one can indeed acquire reliable point
correspondences in the first place. More commonly than not, however, a robust pose
estimator capable of rejecting outlier correspondences is needed. In this section, I will
briefly discuss the main components of a typical robust correspondence-based pose
estimator, with emphasis on absolute camera pose estimation.

Feature Extraction and Matching

For absolute pose estimation, we want to establish 2D-3D point correspondences,
but let’s first briefly consider the case of relative pose estimation, where instead
2D-2D point correspondences are to be established. This is done by matching local
image features, which traditionally has been done sequentially, through the steps of 1)
keypoint detection, 2) feature description, and 3) feature matching. Much research
efforts have been put into addressing the matter, but perhaps it is especially worth
mentioning the handcrafted SIFT features [32], proposed by David Lowe over two
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decades ago, used in countless research works and practical applications ever since.
The SIFT descriptor is based on histograms over directions of local image intensity
gradients, and is designed for rotation- and scale-invariance. While this type of
handcrafted feature descriptor is quite powerful, it can suffer from stability issues
e.g. under heavy changes in lighting. Due to its limitations, the approach based on
handcrafted features has in recent years been challenged by deep learning methods, by
learned feature descriptors [33]–[36], often carrying out detection and description in
parallel, in either a joint or decoupled manner, as well as learned matchers [35], [37],
often using attention-based models and / or graph neural networks (see Section 2.1).

When it comes to absolute pose estimation and establishing 2D-3D point corre-
spondences, the matching problem is, however, no longer symmetric. It is also more
open-ended due to the varying representations that may be used for the 3D reference
model. As a special case, the reference model may be implicitly defined by a set of
reference images with annotated poses, in which case similar matching strategies may
be used. In general, however, matching local image features w.r.t. a 3D model may
involve multiple modalities, and the optimal strategy is not evident. That being said,
I do believe that studying attention-based learned local feature matching strategies
similar to [35], [37] may be an interesting research avenue, also when it comes to
matching images to 3D models. The following are a few approaches that have been
proposed for establishing 2D-3D correspondences:

• Scene / object coordinate regression: Training a machine learning model to,
given the image contents, predict the corresponding 3D point for any image
point on the silhouette of the projected 3D model. This approach is suitable
to both localization and object pose estimation. Examples of this approach
are [38], [39].

• Learned recognition of projected keypoints: Given a set of sparse 3D keypoints,
manually or automatically selected, train a machine learning model to recognize
their projections in the image. This approach is mostly relevant for object pose,
since not a lot of keypoints are required. Examples of this approach are [40]–
[42].

• Reconstructing a 3D point cloud from a bunch of reference images, while
annotating the 3D keypoints with the corresponding image features. Later on,
the points are to be detected in novel query images, and matched with the 3D
point cloud descriptors. This approach is common to localization. The image
features may either be traditional hand-crafted features such as SIFT [32], or
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learned features such as SuperPoint [34]. See [43] and the references therein
for examples of such methods.

Robust Fitting

Now, if we have finally managed to establish our point correspondences, may we
proceed to estimate the pose? Yes and no. Section 3.4 presents various methods used
to solve this exact problem, a.k.a. the perspective-n-point (PnP) problem. The only
issue is – how do we know that we can trust the correspondences? In practice, not only
will our correspondences be subject to measurement noise; some of them, possibly
a significant majority, may be utterly wrong. We call such flawed matches outlier
correspondences, and they need to be identified and filtered out. Random sample
consensus (RANSAC) [44] methods aim to do exactly this, by letting correspondences
vote for pose hypotheses, until a hypothesis is found that many correspondences agree
with.

The main idea regards to try and compare many different models, each fitted to a
small random subset of the available data measurements. The motivation for using
a small subset is to reduce the risk of outliers being included. Ideally, the subset is
minimal, i.e. exactly as large as needed for uniquely determining a model which fits
the subset perfectly. As an example, consider fitting a line to outlier-corrupted data
points in two dimensions. In this case, RANSAC repeatedly draws pairs of points,
since each pair exactly defines a line and thus constitutes a minimal subset. There are
many different variations of RANSAC to improve the efficiency of the algorithm, but
the main idea is simple: Select the model hypothesis (in this case, a line) which best
fits the data in the sense of leading to the highest number of probable inliers. The inlier
/ outlier classification is done by thresholding an error function, e.g. point-to-line
distance in this example.

Beyond line fitting, other problems for which RANSAC can be applied involve
plane fitting, homography estimation, and essential matrix estimation, not to men-
tion the PnP problem itself. In the case of PnP, a minimal solver requires 3 point
correspondences, in which case at most 4 geometrically valid camera poses can be
identified, and simply be tested one by one in the RANSAC scheme. In the minimal
setting, the problem is known specifically as the perspective-3-point (P3P) problem,
and there are many methods to solve it [44]–[47], usually amounting to solving a
system of polynomial equations.
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3.3 Relative Pose / Structure-from-Motion

So far, we have focused mainly on absolute pose estimation. For relative pose
estimation, we no longer have any 3D reference model of the object or scene, and
thus no fixed global coordinate system to relate to, and so the task is instead to
determine the camera poses relative to each other, or relative to some arbitrarily
assigned global frame. In addition, if the task is carried out by establishing 2D-2D
point correspondences, as mentioned upon in Section 3.2, and relative camera poses
have successfully been established, it is relatively straightforward to also reconstruct
a 3D model by triangulating a point cloud from the correspondences. For each set of
corresponding 2D points, this amounts to determining a 3D point which projects as
close as possible to the 2D points.

Two Views: Epipolar Geometry

In the simplest scenario, there are only two camera views. As it turns out, in this
case there is a quite simple relationship between the projections in one image and
the other, captured by what is called epipolar geometry. An epipole refers to the
the center of one camera projected into the other. Central to epipolar geometry are
also the epipolar lines, all of which intersect at the epipole. The epipolar lines in
one camera are in correspondence with the image points of the other camera, and
without going into further detail, this relationship is captured by a 3 × 3 matrix called
the essential matrix. Estimating the essential matrix from 2D-2D correspondences is
relatively straightforward, often by using RANSAC together with a minimal solver.
After having estimated the essential matrix, the relative pose of the two cameras can
be established (almost!). The following section will elaborate on what cannot be
determined.

Reconstruction Ambiguity

First and foremost, in a relative pose setting, we can clearly not recover absolute
camera poses, due to the arbitrary choice of global cartesian coordinate frame. In
addition to this, the relative pose estimates suffer from a scale ambiguity, since
when there is no 3D reference model, it is unfortunately not possible to measure
absolute distancesb. That is, the scale of the scene can not be inferred from projections

bKnowledge of a 3D reference model is not a fundamental requisite for measuring distance using computer
vision. Another alternative is stereo vision, where one instead relies on the relative pose between a pair
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alone. Strictly speaking there is actually an ambiguity w.r.t. reflection as well,
but mirrored solutions can be identified and eliminated, since the 3D points would
end up behind the cameras in which they were observed. The result is a so-called
Euclidean reconstruction, and if in addition the scale is determined, it is called a
metric reconstruction.

Furthermore, recall from Section 3.1 that, provided the 3D reference model is
known, not only can the absolute camera pose be determined from the (normalized)
image point correspondences, but it is even possible to simultaneously determine
the intrinsic camera parameters by solving the uncalibrated resectioning problem
given the raw pixel coordinates of the corresponding image pointsc. In contrast, for
relative pose estimation it is absolutely crucial to estimate and eliminate the camera
intrinsics, or we will face a phenomenon known as projective ambiguity, meaning that
the estimated solution, 3D points and cameras together, is distorted by an arbitrary
projective transformation of P3, impossible to identify without calibrating the cameras.
In general, camera calibration requires further knowledge of the scene, e.g. by
capturing images of a known calibration object, followed by camera resectioning.
If we have access to multiple images taken from the same camera device but from
multiple viewpoints, the camera may however be determined by a technique known
as auto-calibration, without the need for any calibration object.

Many Views: Structure-from-Motion

Considering the general case with an arbitrary number of views, m, relative pose
estimation becomes less straightforward. In addition to there being many views,
every 3D point may not be visible in every view, e.g. due to being out of view, due
to occlusion, or simply due to unsuccessful detection and matching. The 2D-2D
image point correspondences, which may now involve many images, are referred to
as point tracks. In general, and especially for large scenes, some views will be more
related than others, and sometimes a so-called view graph or pose graph is used to
represent the view-to-view relationships / relative pose estimates. The problem of
jointly estimating multiple relative camera poses as well as the structure of a scene,
e.g. in the form of a 3D point cloud, is known as structure-from-motion (SfM), which
can broadly be categorized into incremental SfM and global SfM.

Incremental SfM pipelines such as the popular COLMAP library [48]–[50], set

of cameras to be pre-established, similar to how humans are able to measure depth.
cIf the camera calibration is already known, it is however preferable to eliminate it and solve for the

camera pose only, as the noise-resilience increases and fewer observations are required.
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out to reconstruct the entire scene by incorporating one additional view at a time.
One way to initialize the reconstruction is from two views, using epipolar geometry
and triangulation. For each additional view added, one typically detects and matches
image keypoints with existing point tracks, and estimates, e.g. via RANSAC, its
absolute pose w.r.t. the 3D point cloud (triangulated from the point tracks). This is
followed by triangulation of newly matched point tracks, and typically an iterative
refinement of camera poses and 3D points, known as bundle adjustment (BA, see
Section 3.4), before moving on to the next view. It should be noted that incremental
SfM suffers from the risk of drift to occur in the solution. In case of the camera
trajectory being a loop, detecting the loop closure and running bundle adjustment may
to some extent compensate for the drift, but convergence is not guaranteed for large
drifts. Very related to incremental SfM methods are simultaneous localization and
mapping (SLAM) methods, which essentially solve the same problem, but assume
causal observations, focus more on real-time performance, and often involve fusion
of multiple sensors via sequential filtering of measurements.

In global SfM, all camera poses are instead estimated simultaneously. The typical
pipeline starts from pairwise relative pose estimates, between whatever views they
can be estimated. This is followed by an optimization problem on the entire pose
graph, known as pose graph optimization or pose averaging, possibly eliminating the
translations and solving a separate rotation averaging problem instead. In any case,
the problem amounts to determining absolute camera pose estimates for which the
given relative poses are as consistent as possible. As a final step, one triangulates the
3D points and carries out bundle adjustment.

There are also alternative global SfM approaches, such as projective factorization
and related methods (see e.g. [51] for an overview), or emerging learning-based
methods such as [52], or Paper A in this thesis.

3.4 Pose Optimization

In Section 3.2, we have already seen how RANSAC can solve the PnP problem
in the presence of outliers, through the combination of minimal solvers and voting.
RANSAC has highly favorable robustness properties, but it is a rather blunt instrument.
First, it should be noted that RANSAC can be rather costly. In addition to that, while
the resulting solution provided by the minimal solver is ideally tolerated by many
measurements, it is still suboptimal, as it does not care to minimize residual errors
beyond being within the acceptance threshold. If we are fortunate enough to face an
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outlier-free scenario, we may instead use more sophisticated optimization techniques.
A particular such scenario is to carry out a final fitting w.r.t. all inlier correspondences
as determined by RANSAC. Another outlier-free scenario could be camera calibration
given highly reliable point correspondences, e.g. manually annotated or determined
by visual markers. A third scenario could be relative pose estimation given optical
flow correspondencesd. On a final note, in addition to correspondence-based pose
estimation, other pose estimation problems such as rotation averaging may also be
solved using optimization methods.

Local Optimization and Pose Refinement

Given a measured image point x, a corresponding 3D point X, and a camera pose
P, we may define the so-called reprojection error r by measuring the deviation,
a.k.a. the residual, of the measurement x̂ = (x̂1, x̂2) from the 3D point projection
x̄ = (x̄1, x̄2, x̄3) ∼ PX (expressed in homogeneous coordinates):

r(x,P,X) = ∥r∥
= ∥(x̂1, x̂2) − (x̄1/x̄3, x̄2/x̄3)∥

=

∥∥∥∥∥x̂ − P1:2T X
P3T X

∥∥∥∥∥ ,
(3.1)

where Pi denotes the i:th row of P, as a column vector, and Pi:j denotes a range of
rows, stacked column-wise. Squaring and summing up the reprojection errors of all
image point measurements, one acquires the objective function

E =
m∑

i=1

∑
j∈Vi

r(xij ,Pi,Xj)2, (3.2)

where Vi denotes the set of indices j of the 3D points Xj visible in view Pi, and xij

is the measured projection of 3D point j in view i. For absolute pose estimation, X
would be known andmmay be 1 while for relative pose estimation / SfM, X would be
unknown, but measured in multiple views. In any case, (3.2) can be minimized locally
using iterative optimization. When all parameters are free (i.e. SfM), this is known
as Bundle Adjustment (BA). Quite commonly, an optimization algorithm known as
Levenberg-Marquardt is utilized, which is a dampened version of Gauss-Newton. The

dOptical flow correspondences may be relatively reliable due to the limited visual change between
consecutive video frames.
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Gauss-Newton family of optimization methods are specific to non-linear least-squares
problems like (3.2), and provide a compromise between the number of iterations
versus the computational cost of each iteration. Gauss-Newton is similar to Newton’s
method, but approximates the Hessian of E by H ≈ 2JT

r Jr, where Jr is the Jacobian
of r w.r.t. the parameters, i.e. the first-order derivatives. The approximation stems
from an assumption that r is small, such that additional terms of H involving r can be
ignored. These terms also involve the second-order derivatives of r, which are costly
to compute. Far away from the optimal solution, the assumption is less reasonable,
and can lead to complications. The dampened Levenberg-Marquardt algorithm is
then a viable alternative, as the unreliable approximate Hessian is blended with some
amount of the identity matrix, resulting in a blend between the efficient Gauss-Newton
and reliable gradient descent. It is often desirable to use a relatively strong dampening
initially, and reduce it while approaching the optimum and r becomes smaller.

There is, however, quite a dilemma – (3.2) is not convex and has many local minima
that are globally suboptimal. Thus, starting from a random initialization, we would end
up with a globally optimal solution only if we are lucky enough that the initialization
resides in the basin of convergence of the algorithm. There are ways of widening
the basin of convergence, e.g. by using a neural network parameterization of the
SfM solution as done in [52]. Another strategy to achieve this for SfM is to consider
alternative loss functions related to projective factorization such as pOSE [53] and its
derivatives (which are applied in the uncalibrated setting), see [51] for an overview.
In general, however, local pose optimization / bundle adjustment is used primarily as
a refinement step to improve the precision of the solution.

Global Pose Optimization

Estimating camera pose by solving an optimization problem is an appealing approach,
and while the sum of squared reprojection errors (3.2) is in general only feasible to
minimize locally, there are other formulations of pose optimization for which it may
be possible to determine a globally optimal solution. These formulations usually
involve a polynomial objective function (no perspective division), often allowing for
elimination of the translation components of the camera pose parameters. Examples
of common error functions used as alternatives to the squared reprojection error

∥∥∥∥∥x̂ − P1:2T X
P3T X

∥∥∥∥∥
2

(3.3)
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are the squared back-projection error∥∥∥(P3T X
)

· x̂ − P1:2T X
∥∥∥2

(3.4)

and the squared point-to-ray distance∥∥(I − vvT
)

PX
∥∥2
, v = x̂

∥x̂∥
, (3.5)

where again x̂ denotes a measured image point, P =
[
R t

]
denotes a calibrated

camera matrix, and superscripts denote a row or range of rows, stacked column-
wise. The errors (3.4) and (3.5) both disregard the projection to image space, and
are instead calculated in object space, thus being referred to as object space errors
(OSE). In both cases, the squared Euclidean distance from 3D point to its projection
on a measured viewing ray is considered, where the projection is either parallel to the
principal plane of the camera, or orthogonal to the ray. Object space error functions
are useful components for absolute pose estimation in particular, occurring in various
formulations of the PnP problem [13], [54]–[58]. Theoretically, PnP can actually be
solved by globally minimizing the reprojection error (3.3) itself, e.g. using Branch-
and-Bound [59], but the efficiency of this approach is unfortunately not adequate for
practical purposes. There are also PnP methods that do not minimize geometrically
meaningful errors, e.g. [11], [12].

Global pose optimization can be applied to SfM as well, by jointly optimizing
the entire set of absolute camera poses Pi, i = 1, . . . ,m to comply with a set of
relative pose measurements. This is known as pose-graph optimization (PGO), and
one can also eliminate the translation components, and solve a rotation averaging
problem instead. It should, however, be noted that global SfM methods based on pose
optimization are often less scalable in terms of the number of views as compared to
incremental SfM. As objective function for rotation averaging, one may use a rotation-
to-rotation metric to quantify the inevitable inconsistency between the estimated
solution and the measurements. A natural choice of error between two rotation
matrices S and R is the angular distance d∠(ST R) associated with the relative
rotation, but easier to optimize is the squared Frobenius norm ∥S − R∥2

F of the
residual, a.k.a. the squared chordal distance of the embedding in R3×3 = R9. The two
metrics are however more related than it may seem at first glance, since ∥S − R∥F =
2
√

2 sin
( 1

2d∠(ST R)
)

[60]. There is also a similar relation with the quaternion
distance, see [60].

While these polynomial objectives are simpler to optimize than reprojection errors,
a major challenge remains in respecting the rotational constraints when optimizing
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the rotation parameters. If parameterizing a rotation in terms of its 9 rotation matrix
elements, feasibility can be formalized with the quadratic equality constraints RT R =
I on orthonormality, together with an additional constraint ensuring det R = 1, e.g.
the quadratic cross product constraint R3 = R1 × R2 on the rows of R. Using
a quaternion parameterization q ∈ R4, the unit-norm constraint ∥q∥2 = 1, also
a quadratic equality constraint, is enough to ensure a valid rotation. For none of
the parameterizations the corresponding feasible region is a convex set, and thus,
pose optimization problems are not completely straightforward to solve. The unit-
quaternion constraint ∥q∥2 = 1 is in general the easier of the two, but a quaternion
formulation may come at the price of the objective function becoming a polynomial
of higher degree compared to using the rotation matrix parameterization.

For PnP as well as rotation averaging, we are facing a non-convex equality-
constrained polynomial optimization problem (POP). For PnP, which is the smaller
problem, a common strategy regards identifying every stationary point of the opti-
mization problem, and ranking them to determine the global optimum / optima. This
amounts to solving a system of polynomial equations, and many variations to it have
been studied, e.g. [11]–[13], [55]. As a side note, in the minimal case (P3P), rather
than determining the stationary points of the POP, one is looking for solutions where
the projections of the three 3D points align perfectly with the corresponding image
point measurements, but this can also be done by solving a system of polynomial
equations.

Another approach to global pose optimization is to minimize a semidefinite relax-
ation of the POP. In this case, the optimization problem is lifted to a larger number
of variables, corresponding to monomials of higher degree, in which the objective
function as well as the original constraints can be expressed as linear functions. For
example, consider the quadratically constrained quadratic program (QCQP)

min
x∈Rn+1

xT Mx

subject to xT Aix = 0, i = 1, . . . , l
xn+1 = 1,

(3.6)

where M ⪰ 0. By lifting the variables x ∈ Rn+1 to a matrix variable X ∈
R(n+1)×(n+1) of second-degree monomials in the elements of x, (3.6) can be re-
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laxed to (3.7):

min
X∈R(n+1)×(n+1)

tr (MX)

subject to tr (AiX) = 0, i = 1, . . . , l
tr
(
eeT X

)
= 1

X ⪰ 0,

(3.7)

where e = (0, . . . , 0, 1)T . If we would also add the constraint rank (X) = 1 to (3.7),
the problems would be identical, and neither easy to solve, but by simply disregarding
this rank constraint we have acquired a semidefinite relaxation (SDR) of (3.6), so-
called because it is an instance of a semidefinite program (SDP). SDPs are convex,
and thus much easier to solve. Now, if we are lucky, the solution to (3.7) will also
fulfill the rank constraint, in which case we may extract a globally optimal solution to
(3.6). In that case, we say that the relaxation is tight, since there is no gap between
the optimal value η∗ of (3.6) and γ∗ of (3.7), for which in general η∗ ≥ γ∗.

Fortunately, in practice the relaxations are tight more often than one may expect. In
particular, if the problem stems from noise-free measurements the optimal objective
value is zero, and the relaxation is tight. Similarly, if the noise level is very low, the
probability is higher that the relaxation is tight [61]. For PnP, the relaxation is almost
always tight, and only rare counter-examples have been reported, see [62] and Paper C
in this thesis. For rotation averaging, tightness is also guaranteed within a relatively
liberal range of noise [63].

If (3.7) is not tight, a higher level relaxation involving monomials of higher de-
gree may be considered. The so-called moment-SOS / Lasserre hierarchy of relax-
ations [64], [65] formalize an infinite sequence of relaxations with monotonically
decreasing gap to η∗. Monomials of higher degree are also required in case the POP
is not a QCQP, but involves polynomials of higher degree in the objective function
and / or constraints. A relevant example of this is the PnP problem, which leads to
a quartic objective function if formulated using quaternions as in [54], [57], [58]. A
benefit of the semidefinite relaxation approach is that the precision of the solutions
tends to be high.

Finally, a novel approach to global optimization of the PnP problem is proposed
in [56]. Instead of quaternions, rotation matrices are used to represent the rotation
variable. While this constraint set is usually more difficult to handle, they relax the
problem to consider all 3 × 3 matrices with Frobenius norm

√
3, including rotation

matrices. This relaxed problem is relatively easy to solve, and all stationary points
can be identified by solving an eigenvalue problem and extracting the corresponding
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eigenvectors. Each of these eigenvectors can then be projected to actual rotation
matrices, and the authors prove that iterative local optimization will converge to a
global minimizer of the original problem for at least one of these projections.

3.5 Pose Regression

Another strategy to estimating camera pose is to learn to predict the pose based
on some observation, e.g. one or several images or a set of measured image point
correspondences, fed as inputs to a machine learning model. The learned model
then outputs a parameterization of the predicted camera pose. Perhaps the most
common rotation parameterization in this context is unit-length quaternions, which
by a straight-forward normalization enjoy the property of automatically satisfying
the rotational constraints. Parameterizations with some redundancy such as truncated
rotation matrices to their first two columns have however also been proposed [66].

Learning-based methods have great potential in several regards, especially in
their ability to automatically extract meaningful features from complex or otherwise
noisy, corrupted, or greatly varying data, such as outlier point correspondences
or image observations subject to varying lighting conditions or seasonal variation,
provided enough training examples including such effects can be acquired, either
real or artifically generated / augmented. Another benefit is that learned methods
can often perform inference blazingly fast compared to iterative approaches. Due to
these benefits in efficiency and learned robustness, pose regression is indeed a quite
appealing approach. The main issues with pose regression approaches as of today
regards in part domain shifts, and in part precision. While high robustness can be
achieved to greatly varying conditions within the domain in which training data has
been acquired, generalization can be an issue, and it is amplified by the fact that the
availability of training data is often limited due to the cost of 3D annotation. As for the
precision, it is not uncommon that a learned method is paired with iterative refinement
methods, in which the case the latter unfortunately dominates the computational
burden during inference.
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CHAPTER 4

Thesis Contributions

This chapter provides a summary of the papers which form the thesis contributions.

4.1 Paper A

Lucas Brynte, José Pedro Iglesias, Carl Olsson, Fredrik Kahl
Learning Structure-from-Motion with Graph Attention Networks
Submitted for Review, arXiv:2308.15984 (2023). .

In this paper, an efficient and powerful model architecture based on graph attention
networks is presented for learning the complex problem of structure-from-motion.
Given a set of observed image point tracks, the model is trained to regress camera
poses and scene point coordinates. Although the training set consists of as little
as 12 scenes of varying size, the model is demonstrated to generalize to novel test
scenes, well enough for bundle adjustment to converge to an optimal or in some case
nearly optimal solution. Therefore, unlike a preceding related method [52], costly
fine-tuning of the model parameters on the novel test scenes is not required, resulting
in accurate reconstructions to be recovered about 5 − 10× faster than the incremental
SfM pipeline COLMAP [48]–[50]. In addition to the increased efficiency compared
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to COLMAP, and the increased reconstruction quality compared to [52], regarding
robustness it is demonstrated how the proposed method can conveniently be trained to
disregard outlier measurements, by injecting artificial outliers to the training data.

4.2 Paper B

Lucas Brynte*, Georg Bökman∗, Axel Flinth, Fredrik Kahl
Rigidity Preserving Image Transformations and Equivariance in Perspective
Scandinavian Conference on Image Analysis (2023) .

The inspiration to this paper comes from the great success of convolutional neural
networks, which is often attributed to their translation equivariance. In general, the
equivariance constraints imposed on a model, such as translation equivariance for
CNNs, can improve learning by exploiting data symmetries. A requisite for this,
however, is that the symmetry group w.r.t. which equivariance is imposed, reflects
actual symmetries present in the data. This paper points out that for CNNs applied on
3D inference tasks, this is only approximately the case. That is, nearby the principal
point, an image translation appears similar to a rigid motion of the camera, namely
rotation about its center, which probably explains why the equivariance properties
of CNNs are beneficial in the first place. Far away from the principal point, this is
however no longer the case, and furthermore, the only rigid camera motions which
can be associated with corresponding image transformations, are indeed the rotations
of a camera about its center, which correspond to a subset of homographies that we
call ‘rotational homographies’, as their 3 × 3 matrix representations are, up to scale,
members of SO(3). Given this observation, two alternative techniques are advocated
for improving the equivariance properties of CNN models trained on 3D inference
tasks. The first technique is to radially distort every image to a warped version
with reduced perspective effects, namely the azimuthal equidistant map projection,
on which the translation symmetries learned by a CNN more closely approximate
the effect of camera rotations. The second technique is to learn the equivariance
w.r.t. perspective effects, by augmenting the training data with random rotational
homographies. Both techniques demonstrate improvements on object pose estimation,
using an off-the-shelf state-of-the-art CNN model trained to regress the pose. The
results are improved both in terms of pose estimation quality, as well as sample
efficiency, with data augmentation performing the best.

*Equal contribution.
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4.3 Paper C

Lucas Brynte, Viktor Larsson, José Pedro Iglesias, Carl Olsson, Fredrik Kahl
On the Tightness of Semidefinite Relaxations for Rotation Estimation
Journal of Mathematical Imaging and Vision 64, 57–67 (2022). .

This work differs from the others in that it focuses solely on pose optimization and
not on learning. More specifically, it regards semidefinite relaxations of optimization
problems with quadratic objective functions and rotational constraints, i.e. a family
of quadratically constrained quadratic programs (QCQPs) including the applications
of registration, hand-eye calibration, absolute camera pose estimation and rotation
averaging. While in general semidefinite relaxations are not guaranteed to be tight,
for surprisingly many problem instances (particularly when involving few rotations)
they are. Motivated by this observation, a theoretical framework based on tools from
algebraic geometry is introduced for analyzing the power and limitations of such
relaxations. It is shown that despite being empirically rare, there are still plenty of
failure cases for which the relaxation is not tight, even in the case of a single rotation.
In particular, for absolute camera pose estimation (referred to as resectioning in the
paper), we were at the time of submission not aware of a single non-tight problem
instance having been reported in the literature. Despite this, we managed to find
such problems, unfortunately proving that they do exist. Concurrently with our paper,
Alfassi et al. [62] also proved the existence of non-tight semidefinite relaxations
of instances of camera resectioning. They used a unit quaternion parameterization,
resulting in a fourth degree polynomial objective for resectioning, which does not fit
into our framework, but considering both works one can conclude that resectioning
is not necessarily tight, neither for the unit quaternion parameterization, nor for the
parameterization in terms of SO(3) matrix elements that we used. In general, the
tightness of the semidefinite relaxation is related to the noise level[61] (indeed, the
relaxation of a least squares problem is always tight in the noise-free case), and it has
e.g. been observed that the rotation averaging problem is always tight if the relative
pose measurements are not subject to too high noise levels [63]. The bound depends
on the specific pose graph and in particular its connectivity, but as an example, if
the pose graph is fully connected, noise levels as high as 42.9◦ are tolerated. As
for the approach of estimating absolute camera pose by solving an SDP, it may be
that the method only breaks down for quite significant noise levels, and in that sense
is very robust, but from the existence of counterexamples we can conclude that the
applicability of the method is not independent of noise.
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4.4 Paper D

Lucas Brynte, Fredrik Kahl
Pose Proposal Critic: Robust Pose Refinement by Learning Reprojection Errors
British Machine Vision Conference (2020) .

This paper focuses on pose estimation of partially occluded objects given a single
image and a CAD model reference of the object, i.e. an instance of absolute pose
estimation. Occlusion poses a significant challenge for object pose estimation, and it is
not uncommon that a method which performs well under ideal conditions breaks down
in case of occlusion. One strategy which can be used to improve object pose estimation
results in general, but has proven particularly useful for coping with occlusion, is
rendering-based pose refinement, where a model learns to determine a mismatch
in object pose between the observed image and a rendered image of the object in
a “best-guess” pose. Unlike previous methods [67]–[69] which learn to estimate
all degrees of freedom of the relative pose mismatch, this paper opts to simplify
the learning objective, learning to estimate the average reprojection error associated
with the relative pose error, rather than the pose itself. The result is increased pose
estimation quality and robustness to partial occlusion, at the expense of efficiency.
Inference takes 33 seconds on average, and involves iterative local minimization of
the predicted reprojection error w.r.t. the pose hypothesis. The backbone of the model
is a pretrained optical flow network, fine-tuned on the task at hand.

4.5 Paper E

Carl Toft, Erik Stenborg, Lars Hammarstrand, Lucas Brynte, Marc Pollefeys,
Torsten Sattler, Fredrik Kahl
Semantic Match Consistency for Long-Term Visual Localization
European Conference on Computer Vision (2018) .

This paper focuses on long-term visual localization, meaning that the camera is
to be localized despite a long period of time having passed from when the map was
created. Within the context of a standard correspondence-based localization pipeline,
a learned semantic segmentation model is leveraged on to rank feature correspondence
quality, used to bias the sampling of correspondences within RANSAC. The efficiency
of the sampling scheme is thus increased which, given a limited computational budget,
leads to higher quality pose estimates, robust to seasonal variations.
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CHAPTER 5

Concluding Remarks and Future Work

In this thesis I have explored various camera pose estimation methods based on
machine learning and optimization, with primary focus on learning, in three differ-
ent regards: Quality, Robustness, and Efficiency. Absolute pose applications such
as visual localization and object pose estimation have been considered, as well as
structure-from-motion.

The most recent article, Paper A, deals with the most complex of the applications,
structure-from-motion. An efficient and powerful graph attention network model is
designed and trained to regress camera poses and scene point coordinates, and is
demonstrated to generalize to test scenes. When combined with bundle adjustment,
the quality of the reconstruction is superior to previous work [52], and almost on par
with COLMAP, while the efficiency in terms of execution time is orders of magnitude
better than [52], and 5 − 10× faster than COLMAP [48]–[50]. Furthermore, it is
demonstrated how robustness w.r.t. outlier observations can be achieved by artificial
outlier injection to the training data.

In Paper B, the equivariance properties of CNN models for 3D inference tasks such
as object pose estimation are scrutinized. More specifically, it is noted that image
translations can not result from rigid camera motion, and therefore that the symmetries
being learned are not in perfect alignment with the actual symmetries in the data. Two
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techniques are proposed for improving this alignment, either what can be seen as an
intentional radial distortion of the images, or a data augmentation scheme. It is shown
that both techniques can lead to an improvement on the task of object pose estimation,
both in terms of pose estimation quality and training data efficiency.

In Paper C, the power and limitations of semidefinite relaxations are analyzed for
QCQPs with rotational constraints, using toolss from algebraic geometry. In particular,
together with the empirical observation that a surprising amount of such problem
instances result in tight relaxations, rare non-tight counterexamples are presented, even
for absolute camera pose estimation. Together with the related concurrent work [62],
it is now proven that non-tight semidefinite relaxations of instances of absolute camera
pose estimation do exist, both for the parameterization in terms of matrix elements
used by us, and for unit quaternions used by them, and in that sense the method is not
robust to noise to the extent of its applicability being independent of it.

Paper D focuses on object pose estimation, in particular pose refinement, using a
combination of learning and optimization. A rendering-based refinement method is
proposed, with the particular edge of being robust to partial occlusions, leveraging on
a simplified learning task, where a CNN is trained to estimate the reprojection error
between an observed and a rendered image. At the expense of efficiency, the method
results in increased pose estimation quality and robustness to partial occlusion.

Finally, Paper E presents a pioneering work on combining geometry and semantics
for the application of long-term visual localization. A standard correspondence-based
localization pipeline is adapted to leverage on a learned semantic segmentation model,
used to rank feature correspondence quality when sampling minimal sets in RANSAC.
The result is a more efficient sampling scheme, higher quality pose estimates, and
robustness to seasonal variations.

5.1 Future Work

Regarding learned structure-from-motion and Paper A, I think improving the quality
of the direct inference reconstructions should be of priority since the execution time,
while still quite a lot faster than COLMAP, is currently completely dominated by
bundle adjustment. One way to achieve this with relatively little effort could be to
simply consider larger training datasets with greater scene variability. Another avenue
of research could be to explore similar architectures for predicting pairwise relative
poses, or other techniques for better handling the reconstruction ambiguity.

Regarding exploitation of data symmetries when learning to estimate camera pose
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from image contents, I think considering the rigidity preserving image transformations
analyzed in Paper B makes perfect sense, but while the proposed radial distortion
technique results in image translations to more accurately resemble camera rotation,
there is still a discrepancy between the two transformations, especially in the periphery
of an image, and there may be alternative formulations for which this discrepancy is
limited further, especially if considering more novel architectures than CNNs. The
transfer learning benefits that come with using off-the-shelf pretrained backbone
models should, however, not be overlooked.

When it comes to the semidefinite relaxations of pose estimation problems analyzed
in Paper C, and especially the application to absolute camera pose estimation, the jury
is, to my knowledge, still out regarding exactly how rare the the problem instances
with non-tight relaxations are. In particular, there is reason to suspect that tightness
could be guaranteed up to quite high levels of noise, since reports of non-tight
problem instances are few, and establishing such bounds would make an appreciated
contribution.

While the implicit approach to rendering-based pose refinement presented in Pa-
per D demonstrated increased robustness w.r.t. occlusion, it came at a relatively high
price in terms of efficiency. First, there are probably more efficient ways to acquire
smooth derivatives than to take finite differences with large step sizes, such as making
the error function smoother. This could perhaps be achieved by an appropriate choice
of regularization, or by replacing the ReLU activations with a smoother version such
as ELU [70], or even with the periodic activation functions proposed in [71].

Finally, I see potential for learned attention-based feature matchers similar to [35],
[37] for absolute pose estimation. For estimating object pose, a common use case is
within manufacturing, where CAD models are often available for the objects / items
of interest. Learning 2D-3D matches is a challenging multimodal task, especially for
textureless objects, but I think the cross-attention mechanism is a promising way of
handling the multimodality. By training a matcher on a few objects with associated
pose-annotated reference images, the goal would be to generalize to unseen objects
given only their CAD models, without any reference images with annotated pose. For
visual localization, learned multimodal matching between images and point clouds
may also be a promising direction, but the architecture has to be carefully designed to
be able to handle large scenes. The learned approach to feature matching may also be
useful for handling seasonal variations or other changing conditions.
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