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We study the flow stability and spatio-temporal spectral dynamics of cellulose nanocrystal
(CNC) suspensions in a custom Taylor-Couette flow cell using the intrinsic shear induced
birefringence and liquid crystalline properties of CNC suspensions for flow visualizations
for the first time. The analysis is performed at constant ramped speed inputs of the in-
dependently rotating cylinders for several cases ranging from only inner or outer rotating
cylinders to three counter-rotation cases. All CNC suspensions have measurable elastic and
shear thinning, both increasing with CNC concentration. We show that the flow patterns
recorded are essentially Newtonian-like, with non-Newtonian effects ranging from a decrease
in wavenumbers to altering the critical parameters for the onset of instability modes. Outer
cylinder rotation flow cases are stable for all concentrations whereas inner cylinder rotation
flow cases transition to axisymmetric and azimuthally periodic secondary flows. However,
unstable counter-rotation cases become unstable to asymmetric spiral modes. With increas-
ing CNC concentration a counter-rotation case was found where azimuthally periodic wavy
patterns transition to asymmetric spiral modes. In contrast to polymeric solutions of similar
low to moderate elasticity and shear thinning, the shear-thinning region of CNC suspensions
is expected to lead to the breakdown of the chiral nematic phase, whose elastic constants
constitute the dominant structural elasticity mechanism. Thus, we interpret the Taylor-
Couette stability of the CNC suspensions as dominated by their shear-thinning character
due to the expected loss of elasticity in nonlinear flow conditions.

a)Corresponding author: roland.kadar@chalmers.se
b)Present affiliation: NKT Technology Consulting, Västerås, Sweden

ar
X

iv
:2

40
1.

00
50

1v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  3

1 
D

ec
 2

02
3

Corresponding author: roland.kadar@chalmers.se


2

I. INTRODUCTION

Since their discovery a century ago1, Taylor-Couette (TC) flow, i.e. flow between rotating concen-
tric cylinders2, continues to be the most prominent benchmark case for flow stability. This is due to
its distinctive complex flow fields in the form of uniquely rich supercritical flow patterns beyond the
limit of laminar Couette flow. This has triggered a broad spectrum of experimental and theoretical
studies on analyzing emerging flow patterns and their stability in both Newtonian and rheologically
complex fluids3–10. Elucidating the spatio-temporal features of supercritical flow translations is not
only important to explain fundamental nature of nonlinear dynamical systems, but is also relevant
to predicting the impact of flow translations and instabilities on the transport phenomena present
in technological applications such as chemical reactions11–13, drilling14, filtration devices15,16, the
shearing process of proteins17–19 and others9,20,21.

The TC flow of Newtonian fluids has been broadly investigated, with a rotating inner cylinder while
the outer cylinder is kept stationary, being the most studied configuration. The onset of different
flow patterns has been determined both theoretically and experimentally in terms of the Reynolds
(Re) and / or Taylor (Ta) numbers. Re quantifies for the ratio of inertial to viscous forces, with the
Ta number being a modified version of Re, Ta ∝ Re2 to account for centrifugal (quasi) forces versus
viscous forces3,22–25. The spatio-temporal fingerprints of flow transitions are commonly expressed in
terms of their spectral dynamics, i.e. the characteristic temporal (frequency, f = f(Re)) and spatial
(wavenumber, κ = κ(Re)) periodicities of the patterns. Thus, with increasing Re the flow transitions
from laminar Couette flow (LCF) to time-invariant axisymmetric counter-rotating toroidal vortices,
a flow pattern known as Taylor vortex flow (TVF). While all flow patterns have one characteristic
wavenumber that tends to decrease with increasing Re, the number of the characteristic frequencies
of supercritical flow patterns can be as high as 2 and can include broadband background noise due
to either successive merging and splitting of vortices or turbulent effects induced on the visualization
particles within the vortices.3,22,24,26–28

Of particular recent interest in the past two decades has been understanding transition states in
rheologically-complex fluids, such as viscoelastic polymer solutions. In such systems, the complex
interaction between the flow field and the material structure, where the flow can modify the structure
of the materials, has led to the discovery of distinctive flow patterns compared to Newtonian fluids, as
well as the critical Re associated to the onset of instabilities6,8,29–32. In these systems, in addition to
inertial and viscous forces, TC flow stability is influenced by elastic or inertio-elastic forces3,4,7,30–38.
Consequently, the dimensionless Weissenberg (Wi) number is introduced for expressing the ratio of
elastic to the viscous response of the fluid. Upon the combination of Wi and Re, the Elasticity (El)
number is obtained, a parameter that signifies the ratio of elastic to inertial forces, and is expressed
as El = Wi/Re. Apart from aforementioned forces or time scales, an important distinction in vis-
coelastic fluid flows is that their viscosity functions are most commonly shear thinning. According to
the scientific literature, elastic non-Newtonian fluids with negligible shear-thinning behavior exhibit
altered transition sequences compared to their Newtonian counterparts4,29,31,33,35,37,39. Distinctive
flow patterns thus recorded include disordered oscillations40, oscillatory strips35 diwhirls41, standing
waves31,37,42, spirals and ribbons29? and elastic turbulence8,38. In recent years, several works have
shifted their focus to shear-thinning fluids in TC flow systems, pointing to the interplay of shear-
thinning and viscoelastic response of the test fluids on the sequence and spectral dynamics of flow
transitions43–47.

Aqueous suspensions of cellulose nanocrystals (CNCs) are a special class of viscoelastic fluids.
CNCs are composed of crystalline aggregates of the polymer cellulose, as the most abundant natural
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polymer on earth, where they constitute rod-like nanoparticles of a few nanometers in diameter and
up to several hundred nanometers in length. Remarkably, CNCs have the ability to self-assemble
into liquid crystalline phases in certain structural and physicochemical conditions. Depending on
the CNC concentration, several distinctions are commonly made in terms of the structure of CNC
suspensions48–50. For concentrations below the critical self-assembly concentration, such suspensions
are classified as isotropic. Above the critical self-assembly concentration, the CNC suspensions con-
sist of co-existing liquid-crystalline as well as isotropic domains, so usually referred to as biphasic. A
particular feature of such birefringent suspensions is the colorful patterns that they can exhibit under
polarized light49–53. The nature of the microstructural origin of birefringence as observed at flows-
cale depends on the assembly phase of CNCs, as observed through rheology combined with polarized
light imaging, rheo-PLI, experiments49–51. Thus, isotropic and weakly biphasic CNC suspensions
show only shear-induced birefringence with first-order interference colors54. With increasing CNC
concentration, biphasic suspensions will transition to shear-induced orientation having higher order
interference colors. As the isotropic component is diminished, the suspension will show interference
colors even in quiescent conditions. Starting with biphasic suspensions having a well developed chiral
nematic phase, the nature of the elastic response can be fundamentally related to various modes in
which the self-assembled structures can be elastically deformed, as defined by the so-called elastic
Franck constants55. However, it is known that above a critical shear rate, liquid crystalline domains
can be broken into individual nanoparticles56. In terms of flow stability, this would be expected
to effectively limit the elastic component of the suspensions. Thus, CNC suspensions constitute a
niche case for analysis in TC flow for several reasons: (i) their birefringence patterns can allow for
the visualization of flow patterns without the need for the addition of visualization particles; (ii)
the nature of the viscoelastic response differs from that of the commonly used polymer solutions
used in TC flows and (iii) the flow induced breaking of liquid crystalline domains flow make up for a
case where beyond a critical Re the suspensions have vanishing elastic liquid crystalline dominated
material response, with likely shear-thinning remaining as the dominant factor.

To date, no systematic study has investigated the flow transitions of self-assembling suspensions
in TC flow in the context of rheological and birefringence pattern visualizations. Here we study the
flow stability of several biphasic CNC suspensions differing in their CNC concentration. For this, we
present here a novel TC flow optical visualization setup with independently rotating cylinders that
reveals the flow patterns of CNC suspensions based solely on their intrinsic birefringent properties,
without the need to add flow visualization particles. The flow stability analysis is mainly based on
the spatio-temporal spectral dynamics of the patterns as observed through polarized light imaging.
After outlining the experimental setup and procedures, we first describe transition sequences that are
representative of all the supercritical patterns observed, followed by an assessment of their stability.
We then discuss the non-Newtonian effects discerned in the context of elastic versus shear-thinning
effects.

II. MATERIALS AND METHODS

A. Test materials

The test fluids consist of distilled water mixed with visualization particles and water based CNC
suspensions in five different concentrations. CNCs were purchased from CelluForce (Montreal,
Canada) and were used to make CNC suspensions in Milli-Q water at 1.0, 1.5, 2.0, 2.5, and 3.0
wt % concentrations. To this end, after mixing with Milli-Q water, the suspensions were subjected
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to an ultrasound bath for one hour. Subsequently, a bench shaker was used for mixing and homog-
enizing the suspension for 72 hours.

The density of the suspensions was calculated based on the simple rule of mixtures:

ρ = ρCNCϕv + ρw(1− ϕv) (1)

where ϕv is the volume fraction of the CNC. The resulting densities are also listed in Fig. 2.

B. Rheological properties

Steady and oscillatory shear tests were performed on an Anton Paar MCR702e Space (Graz,
Austria) rotational rheometer in single motor-transducer configuration using double-gap and bob-cup
measuring geometries. Fig. 1 represents the steady shear viscosity functions and angular frequency
dependent dynamic moduli of the test samples at room temperature. The viscosity functions in Fig.
1(a) were fitted with the Carreau–Yasuda model:

η(γ̇) = η0(1 + (λCY γ̇)
α)

ni−1

α (2)

where η0 and η∞ stand for viscosity as the shear rate tends to zero and to infinity, respectively; λcy

and ni denote the model relaxation time and shear-thinning index (flow index), respectively; α is a
parameter describing the transition from the Newtonian plateau to the shear-thinning region. The
fit parameters are plotted in Fig. 14 in the supplementary information. Linear viscoelastic dynamic
moduli from frequency sweep tests performed at a constant strain amplitude of 70, 20, 4, 4, and 1
% for 1.0, 1.5, 2, 2.5, and 3.0 wt%, respectively, are shown in Fig. 1(b). All concentrations show
a liquid-like behavior in the terminal region, G′′ > G′, with the highest concentration potentially
approaching a gel-like material response. We note that the linear viscoelastic dynamic moduli
essentially characterize the linear (Newtonian-plateau) region of the viscosity functions in Fig. 1(a).
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FIG. 1. Rheological properties of the cellulose nanocrystal (CNC) suspensions investigated: (a) shear
viscosity functions from steady shear tests and (b) dynamic moduli from oscillatory shear frequency sweep
tests.
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The longest relaxation times of the terminal region, i.e. the inverse of the angular frequency at
which this cross-over occurs λ = 1/ωG′′=G′ , are also represented in Fig. 2.
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FIG. 2. Characteristic material parameters used to define the dimensionless groups used in this study: η0 -
the zero-shear viscosity extracted from the Eq. (2) fits, see also Fig. SI 14, λ - the characteristic relaxation
time of the suspensions, λr = 1/ωG′′=G′ in Fig. 1.

Based on previous results with similar preparation methods50 and polarized light microscopy
analysis, ϕCNC ∈ (1, 2] wt% are expected to be isotropic suspensions, whereas ϕCNC > 2 are
expected to be biphasic. Since 2 wt% CNC shows a uniform background, we can consider it isotropic,
Fig. 15(a) while 3 wt% appears biphasic, see Fig. 15(b), with 10 µm sized agglomerates.

1. Rheo-SAXS

To further gain a better understanding of the microstructural dynamics of the CNC suspensions,
rheological tests were performed simultaneously with small-angle x-ray scattering experiments, rheo-
SAXS at the CoSAXS beamline57 , Max IV Laboratory, Lund University, Sweden. A standard SAXS
polycarbonate cup-bub geometry was used in single motor-transducer configuration. The measuring
geometry had an inner cylinder radius of 24.5 mm with a 25 mm outer cup radius (radius ratio:
0.98). The high radius ratio of the geometry (≈ 0.96) ensures that the flow was laminar up to the
maximum shear rate tested, 100 −1s. Furthermore, we have also visually confirmed the absence of
instabilities (data not shown). To quantify the flow microstructure, we present here only Hermans
orientation parameter, ⟨P2⟩, from azimuthal integration within q ∈ [1.4, 2.4] · 10−2 Å−1, where q is
the magnitude of the scattering vector. The scattering experiment was set up such that the incident
X-rays pass through the axis of the concentric cylinders around the middle of the flow column. Thus,
the scattering experiments are representative of the velocity - vorticity directions (so-called (1-3)
plane). By approximating the orientation distribution function with a Legendre series expansion in
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cosφ of the orientation distribution function containing only even terms, Iφ) ≈
∑6

n=0 anP2n(cosφ),
⟨P2⟩ can be defined as:

⟨P2⟩ =
∫ π

0
1
2

(
3 cos2 φ− 1

)
I(φ) sinφdφ∫ π

0
I(φ) sinφdφ

(3)

where φ is the azimuthal angle of the scattering pattern and I(ϕ) is the scattering intensity within
the integrated q-range. Within the integration limits used, ⟨P2⟩ ∈ [−0.5, 1], where ⟨P2⟩ = 1 signifies
that all CNCs are oriented in the perpendicular direction to the flow, and ⟨P2⟩ = −0.5 indicate that
all CNCs are oriented in the flow direction, and ⟨P2⟩ = 0 corresponds to random orientation. Due
to the low CNC concentrations employed, only the 3 wt% sample is presented.

C. Experimental setup
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FIG. 3. The two independently-rotating Taylor-Couette (TC) flow geometries used in the present study:
(a) TC cell for visualization with reflective particles consisting of a transparent glass outer cylinder and an
aluminum inner cylinder, for the reference sample (water+visualization particles) and (b) TC cell for cross-
polarized light visualizations consisting of a transparent glass outer cylinder and translucent polycarbonate
inner cylinder. The two are exact dimensional replicas of each other.

The flow stability experiments were performed using two custom-design Taylor-Couette (TC)
visualization flow cells, Fig. 3. The TC flow cells were mounted on the same rheometer used for
the rheological characterization albeit in a separate motor-transducer configuration. The inner and
outer cylinders have radii of Rei = 20.5 mm and Reo = 22.5 mm, respectively, giving a geometry
radius ratio of ϵ = Ri/Ro = 0.91. The height of flow column is L = 68.7 mm, with a resulting aspect
ratio of Γ = L/d = 34.4. All tests were run at the temperature of 23 ◦C (ambient temperature).
The rotation of the inner and/or outer cylinder was controlled by the upper and lower motors of the
rheometer.
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D. Dimensionless numbers

To account for the relative rotation of the inner (Ωi) and outer (Ωo) cylinders, respectively, we
define

β =
Ωo

Ωi + |Ωo|
(4)

where Ωtot = Ωi + |Ωo| is the total net angular speed of the flow cell. Thus, β = 0 corresponds to
a rotating inner cylinder while the outer one is at rest; for β = −1 the outer cylinder is rotating
and the inner one is stationary. The minus sign thus signifies counter-rotation. Five flow cases have
been thus considered: β = 0,−0.25,−0.5,−0.75 and −1. The Reynolds number for each cylinder
can be defined as

Re(i,o) =
ρ(ϕ) ·Ri,o · |Ωi,o| · dβ

η0(ϕ)
(5)

where dβ is the relative gap between the two concentric cylinders that depends on β

dβ =

d · (1− |β|) if β = 0 i.e. Re = Re(i)

d · |β| if β < 0 i.e. Re ̸= Re(i).
(6)

It is thus convenient to report results using a ’total’ Reynolds number defined as

Re = Re(i) +Re(o). (7)

Thus, for any {Re, β} reported, the corresponding instantaneous Re of the inner and outer cylinders
are therefore Re(i) = Re(1− |β|) and Re(o) = Re|β|. We briefly note that in Eq. (5) η0 is the zero-
shear viscosity as extrapolated from Eq. (2), in contrast to some previously published works where
they use a shear rate dependent viscosity for shear-thinning fluids44,58,59. For a more comprehensive
notation, the critical Re numbers are expressed as Reβ,ϕCNC

cr .
In the case of Non-Newtonian fluids, as explained in the introductory section, the Weissenberg

number Wi is introduced to account for the relaxation timescale of the materials. In the current
work, Wi(i) and Wi(o) correspond to the inner and outer cylinders, respectively

Wi(i,o) =
λ ·Ri,o

|Ωi,o| · dβ
(8)

By combining (the total) Re and Wi, the Elasticity number, El, is defined as

El =
Wi

Re
=

λη

ρd2
(9)

which is essentially a function only of fluid properties and flow geometry. Based on the El range in
Fig. 2 we can classify suspensions with ϕCNC < 3 wt% as weakly elastic, El << 1, and ϕCNC = 3

as moderately elastic, El ≈ 131.
From a different perspective, the flow of liquid crystals can be characterised by the Ericksen

number, Er, as the balance between viscous and elastic forces. In contrast to Wi, the characteristic
material parameters are defined in the framework of the Leslie-Ericksen theory and specific Frank
elastic constants as Er(i,o) = γ1vd

K where γ1 is the rotational viscosity as defined by the Leslie-
Ericksen viscosities60,61, γ1 = α3 − α2 (the α2 and α3 are Leslie viscosity coefficients), v(i,o) is
the velocity of the inner/outer cylinders and K is a Franck elastic constant. We note here that
determining experimentally the Leslie-Ericksen viscosities remains a challenge62 and the theory has
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been applied mainly to nematogenic liquid crystals whereas CNCs form a chiral nematic phase. The
elastic Franck constants has been investigated for nematic and cholesteric tactoids in biphasic CNC
suspensions by Bagnani et al.63 while estimates of Leslie-Eriksen viscosities for CNCs can be found
in the work of Noroozi et al.64. However, considering that the low concentrations considered in the
study, even if present, the mesophase is expected to break up at relatively low shear rates56,64, all
three Frank elastic constants would tend to zero, making Er a unsuitable measure of flow stability.

E. Experimental protocol

The flow stability analysis was performed using ramp-up speed tests starting at a rotational
velocity of zero and linearly increasing it up to the maximum capability of the rheometer. The ramp
rate was chosen such that for any flow case the total rotational speed ramp is constant for all CNC
suspension flows, i.e. ∀β, dΩtot/dt = 0.022. A criterion for meeting quasi-steady-state conditions
in a ramped-up TC flow was defined as dRe/dt∗ < 1 by Dutcher and Muller24 on Newtonian
fluids, where t∗ stands for a dimensionless time via the viscous time scale tν = (ρd2/η). Using
the same principle, the ramp rates in the present work correspond to dRe/dt∗ ≤ 0.16 for the
CNC suspensions. A special test protocol was chosen for the Newtonian reference (water) and
was performed at dRe/dt∗ ≤ 7.29, as a compromise between creating optimal quasi-steady-state
conditions and the difficulty in handling large amounts of video data. We briefly note that for
the Newtonian reference β = 0 case, the experimental critical Reynolds number for the onset of
instabilities was Recr1 ≈ 210. This is considerably higher than theoretical predictions based on
linear stability analysis65,66, where Recr1|ϵ=0.91 ≈ 136.

F. Flow visualization and spectral analysis

One of the experimental features of the present work distinguishing it from previous studies is
the design of a customized TC flow visualization setup for cross-polarized optical imaging (PLI).
The visualization setup comprised a Canon 90D DSLR camera (Tokyo, Japan) equipped with a
Canon L-series 100 mm macro lens. LED studio lights were used as light source. Standard TC
flow visualization setups operate in reflection mode, meaning the light source is placed on the
same side of the geometry with the camera and light reflected by the visualization particles is
captured by the camera. In contrast, the PLI setup we developed operates in transmission mode,
with the concentric cylinders placed between the light source and the camera together with two
linear polarizers oriented at 90◦ relative to each other placed between the flow cell and camera and
light source, respectively. Due to fluid induced orientation during manufacturing, the translucent
polycarbonate cylinder exhibits weak birefringence, however, when tested on water (non-birefringent)
no flow patterns could be distinguished. In contrast, using the liquid crystalline test samples,
beautifully colored TC flow patterns could be readily observed, see Fig. 4.

During the ramped experiments, HD video (1920 × 1080 px) recordings of the flow patterns were
performed at 100 fps. Space-time diagrams were then produced by extracting a vertical line of
pixels passing through the middle of the flow domain from from the video frames that were added
successively to create a new image ( 45000 × 1080 px), as it is common in most similar studies.
Thus, in the new image the y-axis corresponds to the the height of the flow column and the x-axis
to time and correspondingly Re. Subsequently, 2D Fourier transform (FFT) was applied using a
moving window procedure. The window size was 500 px and the window increment 1 px. For each



9

FIG. 4. Example of supercritical Taylor-Couette flow visualization of CNC suspensions (ϕ = 3 wt% CNC,
β = −0.25, |Retot| ≈ 400). The colors are natural as visualized directly from the birefringent properties of
the suspensions using a cross-polarized light optical visualization system.

window j the 2D Fourier transform of the grayscale intensity function gj(z, t) is

Gj(z, t) =

∫ +∞

−∞
gj(z, t)e

−i(κ)z,2πf ·tdzdt (10)

where z is the coordinate along the axis, and (κ, f) are the characteristic wavenumber and frequency
of the window analyzed. Thus, based on the number of characteristic (κ, f) and their dynamics,
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FIG. 5. Transition sequence for the 1 wt% CNC suspension, β = 0. The left column compares the space-
time visualization (top), temporal spectrogram (middle) and spatial spectrogram (bottom), while on the
right side specific instability modes are highlighted as details from the space-time visualization.

specific TC flow patterns can be identified.

III. RESULTS AND DISCUSSION

We first examine only the unique transition sequences for ϕ = 1 wt% CNC as function of β

since they essentially contain nearly the entire spectrum of instability modes identified in this study.
Thereafter we discuss the influence of elasticity on the flow stability and pattern characteristics.
Subsequently, the results are discussed in light of the interplay between the elasticity, shear-thinning
and the structural evolution of CNC suspensions.

A. Characteristic instability modes and the influence of relative cylinder rotation

The flow transitions for 1 wt% CNC at three different relative cylinder rotations, i.e., β = 0,−0.5

and −0.75, are represented in Fig. 5, 6, and 7, respectively. The figures compare the space-time
diagrams, and details therefrom, with scalar plots of the (temporal) frequency spectra and (spatial)
wavenumber spectra as function of Re. Complementary still frame extracts from the video recordings
representative of the patterns identified are summarized in Fig. 17. We note that in all temporal
spectrograms the rotational frequency of the rotating cylinders, f (i,o)

n has the highest signal-to-noise
ratio and a significant number of higher harmonics present in the spectra. This can be readily
identified as constant ramp peaks that span the entire test duration. As a reference, the instability
modes for the Newtonian case (water) are presented in Fig. 16 in Appendix IV.
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(a)

(b)

(c)

FIG. 6. Flow visualizations at selected Re showcasing the main instability modes observed. The visualiza-
tions correspond to the data presented in Fig. 5-8: (a) β = 0, (b) β = −0.5 and (c) β = −0.75. In (a) the
collapse of a pair of vortices is highlighted for Re = 350.

Based on the data in Fig. 5-8, the instability modes are identified, and their sequence with
increasing Re are essentially Newtonian-like1,3,67.

For β = 0, Fig. 5, the Laminar Couette flow (LCF) cascades into the axisymmetric Taylor vortex
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flow (TVF, Re0,1cr1 ≈ 193), where parallel colored stripes appear in the space-time diagram, see Fig.
5(i), characterized only by one wavenumber κTV F , Fig. 5. Taylor vortices become axially unstable
and evolve into wavy vortex flow (WVF, Re0,1cr2 ≈ 229), where colorful waves traveling in the az-
imuthal direction can be readily identified. We note that with the appearance of azimuthal waves,
there is a stabilization region, Fig. 5(ii), before the waves settle for WVF, see Fig. 5(iii). The onset
of the wavy regime is identifiable in terms of spectral dynamics by the onset of a characteristic (tem-
poral) frequency of the waves, fWV F , while the axial motion of the secondary flows typically leads to
a decrease in κ. At higher Re the wavy regime undergoes a wave modulation in frequency, Fig. 5(iv),
resulting in the modulated wavy vortices (MWF, Re0,1cr3 ≈ 260). In the temporal spectrogram, the
characteristic pattern frequencies bifurcate with the addition of the low modulation frequency com-
ponent, fMWF . The onset of the chaotic wavy regime (CWV, Recr4 ≈ 283) features a broadband
background noise and multiple characteristic temporal frequencies. This includes a broadening of κ
in the spatial spectrogram. These spectral characteristics are due to the rapid successive collapsing
and splitting of vortices that characterize the pattern, see Fig. 5(v). The following supercritical
instability mode is expected to be wavy turbulent vortices (WTV, Re0,1cr4 ≈ 420). Interestingly, at
the observation scale the spectra does not capture the broadband characteristics expected for ma-
terial particles in turbulent flow. This is further confirmed by the similar spectra obtained for the
Newtonian reference case, see Fig. 16. This in contrast to CWV where the broadband noise present
in the spectra corresponds to events occurring at flow scale. Instead, WTV is characterized by the
onset of fWTV while κ maintains a well defined fundamental and higher harmonics. A modulation
frequency could be detected with increasing Re marked as a distinct pattern here, namely modulated
wavy turbulent vortices (MWTV, Re0,1cr6 ≈ 700). Ultimately, the flow cascades into the turbulent
Taylor vortex regime (TTV, Re0,1cr7 ≈ 870) with a wide spectrum of frequencies and broadband noise.
To summarize the full spectrum of instabilities identified for CNC suspensions in the β = 0 case
follows a first Newtonian sequence (Sequence 1) of instabilities: LCF → TVF → WVF → MWV →
CWV → WTV → MWTV → TTV.

The β = −0.25 counter-rotation case exhibits a similar sequence in instabilities to β = 0. However,
new flow modes emerge with β = −0.5, where both cylinders counter-rotate at equal speeds, Fig.7.
We briefly note that in counter rotation mode the flow field is separated into two zones by the
zero-velocity plane, thus enabling the onset of instabilities in both zones. Consequently, based
on the simple visualization method employed we cannot fully resolve the spatio-temporal topology
of the instability modes. Following LCF, the first stability mode is a non-axisymmetric spiral
flow (S, Re−0.25,1

cr1 ≈ 614) instability mode, characterized by both one (temporal) frequency and
(spatial) wavenumber fS , κS corresponding to the azimuthal and axial periodicity of the spiral flow,
respectively, Fig. 7(i). The spiral mode translates into interpenetrating spirals (IS; Re−0.25,1

cr2 ≈ 633),
Fig. 7(ii). IS appears to have a transient characteristic with increasing Retot with initially one new
low-frequency component, f IS

#1 apparent in the spectra, followed by noise in that frequency range and
the addition of a new lower frequency component(unmarked) and the decay of f IS

#2. Gradually, all
identifiable pattern peaks broaden, and there is a broadband background noise in both the temporal
and spatial spectrogram, and this signals the onset of disordered spirals (DS, Re−0.25,1

cr3 ≈ 900−1000),
Fig. 7(iii). Eventually, the background noise in both f and κ increases to a point where clear spatio-
temporal patterns are difficult to identify with the flow entering a new regime we call turbulent
vortices (TV, Re−0.25,1

cr4 ≈ 1200− 1500), Fig. 7(iv). To summarize, the full spectrum of instabilities
identified for CNC suspensions in the β = −0.5 case also follows a second Newtonian sequence
(Sequence 2) of instabilities: LCF → S → IS → DS → TV.

For all counter-ration cases with β ≤ −0.75 the LCF flow is stable at all Re as exemplified in Fig.
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FIG. 7. Transition sequences for the 1 wt% CNC suspension β = −0.5. The left column contains the
space-time visualization (top), temporal spectrogram (middle) and spatial spectrogram (bottom), while on
the right side specific instability modes are highlighted as details from the space-time visualization.

8.

One exception from the Newtonian patterns described is found for 3 wt% CNC in the form of
ribbon-like spirals instabilities just before the onset of TVF for β = 0 and −0.25, see Fig. 9.

B. Non-Newtonian effects on pattern formation and stability

Here we focus on identifying non-Newtonian effects on pattern formation and flow stability. Fig.
10 summarizes the transition sequences recorded for all β and CNC concentrations investigated.
The stability diagrams therein map the characteristic flow patterns in a Wiicr vs. |Wiocr| plot.
Thus, β = 0 corresponds to |Wiocr| = 0 and thus a vertical line, and β = −1 corresponds to
|Wiicr| = 0 , a horizontal line and so on. Overall and as previously mentioned, nearly the entire
spectrum of supercritical flow cascades can be mapped using Newtonian-like instability modes.
The maximum Wi attainable for each concentration is limited by the increase in viscosity, and
consequently the number of accessible states dwindle with increasing El, e.g. compare Fig. 10(a) and
(e). However, non-Newtonian effects could still be distinguished in (i) the characteristic wavenumbers
of the instabilities κ = κ(ϕCNC) as well as pre-TVF instabilities at the highest concentration; (ii) the
Wi-range over which some instability modes are stable, (iii) a transition sequence that starts with
flow patterns characteristic of Sequence 1 but then transitions into modes characteristic of Sequence
2 and (iv) the stabilization / destabilization of critical instability mode parameters with increasing
CNC concentration, ϕCNC .
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FIG. 8. Transition sequence for the 1 wt% CNC suspension, β = −0.75. The left column contains the
space-time visualization (top), temporal spectrogram (middle) and spatial spectrogram (bottom), while on
the right side specific instability modes are highlighted as details from the space-time visualization.

FIG. 9. Examples of pre-TVF instabilities in the form of ribbon-like spirals observed in 3 wt% CNC,
β = 0,−0.25.

1. Pattern characteristics

A visual comparison between the TVF flow patterns as a function of ϕCNC is presented in Fig.
11. For the Newtonian case, the size of a Taylor vortex pair in TVF has been shown using linear
stability analysis to be twice the gap between the concentric cylinders, ∆z = 2d1, where ∆z is the
average size of a pair of vortices in the flow column. Deviations from this have been associated
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with non-Newtonian fluids. Shear thinning and elasticity have been shown to have opposite effects
thereon. While patterns with ∆z > 2d (decrease in κ) have been shown to occur due to the effect
of shear thinning within the flow field43,68–73, the results for elastic non-shear thinning fluids such
as Boger fluids reveal ∆z < 2d (increase in κ)33,74.

This can be readily observed in the present data as well, by simply comparing the number of
vortices present in the column for TVF, Fig. 11. Thus, for ϕCNC = 0, 34 vortices in the fluid
column roughly correspond as expected to half the height of the flow cell, i.e. κ ≈ π/d. However,
for ϕCNC > 0 wt% κTV F << π/d, with the total number of Taylor vortices in the column being 28
(κTV F ≈ 1.28) for ϕCNC = 1 wt% and down to only 21 (κTV F = 0.96) for ϕCNC = 3 wt%. Overall,
a decrease in κ for CNC suspensions compared to the Newtonian case can be readily observed across
the entire spectrum of instability modes identified, e.g. compare, for β = 0, κ = κ(Re) for the
Newtonian reference in Fig. 16 to the Non-Newtonian case of 1 wt% case in Fig. 5.

It needs to be emphasized that κ(Re) is also significantly different between the Newtonian case and
the CNC suspensions. For the latter, κ|ϕCNC=ct. does not decrease significantly with increasing Re.
This is also distinct from κ dynamics observed in similar shear thinning and elastically dominated
transition sequences.33,72,74.

FIG. 11. Influence of CNC concentration on the Taylor vortex flow (TVF) instability mode (β = 0). Note
that the flow visualizations correspond in most cases to slightly supercritical conditions, Re ≥ Recr1.

2. Transition from axisymmetric and azimuthally-periodic patterns to asymmetric modes

As identified in the previous section, two distinct transition sequences (Sequences 1 and 2) are
present for ϕCNC ≤ 2, Fig. 10. The first sequence starting with TVF (Sequence 1) occurs for
β ≥ −0.25 while the second sequence starting with S (Sequence 2) is limited to β = −0.5. In
contrast, for ϕCNC ≥ 2.5, the two transition sequences co-exist for β = −0.25, Fig. 10(d) and (e).
Initially TVF is followed by WVF and MWV, however, higher order transitions are destabilized by
the relative counter-rotation of the outer cylinder, and the CWV regime was not detected for β ̸= 0.

3. Onset of instabilities and their Re range

Increasing ϕCNC has a significant effect on the range of Wi(i,o) for almost all flow patterns.
Taking β = 0 (|Wio = 0|) and for ϕCNC = 2 wt%, it can be observed that the TWV region has
been partially suppressed compared to the low concentration cases.
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While Fig. 10 displays the cascade and the variation of flow modes for relevant relative rotations
of the cylinders and each CNC suspension, Fig. 12 represents an overall view of the dynamics of
flow transition in terms of the El and Re normalized by the critical Re for the onset of the TVF
regime for the Newtonian reference, i.e. Recr/Recr1,El=0, for β = 0, -0.25 and -0.5 cases. We note
that transition sequences for β < −0.5 have been omitted as they comprise cases where LCF is the
only flow mode throughout the Re,El investigated. Overall, for El < 0.65, in all cases, we can
obtain the following relationship Recr1,El/Recr1,El=0 = 1 ± 0.25 (TVF). While initially causing a
weak destabilization (the onset of instabilities occurs at lower Recr1 compared to the Newtonian
case), see β = 0,−0.5 in Fig. 12(a) and (c), or a weak stabilization (the onset of instabilities occurs
at higher Recr1 compared to the Newtonian case) of the flow, see β = −0.25 in Fig. 12(b), for
El = 0.65 (3 wt%), a pronounced destabilization of the flow is recorded with Recr/Recr1,El=0 < 0.2

for β = 0,−0.25. Higher order transitions can experience more significant shifts and seem to be
more prone to be destabilized by the addition of elasticity even for β = −0.25. This means that
in the β = 0 case the TTV regime for example, while not captured in the Newtonian case, could
be identified for El = 0.036. We note that for β ̸= 0 the influence of elasticity does not equally
affect supercritical instability modes, e.g. see for El ∈ [0.036, 0.059] TVF, WVF and MWV in Fig.
12(b) and S, IS in Fig. 12(c). In particular, the IS mode tends to destabilize as the CNC suspension
reaches 1.0 wt%. Later, the onset of IS is shifted to higher Re/Recr1,El=0. In contrast to IS, the
spiral flow is absent in the Newtonian fluid, and it tends to emerge for the CNC with 1.0 and 1.5
wt% with a shift to a lower critical Re. The DS and TV modes are present in water and the CNC
with 1.0 wt%, however, there are no visible traces of these modes in solutions with higher El.

C. Elasticity and shear thinning in the Taylor-Couette flow of cellulose nanocrystal suspensions

In this section we discuss the stability of CNC suspensions in the framework of elasticity and shear
thinning effects. The Taylor-Couette flow of CNC suspensions presents a conundrum compared to
other non-Newtonian cases in the scientific literature. While part of the discussion in the previous
section has been carried out in the framework of El = El(Re) stability diagrams, it is important to
note that with increasing CNC concentration both elasticity, as quantified by El, and shear thinning,
as quantified by ni show a power law dependence on the CNC concentration up to 2.5 wt%, Fig. 13,
see also Fig. 2. Thereafter the relative increase in El exceeds considerably that of the ni. However,
the flow patterns remain Newtonian-like throughout the El, ni investigated.

The vast majority of non-Newtonian Taylor-Couette flow cases have been performed on polymer
solutions. Such systems are inherently elastic due to the elastic nature of polymer chains. At the
same time, polymeric solutions are also shear thinning, as the chains stretch and orient in the flow
direction. To eliminate shear thinning, weakly elastic polymer solution compositions have been
investigated, also known as Boger fluids, while more recently shear thinning fluids with different
elasticity levels have been investigated. Thus, the general stability discussion on polymer solutions,
from material point of view, revolves around the influences of elasticity and shear thinning. We note
that the parameter space determining the TC flow stability includes not only material parameters
but also setup parameters such as the relative counter-rotation of the cylinders, which is considered in
the present study, as well as the radius and aspect ratios (0.91 and 34.4, respectively). Thus, despite
a substantial number of studies on non-Newtonian TC flows available in the scientific literature,
direct comparisons are not always possible. In terms of radius ratio, the present experiment can be
considered as narrow-gap TC flow, similar to the works by Dutcher and Muller, but at almost half
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of their aspect ratio (60.7)30,31. In contrast, the radius and aspect ratio used in the present study
are considerably higher than some studies that are relevant for comparison in terms of elasticity
and shear thinning (e.g. 0.776 and 21.56, respectively, by Balabani and co-workers44,45. Thus, as
we propose a different interpretation for the interplay between elasticity and shear thinning based
on a mesophase (liquid crystalline domain) evolution with CNC concentration and Re, we will refer
below mainly to flow and geometry cases that are similar to the present case.

Dutcher and Muller have investigated the flow cascades of shear-thinning polymer solutions at
low to intermediate El at different relative cylinder rotations with flow phase diagrams similar to
Fig. 10 but in terms of critical Reynolds numbers30,31. Our findings with β = −0.25 bear the closest
similarity to their results at weak elasticities, that is, the CNC suspensions with < 2.5 wt%. However,
our experiments show the onset of spiral-like flow modes in contrast to elastically inherent flow
phases revealed in their study. In two independent contributions by Baumert and Muller, stationary
counter-rotating vortices have been reported for non-shear-thinning fluid of dilute polyisobutylene
solutions in polybutene of low elasticities (El = 0.056237 and 0.1675) for β = −137, where the former
and latter case have similar elasticity level of the CNC suspension with CNC of 1.5-2.5 wt%, and
3.0 wt%, respectively. The same authors reported similar stationary counter-rotating vortices for
highly elastic fluids of polymer solutions at El = 1 and El = 44, where depending on the viscosity,
Wi, and Re, intermediate flow patterns such as Migrating Bands and Distorted counter-rotating
vortices emerge75 for β = −1. Another work and based on linear stability analysis points to a flow
mode called axisymmetric, oscillatory for the stationary inner cylinder at the elasticity level of 0.16
comparable to CNC of 3.0 wt%76. However, in the current work and for stationary inner cylinder
scenarios, LCF pattern persists to exist in the entire examined Re. Supercritical transitions from
TVF to elastic rotating standing waves (RSW) which cascades to disordered oscillations (DO)36,77

or the uninterrupted morphing of TVF into DO36,78 at relatively higher El values have also been
reported.

The emergence of standing vortices (SV)31, disordered rotating standing waves (DRSW)40, elasti-
cally dominated turbulence (EDT) or elasto-inertial turbulence (EIT)31,45,58,79 at moderate to high
elasticity numbers for weakly shear-thinning polymer solutions have been ascribed to the significant
contribution of the elastic response, with direct translation of LCF to EIT in certain cases45,77.
In recent studies, it has been argued how the flow translations deviate from non-shear-thinning
systems if the test fluid exhibits shear-thinning behavior42–45,59,68,80,81. In a work by N. Cagney
et al, the authors have looked into the interplay of fluid’s rheology and shear-thinning on flow
instabilities44. Their experiments showed Newtonian-like flow patterns, however, with alteration in
flow transition critical parameters. In another work, same authors have shown that both Recr1 and
Recr2 (β = 0) tend to decrease non-monotonically with increasing El. Reicr1 was relatively lower
than the non-Newntonian fluids and a Reicr2 significantly deviating from the Newtonian case43.
Similar destabilizing effects of shear-thinning have also been discussed in other works both using
experimental techniques42,73,82–85 and numerical methods86–88. A few of studies have also argued
that shear-thinning introduces asymmetric flow states such as Ribbons (RIB) and spiral vortex flow
(SVF)59,84,85 absent in Newtonian fluids, or the expansion and contraction of vortices outwards and
inwards in radial direction43, or modifications in waviness patterns attributed to the WVF states44.
In a study by Lacassagne et al, the interplay of shear-thinning and elasto-inertial contribution has
been elaborated45, where the fluids with high shear-thinning levels and at moderate to high El

conventional Newtonian-like flow emerge with variations in wavenumber and the wave frequency of
TVF and WVF45. The same work points to the emergence of elastically-regulated flow patterns
only in low to moderate shear-thinning levels at high elasticities.
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FIG. 12. Flow stability diagrams in the form of El vs. Re comparing the reference Newtonian case and
the CNC suspensions for β = (a) 0, (b) -0.25, (c) -0.5.

Overall, these variations in flow modes reported for polymer solution highlight the distinctive
nature of CNC suspensions TC flow stability. For the weakly elastic CNC suspensions, ϕCNC ∈
[1, 2.5] (El << 1), it could be argued that flow stability is either dominated by shear-thinning,
or the Newtonian infinite shear viscosity plateau has been reached. Although the latter is not
identifiable in the viscosity functions this can be inferred based on the shear thinning slope and the
fact that η∞ should be greater than 10−3 (water). Within the weakly elastic range, with increasing
CNC concentration, both El and ni gradually increase, see Fig. 13(a), meaning that the conditions
for the development of elastically-driven novel instability modes are not met. However, the fact that
even for 1 wt% CNC κ is significantly lower than the Newtonian case for all Re could suggest that
shear thinning does influence flow stability up to the highest Re investigated. This would mean that
the transition sequence recorded for ≥ 2 wt% CNC from TVF → WVF → MWV → IS is also a
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consequence of shear thinning.

For the moderate El case, ϕCNC = 3 wt%, there is a significant increase in both El and ni. In
this case, again, the conditions for elastically-induce patterns are most likely not met, or elastic
effects are suppressed by the flow. The fact that there are no clear fingerprint patterns that are
associated to the chiral nematic phase present in the POMs suggests that the systems contain a
level of agglomeration (here by agglomerates we mean clusters of CNCs without positional and/or
orientational order at lengthscales greater than the particle lengthscale). To gain a more profound
insight into the structural dynamics of the flow, we have performed rheo-SAXS experiments on
the 3 wt% CNC sample, Fig. 13(b). At low shear rates we see evidence of vertical orientation,
⟨P2⟩ > 0. Similar results have been shown by Pignon et al.56; this has been broadly associated
to the orientation of tactoids containing liquid crystalline domains with preferential orientation
perpendicular to the flow direction. The loss of vertical orientation based on the shear rate in
the rheo-SAXS test would correspond to Re ≈ 1 in the TC flow case. This has been associated
to the breakup of the meshophase into nematic and then individual CNCs that orient in the flow
direction56. We note, that depending on the preparation method the shear rate corresponding to the
orientation in the flow direction can vary considerably depending on the q-range investigated. Thus,
based on several similar experiments over a broader q-range (data not shown) we estimate that for 3
wt% a reasonable Re-range would be between 0.5 and 5. This is considerably lower than Recr1 for 3
wt% CNC, β = 0, see Fig. 17. This means that the pre-TVF instability observed can be still a form
of shear thinning effect. Alternatively, due to the agglomerates apparent in the 3 wt% it is possible
that some parts of the mesophase can most likely form a mesophase under the influence of shear. At
this point without further evidence this remains a speculation. We also need to distinguish the effect
of elasticity and shear-thinning within liquid crystals systems like CNCs in this study and a typical
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polymer chain solution. In polymer solutions, normal stresses and subsequent elastically-dominated
"hoop stresses" dictate the flow instability32. In contrast, in CNC solutions at sufficiently high Re

beyond which chiral nematic or nematic assemblies are no longer present, such "hoop stresses" are
absent, and the shear-thinning determines the flow transitions.

Finally, we note that the flow stability of CNC suspensions could be further elucidated without
the requirement for higher CNC concentrations by employing different preparation methods, which
can significantly influence their self-assembly and rheological properties89.

IV. SUMMARY AND CONCLUSIONS

In the current work, the flow stability of CNC suspensions at different concentrations correspond-
ing to altered elasticities has been investigated. Specifically, a novel rheo-optical method has been
utilized to directly observe flow patterns at altered rotations of inner and outer cylinders of the TC
geometry. The particular liquid crystalline nature of the cellulose nanocrystal and how they respond
to polarized light can explain the applicability of such a method. The supercritical flow modes at
varied relative cylinder rotations have been observed and detailed in light of the material functions
and elastic response of the cellulose nanorods. In essence, the flow transitions observed follow a
Newtonian-like sequence but modified mainly by shear-thinning. In brief, the Taylor-Couette flow
stability problem for CNC solutions is significantly influenced by the strong shear-thinning behavior
of such solutions in non-linear flow conditions, where the elasticity dwindles due to the disengage-
ment of nematic or chiral nematic domains. Also, our findings on the one hand sheds light on
distinctions between liquid crystalline and polymer chains in terms of their viscoelastic nature, and
on the other hand, evidences the understanding the concept of elasticity beyond a single number
used for defining the viscoelastic response of a Non-Newtonian fluid.
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(a) (b)

FIG. 15. Polarized optical microscopy (cross-polarized) images of (a) 2wt% and (b) 3wt% CNC suspensions.

FIG. 16. Transition sequences for the Newtonian reference sample (ϕ = 0 wt% CNC; water with visualiza-
tion particles): (a) β = 0, (b) β = −0.5 and (c) β = −1.
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(d)

(e)

FIG. 17. Compilation of space-time diagrams and spectral dynamics for all CNC concentrations and all
relative cylinder rotation cases that showed instabilities.
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1. Hermans orientation parameter representation

Each point in the Hermans orientation parameter, ⟨P2⟩, is scaled according with magnitude and
orientation of the microstructure. Within the integration limits used, the resulting orientation factor
is ⟨P2⟩ ∈ [1,−0.5]. Therefore, Rx and Ry in Fig. 13(b), are defined as:

Rx = 1− | ⟨P2⟩ | (11)

Ry = 2(0.5− | ⟨P2⟩ |) (12)

The ellipses thus constructed are rotated with the angle ϕ′ corresponding to the orientation of the
nanoparticle in real-space.
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