Evolving professional development in nuclear reactor physics and safety through hybrid learning environments

Citation for the original published paper (version of record):

N.B. When citing this work, cite the original published paper.


120 Evolving professional development in nuclear reactor physics and safety through hybrid learning environments

Yihua Zhang1, Christian Stöhr1, Susanne Strömberg Jämsvi2, Jens Kabo1, Christophe Demazière1

1Chalmers University of Technology, Gothenburg, Sweden. 2University of Borås, Borås, Sweden

Research Domains

Academic practice, work, careers and cultures (AP)
Abstract

Nuclear education providers have difficulties sustaining their programs that typically consist of small cohorts of students and tend to follow a traditional, lecture-based design. This paper presents the GRE@T-PIONEeR project as a response aiming to preserve competencies and skills in computational and experimental nuclear reactor physics and nuclear safety through the implementation of six advanced courses offered globally to PhD and Post-Doc students, nuclear professionals, and MSc students. The courses employ a flipped classroom approach within a hybrid learning environment, complemented by three hands-on training sessions on nuclear training reactors. The courses were evaluated using validated survey instruments associated with various learning-theoretical frameworks. The paper presents preliminary findings derived from one of the courses comprising asynchronous online and synchronous hybrid sessions. While course completion and performance were high both among onsite and online students, some notable distinctions between the two groups emerge. Future research will explore these differences further.

Full paper

The dynamics of knowledge in society have significantly impacted the conditions of professional work and learning, including the field of engineering (Nerland, 2018). This becomes especially evident in the context of modern engineering, where engineers are tasked with designing innovative solutions that incorporate cutting-edge technology, that often requires a deep understanding of the latest advancements (Crawley et al., 2007). One of these areas is nuclear engineering, where the advent of affordable computing power has significantly augmented the significance of modeling and simulations. However, European nuclear engineering programs are in a state of crisis and need innovative changes to face an alarming decline in student enrollment and to keep up with the increasing demand for skilled labor. Nuclear education providers have difficulties sustaining their programs that typically consist of small cohorts of students. Courses tend to follow a traditional, lecture-based design, which can present significant obstacles to participation and learning. A potential solution is provided through the collaborative provision of online learning programs with greater accessibility and flexibility. But online learning often suffers from low levels of student engagement and high drop-out rates (Eriksson et al., 2017). Hence, an ongoing imperative exists to develop and assess learning designs that aim to address the limitations of both online and traditional courses while capitalizing on their inherent strengths through hybrid configurations.

The GRE@T-PIONEeR project aims to follow this call and preserve competencies and skills in computational and experimental nuclear reactor physics and nuclear safety (Demazière et al., 2021). Ten partners from six European countries developed a series of six advanced courses offered globally to MSc and PhD students, Post-Doc, and nuclear professionals. The courses are conducted as online and hybrid versions and based on the (online) flipped classroom method (Stöhr & Adawi, 2018) and principles of active learning (Freeman et al., 2014). In the beginning of a course, participants submit an honor code agreement, and the courses are offered free of charge. The courses consist of preparatory asynchronous (online) sessions comprising activities such as a series of handbooks, short video lectures, and online quizzes as well as synchronous sessions, where participants either participate in-class or online. The sessions include a combination of individual and collaborative active learning activities.

As part of a PhD project, a research design was developed that aims to better understand the effects of this digitalized learning environment on learners and their learning. In addition to data on motivation and learner background, learning analytics data was collected on learner activity and performance from the Moodle-based learning management system. Further, a learner survey instrument was designed building on four relevant learning theories focusing on different aspects of the learning process – the Community of Inquiry framework (Garrison et al., 1999), Transactional Distance Theory (Moore, 2013), Self-regulated Learning theory (SRL) (Zimmerman, 2002), and the ARCS Model of Motivation (Keller, 1983). The survey combined validated standard instruments from each theoretical perspective and some questions about course satisfaction. After pretesting and some re-adjustments, the survey was distributed after each course module. About 50 learners participated in each module of which approx. 50% responded to the survey.

Although the analysis just started, some initial results can be reported about learner activity, performance, and satisfaction from one of the modules titled “Core Modelling for Core Design,” which will be supplemented during the presentation at the conference. Regarding performance, the course completion rate was slightly above 50%, which is interpreted as a good result given the advanced course level and the high drop-out rates in other online courses. Pure online participants demonstrated considerably more strategic behavior with many just passing the required minimum, whereas onsite learners often reached maximum points. This disparity is also reflected in the activity measurements. While overall completion of the different learning activities was high, online learners showed a
significantly lower completion rate, particularly during the synchronous sessions. These effects are presumed to be influenced by online participants’ need to balance their participation with other commitments. There could also be motivational differences or effects of SRL (Stöhr et al., 2020), underlining the need for further analysis. However, participants (both online and hybrid) expressed exceptionally high levels of satisfaction with the course. In sum, the study affirms the pedagogical advantages of the flipped classroom and demonstrates how the hybrid learning design broadens access for learners while maintaining a high level of learner retention. Further research will explore the observed patterns further.

Acknowledgements

The GRE@T-PIONEeR project has received funding from the European Union’s Euratom research and training programme 2019-2020 under the Grant Agreement number 890675.

References


