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Over the last three decades, innovations in the memory subsystem were primarily targeted at overcoming

the data movement bottleneck. In this paper, we focus on a specific market trend in memory technology:

3D-stacked memory and caches. We investigate the impact of extending the on-chip memory capabilities

in future HPC-focused processors, particularly by 3D-stacked SRAM. First, we propose a method oblivious

to the memory subsystem to gauge the upper-bound in performance improvements when data movement

costs are eliminated. Then, using the gem5 simulator, we model two variants of a hypothetical LARge Cache

processor (LARC), fabricated in 1.5 nm and enriched with high-capacity 3D-stacked cache. With a volume of

experiments involving a broad set of proxy-applications and benchmarks, we aim to reveal how HPC CPU

performance will evolve, and conclude an average boost of 9.56× for cache-sensitive HPC applications, on

a per-chip basis. Additionally, we exhaustively document our methodological exploration to motivate HPC

centers to drive their own technological agenda through enhanced co-design.
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1 INTRODUCTION

Historically, the reliable performance increase of von Neumann-based general-purpose processors
(CPUs) was driven by two technological trends. The first, observed by Gordon E. Moore [76], is that
the number of transistors in an integrated circuit doubles roughly every two years. The second,
called Dennard’s scaling [30], postulates that as transistors get smaller their power density stays
constant. These trends synergized well, allowing computer architectures to continuously improve
performance through, for example, aggressive pipelining and superscalar techniques without run-
ning into thermal limitations by, e.g., reducing the operating voltage. In the early 2000s, Dennard’s
scaling ended [51] and forced architects to shift their attention from improving instruction-level
parallelism to exploiting on-chip multiple-instruction multiple-data parallelism [43]. This imme-
diate remedy to the end of Dennard’s scaling applies to this day in the form of processors such as
Fujitsu A64FX [96], AMD Ryzen [105], or NVIDIA GPUs [79, 86].

Unfortunately, Moore’s law is impending termination [107], and we are entering a post-Moore
era [112], home to a diversity of architectures, such as quantum-, neuromorphic-, or reconfigurable
computing [49]. Many of these prototypes hold promise but are still immature, focus on a niche
use case, or incur long development cycles. However, there is one salient solution that is growing
in maturity and which can facilitate performance improvements in the decades to come even for
the classic von Neumann CPUs we have come to rely upon—3D integrated circuit (IC) stacking
[14]. 3D ICs refer to the general technologies of vertically building integrated circuits and can
be done in multiple ways, such as by stacking multiple discrete dies and connecting them using
coarse through-silicon vias (TSVs) or growing the 3D integrated circuit monolithically on the
wafer [100].

Recent advances in 3D integrated circuits have enabled many times higher capacity for on-
chip memory (caches) than traditional systems (e.g., AMD V-Cache [40]). Intuition tells us that an
increased cache size, resulting from 3D-stacking, will help alleviate the performance bottlenecks of
key scientific applications. To demonstrate this, we conduct a pilot study where we execute one of
the important proxy-apps from the DoE ExaScale Computing Project (ECP) suite, MiniFE [50]
(cf. Section 3.3), on AMD EPYC Milan and Milan-X CPUs—two architecturally similar processors
with vastly different L3 cache sizes [17]. Figure 1 overviews our result of the pilot study, and we
see that for a subset of problem sizes, in particular the 160 × 160 × 160 input, the 3-times larger L3
capacity of Milan-X yields up-to 3.4× improvements over baseline Milan for this memory-bound
application, which motivates us to further research 3D-stacked caches.

3D integrated circuits have various benefits [52], including (i) shorter wire lengths in the inter-
connect leading to reduced power consumption, (ii) improved memory bandwidth through on-chip
integration that can alleviate performance bottlenecks in memory-bound applications, (iii) higher
package density yielding more compute and smaller system footprint, and (iv) possibly lower
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Fig. 1. MiniFE: relative performance improvement of AMD EPYC
7773X Milan-X over 7763 Milan (for details cf. Table 1), and Figure of
Merit; Input problem scaled from 100 × 100 × 100 to 400 × 400 × 400;
Benchmarks executed with 16 MPI ranks and 8 OpenMP threads.

Table 1. Systems Configuration
for the Benchmarked AMD EPYC
7763 Milan and 7773X Milan-X (for
More Details: See Zen 3 Microarch)

7763 Milan 7773X Milan-X

Sockets 2 2

CPU config. per Socket:
Cores 64 64
CCDs 8 8
Freq. 2.45 GHz 2.20 GHz
TDP 280 W 280 W
L3 256 MiB 768 MiB

Cache per core:
L2 512 KiB 512 KiB
L1 I+D 32+32 KiB 32+32 KiB

Memory 1 TiB DDR4, 16 cha., 409.6 GB/s

Fig. 2. A sample of representative server-grade CPUs of each generational micro-architecture in comparison
to our study of LARC; Left: total on-chip last-level cache (in GiB); Right: per-core last-level cache (in MiB)
for the same CPUs; The two LARC variants will be discussed in detail in Section 5.1.

fabrication cost due to smaller die size (thus improved yield). All these are very desirable bene-
fits in today’s exascale (and future) High-Performance Computing (HPC) systems. But how
far can 3D ICs (with a focus on increased on-chip cache) take us in HPC?

Contributions: We study our research questions from three different levels of abstraction:
(i) we design a novel exploration framework that allows us to simulate HPC applications run-
ning on a hypothetical processor having infinitely large L1D cache. We use this framework, that
is orders of magnitude faster than cycle-accurate simulators, to estimate an upper-bound for
cache-based improvements; (ii) we model a hypothetical LARge Cache processor (LARC),
that builds on the design of A64FX, with an LLC (Last Level Caches) designed with eight stacked
SRAM dies under 1.5 nm manufacturing assumption; (iii) we complement our study with a plethora
of simulations of HPC proxy-applications and CPU micro-benchmarks; and lastly (iv) we find
that over half (31 out of 52) of the simulated applications experience a ≥ 2× speedup on LARC’s
Core Memory Group (CMG) that occupies only one fourth the area of the baseline A64FX CMG.
For applications that are responsive to larger cache capacity, this would translate to an average
improvement of 9.56× (geometric mean) when we assume ideal scaling and compare at the full
chip level.

The novelty in this paper lies in the purpose which LARC serves, and not the design of LARC
itself. As Figure 2 shows, the capacity (and bandwidth; not shown) of the LLC have increased at
a moderately gradual slope over the last two decades—with Milan-X being a noticeable outlier
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in per-core LLC. However, we are querying the effect of an LLC, that is an order of magnitude
above the trend line as depicted in Figure 2, on HPC applications. On top of our provided baseline,
further application-specific restructuring to utilize large caches [69] will result in even greater
benefit.

2 CPUS EMPOWERED WITH HIGH-CAPACITY CACHE: THE FUTURE OF HPC?

The memory bandwidth of modern systems has been the bottleneck (the “memory wall” [71])
ever since CPU performance started to outgrow the bandwidth of memory subsystems in the
early 1990s [70]. Today, this trend continues to shape the performance optimization landscape
in high-performance computing [83, 85]. Diverse memory technologies are emerging to overcome
said data movement bottleneck, such as Processing-in-Memory (PIM) [12], 3D-stackable High-

Bandwidth Memory (HBM) [74], deeper (and more complex) memory hierarchies [115], and—
the topic of the present paper—novel 3D-stacked caches [14, 68, 98].

In this study, our aspiration is to gauge the far end of processor technology and how it may
evolve in six to eight years from now, circa 2028, when processors using 1.5 nm technology are
expected to be available according to the IEEE IRDS Roadmap [53, Figure ES9]. More specifically, as
3D-stacked SRAM memory [120] becomes more common, what are the performance implications
for common HPC workloads, and what new challenges lie ahead for the community? However,
before attempting to understand what performance may look like six years from now, we must
describe how the processor itself might change. In this section, we introduce, motivate, and reason
about our design choices of what we envision as a hypothetical CPU that capitalizes on large
capacity 3D-stacked cache, briefly called LARC (LARge Cache processor). Before looking at
LARC, we must first set and analyze a baseline processor.

2.1 LARC’s Baseline: The A64FX Processor

We choose to base our future CPU design on the A64FX [118]. Fujitsu’s Arm-based A64FX is
powering Supercomputer Fugaku [96], leader of the HPCG (TOP500 [104]; cf. Section 3.3) and
Graph500 performance charts. A64FX is manufactured in 7 nm technology and has a total of 52
Arm cores (with Scalable Vector Extensions [103]) distributed across four compute clusters, called
Core Memory Groups (CMGs). Twelve cores are available to the user, and one core is exclusively
used for management. Each core has a local 64 KiB instruction and data-cache, and is capable of de-
livering 70.4 Gflop/s (IEEE-754 double-precision) performance—accumulated: 845 Gflop/s per CMG
(user cores) or 3.4 Tflop/s for the entire chip. Each CMG contains a 8 MiB L2 cache slice, delivering
over 900 GB/s bandwidth to the CMG [118]. The combined L2 cache, which is the CPU’s 32 MiB
last level cache (LLC), is kept coherent through a ring interconnect that connects the four CMGs.
Inside the CMG, a crossbar switch is used to connect the cores and the L2 slice. The L2 cache has
16-way set associativity, a line-size of 256 bytes, and the bus-width between the L1 and L2 cache
is set to be 128 bytes (read) and 64 bytes (write).

We emphasize that our aim is not to propose a successor of A64FX, nor are we particularly
restricting our vision by the design constrains of A64FX (e.g., power budget). However, we build
our design on A64FX because: (i) as mentioned above, A64FX represents the high-end in perfor-
mance for commercially available CPUs, so it is a logical starting point. (ii) A64FX is the only
commercially-available CPU, currently in continued production, with HBM. The expected band-
width ratio between future HBM and future 3D-stacked caches is similar to the ratio between
traditional DRAM and LLC bandwidths [80], which is what applications and performance mod-
els are accustomed to. (iii) The A64FX LLC cache design (particularly the L2 slices connected by a
crossbar switch) happens to be convenient and thus, requires a minimal effort to extend the design
in a simulated environment.
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Fig. 3. Difference between A64FX’s Core Memory Group (CMG) and a LARC CMG in various performance-
governing parameters; Most notable (for our study) is the 48× increase in per-CMG L2 cache capacity; Note:

despite appearing similar in the figure, the LARC CMG is, in fact, four times smaller.

In conclusion, while we extend the A64FX architecture, our workflow itself can be generalized to
cover any of the processors supported by CPU simulators (e.g., variants of gem5 [13] can simulate
other architectures, including x86).

2.2 Floorplan Analysis for Fujitsu A64FX

In order to estimate the floorplan of the future LARC processor built on 1.5 nm technology, we first
need the floorplan of the current A64FX processor built at 7 nm. We do know that the die size of
A64FX is ≈ 400 mm2 [96]. With the openly-available die shots including processor core segments
highlighted [82], we can estimate most of the A64FX floorplan, including the size of CMGs and
processor cores, as shown in Figure 3. Overall, each CMG is ≈ 48 mm2 in area, where an A64FX
core occupies ≈ 2.25 mm2 area. The remaining parts of the CMG consist of the L2 cache slice and
controller as well as the interconnect for intra-CMG communication.

2.3 From A64FX’s to LARC’s CMG Layout

Knowing the floorplan, we proceed to describe how we envision the CMG design with 1.5 nm
technology. We scale the CMG by moving four generations, from 7 nm to 1.5 nm, and reduce the
silicon footprint by around 8× (≈ 1.7× per generation) for the entire CMG [39]. The new CMG
consumes as little as 6 mm2 of silicon area. Next, we reclaim the area currently occupied by the
L2 cache and controller and replace it with three additional CPU cores, yielding a total of 16. Fur-
ther, inline with the projected year 2019→2028 growth in the number of cores [54, Table SA-1],
we double the core count of the CMG to 32, which leads to it occupying ≈ 12 mm2 of silicon area.
We pessimistically leave the interconnect area unchanged and continue to use it as the primary
means for communication. We call this new variant as LARC’s CMG. Finally, we assume the same
die size, and hence, LARC would have 16 CMGs, each with 32 cores, in comparison to A64FX’s
4 CMG with 12+1 cores each. For LARC, we ignore the management core. However, our perfor-
mance analysis will remain on the CMG level, instead of full chip, due to limitations we detail in
Section 3.2.
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2.4 LARC’s Vertically Stacked Cache

In the above design, we removed the L2 cache and controller from the CMG of LARC. We now
assume that the L2 cache can be directly placed vertically on the CMG through 3D stacking [68].
We build our estimations based on experiments from Shiba et al. [98], who demonstrated the feasi-
bility of stacking up-to-eight SRAM dies on top of a processor using a ThruChip Interface (TCI).
The capacity and bandwidth of stacked memory is a function of several parameters: the number of
channels available (Nch), the per-channel capacity (Ncap in KiB), their width (W in bytes), the num-
ber of stacked dies (Ndies), and the operating frequency (fclk in GHz). Shiba et al. [98] estimated that
at a 10 nm process technology, eight stacks would provide ≈ 512 MiB of aggregated SRAM capacity
for a footprint of ≈ 121 mm2. In their design, each stack has 128 channels of 512 KiB capacity. In
our work, we conservatively assume an 8× scaling from 10 nm to 1.5 nm, and thus, at 12 mm2 area
(the size of one LARC CMG), Nch on each die would be ≈ 102 (=128*8/10).

We approximate Nch to a nearby sum of power-of-two number, viz., Nch = 96. Thus, with eight
stacked dies (Ndies = 8), our 3D SRAM cache has a total storage capacity of Ndies · Nch · Ncap =

384 MiB per CMG. We estimate the bandwidth in a similar way. We know from previous stud-
ies [98] that 3D-stacked SRAM, built on 40 nm technology, can operate at 300 MHz. We conser-
vatively expect the same SRAM to operate at (fclk=)1 GHz when moving from 40 nm→1.5 nm. To
account for the increased working set size of future applications, we assume a channel width (W )
of 16 byte, compared to the 4 byte width assumed in [98]. With this, the CMG bandwidth becomes:
Nch · fclk ·W = 1536 GB/s. The read- and write-latency of their SRAM cache is 3 cycles, including
the vertical data movement overhead [98].

While stacked DRAM caches theoretically provide higher capacity than stacked SRAM caches,
they have limitations. For example, the latency of stacked DRAM is only 50% lower compared to
DDR3 DRAM, and hence, they exacerbate miss latency; they requires refresh operations which
consumes energy and reduces availability; and due to their large size, the stacked DRAM caches
require special techniques for managing metadata and avoiding bandwidth bloat [23, 74]. The
tag size of a stacked DRAM may exceed the LLC capacity, and hence, the tags may need to be
stored in the DRAM itself which worsens hit latency. Set-associative designs and serial tag-data
accesses further increase hit latency. Proposed architectural techniques and mitigation strategies,
such as Loh-Hill cache [67], have yet to solve these problems. By contrast, 3D SRAM caches do not
suffer from any of these issues. In fact, at iso-capacity, a 3D SRAM cache has even lower access
latency than a 2D SRAM cache. Since stacked 3D SRAM caches have lower capacity than stacked
DRAM, its metadata (e.g., tag) can be easily stored in SRAM itself, further reducing the access
latency.

For our cache design, we assume a 256 B cache block design, which avoids bandwidth bloat. Each
tag takes 6 B and as such, the total tag array size for each CMG becomes 9 MiB. This tag array can
be easily placed in the cache itself. We assume that tag and data accesses happen sequentially.
The tags and data of a cache set are stored on a single die. Hence, on every access, only one die
needs to be activated. Since this takes only few cycles, the overall miss penalty remains small and
comparable to that of A64FX’ LLC.

To show that our cache projections are realistic, we compare it with AMD’s 3D V-cache design.
It uses a single stacked die for the L3 cache, providing 64 MiB capacity (in addition to the 32 MiB
cache in the base die) at 7 nm [26, 40] and only 3 to 4 cycles of extra latency compared to the non-
stacked version [21]. It has 36 mm2 area and has a bandwidth of 2 TB/s. When stacking additional
dies on top, and assuming an 8× scaling of the area by going from 7 nm to 1.5 nm, we specu-
late that the LLC capacity of this commercial processor could easily exceed that of our proposed
LARC.
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2.5 LARC’s Core Memory Group (CMG)

At last, we detail our experimental CMG built on a hypothetical 1.5 nm technology: the
LARC CMG. An illustration of this system is shown in Figure 3. Each CMG consists of 32 A64FX-
like cores, which keeps the L1 instruction- and data-cache to 64 KiB each, yielding a per CMG
performance of ≈ 2.3 Tflop/s (IEEE-754 double-precision). A 384 MiB L2 cache is stacked vertically
on the top of the CMG through eight SRAM layers.

We keep the HBM memory bandwidth per CMG to its current A64FX value of 256 GB/s to be
able to quantify performance improvements from the proposed large capacity 3D cache in isola-
tion from any improvements that would come from increased HBM bandwidth. Furthermore, we
make no assumption on the technology scaling of blocks that contain hard-to-scale-down analog
components (e.g., TofuD or PCIe IP blocks) and instead focus exclusively on scaling the CMG-part
of the System-on-Chip (i.e., processing cores, L1/L2 caches, and intra-chip interconnects).

While our study focuses on evaluating a single CMG, we conclude that a complete, hypothetical
LARC CPU, with a die size similar to the current A64FX, would contain 512 processing cores, 6 GiB
of stacked L2 cache, a peak L2 bandwidth of 24.6 TB/s, a peak HBM bandwidth of 4.1 TB/s, and
a total of 36 Tflop/s of raw, double-precision, compute. The A64FX processor has a peak HBM
bandwidth of 1 TB/s, whereas our envisioned LARC CPU has 4× more CMGs and hence, a peak
HBM bandwidth of 4.1 TB/s. Thus, compared to A64FX, LARC has higher effective bandwidth of
external memory. Further changes to the HBM generation are beyond the scope of this study.

2.6 LARC’s Power and Thermal Considerations

To estimate the power consumption of LARC, we analyze A64FX’s current consumption and ex-
trapolate to 1.5 nm by leveraging public technology roadmaps. A64FX’s peak power, achieved
while running DGEMM, is 122 W [117]; where 95 W correspond to core power and 15 W corre-
spond to the memory interface (MIF), and hence, we conclude 1.98 W/core and 3.75 W/MIF.
Therefore, a LARC CMG with 32 cores in 7 nm would consume 67.1 W. TSMC projects that shrink-
ing from 7 nm to 5 nm yields a power reduction of about 30% [99], i.e., 46.98 W for LARC’s CMG
in 5 nm. IRDS’s roadmap [53, Figure ES9] indicates a further compounded power reduction (at iso
frequency) of 42% when moving from 5 nm to 1.5 nm, i.e., 27.37 W for LARC’s CMG in 1.5 nm. As
the full LARC chip is estimated to include 16 CMGs, we project a total power of 438 Watt (not
including the L2 cache).

Next, we estimate the power consumed by the principal part of this study—the 384 MiB L2 cache.
A 4 MiB SRAM L2 cache in 7 nm consumes 64 mW of static power [44]. Assuming a similar (pes-
simistic) static power consumption at 1.5 nm and extrapolated to 384 MiB, we find that our cache
would have a static power consumption of 6.14 W. Scaled to the full 16 CMGs of our hypotheti-
cal LARC, we arrive at a static power consumption of 98.3 W. This static power consumption of
caches represents between 90% and 98% of the entire power consumption (at 350 K temperature,
see, e.g., [5, 20]), where the remainder is the dynamic power consumption. If we assume a pes-
simistic 9:1 ratio between static and dynamic power, then this yields a total power consumption
of 109.23 W for 6 GiB of chip-wide stacked L2 cache.

To conclude, a LARC processor (16 CMG) would have to be designed for a thermal design

power (TDP) of 547 W. While this expected TDP is more than the current A64FX, it is not entirely
unlike emerging architectures, such as NVIDIA’s H100 [81] that consumes up to 700 W or the
AMD Instinct MI250X GPU [3] at 560 W. We stress that our estimate of 547 W is peak power
draw achieved only during parallel DGEMM execution. Adjusting for Stream Triad, based on the
breakdown in [117], we conclude a realistic, and considerably lower, power consumption of 420 W
for bandwidth-bound applications running on the whole LARC chip.
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Finally, while this L2 cache power estimation might appear pessimistic, there are ample oppor-
tunities to further reduce power consumption. To save static energy, all the un-accessed dies can
be changed to data-retentive, low-power (sleep) state. To deal with remaining thermal issues after
stacking the cache layers underneath the cores instead of on top, one can additionally adapt sim-
ple direct-die cooling or advanced techniques [18, 106], such as high-κ thermal compound [42],
microfluid cooling [114], or thermal-aware floorplanning, task-scheduling and data-placement op-
timizations. Specifically, microfluid cooling can handle power densities of 3.5 W/mm2 and hot-spot
power levels of over 20 W/mm2 for 3D-stacked chips [1]. By contrast, our LARC CPU has a power
density of 2.85 W/mm2 at 192 mm2 if we ignore adjunct components such as I/O die, PCIe, TofuD
interface, and the like, and around half the power density at 400 mm2 if these components are
included.

3 PROJECTING PERFORMANCE IMPROVEMENT IN SIMULATED ENVIRONMENTS

Analyzing LARC’s feasibility is only the first step, and hence we have to demonstrate the effects
of the proposed changes on real workloads to allow a meaningful cost-benefit analysis by CPU
vendors. This section details two simulation approaches (one novel; one established) and discusses
the HPC applications, which we evaluate extensively in Sections 4 and 5.

3.1 Simulating Unrestricted Locality with MCA

Designing and executing even initial studies (i.e., no complex memory models, etc.) with cycle-level
gem5 simulations for realistic workloads takes substantial time with unknown outcome. Therefore,
one would want to have a first-order approximation of a very large and fast cache. Regrettably, and
to the best of our knowledge, existing approaches for fast first-order approximations do generally
not support complex HPC applications, i.e., the existing tools neither handle multi-threading cor-
rectly nor do they have support for MPI applications [6]. Hence, we design a simulation approach,
using Machine Code Analyzers (MCA), which can estimate the speedup for a given application
orders-of-magnitude faster than gem5 (typically hours instead of months; cf. next section). This
upper bound in expected performance improvement allows us to: (i) get a perspective on the best
possible performance improvement if all read/writes can be satisfied from the cache; and (ii) jus-
tify more accurate simulations and classify their results with respect to the baseline and the upper
bound.

Machine Code Analyzers, such as llvm-mca [66], have been designed to study microarchitec-
tures, improve compilers, and investigate resource pressure for application kernels. Usually, the
input for these tools is a short Assembly sequence and they output, among other things, an ex-
pected throughput for a given CPU when the sequence is executed many times and all data is
available in L1 data cache. For most real applications, the latter assumption is obviously incorrect,
however, it is ideal to gauge an upper bound on performance when all the memory-bottlenecks
disappear.

Unfortunately, it is neither feasible to record all executed instructions in one long sequence, nor
to analyze a full program sequence with llvm-mca. Hence, we break the program execution into
basic blocks (at most tens or hundreds of instructions) and evaluate their throughput individually.
For a given combination of a program and input (called workload hereafter), the basic blocks and
their dependencies create a directed Control Flow Graph (CFG) [56] with one source (program
start) and one sink (program termination). All intermediate nodes (representing basic blocks) of
the graph can have multiple parent- and dependent-nodes, as well as self-references (e.g., basic
blocks of for-loops). Knowing the “runtime” of each basic block and the number of invocations
per basic block, we can estimate the runtime of the entire workload by summation of the parts.
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Fig. 4. Illustration of our runtime estimation pipeline with the MCA-based tool for an accumulative kernel
executed with n = 42; Dotted line: branch not taken; Solid line: kernel execution as recorded by SDE; Edges
in directed CFG annotated by number of jumps between basic blocks; Details in Section 3.1.

We utilize the Software Development Emulator (SDE) [57] from Intel to record the basic
blocks and their caller/callee dependencies for a workload with modest runtime overhead (typ-
ically in order of 1000× slowdown). SDE also notes down the number of invocations per CFG
edge for a workload, i.e., how often the program counter (PC) jumped from one specific basic
block to another specific block. We developed a program which parses the output of Intel SDE
and establishes an internal representation of the Control Flow Graph. The internal CFG nodes are
then amended with Assembly extracted from the program’s binary, since SDE’s Assembly output
is not compatible with Machine Code Analyzers. Our program subsequently executes a Machine
Code Analyzer for each basic block, getting in return an estimated cycles-per-iteration metric

(CPIter). We record the per-block CPIter at the directed CFG edge from caller to callee, which
already holds the number of invocations of this edge, effectively creating a “weighted” graph.
Figure 4 showcases the result and it is easy to see that the summation of all edges in the CFG
is equivalent to the estimated runtime of the entire workload (assuming all data is inside the L1
data cache).

The above outlined approach works for both sequential and parallel programs. Intel SDE can
record the instruction execution and caller/callee dependencies for thread-parallel programs, e.g.,
pthreads, OpenMP, or TBB. Furthermore, we can attach SDE to individual MPI ranks to get the
data for it. Therefore, we are able to estimate the runtime for MPI+X parallelized HPC applications
by the following equation:

tapp :=

max
r ∈ ranks

(
max

t ∈ threadsr

(
∑

edges e ∈CFGt,r

CPItere ·#callse )

)

processor frequency in Hz (1)

under the assumption that MPI ranks and threads do not share computational resources,1 where we
sum up the number of cycles required for each block (i.e., CFG edges) considering only the “slowest”
thread and rank, and divide by the CPU frequency to convert the total cycles into runtime.

The self-imposed restriction of Machine Code Analyzers is the limited accuracy compared
to cycle-accurate simulators, due to their distinct design goal. To improve our CPIter estimate,
we rely on four different MCAs, namely llvm-mca [66], Intel ACA (IACA) [55], uiCA [2], and
OSACA [65], and take the median of the results. Another shortcoming of MCA tools is that most
of them estimate the throughput of basic blocks in isolation while assuming looping behavior of
the assembly block (PC jumps from last back to first instruction). Neither “block looping” nor
an empty instruction pipeline (single iteration of the block) are realistic for some blocks. Hence,
for non-looping basic blocks, we estimate the CPIter by feeding the MCA tool with the blocks
of caller and callee, and the callee’s CPIter is calculated by subtracting the cycle of retirement of
its last instruction from the caller’s last instruction retirement (instead of when the callee’s first

1Resource over-subscription is outside the scope of this study and our tool.
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instructions are decoded, which can overlap with execution of caller instructions). Further, we
correct some cycle estimates for specific instructions within our tool in post-processing, since we
encountered a few unsupported or grossly mis-estimated instructions while validating our tool
against benchmarks. We refer the reader to Section 4.1 for more details.

3.2 Cycle-level Accuracy: CPUs Simulated in gem5

While the MCAs can give a first-order approximation, we still require highly accurate predictions
for our 3D-stacked, cache-rich CPU. Hence, we employ an open-source system architecture sim-
ulator, called gem5 [13]. It supports Arm, x86, and RISC-V CPUs to varying degrees of accuracy,
and can be extended with memory models for higher simulation fidelity of the memory subsystem.
We use gem5’s “syscall emulation” mode to execute applications directly without booting a Linux
kernel.

Fortunately, RIKEN released their gem5 version which was specially tailored for A64FX’s co-
design to support SVE, HBM2, and other advanced features [94]. Hence, it is well suited to simulate
our LARC proposal in Section 2.4. This version of gem5 has been validated for A64FX [62], and
can be used with production compilers from Fujitsu. Albeit, while evaluating RIKEN’s gem5, we
noticed a few drawbacks, such as the lack of support for: (i) dynamically linked binaries; (ii) ad-
equate memory management (freeing memory after application’s free() calls); (iii) simulating
more than 16 CPU cores due to limits in the cache coherence protocol; (iv) multi-rank MPI-based
programs; and (v) simulating more than one A64FX CMG.

We modify gem5 to remedy the first three problems. However, the last two problems remain
intractable without major changes to the simulator’s codebase, and hence we limit ourselves to
single-CMG simulations (with one MPI rank). Relying on the assumption that most HPC codes
are weak scaled across multiple NUMA domains and compute nodes, we believe the single-rank
approach still serves as a solid foundation for future performance projection. However, even single-
rank MPI binaries require numerous unsupported system calls. To circumvent this problem, we
extend and deploy an MPI stub library [101].

3.3 Relevant HPC (Proxy-)Apps and Benchmarks

Instead of relying on a narrow set of cherry-picked applications, we attempt to cover a broad
spectrum of typical scientific/HPC workloads. We customize and extend a publicly available bench-
marking framework2 [34, 35] with a few additional benchmarks and necessary features to perform
the MCA- and gem5-based simulations. The benchmark complexity ranges from simple kernels to
large code bases (O(100,000s) lines-of-code) which are used by vendors for architecture compar-
isons and used by HPC centers for hardware procurements [41]. Hereafter, we detail the list of 127
included workloads, summed up across all benchmark suites, which are sized to fit within a single
node and which could be simulated with gem5 in a reasonable time (≤ six months).

Polyhedral Benchmark Suite. The PolyBench/C suite contains 30 single-threaded, scientific ker-
nels which can be parameterized in memory occupancy (∈ [16 KiB, 120 MiB]) [90]. Unless stated
otherwise, we use the largest configuration.

TOP500, STREAM, and Deep Learning Benchmarks. High Performance Linpack (HPL) [36]
solves a dense system of linear equations Ax = b of size 36,864 in our case. High Performance

Conjugate Gradients (HPCG) [37] applies a conjugate gradient solver to a system of linear equa-
tion (with sparse matrix A). We choose 1203 for HPCG’s global problem size. BabelStream [29]
evaluates the memory subsystem of CPUs and accelerators, and we configure 2 GiB input vectors.

2Exact benchmark versions, git commits, inputs, and the like, are provided in our artifacts which are referenced in Section 9.
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Moreover, we implement a micro-benchmark, DLproxy, to isolate the single-precision GEMM op-
eration (m = 1577088;n = 27;k = 32) which is commonly found in 2D deep convolutional neural
networks, such as 224×224 ImageNet classification workloads [111].

NASA Advanced Supercomputing Parallel Benchmarks. The NAS Parallel Benchmarks

(NPB) [11, 110] consists of nine kernels and proxy-apps which are common in computational

fluid dynamics (CFD). The original MPI-only set has been expanded with ten OpenMP-only
benchmarks [60] and we select the class B input size for all of them.

RIKEN’s Fiber Mini-Apps and TAPP Kernels. To aid the co-design of Supercomputer Fugaku,
RIKEN developed the Fiber proxy-application set [92], a benchmark suite representing the scien-
tific priority areas of Japan. Additionally, RIKEN released scaled-down TAPP kernels [93] of their
priority applications which are tailored for fast simulations with gem5 [62]. Our workloads are
as follows: FFB [46] with the 3D-flow problem discretized into 50×50×50 sub-regions; FFVC [84]
using 144×144×144 cuboids; MODYLAS [9] with the wat222workload; mVMC [73] with the strong-
scaling test reduced to 1/8th of the samples and 1/3rd of the lattice size; NICAM [108] with a single
(not 11) simulated day; NTChem [78] with the H2O workload; QCD [16] with the class 2 input.

Exascale Computing Project Proxy-Applications. The US-based supercomputing centers curated
a co-design benchmarking suite for their recent exascale efforts [41]. We select eleven applica-
tions of the aforementioned benchmarking framework with the following workloads. AMG [87]
with the problem 1 workload; CoMD [75] with the 256,000-atom strong-scaling test; Laghos [32]
modelling a 3D Sedov blast but with 1/6th of the timesteps; MACSio [31] with an ≈ 1.14 GiB data
dump distributed across many JSON files; MiniAMR [50] simulating a sphere moving diagonally
through 3D space; MiniFE [50] with 128×128×128 grid size; MiniTri [116] testing triangle- and
largest clique-detection on BCSSTK30 (MatrixMarket [15]); Nekbone [10] with 8,640 elements and
polynomial order of 8; SW4lite [88] simulating a pointsource; SWFFT [47] with 32 forward and
backward tests for a 128×128×128 grid; XSBench [109] with the small problem and 15 million
particle lookups.

3.3.1 SPEC CPU & SPEC OMP Benchmarks. The Standard Performance Evaluation Corpora-
tion [102] offers, among others, two HPC-focused benchmark suits: SPEC CPU® 2017[speed] (ten
integer-heavy, single-threaded; ten OpenMP-parallelized, floating-point benchmarks) and SPEC
OMP® 2012 (14 OpenMP-parallelized benchmarks). All SPEC tests hereafter are based on non-
compliant runs with the train input configuration.

4 MCA-BASED SIMULATION RESULTS

Sections 4.1 and 4.2 are dedicated to our MCA-based estimation of the upper bound on performance
improvement with abundant L1 cache. First, we evaluate the accuracy of this approach, and then
apply the novel methodology to our benchmarking sets.

4.1 MCA-based Simulator Validation

During the development of our MCA-based simulator, we implemented numerous micro-
benchmarks to fine-tune the CPI estimation capabilities while comparing the results to an
Intel® Xeon® processor E5-2650v4 (formerly code named Broadwell). Our micro-benchmarks com-
prise MPI-/OpenMP-only, MPI+OpenMP, and single-threaded tests (exercising recursive functions,
floating-point- or integer-intensive operations, L1-localised, or stream-like operation).

Needless to say, applying MCA-based simulations to full workloads or complex application ker-
nels is still error-prone, since these tools are designed to analyze small Assembly sequences with-
out guarantee for accurate absolute performance numbers. Regardless, we validate the current
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Fig. 5. Validation of MCA-based runtime predictions against PolyBench/C MINI with inputs fitting into L1D;
Relative runtime shown (vs. Intel E5-2650v4 measurements); Values ≤ 1 show prediction of faster execution.

status of our tool using PolyBench/C with MINI inputs. In theory, these input sizes (≈ 16 KiB)
should all fit into the 32 KiB L1D cache of the Broadwell. Hence, measuring the kernel execution
time for these PolyBench tests should yield numbers close to MCA-based runtime estimates. For
the baseline measurements, we set all cores of the Broadwell to 2.2 GHz, set the uncore to 2.7 GHz,
and disable turbo boost; compile each workload with Intel’s Parallel Studio XE,3 and execute every
test for 100 times (since many only run for a few ms) to determine the fastest possible execution
time. The difference between the real baseline results and our MCA-based estimates is visualized
in Figure 5 as projected relative runtime difference.

The data shows that on average our MCA-based method slightly overestimates: MCA approach
predicts faster execution times than it should. Only seven out of 30 workloads are expected to run
slower than what we observe on the real Broadwell (i.e., y-value ≤1). For eight of the PolyBench
tests, our tool estimates the runtime to be over 2× faster than our measurements. Hence, we can
conclude that for 73% of the micro-benchmarks, the MCA-based method is reasonably accurate:
within 2× slower-to-2× faster. While a 2× discrepancy might appear high, we have to point out
that our cross-validations using SST [95, 113] and third-party gem5 models [7] for Intel CPUs yield
similar inaccuracies,4 but our MCA-based method is substantially faster.

Another indicator for the accuracy of our MCA-approach can be drawn from DGEMM (double

precision gemm benchmark in Figure 5). Theoretically, DGEMM performs close to peak and is not
memory-bound for large matrices, and hence the measured runtime and MCA-based estimates
are expected to match. Unfortunately, PolyBench’s Gflop/s rate for gemm is far from peak (due to
its hand-coded loop-nest), and therefore we replace it with an Intel MKL-based implementation
of equal matrix dimensions. For the PolyBench input sizes MINI, . . . , EXTRALARGE in our MKL-
based implementation, our MCA tool estimates a faster runtime by 6.4×, 75%, 11%, 1.9%, and 1.5%,
respectively. This closely matches the achievable single-core Gflop/s of the E5-2650v4: for MINI
and the MKL-based runs, we measure only 2 Gflop/s, while for EXTRALARGE we peak out at the
expected 32 Gflop/s. The low Gflop/s measurements for MINI (and SMALL) demonstrate that MKL
is not yet compute-bound, and hence causes the 6.4× (and 75%) misprediction.

4.2 Speedup-potential with Unrestricted Locality

In this section, we take on the entire benchmark suite from Section 3.3 with the MCA-based ap-
proach and evaluate their speedup potential when all data fits into L1.

3For details of flags, tools, versions, and executions environments, please refer to Section 9.
4A large-scale survey of academic simulators in realistic scenarios, beyond carefully selected and tuned micro-kernels, is—

in our humble opinion—consequential, and yet outside the scope of this paper. Although, reference [6] provides a data

point.
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Fig. 6. Projected speedup against a baseline dual-socket Intel Broadwell E5-2650v4 system while assuming
all data fits into L1D with “optimistic” load-to-use latency; Top row, left to right: PolyBench, RIKEN TAPP
kernels, NPB (OMP); Bottom row, left to right: NPB (MPI), TOP500, etc., ECP proxies, RIKEN Fiber apps,
SPEC CPU[int/single] and CPU[float/OMP], SPEC OMP.

The baseline measurements for the speedup estimates are conducted on a dual-socket In-
tel Broadwell E5-2650v4 system with 48 cores (2-way hyper-threading enabled, cores are set
to 2.2 GHz, turbo boost disabled). For all listed benchmarks, excluding SPEC CPU and OMP, we
focus on the solver times only, i.e., we ignore data initialization and post-processing phases. Since
most proxy-apps are parallelized with MPI and/or OpenMP, we perform an initial sweep of possi-
ble configurations of ranks and threads to determine the fastest time-to-solution (TTS) for our
strong-scaling benchmarks, and the highest figure-of-merit (as reported by the benchmarks) for
weak-scaling workloads. The highest performing configurations is executed ten times to determine
the TTS of the kernel as our reference point in Figure 6.

The same MPI/OMP configurations are then used for our MCA-based estimate. Under the as-
sumption that some MPI-parallized benchmarks experience imbalances, we randomly sample up
to nine ranks (in addition to rank 0),5 execute the selected rank with Intel SDE (and the remaining
ranks normally), and calculate the estimated runtime using Equation (1) and the 2.2 GHz processor
frequency. The resulting runtime estimate is divided by the measured runtime to determine the
upper-bound speedup potential per application when all its data would fit into L1D, see Figure 6.

For PolyBench/C workloads, we see similar speedup trends as for its smallest inputs which we
used in Figure 5, although the expected speedup for EXTRALARGE increases to a peak of 8.4× for the
ludcomp kernel. Only four kernels show no performance increase, presumably by being compute-
bound and not bandwidth-bound: 2mm, 3mm, doitgen, and trisolv. Overall, the MCA-based ap-
proach estimates a geometric mean (GM) speedup of 2.9× from fitting all data into L1D. RIKEN’s
TAPP kernels benefit the most from unrestricted locality. Especially kernel 20 (SpMV), which repre-
sents one core function of the FFB application, shows a speedup of 20×. Altogether, we see a projec-
tion of (GM=)2.6× increased performance, but also two cases (kernels 5 and 9) where the MCA tool
estimates a ≈ 50% slowdown. These two are from GENESIS [61] and NICAM, respectively, but as
detailed in Section 4.1, some inaccuracy is expected as the trade-off for the faster simulation time.

NPB’s OpenMP version of a conjugate gradient (CG) solver is another workload with a
large theoretical performance gain of 13.1×. In total, we expect a (GM=)3× gain for all NAS Par-
allel Benchmarks; specifically, (GM=)4× for the OpenMP versions and (GM=)2.3× for the MPI

5Sampling at most ten out of all MPI ranks should not substantially alter the result but saves resources, since we have to

execute SDE once per rank.
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versions. The potential gain for CG is not surprising, since these solvers are predominantly bound
by memory bandwidth and are sensitive to memory latency [38]. High Performance Linpack is
unsurprisingly not expected to gain any performance by placing all its data into L1 cache, as this
benchmark is compute-bound. In fact, our MCA tool expected a small runtime decrease of 11%. By
contrast, DLproxy, which uses MKL’s SGEMM, would benefit from a large L1, since MKL cannot
achieve peak Gflop/s for the tall/skinny matrix in this workload (cf. Section 3.3). XSBench and
miniAMR show the highest gains for ECP’s and RIKEN’s proxy-apps, with a value of 7.3× and
7.4×, respectively. This appears to be in line with the expectation from the roofline characteristics
of the benchmarks when measured on a similar compute node [33].

A deeper look at roofline analysis in [33] reveals that there is no strong correlation between the
position of an application on the roofline model and the expected performance gain from solely
running out of L1D cache. We speculate that other, hidden bottlenecks are exposed by our MCA
approach, such as data dependencies and lack of concurrency in the applications, which limit the
expected speedup. Apart from noticeable outliers in the expected speedup, such as lbm, ilbdc, and
especially swim, the potential from enlarged L1D is rather slim for SPEC, and only (GM=)1.9×
runtime reduction can be expected across all 34 workloads.

5 GEM5-BASED SIMULATION RESULTS

In Section 5.1, we detail our choice for the simulated architectures in gem5. Similarly structured to
the MCA-based simulations, Sections 5.2 and 5.3 highlight our validation of gem5 for our proposed
CPU architectures and evaluate numerous benchmarks and proxy applications on said architecture,
and we summarize the results in Section 5.4.

5.1 LARC CMG Models in gem5 and A64FXS Baseline

As we discussed in Section 2.4, we envision one LARC CMG to have 32 cores, 384 MiB L2 cache,
and 1.6 TB/s L2 bandwidth. Regretfully, gem5 (at least RIKEN’s version) can only be configured
with L2 cache sizes that are 2X, and therefore we either have to scale up or down LARC’s L2
cache size. Hence, we explore both as distinct options, one conservative and one technologically
aggressive configuration. The conservative option, called LARCC, is limited to 256 MiB L2 cache
at∼ 800 GB/s, while the aggressive version, LARCA, doubles both values, to 512 MiB and∼ 1.6 TB/s,
respectively.

Starting at a baseline, i.e., a simulated version of A64FX which we label as A64FXS, and in order
to materialize the properties of the LARC CMG (cf. Section 2.4), we modify three parameters in
our gem5 model. We modify: (i) the number of cores in the system to match 32 (up from A64FXS’
baseline of 12); (ii) the size of the total L2 cache to match the capacity of the eight stacked layers
(256/512 MiB, up from A64FXS’ L2 size of 8 MiB per CMG); and (iii) we adjust the number of L2
banks in LARCA to control the bandwidth.

We introduce a fourth gem5 configuration, called A64FX32, which simulates one baseline
A64FXS CMG but with 32 cores. These four configurations A64FXS→A64FX32→LARCC→LARCA

should allow us to determine the speedup gains from the larger core count and larger L2 cache,
individually. The core frequency is universally set to 2.2 GHz. Table 2 summarizes the four gem5
configurations.

5.2 gem5-based Simulation and Configuration Validation

We perform OpenMP tests to verify our gem5 simulator for up to 32 cores. For the L2 cache size and
bandwidth changes, we employ a STREAM Triad benchmark, parameterized to avoid cache line
conflicts among participating threads. Splitting the A64FXS CMG L2 cache into 12 chunks (one per
thread) yields a working size of 683 KiB. Hence, the three 128 KiB vectors of the Triad operation
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Table 2. Chip Area and Simulator Configurations for gem5

A64FXS A64FX32 LARCC LARCA

Cores 12 32 32 32
CMGs 4 4 16 16

Core config. Arm v8.2 + SVE, 512 bit SIMD, 2.2 GHz, OoO 128 ROB entries, dispatch width 4
Branch pred. Bi-mode: 16 K global predictor, 16 K choice predictor
Per-core L1D 64 KiB 4-way set-assoc, 3 cycles, adjacent line prefetcher

L2 cache per CMG:
L2 size 8 MiB 256 MiB 512 MiB
BW ∼ 800 GB/s ∼ 800 GB/s ∼ 1600 GB/s

L2 Cache Aggregated:
L2 size 32 MiB 4096 MiB 8192 MiB
BW ∼ 3.2 TB/s ∼ 12.8 TB/s ∼ 25.6 TB/s

L2 config. 16-way set-associative, 37 cycles, inclusive, 256 B block

Main Memory 32 GiB HBM2, 4 channels, 256 GB/s

Fig. 7. Validation with simulated STREAM Triad; Both LARC configurations with 32 cores; A64FXS scaled to
12 cores; Real A64FX measurements on 1 CMG for reference; Dashed lines highlight trend (not measured).

will fit into the L2 cache. We increase the total vector size in proportion to the number of threads
and test the achievable L2 bandwidth for LARCC and LARCA. Additionally, Figure 7(a) includes
the baseline A64FXS CMG scaled to 12 cores. The simulation shows that LARCC’s L2 bandwidth
peaks out at 792 GB/s and LARCA’s bandwidth goes up to 1450 GB/s for this particular test case,
which is, respectively, 1% and 9% lower than our estimates shown above. The baseline A64FXS

closely matches the bandwidth of the real A64FX CPU executing this test.
Another validation test we perform is setting the number of cores to the maximum (12 and 32,

respectively) and scale the vector size from 2 KiB per core to a total of 1 GiB for the three vectors.
Figure 7(b) shows the results for this simulation. In the memory range of tens to hundreds of
KiB, the Triad operation can be done from L1 cache, for which LARCC and LARCA show higher
bandwidth. Their 2.7× higher core count results in 2.6× higher aggregated L1 bandwidth. For
the Triad, for the memory sizes that fit into L2 cache, we see a behavior similar to Figure 7(a).
Past 8 MiB, the A64FXS configuration shows the expected bandwidth drop to HBM2 level, while
for LARCC and LARCA, the expected L2 cache bandwidth is maintained until 256 MiB and 512 MiB,
respectively. This validates that our gem5 settings yield the expected LLC characteristics.
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Fig. 8. Sensitivity study of cache parameters using RIKEN’s TAPP [93] kernels; Relative runtime compared
to LARCC baseline (37 cycle latency, 256 MiB, 2 bankbits; middle bar among the five) is shown; Top row: L2
latency modified; Middle row: L2 capacity; Bottom row: adjusting L2 bandwidth via bankbits (#banks = 2x ).

Lastly, to validate the LARC configuration and to see the changes applied to more complex sci-
ence kernels, we perform a sensitivity analysis of cache parameters with the RIKEN TAPP kernels.
In Figure 8, we vary L2 cache access latency, size, and bandwidth in ranges beyond our LARCC and
LARCA target architectures. This analysis will help us in adjusting our expectations when future
LARC-like architectures deviate from our design parameters, e.g., by stacking less SRAM layers or
having higher L2 access latency. In this parameter sweep, LARCC will be the baseline and we vary
one parameter while keeping the others fixed. The top row of Figure 8 shows the latency sweep,
where we choose 22 cycles as best latency (which is 2× the data load latency from L1 for SVE
instructions in A64FX). The worst case of 52 cycles is equidistant to our baseline in the opposite
direction, and two additional latencies are selected in between. Similarly, we adjust the L2 size
(middle row; simulating more or less SRAM stacks or a larger or smaller semiconductor process
nodes) and L2 bank bits in gem5, see bottom row of Figure 8. The latter indirectly controls the
L2 bandwidth of the simulated architectures. The latency change has minimal impact, since HPC
applications are typically not latency bound. However, the L2 cache capacity and bandwidth can
have a significant impact on performance, as expected, since they determine the amount of data
that can be stored and accessed quickly. For some of the TAPP kernels, though, the performance
is unaffected by these parameters,6 since these kernels are actually shrunk-down versions specifi-
cally designed for cycle-level architecture simulations, and therefore have low memory footprint.

5.3 Speedup-potential with Restricted Locality

To further refine our projections gained by abundant cache, we proceed with the cycle-level sim-
ulations of the proxy-applications and benchmarks listed in Section 3.3.

We compile all benchmarks with Fujitsu’s Software Technical Computing Suite (v4.6.1) target-
ing the real A64FX, and simulate the single-rank workloads in gem5 for our four configurations.
Unfortunately, three of our MPI-based benchmarks require multi-rank MPI: MODYLAS, NICAM,
and NTChem, and hence we omit them. Furthermore, we skip the MPI-only versions of NPB. Here-
after, we only report proxy applications and benchmarks which ran to completion within gem5
(i.e., gem5-crashes or simulated application-crashes are excluded when infeasible to patch, and
simulations exceeding the 6-months time limit are ignored).

6The MatVecSplit oddity (runtime increases for 128 MiB) needs further investigation. It shows an enlarged counter of

LoadLockedRequests—this artifact could be attributed to software (such as barrier implementation in the OpenMP

runtime).
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Fig. 9. gem5-based, simulated speedups of A64FX32, LARCC and LARCA in comparison to baseline A64FXS;
Left to right: RIKEN TAPP kernels, NPB (OMP), TOP500 etc., ECP proxies, SPEC CPU[int/single] and
CPU[float/OMP], SPEC OMP; Added MCA-based estimations from Figure 6 for reference; TAPP kernels
3–6 (multiple Nbody kernels) and 18 (MatVecDotP) are limited to 12 threads, hence we omit A64FX32; Miss-
ing benchmarks (cf. Figure 6) primarily due to gem5 issues or exceeding simulation time limit. PolyBench
results (single core) are also omitted due to limited speedup across all of them and no noteworthy outliers.

The per-configuration speedup is given relative to the baseline A64FXS configuration. We ex-
clude initialization and post-processing times, and measure only the main kernel runtime, except
for the SPEC benchmarks as described in Section 4.2. These results are presented in Figure 9
and show the effects of the gradual expansion of simulated resources. The average (single CMG)
speedups from LARCC and LARCA are ≈ 1.9× and ≈ 2.1×, respectively, with some applications
reaching ≈ 4.4× for LARCC and ≈ 4.6× for LARCA.

As expected, most benchmarks benefit from the additional cores and cache capacity, most promi-
nently MG-OMP which gains a small speedup of ≈ 1.3× from the extra cores, ≈ 2× speedup from
the extra cache, and with 512 MiB cache and higher bandwidth reaches ≈ 4.6× speedup. Compara-
ble incremental improvements with all three architecture steps are observable in other workloads,
such as TAPP kernel 7 (DifferOpVer) and 17 (MatVecSplit), showing good scaling on multiple cores
and being memory-bound since they benefit from the additional cores and cache capacity. TAPP
kernels 19 and 20, XSBench, roms, and imagick (SPEC OMP) show similar gain in runtime, but
the difference between LARCC and LARCA is smaller, implying that the problem size either fits
into the 256 MiB L2 (e.g., XSBench) or the workload arrives at a point of diminishing returns from
the 2× larger cache. TAPP kernels 8, 9, 12–15, and FT-OMP suffer a slowdown from cache con-
tention in A64FX32. LARCC and LARCA avoid the cache contention, resulting in speedups similar
to the benchmarks discussed earlier. EP-OMP, CoMD, and other compute-bound benchmarks ben-
efit only from the higher core count, with both LARCs providing similar speedup as A64FX32.

Expectedly, single-threaded workloads (all of PolyBench’s benchmarks) show little to no im-
provements over A64FXS, i.e., they do not benefit from more cores. However, these benchmarks
also do not show a performance gain from a larger 3D-stacked L2 cache, albeit their working set
size exceeding A64FXS’ 8 MiB L2 yet fitting into LARC’ larger cache. We only see a limited speedup
of (GM=)4.3% across all of them and no noteworthy outliers, and hence omit them in Figure 9. We
attribute other outliers, such as the slowdown of imagick (SPEC-CPU), to similar intrinsic property
of the benchmark: our testing on a real A64FX reveals that imagick has a sweetspot at 8 OpenMP
threads, and scales negatively thereafter; and the TAPP kernels 3–6 and 18 were customized for
the 12-core A64FX CMG and cannot run effectively on 32 threads without a rewrite. Hence, we
limit gem5 to 12 cores for these TAPP kernels, and we see that only the MatVecDotP kernel of
the ADVENTURE application [4] benefits from a larger L2. Further proxy-applications and bench-
marks missing from Figure 9, yet appearing in Figure 6, are the unfavorable result of persistent,
repeatable simulator errors—sometimes occurring after months of simulation.

We should note that in some cases the benchmarks’ implementation and the quality of the
compiler may skew the results, for instance, BabelStream measuring memory bandwidth on a 2 GiB
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Table 3. L2 Cache-miss Rate [in %] of Representative Proxies

Proxy-App A64FXS A64FX32 LARCC LARCA

NICAM’s ImplicitVer (kernel 12) 36.6 47.6 10.5 9.1
ADVENTURE’s MatVecSplit (kernel 17) 46.7 49.5 48.7 34.8

FFB’s FrontFlow (kernel 19) 73.8 69.6 49.1 48.9

FT-OMP 11.6 48.2 6.4 3.8
MG-OMP 59.8 70.9 29.4 0.4

XSBench 32.1 36.4 0.1 0.1

buffer. Being unoptimized for A64FX, BabelStream’s baseline underperforms in terms of per-core
bandwidth (compared to STREAM Triad tests in Figures 7(a) and 7(b)) which in turn results in
performance gain when the number of cores increases to 32.

Overall, the speedup on A64FX32 can originate from the following reasons: (i) the program
is compute-bound (a valid result); (ii) the workload exhibits both compute-bound and memory-
bound tendencies in different components of a proxy-application (a valid result); (iii) the program
is highly latency-bound, and hence the speedup can be the result of the larger aggregate L1 cache
(a valid result); or (iv) a poor baseline resulting in a slightly misleading result.

We confirm the validity of attributing improvement to the high capacity L2 by inspecting the L2
cache-miss rates of our gem5 simulations (with the miss rate of some selected examples listed in
Table 3). The reduction in cache-miss rates reported in the table is consistent with the performance
improvements we observe in Figure 9.

5.4 Summary of the Results

Our gem5 simulations indicate that more than half (31 out of 52) of the applications experienced
a larger than two times speedup on LARCA compared to the baseline A64FXS CMG. For over
two-thirds (24 out of 31) of these applications, the performance gains are directly attributed to the
larger (3D-stacked) cache, i.e., with at least 10% gain by either of the two LARC configurations over
the A64FX32 variant. Most notably, out of all the RIKEN TAPP kernels that experienced meaning-
ful speedup on LARC, a majority benefited from the expanded cache, rather than the increase in
number of cores. This carries particular importance as these kernels are highly tuned for A64FX.

6 DISCUSSION AND LIMITATIONS

In this study, we simulated a single LARC CMG in gem5, and its potential future effect on common
HPC workloads.

6.1 The Prospect of LARC

In reality, if a LARC processor were incepted in 2028, it would contain 16 LARC CMGs, which cor-
respond to the same silicon area as the current A64FX CPU, and it is important to understand what
impact such a processor would have on the HPC community and its applications. Unfortunately,
it is hard to give a conclusive answer to such a forward looking question today. However, if we
do ideal scaling of both A64FX and LARC CMGs and compare at the full chip level, then a LARC
system in 2028 could give between 4.91× (xz; SPEC CPU) and 18.57× (MG-OMP; NPB) performance
improvements over the current A64FX processor with an average improvement of (GM=)9.56× for
applications that are responsive to larger cache capacity. For applications that do not yet benefit
from a larger cache, future studies should (continue to) consider algorithmic improvements [69],
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as well as investigate the potential of allocating parts of the cache to vary compute capabilities,
for example, processing-in-memory [12] or alternative compute modules, e.g., CGRAs [89].

6.2 Considerations and Limitations

Our MCA-based estimation framework only gives a first-order approximation for a hypothetical
CPU with sufficiently large L1 cache to host the entire data structures of a specific workload. This
approach has some advantages and disadvantages and should be used with caution, but it also has
capabilities which we have not yet detailed, such as estimating the runtime of the same binary/
workload for different (ISA-compatible) x86 systems by simply replacing the MCA target architec-
ture and altering the CPU clock frequency.

We emphasize that we run applications as they are, i.e., without any algorithmic optimizations
to the larger last level cache, in our MCA- and gem5-based simulators. This is also true to our
motivating experiment shown in Figure 1. While the cache capacity of AMD’s Milan-X CPU is
about three times that of Milan, it is far from what we envision in 2028. Hence, our Milan-X results
serve as a first-order indication of what SRAM—in its current available SoTA—can offer.

Another notable aspect, which is outside the main scope of this extrapolation study, is the heat
dissipation of CPU cores in the face of the 3D-stacked cache. It has been reported that AMD’s
Milan-X carefully stacks caches above areas of the chip that are not used for compute, i.e., mostly
above caches [77]. Our assumption is that, by 2028, manufacturing technologies will have advanced
enough to overcome this limitation. Yet, for interested readers we provide further details on ther-
mal and power estimates for our hypothetical LARC CPU in Section 2.6.

7 RELATED WORK

Stacked Memory and Caches: The size of LLC has increased for the last 25 years [58], a trend antic-
ipated to continue into the future. Yet, 2D IC becomes hard to exploit for additional performance,
despite recent attempts by IBM [27, 59]. However, 3D-stacking is becoming a promising alter-
native [52], as demonstrated by AMD’s 3D V-Cache [40], Samsung’s proposed 3D SRAM stacking
solution [64] based on 7 nm TSVs, or the most recent study of 7 nm TCI-based 2- and 4-layer SRAM
stacks by Shiba et al. [97]. Moreover, academics explored 3D-stacked DRAM cache [48, 119], but
these incur much higher latency and power consumption [74, 98]. Non-Volatile Memory is con-
sidered as LLC alternative, yet it suffers similar latency issues [63]. Lastly, NVIDIA applied for a
patent of an 8-layer memory stack fused with a processor die [28], theorizing a 50× improvement
in bytes-to-flop ratio. However, what differs our work from the work of our peers is: (i) we focus
on the real-world impact of future caches, several magnitudes larger than those found today.

Performance modeling tools and methodologies: Computer architecture research is often based
on simulators, such as the Structural Simulation Toolkit (SST) [95] or CODES [24], for effi-
ciently evaluating and optimizing HPC architectures and applications. The gem5 simulator, by
Binkert et al. [13], is widely used by academia and vendors for micro-and full-system architec-
ture emulation and simulation. It supports validated models for x86 [7] and Arm [62]. We refer
the interested reader to www.gem5.org/publications/ for an comprehensive library of gem5-based
research and derivative works. However, what differs our work from the work of our peers is:
(ii): unlike prior work that utilizes (relatively) small kernels, our work operates on large-scale
MPI/OpenMP-parallelized proxy-applications in order to quantify the impact of caches on realis-
tic workloads. To our knowledge of reported research-driven gem5 simulations, this is the largest
scale of cycle-accurate simulations conducted in terms of the aggregate number of instructions
simulated (6.08 × 1013).

Other methods such as MUSA by Grass et al. [45] are closer to our MCA-based approach, since
MUSA uses PIN which is the basis for Intel SDE (used in this study), but focus on MPI analysis
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and multi-node workloads. We are not the first to utilize Machine Code Analyzers, see [2, 65] and
derivative works such as [8, 19, 22, 25, 72, 91]. However, what differs our work from the work
of our peers is: (iii): instead of estimating accurate performance of existing system architectures,
our MCA-based approach tries to gauge the upper-bound in obtainable performance, and exposes
bottlenecks better than the roofline approach, for common HPC applications.

8 CONCLUSION

We aspire to understand the performance implications of emerging SRAM-based die-stacking on
future HPC processors. We first designed a methodology to project the upper bound that an infin-
itely large cache would have on relevant HPC applications. We find that several well-known HPC
applications and benchmarks have ample opportunities to exploit an increased cache capacity.

We further expand our study by proposing a hypothetical processor (called LARC) in 1.5 nm
technology. This processor would have nearly 6 GiB L2 cache memory; compared to our baseline
A64FXS CPU architecture with 32 MiB L2 cache. Next, we exercise a single LARC CMG using a
plethora of HPC applications and benchmarks using the gem5 simulator and contrast the observed
performance against the existing A64FXS CMG. We find that the LARC CMG would (on average)
be 1.9× faster than the corresponding A64FXS CMG, albeit consuming 1

4 th of the area. When area-
normalized to the real A64FX CMG (by assuming optimistic ideal scaling), we can expect to see an
average boost of 9.56× for cache-sensitive HPC applications by the end of this decade.

Finally, we expect that the larger caches will motivate and facilitate algorithmic advances that
in combination with the abundant cache can potentially yield an order of magnitude gain in per-
formance, as demonstrated by the tile low-rank (TLR) approximations [69]. These approaches
however require a minimum size of the cache to reach their fullest potential. We firmly believe
that the combination of high-bandwidth, large, 3D-stacked caches, and algorithmic advances, is
the path forward for the next generation of HPC processors when attempting to break the “mem-
ory wall”.

9 FAIR COMMITMENT BY THE AUTHORS

We developed a framework of scripts and git submodules to manage the R&D of LARC, to set
up the benchmarking infrastructure, and to perform the simulations. After cloning our reposi-
tory https://gitlab.com/domke/LARC (or downloading the artifacts from https://doi.org/10.5281/
zenodo.6420658), one has access to all benchmarks (see Section 3.3), patches, scripts, and our
collected data. Only minor modifications to the configuration files should be necessary, such as
changing host names, paths to compilers, or downloading licensed third-party software, before
testing on another system. If users deviate from our OS version (CentOS Linux release 7.9.2009,
and intel_pstate=disable kernel parameter) then some additional changes might be required.
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