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ABSTRACT
Lipid oxidation is a complex process in muscle-based foods (red meat, poultry and fish) causing 
severe quality deterioration, e.g., off-odors, discoloration, texture defects and nutritional loss. The 
complexity of muscle tissue -both composition and structure- poses as a formidable challenge in 
directly clarifying the mechanisms of lipid oxidation in muscle-based foods. Therefore, different in 
vitro model systems simulating different aspects of muscle have been used to study the pathways 
of lipid oxidation. in this review, we discuss the principle, preparation, implementation as well as 
advantages and disadvantages of seven commonly-studied model systems that mimic either 
compositional or structural aspects of actual meat: emulsions, fatty acid micelles, liposomes, 
microsomes, erythrocytes, washed muscle mince, and muscle homogenates. Furthermore, we 
evaluate the prospects of stem cells, tissue cultures and three-dimensional printing for future 
model system development. Based on this reviewing of oxidation models, tailoring correct model 
to different study aims could be facilitated, and readers are becoming acquainted with advantages 
and shortcomings. in addition, insight into recent technology developments, e.g., stem cell- and 
tissue-cultures as well as three-dimensional printing could provide new opportunities to overcome 
the current bottlenecks of lipid oxidation studies in muscle.

1.  Introduction

Lipid oxidation of muscle foods (fish, poultry, and red meat) 
is a large research area with around 70 years of history which 
relates to degradation of various parameters of quality, such 
as odor, flavor, color, texture, and nutritional value 
(Dominguez et  al. 2019; Undeland 2016; Wu, Richards, and 
Undeland 2022b). Research trends have changed according 
to the development of analysis methods and food scientists’ 
efforts. In the 1950s–1980s, many studies focused on detect-
ing links between lipid oxidation and fatty acid patterns, 
lipid classes/contents and endogenous pro- or antioxidants 
(Lee et  al. 1975; Tappel 1955; Wills 1966). Then the focus 
shifted to investigation of free radical chain reactions (Bielski 
et  al. 1985; Boveris, Galatro, and Puntarulo 2000; Puppo 
and Halliwell 1988). In the last 20 years, the greatest steps 
forward have been taken within the area of heme protein- 
(hemoglobin, Hb and myoglobin, Mb) mediated lipid oxi-
dation (Richards et  al. 2007; Undeland, Hultin, and Richards 
2002; Undeland, Kristinsson, and Hultin 2004; Wu et  al. 
2017), as well as within the area of oxidation prevention in 
muscle foods using different natural antioxidants.

Muscle tissue is a complex system that contains many 
components, e.g., lipid substrates in the form of triacylglyc-
erols and phospholipids, pro- and antioxidants, as well as 
different muscle proteins; sarcoplasmic reticulum, myofibril-
lar proteins and connective tissues (Medina et  al. 2012). 
The membrane of a muscle cell contains phospholipids 
which are vulnerable to lipid oxidation due to their large 
surface area and degrees of unsaturation (Cui and Decker 
2016). Muscle microstructure can affect lipid-pro-oxidant 
interactions, which has been shown to cause varying oxi-
dation rates depending on the animal species from which 
the muscle was obtained (Wu et  al. 2021b).

Because of the complexity of muscle tissues, in vitro model 
systems, e.g., emulsions, fatty acid micelles, liposomes, micro-
somes, erythrocyte, washed muscle mince and muscle homog-
enates have been used to study the mechanisms of lipid 
oxidation. However, one should exercise caution when extrap-
olating findings from model systems to postmortem muscle 
tissue, and it is important to discuss pros and cons of the 
different models used over the years to simulate muscle foods. 
To the best of our knowledge, there are so far no attempts to 
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review, summarize, or compare the different model systems 
used in muscle lipid oxidation research. Thus, we here review 
the seven most commonly applied model systems and discuss 
their principle, preparation, and application. The advantages 
and drawbacks of each model are summarized, and we provide 
some comments about future prospects.

2.  Endogenous muscle factors associated with lipid 
oxidation

Before discussing individual model systems and how they 
can be used to study the influence of exogenous factors, 
we will address the critical endogenous factors relevant to 
lipid oxidation because that knowledge is the basis for 
model system design. In this review, we discuss muscle 
model systems that are used mainly to study lipid oxidation 
pathways, mechanisms, and the influence of exogenous fac-
tors; thus, we will not discuss the endogenous antioxidants 
in muscle foods. Many excellent reviews about endogenous 
antioxidants have already been published, with examples 
being those of Dominguez et  al. (2019), Undeland (2016) 
and Wu, Richards, and Undeland (2022b).

2.1.  Muscle structure

Although there are more than 600 different muscle types 
that vary in shape, size, and activity, at the cellular level, 
there is close resemblance among muscles from a variety of 
vertebrate animals (Erickson 2008). However, fish muscle 
structure is largely different from that of avian and mam-
malian muscles. For example, fibers diameter from fish 
muscle (>50 µm) tend to be bigger than muscle fibers from 
red meat (<50 µm), and fish muscle generally contains fewer 
mitochondria, a thinner sarcolemma, and more sarcoplasm 
(Erickson 2008). Also, there is significantly less of connective 
tissue proteins in fish given the fact that fish is supported 
by the surrounding water, i.e., does not need to carry its 
own weight.

The variability in muscle structure could contribute to 
the different oxidative stability between fish and red meat 
(Wu et  al. 2021b). The complex morphologies of distinct 
layers of muscle are indeed difficult to replicate in a model 
system. Comparisons of the microstructures between washed 
cod muscle mince and washed pig muscle mince showed 
that the washed mammalian muscle had denser and 
wrapped structures, which was hypothesized to hinder 
accessibility of pro-oxidants to lipid substrates (Wu et  al. 
2021b). For the structure of fish muscle, myocommata is 
a special structure to link single muscle cell or fiber. 
Furthermore, myocommata has a large surface/volume ratio 
and is closed to fat cells, which are easier to access the 
pro-oxidants (e.g., Hb, and Mb) compared those wrapped 
fat cells in mammalian muscle (Sharifian et  al. 2014). For 
example, it has been reported that myocommata started to 
deteriorate after the fish dies and then generate gaping 
owing to the isolation of myotomes (Chéret et  al. 2005). 
The generating gaping in fish could better facilitate fat cells 
or membrane of muscle cells access oxygen and Hb. Thus, 

muscle structure has an important influence on lipid 
oxidation.

2.2.  Lipid substrates

Unsaturated fatty acids are abundant substrates for lipid 
oxidation in muscle foods (Vieira, Zhang, and Decker 
2017). Thus, free unsaturated fatty acids have sometimes 
been used as lipid substrates in different models 
(Hajimohammadi 2020; Hajimohammadi and Bagheri 
2017; Hajimohammadi and Nosrati 2018). In muscle food, 
lipids are primarily referred to triacylglycerols and phos-
pholipids, with small amounts of free fatty acids (FFAs), 
cholesterol, and tocopherols (Pereira and Abreu 2018). 
Although triacylglycerol contribute to a large proportion 
to the total lipid in muscle food, particularly in more 
fatty cuts or species, membrane phospholipids have been 
regarded as the most important substrates in lipid oxi-
dation of muscle, meaning that the total lipid content 
seems to play very little role (Undeland, Hultin, and 
Richards 2002; Wu, Abdollahi, and Undeland 2021a). Both 
the degree of unsaturation and the concentration of phos-
pholipids have generally been considered as crucial factors 
in lipid oxidation in muscle food (Amaral, Da Silva, and 
Lannes 2018). However, we (Wu et  al. 2021b) found that 
differently unsaturated phospholipids (polyenoic indexes 
of 282 vs 24) at the same concentration had a similar 
rate of oxidation when Mb was the pro-oxidant in a 
washed pig muscle mince system. Our study also sug-
gested that the accessibility of pro-oxidants to phospho-
lipids may be more important than their degree of 
saturation (Wu et  al. 2021b). Similarly, lipid oxidation 
results retrieved from ice storage of three types of minced 
fish backbones derived from herring, cod, salmon did 
not show any significant correlation with the degree of 
unsaturation and the content of polyunsaturated fatty 
acids (PUFA), but significant correlation with Hb levels 
(Wu, Abdollahi, and Undeland 2021a). In addition, 
Richards and Hultin (2001) reported that trout Hb with 
0.01% lipids generated a strong rancid odor and signifi-
cantly increased TBARS values in washed cod model 
during ice storage, but the rate and extent of rancidity 
were not increased by the presence of >6 times more 
membrane phospholipids. These results indicated the 
endogenous pro-oxidants (such as Hb, and Mb) played 
more important roles in lipid oxidation than the degree 
of unsaturation and the concentration of phospholipids.

Another important point is that fatty acids exist as both 
free and esterified forms although the FFA concentration is 
low in fresh muscle food (Ahmmed et  al. 2021). The classic 
theory asserts that FFAs oxidize more readily than their 
esterified counterparts (Labuza and Dugan 1971). However, 
we have found that the hydrolysis of lipids or the addition 
of FFAs appears to inhibit oxidation in turkey mince (Wu 
et  al. 2021c) and washed cod muscle (Tatiyaborworntham 
and Richards 2018; Tatiyaborworntham, Yin, and Richards 
2021). Thus, the choice of fatty acid form -free or esterified- 
is important when a model muscle system is designed.
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2.3  Endogenous pro-oxidants

The presence of transition metals, e.g., Fe and Cu (in either 
free or complex forms) is an important parameter that 
affects the oxidative stability of muscle food (Chaijan and 
Panpipat 2017). The primary sources of Fe in muscle are 
heme proteins, Hb and Mb (Wu, Ghirmai, and Undeland 
2020; Wu et  al. 2017). Heme protein concentrations in meat 
depend on animal species, muscle type, and anatomical 
location of muscle (Min and Ahn 2005) as well as slaugh-
tering and bleeding techniques (Alvarado et  al. 2007; Sabow 
et  al. 2016). Hemin release from these heme proteins is 
thought to be responsible for oxidation of lipids due to 
ability to decompose pre-formed lipid hydroperoxides 
(LOOHs) into lipid free radicals and secondary products 
(Wu, Richards, and Undeland 2022b). The contribution of 
free iron to lipid and protein oxidation was found to be 
predominant during cooking (Zhang et  al. 2022).

Oxidoreductase enzymes also have impact on lipid oxi-
dation. Lipoxygenase (LOX) has been identified as an 
important pro-oxidant in fish muscle (Tolasa Yılmaz et  al. 
2018; Wu et  al. 2022a). In addition, microsomal peroxidases 
and dioxygenases can initiate lipid oxidation in meat (Min 
et  al. 2008). In the presence of LOX, conjugated diene 
hydroperoxy products may be generated with hydrogen 
abstraction from the allylic methylene position of PUFA 
(Hui 2006). Muscle myeloperoxidase is an enzyme that cat-
alyzes hypochlorous acid generation from H2O2 and chloride. 
Subsequently, hypochlorous acid reacts with O2

•− to produce 
•OH (Folkes, Candeias, and Wardman 1995). Interestingly, 

myeloperoxidase generates •OH six times faster than the 
Fenton reaction (Hui 2006).

3.  Model systems

It is important to note that most models used to simulate 
muscle were developed from the perspective of the lipid 
substrate; thus, assuming the lipids are the most important 
principal component of muscle models. Muscle oxidation 
models are normally prepared by the following four 
approaches: 1) selecting relevant lipids of muscle and mix 
them to obtain a model, e.g., emulsion, fatty acid micelles, 
or liposomes; 2) select cells that contain both oxidants and 
lipid substrate, e.g., erythrocytes; 3) extract components of 
interest, exclude components of less interest, to simulate 
actual muscle structure, e.g., microsomes and washed muscle 
mince; 4) modify the actual muscle, e.g., diluting it such as 
in muscle homogenates.

3.1.  Emulsions

An emulsion is a system that contains two immiscible liq-
uids as shown in Figure 1. In general, oil-in-water emulsions 
consist of three different components: water (the dispersing 
phase), lipids (the dispersed phase), and surface-active agent 
(the interface) (Hu, Decker, and Mcclements 2019). Emulsion 
models for oxidation studies are prepared by mixing a source 
of unsaturated lipids (e.g., triacylglycerols from oils, oils 
stripped of their antioxidants, fatty acid esters or FFAs) with 

Figure 1. Fatty acid micelle and emulsion models. above their critical micellar concentration, amphiphilic compounds tend to spontaneously self-aggregate to 
form lipid micelles by hiding the hydrophobic part inside and exposing the hydrophilic part to the aqueous medium. amphiphilic emulsifiers can surround 
and stabilize oil droplets that are formed by physical agitation of the mixture between oil and aqueous medium. in this figure the roles of water-soluble, 
oil-soluble, and amphiphilic antioxidants on lipid oxidation catalyzed by free iron in the Fenton reaction scheme are presented. due to their hydrophilic part, 
fatty acids and lipid hydroperoxides may jump in and out between lipid micelles and interact with aqueous compounds, e.g., Mb and Hb.
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an aqueous phase containing surface-active agents (e.g., 
Tween-20, proteins or sodium dodecyl sulfate) into an oil-in-
water (O/W) emulsion (Wills 1964; Yin et  al. 1992). The 
mixture is typically made into a coarse emulsion with a low 
mixer and then particle size is further reduced using equip-
ment such as homogenizers or sonicators. After emulsifica-
tion, the prooxidants and/or antioxidants of interest can be 
added. The molecule of interest will partition to various 
degrees into the hydrophobic emulsion droplet core, the 
aqueous phase or it will interact with the surfactants at the 
emulsion droplet interface. Since some of the surfactant 
partitions into the aqueous phase once the droplet interface 
is saturated, surfactant micelles will also commonly exist in 
the aqueous phase. These surfactant micelles can solubilize 
the prooxidants and antioxidants of interest which can 
impact their reactivity (Inchingolo et  al. 2021).

In early research on lipid oxidation of meat or fish (1955–
1975), many food scientists studied oxidation from only a 
chemical point of view (Lee et  al. 1975; Liu 1970; Tappel 
1955; Wills 1966). Identification of the catalytic activity of 
pro-oxidants (e.g., Mb, Hb, nonheme iron and copper) and 
the reaction products were a large focus (Burri et  al. 2020; 
Lee et  al. 1975). Emulsion models are however also useful 
for studying the partitioning of oxidized lipids into environ-
ments of different polarity. Nuchi et  al. (2002) reported that 
the polarity of LOOHs causes them to migrate to the inter-
face of the emulsion droplet where they can interact with 
water soluble prooxidants, which is in accordance to what 
was observed in lipid bilayer modes (Junqueira et  al. 2021).

The disadvantage of using oil-in-water emulsions as a 
model system is that they differ from cell membranes, the 
primary location of oxidation in muscle. For example, oil-in-
water emulsions will have a larger lipid core that could host 
more lipid soluble components. They will also have less 
surface area than cell membranes at an equal lipid concen-
tration and they could differ in charge depending on the 
surfactants used (Mcclements and Decker 2000). Emulsion 
models may be more applicable to certain muscle-derived 
food products, e.g., emulsion-type sausages and emulsified 
surimi products. However, the roles of muscle proteins in 
stabilizing lipid droplets should then be considered as well 
(Jiang and Xiong 2015).

3.2.  Fatty acid micelles

Fatty acid micelles have been used in many studies on 
the fundamental aspects of lipid oxidation due to ease of 
preparation and high oxidizability thanks to high surface/
volume (Table 1). Unlike emulsion models, micelles can 
spontaneously form upon reaching a certain concentra-
tion, the critical micelle concentration, of surface active 
molecules as shown in Figure 1 (Mohajeri and Noudeh 
2012). Co-surfactants, e.g., sodium dodecyl sulfate or 
Triton X may be included to increase micelle stability 
(Hauville et  al. 1998). Typically, fatty acid micelles are 
between 5 and 20 nm in diameter, i.e., a thousand times 
smaller than emulsion droplets (Mohajeri  and 
Noudeh 2012).

The extent to which fatty acid micelles exists in meat 
and meat products is unclear, but they can still provide 
information to monitor processes associated with lipid oxi-
dation (Vitrac et  al. 2005). Several micellar model studies 
have been used to define factors that affect lipid oxidation, 
such as the radiation dose rate (Mekhloufi et  al. 2005), the 
concentration of lipids (Scollo et  al. 2018), the fatty acid 
nature and the number of double bonds (Pliss et  al. 2021), 
the ionic strength of the medium (Raleigh and Kremers 
1978) and the pH (Johnson, Inchingolo, and Decker 2018). 
The role of muscle food pro-oxidants, e.g., Mb and Hb in 
stimulating lipid oxidation has also been studied in fatty 
acid micelles Baron, Skibsted, and Andersen (2000).

3.3.  Liposomes

Liposomes are spherical phospholipid vesicles with at least 
one concentric bilayer encircling a hydrophilic space. Liposomes 
can be used as carriers for both water-soluble and lipid-soluble 
compounds (Akbarzadeh et  al. 2013). A visualization of lipo-
somes was shown in Figure 2. In muscle tissues, membrane 
phospholipids in sarcoplasmic reticulum and sarcolemma are 
susceptible to oxidative degradation because of the high con-
tent of unsaturated fatty acids required to maintain membrane 
fluidity and the large surface area in direct contact with oxi-
dants and pro-oxidants (Heden, Neufer, and Funai 2016). 
Therefore, being structurally similar to phospholipid mem-
branes, liposomes have a long history for studying kinetics 
and mechanisms of lipid oxidation in meat systems (Medina 
et  al. 2012; Schnitzer, Pinchuk, and Lichtenberg 2007).

Liposomes can be prepared by several different methods. 
Unilamellar liposomes are prepared by hydration of dried 
lipid films with an aqueous medium. Multilamellar liposomes 
are prepared by dispersing phospholipids in aqueous media 
and then decreasing their size by sonication membrane extru-
sion, or homogenization (Frenzel and Steffen-Heins 2015; 
Guldiken et  al. 2018). Other available methods to make lipo-
somes include are solvent dispersion methods, e.g., ethanol 
injection, reverse phase evaporation vesicles, and detergent 
removal methods (Akbarzadeh et  al. 2013). Membrane extru-
sion is employed for obtaining uniformly-sized lipid vesicles.

Liposomes can be prepared from synthetic or natural 
phospholipids. The major advantage of synthetic phospho-
lipids is that the particular fatty acids esterified to the glyc-
erol backbone are well defined and customizable to meet 
experimental requirements. Phosphatidylcholine and phos-
phatidylethanolamine are commonly used, being the most 
abundant phospholipids in cell membranes (Alberts et  al. 
2002; Salgo, Corongiu, and Sevanian 1992). Natural phos-
pholipids can be obtained from muscle tissues (Genot et  al. 
1992). Lipid-soluble additives, e.g., alpha-tocopherol (Yin 
et  al. 2012), cholesterol (Mosca, Ceglie, and Ambrosone 
2011), and azo-radical initiator (Culbertson and Porter 
2000), may also be incorporated into the bilayers during 
the preparation of dried lipid films. Water-soluble compo-
nents, e.g., Mb may be packed within the void inside lipo-
somes during the hydration of the lipid films (Yin and 
Faustman 1993).
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In addition to the degree of unsaturation, size and sur-
face charge (zeta potential) are important physicochemical 
characteristics that influence oxidation of liposomes 
(Schnitzer, Pinchuk, and Lichtenberg 2007). Varying by size 
and number of lamellae, the three most common types of 
liposomes are small unilamellar vesicles (SUV; size 
20–100 nm), large unilamellar vesicles (LUV; size > 100 nm), 
and multilamellar vesicles (MLV; size > 500 nm) 
(Chinnagounder Periyasamy et  al. 2012). Compared with 
LUV, the small size of SUV not only increases the surface 
area, but also surface curvature and permeability of the 
bilayers which ultimately destabilize the lipid vesicles 
against transition metal-promoted lipid oxidation (Li, Yeo, 
and Tan 2000). Genot et  al. (1992) compared different 
liposomal preparation methods and suggested that LUV are 
suitable models for lipid oxidation studies because of uni-
form size, structural integrity upon oxidation, and low 
spectrophotometric interference.

Surface charge of liposomes is influenced by ionic 
strength, and pH and may affect oxidative stability of lipo-
somes (Mozuraityte, Rustad, and Storr⊘ 2006). Negatively 
charged phospholipids attract transition metal ions, e.g., iron 
and copper, in close proximity to oxidizable lipids (Dacaranhe 
and Terao 2001; Gal, Pinchuk, and Lichtenberg 2003), 
although the effect of this phenomenon on lipid oxidation 
seems inconsistent. Thanonkaew et  al. (2007) found that 
NaCl at 0.2–2.0% retarded iron-promoted oxidation of squid 
liposomes, possibly because of displacement of bound iron 
from the liposomal surface. However, Dacaranhe and Terao 
(2001) found that dipalmitoyl-phosphatidylserine at 10%mol 

exhibited both iron-binding ability and an antioxidant activ-
ity against iron-promoted oxidation of egg yolk 
phosphatidylcholine-containing liposomes.

Related to lipid oxidation in muscle foods, free iron, 
free heme, and heme proteins (Hb and Mb) are often used 
as pro-oxidants in mechanistic studies of liposomal oxi-
dation (Carvajal et  al. 2009; Litvinko, Skorostetskaya, and 
Gerlovsky 2018; Lynch and Faustman 2000; Min, Nam, 
and Ahn 2010; Thanonkaew et  al. 2007; Yamauchi et  al. 
2017). Furthermore, mechanisms of both lipid and Mb 
oxidation, related to rancidity and discoloration of meat, 
respectively, were studied simultaneously (Faustman et  al. 
2010). Abraham et  al. (2016) studied endogenous anti-
oxidant capacity of beef by extracting and incorporating 
Mb-containing sarcoplasm into liposomes which were stored 
under fluorescent illumination. The investigators found pos-
itive correlations between Mb oxidation, lipid oxidation, 
and oxidation-reduction potential of sarcoplasm-containing 
liposomes. Using oxymyoglobin-containing liposomes, Yin 
and Faustman (1993) found a dissimilar effect of phospho-
lipid headgroups on redox stability of oxyMb. With a sim-
ilar fatty acid profile, the phosphatidylethanolamine-based 
liposome promoted more lipid and Mb oxidation than the 
phosphatidylcholine-based liposome. Chan et  al. (1997) 
pointed out the activity of H2O2 in the oxidation of both 
oxymyoglobin and lipid oxidation by including superoxide 
dismutase (SOD) and catalase (CAT) in the liposome system. 
Liposomes are also used in combination with meat system. 
Chen et  al. (2017) prepared liposomes containing Porphyra 
haitanensis-derived phycobiliproteins which were added to 

Figure 2. liposome models. a liposome preparation scheme shows how water- and lipid- soluble additives can be incorporated into the lipid vesicles. the 
lipid-soluble additives stay within the lipid bilayers, while the water-soluble additives in the aqueous medium come into contact with the lipid bilayers via 
different modes of interactions, e.g., electrostatic attraction, hydrophobic interaction. liposomal models for studying lipid oxidation by free iron and Mb are 
presented.
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Figure 3. Microsome models. a simplified preparative procedure of microsomes from muscle tissues is illustrated. the presence of membrane-bound enzymes 
make microsomes versatile models for studying both enzymatic- and non-enzymatic lipid oxidation pathways as well as metabolism of dietary antioxidants 
can be studied using microsomal models. Muscle-derived microsomal models also connect between dietary supplementation studies and lipid oxidation 
studies.

a liposome-meat model; the authors found that the active 
compounds inhibited oxidation of the composite model.

Interactions between membranes with lipid-soluble antioxidants 
and pro-oxidants have been studied using liposomal models. For 
example, Szebeni et  al. (1988) investigated binding of Hb to the 
surface of liposomal bilayers, a phenomenon that was counter-
acted by inclusion of cholesterol to promote fluidity to the lipo-
somal membranes and hinder the partition of Hb into the 
membranes. Small-angle X-ray diffraction is a useful technique 
for elucidating the relationship between membrane order and 
oxidizability. Using this technique, Mcnulty et  al. (2007) found 
contrasting effects of different carotenoids on membrane structure 
alteration and autooxidation of liposomal lipids. The authors 
reported that membrane disorder caused by lycopene and 
beta-carotene caused increased lipid oxidation, whereas membrane 
structure-preserving astaxanthin exhibited antioxidant activity.

Simple and customizable liposome models enable funda-
mental and mechanistic research on lipid oxidation and anti-
oxidants because components can be selectively included or 
excluded. Despite the benefits, liposomal vesicles may not 
be a true representative of muscle membranes in terms of 
shape and composition. Nevertheless, this lipid model can 
be desirable for the meat industry to gain rapid recognition 
of potential antioxidants (Nieto, Huvaere, and Skibsted 2011).

3.4.  Microsomes

Microsomes (Figure 3) are vesicle-like fragments of endo-
plasmic reticulum (between 20 and 200 nm diameter) or 

other membranes (Yin et  al. 2013). Being compositionally 
similar to cellular membranes, microsomes thus provide 
versatile models for lipid oxidation studies related to muscle 
quality. The model allows studies of the contribution of 
enzymatic systems to the total degree of lipid oxidation as 
well as the deposition and metabolism of dietary 
supplements.

Preparation of microsomes involves tissue homogenization 
and differential centrifugation to obtain the subcellular frac-
tion. Although hepatic microsomes are common, micro-
somes can also be prepared from skeletal muscle (Kathirvel 
and Richards 2012; Rey, Lopez-Bote, and Arias 1997). 
Homogenization of tissue samples with a Dounce homoge-
nizer or a Potter-Elvehjem glass with Teflon pestle should 
be conducted with gentle strokes to prevent foaming 
(Sabatini 2014). During preparation, a constant temperature 
below 4 °C is important to delay oxidative degradation of 
lipids and thermal denaturation of proteins. Isolation buffers 
often contain cocktails of protease- and phosphatase-inhibitors 
that are required to prevent unintentional proteolysis and 
phospholysis. At the end of the preparation, protein and 
enzyme activity assays are performed to assess quality and 
standardize the model.

Being derived from muscle, microsomes have the com-
position of muscle membranes and carry various types of 
phospholipids, cholesterol, and membrane-bound proteins. 
Some membrane-bound proteins integrated into microsomes 
possess catalytic activity, e.g., glutathione-dependent trans-
ferases, peroxidases, and cytochrome P450 enzymes 
(Guengerich 1977; Hosoya, Matsukawa, and Nagai 1971; 
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Jakobsson et  al. 1997). Generally, determination of micro-
somal lipid oxidation can be performed in a manner similar 
to the methods used for liposomes. An exception is that 
the determination of conjugated dienes requires extraction 
of microsomal lipids prior to spectrophotometric measure-
ments because of the light scattering effect of the hetero-
geneous microsomes (Perera et  al. 1985; Srinivasan and 
Recknagel 1971). It should also be noted that other com-
pounds with conjugated double bonds can interfere with 
the measurement; therefore, blanks prepared from 
non-oxidized samples are used for subtracting the back-
ground light absorption. For in situ detection of microsomal 
lipid oxidation, an EPR-spin trapping technique has been 
employed for detecting lipid radicals generated from 
iron-mediated decomposition of LOOHs (Boveris, Galatro, 
and Puntarulo 2000).

Microsomal models offer many applications in lipid 
oxidation-related research. Numerous mechanistic studies of 
antioxidants and pro-oxidants have been reported (Ikeda 
et  al. 2011; Kathirvel and Richards 2012; Pazos et  al. 2006; 
Pazos, Medina, and Hultin 2005; Richards, Cai, and 
Grunwald 2009; Shewfelt and Hultin 1983), and microsomes 
are unique lipid models for studying both enzymatic and 
non-enzymatic lipid oxidation (Lin and Hultin 1976; Rhee, 
Dutson, and Smith 1984; Thanonkaew et  al. 2005). The 
enzymatic pathway involves NADH- or NADPH-mediated 
reduction of ferric iron (Fe3+) to ferrous iron (Fe2+), thereby 
promoting the Fenton reaction in converting peroxides to 
free radicals (Svingen et  al. 1979). In this scheme, oxidore-
ductases bound to sarcoplasmic reticulum and mitochondrial 
membranes are responsible for recycling NAD/NADH and 
NADP/NADPH. In contrast, the non-enzymatic route relies 
on reducing agents, e.g., ascorbic acid, to promote the Fe3+/
Fe2+ conversion. In a very pure microsomal model, purified 
sarcoplasmic ret iculum from winter f lounder 
(Pseudopleuronectes americanus), Decker et  al. (1989) studied 
whether iron and copper promoted lipid oxidation in vitro 
at the concentrations found in the low molecular weight 
(LMW) fraction of flounder muscle press juice. Several stud-
ies with this model then followed the effect of cytosol, 
histidine or soluble and bound iron (Erickson and Hultin 
1992; Huang and Hultin 1992), providing in depth mecha-
nistic data on fish membranal lipid oxidation. It was how-
ever revealed that the order of adding pro-oxidants, 
particularly iron and ascorbate, was very important for the 
resulting lipid oxidation in the sarcoplasmic reticulum sys-
tem (Soyer and Hultin 2000).

Unlike liposomes, dietary supplementation can enrich 
microsomes with PUFA and lipid-soluble antioxidants. This 
advantage enables microsomes to be used for determining 
deposition of such dietary supplements and their effects on 
microsomal oxidation. Rey, Lopez-Bote, and Arias (1997) 
modified the fatty acid compositions of pork longissimus 
dorsi via feeds formulated with α-tocopherol acetate and 
different combinations of olive oil, sunflower oil, and linseed 
oil. Partial replacement of olive oil with linseed oil as a rich 
source of n-3 fatty acids improved the n-6:n-3 ratio in the 
muscle lipids but resulted in muscle microsomes with low 
oxidative stability. Protection was therefore required from 

α-tocopherol. Lynch and Faustman (2000) and Yin et  al. 
(2013) used microsomes prepared from tissues with different 
α-tocopherol content for testing the pro-oxidative activity 
of Mb alkylated with lipid oxidation-derived aldehydes. 
Their results revealed microsomes with elevated concentra-
tions of α-tocopherol delayed lipid and Mb oxidations.

Being compositionally similar to cellular membranes, 
microsomes thus provide versatile models for lipid oxidation 
studies related to muscle quality. The model allows studies 
of the contribution of enzymatic systems to the total degree 
of lipid oxidation as well as the deposition and metabolism 
of dietary supplements. However, a tedious preparation pro-
cess and potential lack of consistency are drawbacks of 
microsomal models. Care should be exercised during the 
handling of raw materials (liver or skeletal muscle tissues) 
and during the actual isolation to avoid loss of enzymatic 
activities. In addition, the compositional variation in the 
raw materials, particularly, enzyme activity, fatty acid profile, 
and tocopherol content, may affect oxidative stability of 
microsomes.

3.5.  Erythrocytes

In vertebrates, erythrocytes (red blood cells) transfer oxygen 
from the lungs or gills to body tissues via the circulatory 
system (Karabulut et  al. 2009). The structure of erythrocyte 
membrane is composed of a phospholipid bilayer and imbed-
ded proteins, and the membrane is the direct target of lipid 
oxidation (Davidovic-Plavsic et  al. 2021). The importance of 
erythrocyte as a model for lipid oxidation study is due to 
the fact that residual blood can promote lipid oxidation upon 
hemolysis and release of Hb (Richards and Hultin 2002). 
Therefore, the ability of erythrocytes to withstand oxidative 
stress and stay intact is crucial for oxidative stability of muscle.

For erythrocyte preparation, non-coagulated whole blood 
is centrifuged, and the plasma and buffy coat layer are 
removed. After further washing, the red cells are suspended 
in normal saline (Ghirmai et  al. 2020). Experimental pro-
cedures for measuring lipid oxidation can be based on meth-
ods described by Li et  al. (2016). This system to investigate 
external parameters of lipid oxidation utilizes physiological 
saline containing 1% erythrocytes and dimethyl sulfoxide. 
Then, oxidants (e.g., FeSO4 and H2O2) are added to induce 
oxidation. After incubation, the erythrocytes are recovered 
to measure various analytes including O2 concentration, 
H2O2, malondialdehyde, protein carbonyls, and the activities 
of SOD, CAT, and glutathione peroxidase (GPx).

There are additional examples of erythrocyte models to 
study effects of antioxidants, feed ingredients on lipid oxi-
dation in muscles. Hua-Tao et  al. (2019) investigated effects 
of extract of Angelica sinensis and ethoxyquin on lipid oxi-
dation in erythrocytes and on growth, digestion, and absorp-
tive and antioxidant capacity in carp muscle. The results 
indicated that Angelica sinensis extracts and ethoxyquin at 
concentrations of 0.5 and 0.25 mg/ml suppressed lipid oxi-
dation by decreasing the generation of reactive oxygen spe-
cies and restoring the activities of antioxidants in hydroxyl 
radical-treated erythrocytes. Li et  al. (2016) revealed that 
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the fish erythrocyte system can be used as an experimental 
model to evaluate lipid oxidation in food and feed ingre-
dients. An ethyl acetate extract of Ginkgo biloba leaves was 
used as an inhibitor in a carp erythrocyte model. They 
concluded that the inhibition effects of the extract on lipid 
oxidation occurred because of the presence of flavonoid 
compounds. Pig erythrocytes and their ghosts were used in 
studies of hemolytic and protection activities of quaternary 
ammonium bromides and chlorides in the presence of 
UV-irradiation. Hemolytic activities increased with the lipo-
philicity of the compounds, and each bromide salt was more 
hemolytic than the chloride forms (Kleszczyfiska et  al. 2003). 
Glutamine is an important dietary supplement and a major 
free L-amino acid in fish (Yan and Qiu-Zhou 2006). Alanine, 
citrulline and proline are the important metabolites of glu-
tamine in rats (Windmueller 1982) and pigs (Wu, Borbolla, 
and Knabe 1994). Li et  al. (2013) showed that a mixture of 
glutamine, alanine, citrlulline, and proline significantly 
reduced •OH-induced lipid oxidation and protein oxidation 
in carp erythrocytes.

3.6.  Washed muscle mince

A model system of washed muscle mince is composed 
most of muscle components primarily myofibrillar pro-
teins and membrane phospholipids (Wu et  al. 2022c) and 
maintains partial muscle structure (Cai et  al. 2013; 
Richards, Modra, and Li 2002a; Xiao et  al. 2018). A visu-
alization of washed muscle mince is shown in Figure 4. 

The washing process mostly removes undesired contents 
such as blood, lipids, heme pigments (Hb and Mb) and 
iron, to concentrate muscle proteins and membranes 
(Karayannakidis et  al. 2008; Kunyaboon et  al. 2021). 
Washed muscles used for monitoring of muscle lipid oxi-
dation can be prepared from muscles of different animal 
species (Kunyaboon et  al. 2021; Tatiyaborworntham and 
Richards 2018; Wu et  al. 2021b; 2021c; Wu et  al. 2022d; 
Wu et  al. 2017). The removal of aqueous antioxidants 
and pro-oxidants from the ground muscle provides rapid 
assessment of lipid oxidation with the capacity to examine 
environmental and compositional aspects (Cui et  al. 
2018). For example, the relative ability of different 
pro-oxidants that are added to incur lipid oxidation can 
be examined at varying pH, and the ability of added 
antioxidants to potentially counteract progress of lipid 
oxidation can also be evaluated.

There are different washing procedures that provide dif-
ferent qualities of washed muscle from different species 
primarily due to variance in heme protein contents 
(Vallejo-Cordoba, Rodriguez-Ramirez, and Gonzalez-Cordova 
2010). In general, the preparation of washed muscles requires 
grinding, washing with water, and centrifugation. Muscle 
mince is typically washed three or more times with potable 
water or buffers (< 5 °C) at a mince/water ratio of 1:3. 
Centrifugation is performed at each washing step to con-
centrate myofibrillar protein and lipid membranes. Any 
floating matters is removed manually (Halldorsdottir et  al. 
2013; Kunyaboon et  al. 2021; Undeland, Hultin, and 
Richards 2002).

Figure 4. washed muscle models. the washed muscles consist primarily of myofibrillar protein, connective tissues, and lipid membranes as the result of 
exhaustive washing of minced muscle tissues to remove water-soluble components, e.g., sarcoplasmic proteins and low molecular weight compounds. external 
pro-oxidants and antioxidants, as well as muscle components of interest can be added back to the washed muscle for studying their individual and interaction 
effects on lipid oxidation.
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Washed muscles have been extensively used for studying 
various pro- and antioxidants. Richards, Ostdal, and 
Andersen (2002b) studied deoxyhemoglobin-mediated lipid 
oxidation by comparing the pro-oxidative activity of anodic 
and cathodic Hb from trout in a washed cod muscle model 
system. The authors proposed that deoxyhemoglobin was 
more pro-oxidative than its oxygenated counterpart at pH 
values found in postmortem fish muscle. Tatiyaborworntham 
and Richards (2018) and Tatiyaborworntham, Yin, and 
Richards (2021) studied antioxidant effects of phospholipase 
A2 (PLA2), an lipolytic enzyme that hydrolyzes phospho-
lipids at the sn-2 position, against the oxidation of trout 
hemoglobin and lipids in washed cod muscle. In addition, 
they found that ferrylhemoglobin may be involved in the 
pro-oxidative activity of trout Hb, which was previously 
reported (Lee et  al. 2015). In contrast, Wu et  al. (2017) 
stated that the contribution of ferrylhemoglobin may be 
negligible in lipid oxidation of washed cod muscles pro-
moted by either porcine or turkey hemolysates.

The effect of FFAs, products of phospholipid hydrolysis 
by PLA2, on lipid oxidation in muscles was investigated by 
electron paramagnetic resonance; the spectra results revealed 
FFA-induced modification of Hb into hemichrome which 
did not stimulate lipid oxidation in washed turkey muscle 
during the period of storage. This finding suggested that 
FFA was able to diminish the lipid oxidation capacity of 
Hb possibly through formation of hemichrome (Wu et  al. 
2021c). Lee et  al. (2015) assessed Mb- and Hb-mediated 
lipid oxidation in a washed muscle model; key findings 
suggested that ferri-protoporphyrin IX released from metHb 
generated free radicals that facilitated both lipid oxidation 
and degradation of the heme moiety while a crosslinked 
form of Mb was effective in promoting lipid oxidation. In 
addition, mechanisms of the inhibitory effect of L-carnosine 
on lipid oxidation in the presence of oxidized 
metmyoglobin-mediated washed cod muscle was studied and 
results showed that the high inhibitory effect of L-carnosine 
was because of free radical scavenging, metal chelating, and 
especially its influence on pro-oxidant metmyoglobin struc-
ture (Xiao et  al. 2018).

The washed muscle model is versatile in that a multitude 
of external factors can be examined pH, pressure, ionic 
strength, pro-oxidant type, antioxidant type, and storage 
condition) and internal factors such as type of tissue. GÜner 
et  al. (2020) demonstrated that washed tilapia muscle sam-
ples prepared at pH 6.3 were more susceptible to lipid oxi-
dation than samples prepared at pH 6.8. Also, they found 
that the ability of red onion skin polyphenols to induce a 
lag phase in lipid oxidation was pH dependent. Using 
washed muscle of pork, Papuc et  al. (2018) showed that the 
activity of hawthorn berry ethanolic extract (100 mg kg−1) 
was more greater than butylhydroxyanisole (100 mg kg−1) in 
diminishing lipid oxidation and protein degradation, for 
preservation of firmness and lipid stability for six days at 
4 °C. Grunwald and Richards (2012) described that pH and 
NaCl concentration are critical factors that affect the ability 
of hemopexin to bind ferri-protoporphyrin IX released from 
metHb and thereby inhibit Hb-mediated lipid oxidation in 
washed cod muscle. Yang et  al. (2018) showed that LOX 

activity and lipid oxidation were increased under high pres-
sure conditions.

3.7.  Muscle homogenates

The overall aim of preparing muscle homogenates is to 
break up the tissue to generate a uniform system that is 
compositionally similar to intact muscles. The preparation 
of muscle homogenates normally consists of homogenization, 
centrifugation, and clarification. When the system is to be 
used in lipid oxidation studies, the target muscle is usually 
homogenized with an extraction buffer (e.g., including KCl, 
EDTA, and butylated hydroxytoluene) at 4 °C where upon 
the homogenate is cooled in an ice bath and subsequently 
maintained at the decided study temperature.

Homogenizing the meat generates small particles and 
increases interactions between reactants normally contained 
in different compartments (Bekhit et  al. 2013; Wang et  al. 
2019), which shortens the lag phase of lipid oxidation and 
duration of experiments. Min and Ahn (2009) investigated 
how free ionic iron and Mb affected muscle lipid oxidation 
in chicken breast and beef homogenates. In addition, 
Terevinto et  al. (2010) investigated factors such as the initial 
oxidative status, metal content and activities of SOD, CAT, 
and GPx on lipid oxidation of rhea (Rhea americana) muscle 
homogenates. Also, ferrous ion-chelating ability, ferric reduc-
ing antioxidant power assay, ABTS radical cation-scavenging 
activity and DPPH radical-scavenging activity of essential 
oils from Thymus zygis was analyzed in homogenates of 
minced beef, cooked ham or dry-cured sausage 
(Ballester-Costa et  al. 2017). Ahn and Kim (1998) showed 
that ionic iron-, ferritin-, and Hb-catalyzed oxidation of 
turkey muscle homogenates were different from those in an 
oil-based emulsion and cooked-meat homogenate. The 
changes were ascribed to heat sensitive compounds such as 
reducing enzymes which contributed to the redox potentials 
in the muscle homogenates. The investigators found that 
ferrous iron was the main pro-oxidant among all the iron 
sources, and, during storage, heme pigments and ferritin 
did not have a significant catalytic impact on oxidation in 
the studied homogenates.

Using muscle homogenates, investigators have also 
assessed the role of storage conditions, pH, chelating agents, 
salts, temperature, and dietary factors on lipid oxidation. 
Chen et  al. (2021) used duck breast muscle homogenates 
and revealed that curing by vacuum tumbling decreased the 
lipid oxidation compared with static brining and pulsed 
pressure salting. Also, Tongnuanchan, Benjakul, and 
Prodpran (2011) evaluated the effect of lipid oxidation and 
pH on the structure and yellow discoloration during storage 
of a red tilapia (Oreochromis niloticus) muscle homogenate. 
They found that lipid oxidation significantly stimulated yel-
low discoloration, mostly by modification of the carbonyl 
groups involved in the Maillard reaction, and that pH con-
trolled the rate of this reaction. Furthermore, Jin et  al. 
(2012) showed that both temperature and NaCl significantly 
affected lipid oxidation in a pork belly muscle homogenate. 
Results indicated that < 5% NaCl (w/w) reduced the 
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activation energy for lipid oxidation and that high tempera-
ture as well as moderate concentration of NaCl accelerated 
lipid oxidation. Moroney et  al. (2012) reported that 
iron-induced lipid oxidation was amplified in liver, heart, 
kidney, and lung tissue homogenates during 24 h storage 
4 °C, while a dietary seaweed extract containing laminarin 
and fucoidan reduced the degree of lipid oxidation partic-
ularly in the liver tissue homogenates. The results confirmed 
the potential of incorporating marine-derived natural anti-
oxidant in muscle foods via the animal’s diet (Moroney 
et  al. 2012). In another similar study, Jeronimo et  al. (2020) 
investigated the influence of Cistus ladanifer L. plant and 
vegetable oils in the diet for lamb on intramuscular fat 
composition and muscle antioxidant status. The results indi-
cated that Cistus ladanifer increased α-tocopherol content 
in the lamb muscle and also limited lipid oxidation in a 
lamb muscle homogenate during 7 days of storage at 2 °C.

Overall, muscle homogenates are closest to the actual 
muscle tissue based on composition and structure among 
all models. This may aid food scientists to obtain more 
reliable presumptions for muscle oxidation process compared 
other models. However, the moisture content of muscle 
homogenates is significantly higher than the actual muscle. 
In addition, the homogenizing process may result in more 
exposed cell membranes and destruction of protein struc-
ture. These factors could lead to different lipid oxidation 
features between muscle homogenates and actual muscle.

4.  Comparison of model systems

Table 1 summarizes the main characteristics of the seven 
muscle models reviewed here, together with their advantages 
and disadvantages. In general, models that do not include 
a lipid substrate from actual muscle tissue are easy to pre-
pare and have fewer disturbing factors. For example, lipid 
monolayer models as emulsions and fatty acid micelles and 
lipid bilayer models as liposomes are all three simple models 
to simulate muscle cell membranes (Akbarzadeh et  al. 2013; 
Echegaray et  al. 2021; Laguerre et  al. 2020). The fact that 
these models are rapid and easy to prepare as well as to 
standardize results in universal application, and the results 
from different researchers can be compared and discussed. 
Another advantage is that it is relatively easy to monitor 
the oxidation products and reaction processes in these mod-
els. For example, some more advanced analytical techniques, 
e.g., chemiluminescence, fluorescence emission, Raman spec-
troscopy, infrared spectroscopy and magnetic resonance are 
more compatible with these simple models compared with 
models that include proteins, e.g., microsomes, erythrocytes, 
washed muscle mince and muscle homogenates (Barriuso, 
Astiasaran, and Ansorena 2013; Laguerre et  al. 2020). In 
addition, electron spin resonance and electron paramagnetic 
resonance can directly be used to monitor the generation 
of free radicals during oxidation of emulsions, fatty acid 
micelles, and liposomes (Ikeda et  al. 2011), but not in the 
more complex models. Although the three simpler models 
have many advantages, they do not include any components 
from actual muscle tissue, which indeed can result in 

incorrect conclusions when extrapolated results to actual 
muscle. Yet, these simple models have a value in under-
standing, e.g., membrane interactions with anti- and 
pro-oxidants or interfacial phenomena between aqueous/
lipid phases in processed muscle products.

Conversely, microsomes, erythrocytes, washed muscle 
mince, and muscle homogenates have the obvious advan-
tage of containing muscle components and/or muscle struc-
ture. For example, microsomes are compositionally similar 
to muscle cell membranes, while erythrocytes can simulate 
intact cell membranes. Further, washed muscle mince and 
muscle homogenates have many structural and composi-
tional elements of actual muscle. These models are there-
fore appropriate models for lipid oxidation investigations 
that depend on animal species, muscle type and anatomical 
location, while more simplistic models cannot be used for 
these aims.

5.  Caution in extrapolating findings from model 
systems to postmortem muscle tissue

Muscle contains cytosolic, membrane-bound, myofibrillar 
and stromal proteins as well as trace amounts of carbohy-
drates, vitamins, and minerals (at less than 1% of muscle 
wet weight). All these molecules that are to varying degrees 
excluded or modified in the model systems described in 
this review. Besides compositional interactions between the 
different macro- and micro-molecules, structural organiza-
tion is often overlooked in simple models such as lipid 
micelles, emulsions, liposomes, and microsomes. Although 
washed muscle minces are subjected to some physical alter-
ation during their preparation, this model still provides a 
level of structural organization that cannot be achieved by 
simply mixing lipid models and myofibrillar components. 
Using washed muscle mince as study models, studies have 
related variations in the muscle microstructures to the oxi-
dative stability of lipids (Sannaveerappa, Sandberg, and 
Undeland 2007b; Wu et  al. 2021b).

Caution must be exercised when comparing lipid models 
(microsomes, washed muscles, and muscle homogenates) 
prepared from different sources due to variations in endog-
enous compounds, e.g., the tocopherol content which should 
be determined. Increasing concentrations of tocopherols in 
muscle tissue extends the lag phase prior to formation of 
lipid oxidation products (Russell et  al. 2004). Varying the 
concentrations of endogenous carotenoids in muscle tissue 
will also influence the onset of lipid oxidation (Jensen et  al. 
1998), which can be an issue, e.g., in salmonoid fish (Salmo 
gairdnerii gairdnerii). Most of the tocopherols and carot-
enoids will not be removed by washing with aqueous solu-
tions as they are bound to membranes and to some degree 
to myofibrillar proteins (carotenoids).

The pH is a very important factor to consider in lipid 
oxidation model systems and in postmortem muscle tissue. 
The pH for a model system should be near the pH of the 
muscle tissue or muscle food product of interest. In a turkey 
deli meat product, formation of hexanal during refrigerated 
storage was suppressed 2.4-fold as the pH was increased 
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0.36 units because of addition of sodium tripolyphosphate 
(STPP) (Bak, Rankin, and Richards 2020). The ability of 
STPP to inactivate metals and change muscle structure could 
contribute to the antioxidant effect of STPP in addition to 
the pH increasing the effect of STPP. Ammonium hydroxide 
(0.5%) increased pH in raw buffalo patties from 5.6 to 6.4 
and decreased formation of lipid oxidation products 3 to 
4-fold during 4 °C storage (Naveena et  al. 2011).

Muscle tissue contains co-factors that facilitate 
iron-mediated lipid oxidation (e.g., phosphorylated nucleo-
tides and free amino acids) that are often absent in model 
systems. Nevertheless, co-factors can be added to model 
systems. For example, Erickson and Hultin (1992) reported 
the ability of adenosine diphosphate and histidine to activate 
added iron to instigate lipid oxidation in a sarcoplasmic 
reticulum preparation. The ability of copper to bind to Mb 
and thereby increase metmyoglobin formation should be 
noted in the context of LMW metals increasing the 
pro-oxidative capacity of heme proteins (Moiseeva and 
Postnikova 2001).

The activity of copper ions can be underestimated when 
added to a model system if critical endogenous muscle 
co-factors are excluded. For example, the ability of Cu2+ to 
decompose linoleic acid hydroperoxide increased greater 
than three orders of magnitude when a physiological con-
centration of ascorbate was added to the model system 
(O’brien 1969). This effect was likely because of the ability 
of ascorbate to facilitate redox cycling of copper between 
the 2+ and 1+ oxidation state (Khan and Martell 1967). 
The formation of Cu+ may facilitate decomposition of lin-
oleic acid hydroperoxide, in that reduced metals decompose 
peroxides up to five orders of magnitude more effectively 
than the higher valence state of the metal (Mcclements and 
Decker 2017).

Soluble components of muscle (e.g., press juices and cyto-
solic fractions) can be pro-oxidative or antioxidative toward 
lipids depending on compositional attributes and possibly 
the type of oxidizable lipid. For example, addition of the 
low molecular weight (LMW) and high molecular weight 
(HMW) soluble fractions of ordinary mackerel muscle to 
liposomes generated maximal lipid oxidation that was partly 
attributed to the ability of metals in the LMW fraction and 
heme proteins in the HMW fraction to collectively oxidize 
the liposomes (Decker and Hultin 1990). However, the press 
juice from, e.g., chicken breast muscle, cod muscle and 
herring muscle were inhibitory to Hb-mediated lipid oxi-
dation in washed muscle (Li, Richards, and Undeland 2005; 
Sannaveerappa et  al. 2007a; Undeland, Hultin, and Richards 
2003). This inhibitor effect can be attributed to the ability 
of antioxidants in the soluble fraction to inhibit Hb-mediated 
lipid oxidation that outcompeted the ability of pro-oxidants 
in the press juice to facilitate lipid oxidation. The greater 
ability of fish Hbs and Mbs in the soluble fraction to oxidize 
lipids compared with mammalian and avian heme proteins 
should be noted (Lee et  al. 2015). Further, Hb from perch 
was more oxidative toward lipids than Hb from trout 
(Aranda et  al. 2009). And the concentration of heme pro-
teins in cytosol from ordinary muscle (also called light or 
white muscle) will be lower than that from dark muscle 

and muscle that is a mixture of light and dark fibers. Heat 
labile/non-dialyzable and heat resistant/dialyzable factors in 
the cytosol of white muscle from rainbow trout protected 
against lipid oxidation in microsomes (Han and Liston 
1989). Thus, adding the soluble components from different 
muscles to a selected model system may provide improved 
understanding of factors that contribute to oxidative stability 
of the lipids in postmortem muscle.

It should be emphasized that many models are used to 
increase the speed of oxidation. This is often necessary 
to observe oxidation before tissues are spoiled by bacterial 
growth. Many intact meats will spoil from microbial 
growth before oxidation occurs. Frozen storage or addition 
of antimicrobials as steptomycin are routes to avoid micro-
bial spoilage however for the former, prolonged time is 
required to incur oxidation products. Cooked meat will 
oxidize rapidly so that screening of antioxidants can be 
examined fairly efficiently after a thermal step with this 
in mind.

6.  Prospects

Technology development always brings expectations to exist-
ing challenge. For example, with growing interest in cellular 
agriculture, the production of meat and fish from stem 
cell- and tissue-cultures is emerging as an approach to 
address current ecological challenges (Rubio et  al. 2019; 
Tuomisto 2018). These technologies may be used also to 
assess the mechanisms of muscle lipid oxidation. Stem cells 
are cultivated in a bioreactor under strict control of envi-
ronmental factors; thus, the endogenous components could 
be controlled by adjusting the nutrient medium. For exam-
ple, many investigators reported that Mb is a strong endog-
enous pro-oxidant in red meat (Faustman et  al. 2010; Yin, 
Zhang, and Richards 2017; Zhou et  al. 2016). The addition 
of Mb into washed muscle is a common approach for this 
study. However, Mb is located within muscle cells (e.g., 
myocytes) (Richards 2010), which could prevent the inter-
action between Mb and lipid substrates in situ. Thus, cul-
tured meat or fish could be a good model to identify the 
activities of important endogenous pro- and antioxidants at 
the cell scale. In addition, three-dimensional printing stands 
as a developing technology for food manufacturing (Dick, 
Bhandari, and Prakash 2019) and offers the opportunity to 
design a new tailored model for lipid oxidation study. This 
three-dimensional model could be schemed into expected 
components and muscle structures that meet special needs 
for lipid oxidation study. The pathways and relationships 
involved in lipid oxidation are complex in muscle. Existing 
studies normally just identify affecting factors one-by-one. 
Simultaneous analysis of multiple factors is a challenge. 
Mathematical modeling provides a chance to integrate the 
synthesis of data from many experiments into one system, 
which could calculate quantitative changes in many factors 
(Kaczmarek and Muzolf-Panek 2022). Thanks to advances 
in quantitative analysis and computation, chemometrics and 
machine learning algorithms can be useful for classification, 
optimization, and prediction in the analysis of complex 
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dataset (Gu et  al. 2017; Khoshnoudi‐Nia and Moosavi‐Nasab 
2019; Rosario et  al. 2020).

7.  Conclusion

Muscle foods has complex composition and structures, 
which explain why the mechanisms and pathways of lipid 
oxidation are still not completely confirmed. The seven 
models discussed in this review have been used as tools to 
aid food scientists getting answers or indications on, e.g., 
oxidation pathways, oxidation product formation and roles 
of endogenous pro-/antioxidants or lipid substrates, in indi-
rect ways. It is however vital to distinguish the main char-
acteristics, advantages, and disadvantages of each model to 
make the right selection. Particularly, it is necessary to pay 
attention to the following points: 1) feasibility of preparation 
and analysis of lipid oxidation results; 2) the speed and 
accuracy of monitoring lipid oxidation products, e.g., ten-
tative interference from model system components; 3) cost 
of preparing the desired model and related analyses; 4) 
stability and robustness of the model, i.e., the possibility to 
get reproducible results across different experiments. Based 
on this reviewing of oxidation models, tailoring correct 
model to different study aims could be facilitated, and read-
ers are becoming acquainted with advantages and shortcom-
ings. In addition, insight into recent technology developments, 
e.g., stem cell- and tissue-cultures as well as three-dimensional 
printing could provide new opportunities to overcome the 
current bottlenecks of lipid oxidation studies in muscle.
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