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ARTICLE

Arctic amplification modulated by Atlantic
Multidecadal Oscillation and greenhouse forcing on
multidecadal to century scales
Miao Fang 1, Xin Li 2,3✉, Hans W. Chen 4✉ & Deliang Chen 5

Enhanced warming in the Arctic (Arctic amplification, AA) in the last decades has been linked

to several factors including sea ice and the Atlantic Multidecadal Oscillation (AMO). How-

ever, how these factors contributed to AA variations in a long-term perspective remains

unclear. By reconstructing a millennial AA index combining climate model simulations with

recently available proxy data, this work determines the important influences of the AMO and

anthropogenic greenhouse gas forcing on AA variations in the last millennium, leading to

identification of a significant downward trend of AA on top of a sustained strong AMO

modulation at the multidecadal scales. The decreased AA during the industrial era was

strongly associated with the anthropogenic forcing, proving the emerging role of the forcing

in reducing the AA strength.
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The Arctic has warmed more than twice the global average
since the preindustrial era1,2, a phenomenon known as
Arctic amplification (AA). This amplified warming has

been associated with tremendous changes in the Arctic climate
system, including shrinking sea-ice thickness and extent3,4,
melting of the Greenland ice sheet5, increasing greenhouse gas
emissions from thawing permafrost6, and disturbances to local
ecosystems7. Many studies have linked AA to shifting weather
patterns and extreme weather events in the mid-latitudes8,9,
although this issue remains controversial10. Nevertheless, it is
generally accepted that the rapid Arctic climate changes have had
and will have far-reaching and profound impacts on human and
natural systems3. Understanding how and why AA has changed
over the last millennium provides a useful long-term perspective
for the ongoing and future climate changes.

AA is evident in instrumental observations2 and climate
model simulations3 and is commonly thought to be caused by
positive ice-albedo feedback associated with sea-ice loss2,4.
However, AA also occurs in models without ice-albedo
feedback11, challenging the view that sea ice is the key factor
for AA. So far, AA has been linked to additional local processes
such as temperature, vegetation, water vapor and cloud feed-
back mechanisms11–14, and remote processes including changes
in the atmospheric and oceanic heat transport to the
Arctic1,15,16. Much uncertainty remains about the mechanisms
behind and their relative importance to AA, as evidenced by the
disagreement about future AA by model projections17 and the
general overestimation of AA by models18. A better under-
standing of AA is crucial for reliable assessments of future
Arctic and global climate change.

Limited by the length of instrumental observations, most
studies on AA have focused on the industrial era characterized
by anthropogenic warming17–19, especially during the last
decades, which makes it difficult to distinguish natural and
human-induced contributions to AA. Nevertheless, instru-
mental records indicate that AA has varied on multidecadal
time scales during the recent century and co-varied with the
phase of the Atlantic Multidecadal Oscillation (AMO)1,19. The
observations furthermore suggest that AA was stronger during
the early twentieth-century warming than the recent warming
up till 201419, indicating that the anthropogenic greenhouse gas
forcing may have weakened AA. Placing these observations in a
long-term perspective would allow for more robust assessments
about the relative roles played by the AMO and anthropogenic
forcing in modulating AA and an improved understanding of
how AA was influenced by different factors under various cli-
mate states.

The AA signal can be detected in paleoclimate records20, but
proxy-based reconstructions are typically too uncertain to reliably
characterize AA on multidecadal time scales due to the sparseness
of proxy data. To overcome this limitation, we reconstructed
Northern Hemispheric (NH) annual near-surface temperature
during the past millennium with a 2° spatial resolution using the
paleoclimate data assimilation (PDA) approach21. The PDA
approach is a state-of-the-art and best-of-both-worlds method for
estimating past climate fields by assimilating proxy records into a
climate model, and shows several distinct advantages over the
existing climate field reconstruction methods22–24. We used the
PDA method to assimilate 396 recently released, multi-type,
annually resolved and temperature-sensitive proxy records (see
Fig. 1 and Methods) from the PAGES2K Consortium25. The
number and types of assimilated proxy records in this study,
especially those over high latitudes, far exceed those in previous
NH temperature reconstructions, creating a great potential to
provide a more reliable estimate of AA over the last millennium
than previous studies.

Results and Discussion
Verification of the PDA-based temperature reconstruction
(see Supplementary information) shows that the reconstruction
agrees well with several observational temperature datasets during
the instrumental period, and has a similar level of reliability as the
Twentieth Century Reanalysis26 which assimilates surface pres-
sure observations (see Fig. S1). In addition, the PDA-based
reconstruction shows a high level of agreement with previous
proxy-based reconstructions (average correlation of annual mean
NH temperatures is r= 0.61, p < 0.001) (see Fig. S2). To further
verify the reconstruction over the whole millennium, we con-
ducted an experiment where we randomly selected 75% of the
proxy records to use in the assimilation, and withheld the
remaining 25% for verification. This proxy-based verification
confirms that the temperature estimates in the PDA-based
reconstruction agree more closely with the withheld proxies
than the unconstrained model run (see Fig. S3).

AA is typically defined as the ratio between a change in Arctic
temperature to a corresponding change in NH or global tem-
perature over a specific period. Here we use a robust metric based
on the slope of a linear regression between Arctic (northward of
60°N) and NH annual temperature anomalies over a 31 years
moving-window period (see Methods), which has been shown to
possess favorable statistical properties, especially when the NH
temperature change is small27,28. Based on the millennial PDA-
based temperature reconstruction during 1000 and 2000, we
obtained centered AA index values for 1015–1985 with a sliding
window of 31 years. Because AA estimates for the sliding window
are placed at the middle of the window, there are no estimates for
the first and the last 15 years. Note that the trend in millennial
AA indices derived using this method is not sensitive to the
selection of moving-window period (see Fig. S4). Figure 2 shows
the annual-mean zonally averaged temperature anomalies from
the PDA-based temperature reconstruction and the correspond-
ing derived AA index. Over the past millennium, the AA index
ranged from 1.21 to 2.12 with a mean of 1.76, indicating that the
amplification of Arctic temperature changes (AA index > 1) is an
inherent feature of the climate system regardless of warm or cold
periods, which is consistent with the findings of previous paleo-
climate studies20. The reconstructed AA index exhibits strong
multidecadal variations and was strongest during the Medieval
Climate Anomaly (1015–1100). In contrast, AA was relatively
weak during the industrial era (1850–1985), with a mean AA
index of 1.58 as compared with 1.65 during the preindustrial era
(1714–1849).

Over the past millennium, the reconstructed AA index exhibits
a statistically significant (95% confidence level) downward trend
of −0.04/100 years (p < 0.001, see Fig. 3a). Significant negative AA
index trends are also found in a previous PDA-based
reconstruction22 (hereinafter Goosse2012) (−0.01/100 years,
p= 0.008, see Fig. 3b) and a new global hydroclimate and
dynamical variables reconstruction over the Common Era using
data assimilation29 (hereinafter Steiger2018) (−0.03/100 yrs,
p < 0.001, see Fig. 3c), suggesting consistencies among the three
PDA-based reconstructions on reflecting the AA variation trends,
though there are differences in the strengths of the trends and the
magnitudes of the AA variations. These disagreements are not
surprising, considering that the three PDA-based reconstructions
used different prior ensembles from various climate models, data
assimilation algorithms, ensemble sizes, proxy data and proxy
system models (see details in Table S1). AA indices calculated
from unconstrained model simulations from the Last Millennium
and Historical experiments from phase 5 of the Coupled Model
Intercomparison Project (CMIP5)30 are generally of similar
magnitude but larger than the reconstructed AA index from this
study and the Steiger2018 reconstruction and smaller than the
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AA index derived from Goosse2012 (see Fig. 3b). Additionally,
most model simulations display a negative trend in the AA index
(see Fig. S5), with a statistically significant (95% confidence level)
negative trend in the multi-model mean of −0.01/100 yrs
(p < 0.001) (see Fig. 3d). Given that averaging over model runs
removes part of the internal variability, the declining AA index
trend in the CMIP5 multi-model mean suggests that the weak-
ening AA is a robust signal which may have been partly modu-
lated by external forcing.

To investigate the roles played by key climatic indicators in the
Arctic, large-scale internal modes of variability and different
forcings on AA over the past millennium, we performed a cor-
relation analysis between the millennial AA index and several
reconstructed climate indices for local climate, important modes
of climate variability as well as forcings, including Arctic sea-ice
extent31, the phase of the El Niño/Southern Oscillation32,
AMO33, Pacific Decadal Oscillation (PDO)33 and North Atlantic
Oscillation (NAO)34, as well as radiative forcing from solar
activity, well-mixed greenhouse gases (GHGs) and volcanic
aerosols35. Although Arctic sea-ice loss is often thought to be the
driving factor behind AA variations2,4, the correlation between

AA variations and reconstructed sea-ice extent over the past
millennium is weak and insignificant (r= 0.02, p= 0.91). How-
ever, because both negative and positive sea ice anomalies may
amplify the temperature change in the Arctic during warming
and cooling periods, respectively, a weak correlation between AAI
and sea ice extend here may not necessarily mean that sea ice is
not a driving factor behind AA variations at other time scales2,4.
In addition, the low variability in the reconstructed Arctic sea ice
extent series34 may also be a possible reason responsible for the
weak correlation (see Fig. S6). The reconstructed AA index co-
varied most closely with the phase of the AMO (Fig. 4a) on
multidecadal time scales, with a significant (95% confidence level)
positive correlation of r= 0.56 over the whole millennium
(p= 0.001). The PDO shows a similar co-variability with the AA
index as the AMO (see Fig. S7) but does not explain a significant
portion of the remaining variance; thus, we focus on the AMO
here.

The correlation between the phase of the AMO and the AA
index is stronger during the preindustrial era (i.e., before 1850,
hereinafter) (r= 0.67, p < 0.001) and is insignificant at the 95%
confidence level during the industrial era (i.e., after 1850,

Fig. 1 Spatial and temporal distributions of multiple types of proxy data used in this study. a Spatial distribution of the 396 temperature-sensitive proxy
data of different types. b Number of proxies over time used in our paleoclimate data assimilation-based temperature reconstruction. Green: tree ring proxy;
Blue: ice core proxy; Magenta: lake sediment proxy; Yellow: historical document proxy.

Fig. 2 Annual-mean zonal variability of the temperature anomalies over the NH during the past millennium and the reconstructed AA index. The black
line is the reconstructed AA index derived from the PDA-based reconstruction.
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hereinafter) (r=−0.16, p= 0.82). A proportion of the correlation
between the AA and AMO index can be attributed to the com-
mon negative trend in both indices. After removing the linear
trends in both time series, the correlation is decreased to r= 0.32
(p= 0.10) over the preindustrial era. Our results strengthen the
conclusion from previous observation-based studies1,19 that the
AMO has played an important role in modulating the strength of
AA, and further extend that conclusion to multidecadal to cen-
tury time scales in the past millennium.

The AMO alone cannot explain the decline in the AA index
during the most recent century. In fact, the transition to a positive
phase of the AMO before the turn of the 21st century should have
favored a stronger AA, as shown by the predicted AA index in Fig. 4b
based on a linear regression between the AA and AMO index. Out of
the remaining factors considered in this study, radiative forcing from
GHGs explains most of the remaining variance of the AA index.
Although the correlation between the AA index and GHGs is weak
and insignificant during the preindustrial era (r=−0.06, p= 0.75)
because the concentration of GHGs was mostly stable during this
time period, the correlation became strong during the industrial
period (r=−0.69, p= 0.24), see Fig. 4c. Including both the AMO
and GHGs as predictors for the AA index increases the explained
variance from 31 to 57% compared to considering the AMO alone
(Fig. 4d) and captures well the multidecadal variations and declining
trend in the AA index during the industrial era. Furthermore, when
considering both factors, the AMO shows a consistent modulation of
the AA during both the preindustrial (partial correlation rp= 0.70)
and industrial (partial correlation rp= 0.65) eras. This result suggests
that GHGs may have played a significant role in weakening AA in
the industrial era.

There is a solid theoretical basis that GHG forcing weakens AA
because the GHG radiative forcing is strongest over the tropics36,
although an analysis of model simulations has suggested that the
negative effect of GHG on AA is small37. To conclusively deter-
mine whether GHGs have significantly contributed to the
declining AA in the past century, we analyzed two millennium-
scale model experiments running with and without GHG
forcing38. Figure 5 shows the AA indices derived from these two
model experiments. The experiment with GHG forcing shows a
pronounced decline in the AA index after around 1900 which
becomes clearly distinguished from internal variability around
1970. Hence, both the PDA-based reconstruction and controlled
model experiments agree that the radiative forcing from GHGs
has played an increasingly important role in reducing AA in the
last century.

The modulation of AA by the AMO conforms with the
observation that a large portion of regional and hemispheric NH
temperature changes can be attributed to changes in North
Atlantic sea surface temperature39–43. The AMO signal propa-
gates throughout the NH via a sequence of atmospheric and
oceanic teleconnections40 and partly modulates poleward energy
transport via atmospheric and oceanic circulations44–48. In
response to the strengthening AMO, the North Atlantic ocean
fluxes release more latent and sensible heat into the atmosphere,
strengthening sea-atmosphere interactions and poleward ocean
and atmospheric heat transport, and vice versa during a weak-
ening AMO43,49–51. Thus, we suggest that the AMO modulates
AA on multidecadal to century time scales by altering the pole-
ward ocean and indirectly the atmospheric heat transport of the
NH. Our finding that the strength of AA is closely linked to the
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Fig. 3 The reconstructed AA indices and estimated AA trends during the past millennia derived from three PDA-based reconstructions and the mean
of CMIP5 multi-model simulations. a PDA-based reconstruction of this study. b Goosse2012. c Steiger2018. d Multi-model mean. The dark red solid line
represents the AA index derived from PDA-based reconstructions or the mean of CMIP5 multi-model simulations, and the dark blue dotted line is the long-
term trend. The AA index values were computed based on annual temperature anomalies without smoothing with respect to the mean for 1961–1990. The
long-term trends were computed via Mann-Kendall trend detection (see Methods) for each AA index time series.
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AMO on multidecadal time scales highlights the importance of
the background internal climate variability related to the ocean
circulation in regulating heat transport in the NH.

Here we have used a combination of paleoclimate proxy data
and climate models to show that AA has exhibited a strong
variability over a range of time scales during the past millennium.
The reconstructed AA index reveals that near-surface tempera-
ture changes are invariably enhanced in the Arctic relative to the
whole NH, suggesting that AA is an inherent feature of the global
climate system driven by positive feedback mechanisms. Addi-
tionally, the strength of AA is strongly dependent on the phase of
the AMO, with positive AMO phases favoring stronger AA. The
fact that AA is linked to the AMO indicates that there is some
predictability in AA on multidecadal time scales. This finding can
partly explain why the spread in future model projections of AA
correlates with the modeled position of the Intertropical Con-
vergence Zone (ITCZ)17, given that the position of the ITCZ
depends on the phase of the AMO43, and points to the possibility
of using the AMO as an emergent constraint to reduce the
uncertainty in projected future AA. Another important finding is
that GHGs forcing has likely had a significant role in the apparent
weakening AA during the 20th century by heating near-surface
temperatures more in the lower latitudes than the higher lati-
tudes, resulting in lower AA values despite the enhanced Arctic
warming and sea ice loss in recent decades. It is possible that the
recent unparalleled global warming caused by anthropogenic
activities will trigger feedback mechanisms that are unprece-
dented in the last millennium, which could have further enhanced
AA in the recent decades. In fact, multiple lines of evidences show
that the fast sea ice decline in the past decades has been unpre-
cedented over the past 1,450 years31. This work provides a crucial

baseline against which the ongoing and future changes in AA can
be compared.

Methods
Paleoclimate data assimilation. An “offline” data assimilation category (or “no
cycle” data assimilation) is employed to conduct our PDA experiment, where
background ensembles were constructed from existing climate model simulations,
and this background ensemble was used over the entire PDA process23,52. A time-
averaged ensemble square root filter (EnSRF)52 was employed in our PDA
experiment. Before presenting the details of the EnSRF, we first note that Xb is the
prior estimate of the state vector (the so-called background, e.g., air temperature
simulated by a climate model; in this study, the prior fields consist of an ensemble
of annual mean values, randomly drawn from a long climate simulation), and Xa is
the posterior state vector (i.e., the updated estimate of air temperature). Obser-
vations (e.g., proxies in this context) are contained in the vector Y°. The key
equations of this approach are as follows.

Xa ¼ Xb þ K Yo �H Xb
� �� � ð1Þ

Pa ¼ I� KHð ÞPb ð2Þ

K ¼ PbHT HPbHT þ R
� ��1 ð3Þ

Pb ¼ 1
N � 1

∑
N

i¼1
Xb

i � Xb
� �� �

Xb
i � Xb

� �� �T ð4Þ

where Pb is the error covariance matrix for the prior, Pa is the error covariance matrix
for the posterior, R is the error covariance matrix for the observations, N is the
ensemble size, and I is the identity matrix. 〈•〉 denotes the expectation of the ensemble.
The estimated observations were obtained through H(Xb), i.e., Ye=H(Xb), and H(•) is
the observation operator that maps Xb from the state space to the observation space.
The difference between the observations and the estimated observations, i.e., Y°–H(Xb),
is called the innovation. The Kalman gain K determines the distribution modes of
observational information in space and time. The information contained in K allows for
information frommeasurement locations to be spread to non-measurement locations in
model space. K also acts as a weighting term that scales the innovation term (i.e.,
Y°–H(Xb)) according to prior and observation errors.

Fig. 4 Co-variations between the reconstructed millennial AA index and GHGs forcing and AMO modes. a The reconstructed millennial AA index (black
line) derived from the PDA-based reconstruction and the reconstructed AMO index (shading) based on multi-type proxies33. b Actual AA index (black
line) and predicted AA index (blue line) based on multivariate linear regressions on only the AMO index. c The reconstructed millennial AA index derived
from the PDA-based reconstruction and the reconstructed GHGs forcing (shading) used in the PMIP3 last-millennium project35. d Actual AA index (black
line) and predicted AA index (blue line) based on multivariate linear regressions on both the AMO index and GHGs forcing. The AMO index and GHGs
forcing have been smoothed using 30 year rolling means.
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Proxy dataset and proxy forward model. The PAGES2K Consortium recently
published a new-generation global proxy dataset, and the proxies included in this
new-generation dataset have been ascertained to regionally covary with
temperature25; hence, those proxies are well suited to reconstruct temperature.
Because our aim is to reconstruct the temperature field with an annual time
resolution, only proxies with an annual time resolution were considered in this
study. Here we selected 396 proxies (see Fig. 1), including 370 tree ring proxies
(width, density and mixed latewood density), 15 ice core proxies (δ18O), 9 lake
sediment proxies (δ18O, varve thickness) and 2 historical documents (temperature
series) from this new-generation proxy dataset. In addition, as shown in Eq. (1), the
observed values of the proxy (i.e., Y°) are directly compared with the simulated
values of the proxy (i.e., Ye) in the PDA algorithm to obtain the innovation. This
comparison requires mapping of the climate state variables (e.g., air temperature)
to the quantity that forms the proxy record (e.g., tree ring width). In this study, we
used a linear-univariate proxy system model (PSM) (see Eq. (5)), which maps
temperature to proxy measurements by fitting proxy data to gridded instrumental
temperature data. Then, the linear-univariate PSM was used to predict proxy values
from the prior estimate (i.e., Ye=H(Xb)). The effectiveness of the linear-univariate
PSM in PDA has already been tested in previous cases23,52,53.

Y ¼ β0 þ β1 � Tþ ε ð5Þ
where vector Y denotes proxy values, vector T is the annual mean temperature
anomalies, β0 and β1 are the intercept and slope, respectively, ε is a Gaussian
random variable with zero mean and variance σ2, and σ2 is acquired during the
calibration process and then used to define the diagonal elements of matrix R in
Eq. (3). In our study, the calibration period was set to 1880–2000 AD. Gridded
Goddard Institute for Space Studies (GISS) surface temperature analysis (GIS-
TEMP temperature anomalies)54 was used to calibrate the PSM. The ordinary
linear least squares approach was used to estimate the intercept β0, slope β1 and
variance σ2. All 396 proxy data were assimilated without prefiltering the proxies to
select those having a significant correlation with air temperature because the
proxies with a large residual variance σ2 will have reduced weight in the updating
process according to the principle of data assimilation23,52.

Experimental designs. A 500-member static prior ensemble was randomly drawn
from the MPI-ESM-P last millennium simulations55 from the “Coupled Model

Intercomparison Project Phase 5 (CMIP5)”30 covering the period from 850–1850
CE (only 2 m air temperature was used). Before obtaining those 500-member
ensemble samples, monthly MPI-ESM-P simulations were averaged to a calendar
year, and the temporal mean over the entire dataset was removed. The resulting
annual mean anomaly fields were then spatially interpolated to a 2° uniform grid.
The 500-member ensemble sample was used for every year23,52. Notably, because
our ensemble size is rather large with 500 members, we did not need to employ
covariance localization, which is a common method of reducing the effects of
sampling error in small ensembles23,52. Our PDA experiment was conducted to
reconstruct 2 m air temperature fields during the period from 1000–2000 AD. In
the PDA experiment, the assimilation was performed one year at a time, yielding
an annual mean ensemble mean analysis for each year, which is the climate field
reconstruction for that year. The reconstruction was repeated 50 times (each one
being a “realization”) in a Monte Carlo fashion23, and each realization assimilated
different observations obtained through randomly sampling 75% of the proxies.
The mean of the 25,000 reconstruction realizations (50 Monte Carlo samples each
having a 500-member ensemble) was taken as the analysis. This procedure resulted
in a reconstructed 2 m air temperature field with an annual resolution at 2° spatial
resolution.

Definition of Arctic amplification index. The AAI is commonly defined as the
ratio of some change in Arctic temperature to a corresponding change in the NH
or globally. However, the use of this ratio as a measure of AA may result in some
shortcomings, e.g., extreme values may occur when the denominator is close to
zero28,56, and the use of the ratio may therefore lead to unrealistic estimates of
AA27. This study employs a new measure of the AA27 to better characterize AA on
a millennial time scale and avoid extreme values. This new measure of AA that
links pan-Arctic (60°N–90°N) and NH (0°–90°N) temperature anomalies via a
regression relationship is shown as follows:

TArc ¼ a0 þ a1 � TNH þ ε ð6Þ
where TArc represents the temperature anomalies over the pan-Arctic and TNH

represents the temperature anomalies over the NH during the same period as TArc.

The ordinary linear least squares solution determines parameters a0, a1, and ε. The
AA index is the slope of the regression (a1 in Eq. (6)); thus, the AA index value
depends on the change rate of the independent (TNH) and dependent (TArc)

Fig. 5 Variations of the AA indices without GHGs forcing and with GHGs forcing during the past millennium and the industrial era. The dark red line
represents the ensemble mean of a three-member ensemble of climate model simulations driven with orbital forcing only. The dark blue line represents the
ensemble mean of a three-member ensemble of climate model simulations driven with both orbital forcing and GHGs forcing. Light red and light blue
shadings are minimum and maximum of the ensemble. The model simulations were provided by long-term ensemble simulation experiments38.
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variables over the regression interval. A previous study27 reported that this new
regression-based AAI estimate is more stable than the estimate based on the ratio
and can preserve the intrinsic mode of AA. In this study, the regression was
operated with a 31-yr moving window (around a climatology baseline) to recon-
struct the AAI during the past millennium. At this time scale, the AAI can be used
to investigate the multidecadal variability in AA.

Mann-Kendall trend detection. The Mann-Kendall method57 is a nonparametric
test for monotonic trends. This method does not assume a specific distribution of
the data and is insensitive to outliers. Because of these advantages, the Mann-
Kendall method has been widely used in climatic trend analysis58,59. In order to
limit the influence of autocorrelation of time series on the Mann-Kendall trend
detection, we used a modified Mann-Kendall test57 which calculates an effective
sample size by considering serial correlations. Based on the partial autocorrelation
functions of the AA indices, the indices can be modeled as first-order auto-
regressive (AR(1)) processes; thus the modified Mann-Kendall tests were calculated
based on the AR(1) assumption.

Adjusted correlation p-values. To account for the fact that the AA index was
calculated using 31 years moving windows, we calculated effective sample size in
the correlation analysis by dividing the actual sample size by 30 and used this
effective sample size in the calculation of the correlation p-values.

Data availability
All data used in this study are freely accessible. The proxies were selected from the
PAGES2k Consortium (http://www.pastglobalchanges.org). CMIP5 simulations were
downloaded from the Earth System Grid Federation (https://esgf.llnl.gov/). The
Goosse2012 reconstruction, proxy-based reconstructions and transient simulations used
in Fig.5 were downloaded from the NOAA Paleoclimatology Data Centre (https://
www.ncdc.noaa.gov/data-access/paleoclimatology-data). The Steiger2018 reconstruction
can be downloaded from https://doi.org/10.5281/zenodo.1154913. The PDA-based
reconstruction of this study was released at the National Tibetan Plateau Data Centre
(https://data.tpdc.ac.cn/en/disallow/201553d9-9b6a-4793-954c-7eff9e124959/). Other
data used in this study are attached in Supplementary Data 1.

Code availability
The PDA source codes60 of this study is available at https://doi.org/10.5281/
zenodo.6086564. More codes in this study are available from the corresponding author
upon request.
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