
Level-p-complexity of Boolean functions using thinning, memoization, and
polynomials

Downloaded from: https://research.chalmers.se, 2024-03-20 11:56 UTC

Citation for the original published paper (version of record):
Jansson, J., Jansson, P. (2023). Level-p-complexity of Boolean functions using thinning,
memoization, and polynomials. Journal of Functional Programming, 33.
http://dx.doi.org/10.1017/S0956796823000102

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



JFP 33, e13, 21 pages, 2023. c© The Author(s), 2023. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796823000102

Level-p-complexity of Boolean functions using
thinning, memoization, and polynomials

J U L I A J A N S S O N
Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden

(e-mail: juljans@chalmers.se)

P A T R I K J A N S S O N
Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden

(e-mail: patrikj@chalmers.se)

Abstract

This paper describes a purely functional library for computing level-p-complexity of Boolean func-
tions and applies it to two-level iterated majority. Boolean functions are simply functions from n
bits to one bit, and they can describe digital circuits, voting systems, etc. An example of a Boolean
function is majority, which returns the value that has majority among the n input bits for odd n. The
complexity of a Boolean function f measures the cost of evaluating it: how many bits of the input are
needed to be certain about the result of f . There are many competing complexity measures, but we
focus on level-p-complexity — a function of the probability p that a bit is 1. The level-p-complexity
Dp(f ) is the minimum expected cost when the input bits are independent and identically distributed
with Bernoulli(p) distribution. We specify the problem as choosing the minimum expected cost of
all possible decision trees — which directly translates to a clearly correct, but very inefficient imple-
mentation. The library uses thinning and memoization for efficiency and type classes for separation
of concerns. The complexity is represented using (sets of) polynomials, and the order relation used
for thinning is implemented using polynomial factorization and root counting. Finally, we compute
the complexity for two-level iterated majority and improve on an earlier result by J. Jansson.

1 Introduction

Imagine a voting system with yes/no options, for example, direct democracy, indirect
democracy, or dictatorship. How much information of the votes do we need until we can
conclude the outcome of the election? For dictatorship, we only need the information of
the dictator as he or she has all the power, but for a democratic majority we need at least
half the votes. Depending on the order in which we find out what the votes are we might
need all of them before we can conclude the result. More generally, this question is about
complexity of Boolean functions which is application area of this paper.

Boolean functions are widespread in mathematics and computer science and can
describe yes-no voter systems, hardware circuits, and predicates (Knuth, 2012; O’Donnell,
2014). A Boolean function is a function from n bits to one bit, for example, majority
(majn), which returns the value that has majority among the n inputs. In the context of

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796823000102
https://orcid.org/0000-0001-7876-9651
mailto:juljans@chalmers.se
https://orcid.org/0000-0003-3078-1437
mailto:patrikj@chalmers.se
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796823000102&domain=pdf
https://doi.org/10.1017/S0956796823000102


2 J. Jansson and P. Jansson

voting systems, the next subsection gives an example of a Boolean function called iterated
majority.

1.1 Vote counting example: iterated majority

In US elections, a presidential candidate can lose even if they win the popular vote. One
reason for this is that the outcome is not directly determined by the majority, but rather
majority iterated two times.1 Our running example is a very much simplified case: consider
3 states with 3 voters in each.

x(0,0), x(0,1), x(0,2)︸ ︷︷ ︸
m0=maj3 (...)

, x(1,0), x(1,1), x(1,2)︸ ︷︷ ︸
m1=maj3 (...)

, x(2,0), x(2,1), x(2,2)︸ ︷︷ ︸
m2=maj3 (...)︸ ︷︷ ︸

maj3(m0,m1,m2)

We first compute the majority mi in each “state”, and then the majority of m0, m1, and m2.
For example we see below 0, 1, 0 which gives m0 = 0, then 1, 0, 1 which gives m1 = 1, and
0, 1, 0 again which gives m2 = 0. The final majority is 0:

0, 1, 0︸ ︷︷ ︸
m0=0

, 1, 0, 1︸ ︷︷ ︸
m1=1

, 0, 1, 0︸ ︷︷ ︸
m2=0︸ ︷︷ ︸

maj3=0

But if we switch the first and 8th bit (perhaps through gerrymandering) we get another
result (with the changed bits underlined and marked in red):

1, 1, 0︸ ︷︷ ︸
m0=1

, 1, 0, 1︸ ︷︷ ︸
m1=1

, 0, 0, 0︸ ︷︷ ︸
m2=0︸ ︷︷ ︸

maj3=1

This changes m0 from 0 to 1 without affecting m1, or m2. But now the two-level majority
is changed to 1, just from the switch of two bits. Both examples have four 1’s and five
0’s but the result is different based on the positioning of the bits. In our case the two-level
majority is 1 even though there are fewer 1’s than 0’s. This means that the 0’s “lose” even
though they won the “popular vote”.

1.2 Cost and complexity

The field of computational complexity is about “how much” computation is necessary
and sufficient to perform certain computational tasks. For example, given a computational
problem it tries to establish tight upper and lower bounds on the length of the compu-
tation (or on other resources, like space). Unfortunately, for many practically relevant
computational problems no tight bounds are known. In our case we study one of the sim-
plest models of computation: the decision tree. We are interested in the cost of evaluating
Boolean functions, and we use binary decision trees to describe the evaluation order of
Boolean functions. The depth of the decision tree corresponds to the number of votes
needed to know the outcome for certain. This is called deterministic complexity. Another

1 The actual presidential election is a direct majority vote among the electors who are not formally bound by
their states’ outcome.

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


Level-p-complexity of Boolean functions 3

well-known notion is randomized complexity, and the randomized complexity bounds
of iterated majority have been studied in Landau et al. (2006), Leonardos (2013), and
Magniez et al. (2016). Iterated majority on two levels corresponds to the Boolean function
for US elections as described above. We are particularly interested in this function due to
its symmetry and simplicity, but still the complexity is non-trivial.

Diving into the literature for complexity of Boolean functions we find many different
measures. Relevant concepts are certificate complexity, degree of a Boolean function, and
communication complexity (Buhrman & De Wolf, 2002). Complexity measures related
specifically to circuits are circuit complexity, additive, and multiplicative complexity
(Wegener, 1987). Considering Boolean computation in practice we have combinational
complexity which is the length of the shortest Boolean chain computing it (Knuth, 2012).
Thus, there are many competing complexity measures, but we focus on level-p-complexity
— a function of the probability p that a bit is 1 (Garban & Steif, 2014). We assume that the
bits are independent and identically Bernoulli-distributed with parameter p ∈ [0, 1]. Then,
for each Boolean function f and probability p, we get the level-p-complexity by mini-
mizing the expected cost over all decision trees. The level-p-complexity is a piecewise
polynomial function of p and has many interesting properties (Jansson, 2022).

1.3 Contributions

This paper presents a purely functional library for computing level-p-complexity of
Boolean functions in general and for maj2

3 in particular. The level-p-complexity of maj2
3

was conjectured in Jansson (2022), but could not be proven because it was hard to gener-
ate all possible decision trees. This paper fills that gap by showing that the conjecture is
false and by computing the true level-p-complexity of maj2

3.
The strength of our implementation is that it can calculate the level-p-complexity for

Boolean functions quickly and correctly, compared to tedious calculations by hand. Our
specification uses exhaustive search and considers all possible candidates (decision trees).
Some partial candidates dominate (many) others, which may be discarded. Thinning (Bird
& Gibbons, 2020) is an algorithmic design technique which maintains a small set of partial
candidates which provably dominate all other candidates. We hope that one contribution
of this paper is an interesting example of how a combination of algorithmic techniques can
be used to make the intractable tractable. The code in this paper is available on GitHub2

and uses packages from Jansson et al. (2022). The implementation is in Haskell but should
work also in other languages, and parts of it has been reproduced in Agda to check some
of the stronger invariants. The choice of Haskell for the implementation is due to its strong
compiler and the availability of libraries for BDDs, memoization, and polynomials.

1.4 Motivation

To give the flavor of the end result, we start with two examples which will be explained
in detail later: the level-p-complexity of 2-level iterated majority maj2

3 and of a 5-bit func-
tion we call sim5, defined in Figure 1. The level-p-complexity is a piecewise polynomial
function of the probability p and sim5 is the smallest arity Boolean function we have found
which has more than one polynomial piece contributing to the complexity. Polynomials are

2 The paper repository is at https://github.com/juliajansson/BoFunComplexity.

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://github.com/juliajansson/BoFunComplexity
https://doi.org/10.1017/S0956796823000102


4 J. Jansson and P. Jansson

Fig. 1. The four polynomials computed by genAlgThinMemo 5 sim5.

represented by their coefficients: for example, P [5,−8, 8] represents 5− 8x+ 8x2. The
function genAlgThinMemo uses thinning and memoization to generate a set of minimal
cost polynomials.

ps5= genAlgThinMemo 5 sim5 :: Set (Poly Q)
check5= ps5 fromList [P [2, 6,−10, 8,−4], P [4,−2,−3, 8,−2],

P [5,−8, 9, 0,−2], P [5,−8, 8]]

The graph, in Figure 1, shows that different polynomials dominate in different intervals.
The polynomial P1 is best near the end points, but P4 is best near p= 1/2 (despite being
really bad near the end points). The level-p-complexity is the piecewise polynomial min-
imum, a combination of P1 and P4. This computation can be done by exhaustive search
over the 54192 different decision trees and 39 resulting polynomials, but for more complex
Boolean functions the doubly exponential growth makes that impractical.

For our running example, maj2
3, a crude estimate indicates we would have 10111 decision

trees to search and very many polynomials. Thus, the computation would be intractable
if it were not for the combination of thinning, memoization, and symbolic comparison of
polynomials. Thanks to symmetries in the problem there turns out to be just one dominating
polynomial, called P∗ in Figure 2, computed by:

ps9= genAlgThinMemo 9 maj23 :: Set (Poly Q)
check9= ps9 fromList [P [4, 4, 6, 9,−61, 23, 67,−64, 16]]

The graph in Figure 2, shows that only 4 bits are needed in the limiting cases of p= 0
or 1 and that just over 6 bits are needed in the maximum at p= 1/2. Figure 2 also shows
the conjectured complexity polynomial Pt from Jansson (2022), and Figure 3 shows the
(small) difference between the two polynomials.

2 Background

To explain what level-p-complexity of Boolean functions means, we introduce some back-
ground about Boolean functions, decision trees, cost, and complexity. The Boolean input
type B could be {False, True}, {F, T } or {0, 1} and from now on we use 0 for false and 1
for true in our notation. In the running text, we write e : t for “e has type t” which in the
quoted Haskell code is written e :: t.

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


Level-p-complexity of Boolean functions 5

Fig. 2. Expected costs of the two different decision trees. Because they are very close we also show
their difference in Figure 3.

Fig. 3. Difference between the conjectured (Pt) and the true (P∗) complexity of maj23.

2.1 Boolean functions

A Boolean function f : Bn → B is a function from n Boolean inputs to one Boolean
output. We sometimes write BoolFun n for the type Bn → B. The easiest examples of
Boolean functions are the functions constn b which ignore the n input bits and return b.
The usual logical gates like andn and orn are very common Boolean functions. Another
example is the dictator function (also known as first projection), which is defined as
dictn+1 [x0, ..., xn ]= x0 when the dictator is bit 0.

A naive representation of a Boolean function could be a pair of an arity and a function
f : [B] → B, but that turns out to be inefficient when we want to compare and tabulate
them (see Section 3.3). Instead we use binary decision diagrams, BDDs (Bryant, 1986) as
implemented in Masahiro Sakai’s excellent Hackage package3. The package reimplements
all the usual Boolean operations on what is semantically expressions in n Boolean vari-
ables. BDDs are an efficient way of representing Boolean functions, and they can be used
for testing, verification, and complexity analysis. For readability, we will present Boolean
functions in the naive representation, but the actual code uses the type BDD a from the

3 https://github.com/msakai/haskell-decision-diagrams

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://github.com/msakai/haskell-decision-diagrams
https://doi.org/10.1017/S0956796823000102


6 J. Jansson and P. Jansson

Fig. 4. The tree of subfunctions of a Boolean function f . This tree structure is also the call graph for
our generation of decision trees. Note that this tree structure is related to, but not the same as, the
decision trees.

Fig. 5. The tree of subfunctions of the dictn+1 function.

BDD package (where a keeps track of variable ordering). Note that we only use BDDs to
represent our Boolean functions, not our decision trees.

In the complexity computation, we only need two operations on Boolean functions
which we capture in the following type class interface:

class BoFun bf where
isConst :: bf → Maybe B
setBit :: Index → B → bf → bf

type Index=N

The use of a type class here means we keep the interface to the BDD implementation
minimal, which makes proofs easier and gives better feedback from the type system. The
first method, isConst f , returns Just b iff the function f is constant and always returns b : B.
The second method, setBit i b f , restricts a Boolean function (on n+ 1 bits) by setting its ith
bit to b. The result is a “subfunction” on the remaining n bits, abbreviated f i

b , and illustrated
in Figure 4.

As an example, for the function and2 we have that setBit i 0 and2 = const1 0 and
setBit i 1 and2 = id. For and2 we get the same result for i= 0, or 1 but for the dictator func-
tion it depends if we pick the dictator index (0) or not. We get setBit 0 b dictn+1 = constn b,
because the result is dictated by bit 0. Otherwise, we get setBit (i+ 1) b dictn+1 = dictn

irrespective of the value of b since only the value of the dictator bit matters. This behavior
is shown in Figure 5.

2.2 Decision trees

Consider a decision tree that picks the n bits of a Boolean function f in a deterministic way
depending on the values of the bits picked further up the tree. Decision trees are referred

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


Level-p-complexity of Boolean functions 7

to as algorithms in Landau et al. (2006); Garban & Steif (2014); Jansson (2022). Given
a Boolean function f , a decision tree t describes one way to evaluate the function f . The
Haskell datatype is as follows:

data DecTree= Res B | Pick Index DecTree DecTree
deriving (Eq, Ord, Show)

Parts of the “rules of the game” in the mathematical literature are that you must return a
Result if the function is constant and you may only Pick an index once. We can capture
most of these rules with a type family version of the DecTree datatype (here expressed
in Agda syntax). Here we use two type indices: t : DecTree n f is a decision tree for the
Boolean function f , of arity n. The Res constructor may only be used for constant functions
(but for any arity), while Pick i takes two subtrees for Boolean functions of arity n to a tree
of arity suc n= n+ 1.

data DecTree : (n : N) → (f : BoolFun n) → Set where
Res : (b : B) → DecTree n (constn b)
Pick : { f : BoolFun (suc n)} → (i : Fin (suc n)) → DecTree n (setBit i 0 f ) →

DecTree n (setBit i 1 f ) →
DecTree (suc n) f

setBit : Fin (suc n) → B → BoolFun (suc n) → BoolFun n

Note that the dependently typed version of setBit clearly indicates that the resulting func-
tion g= (setBit i b f ) : BoolFun n has arity one less that of f : BoolFun (suc n). This helps
maintaining the invariant that each input bit may only be picked once.4 We use the Haskell
versions, but the Agda versions capture the invariants better.

We can use these rules backward to generate all possible decision trees for a certain
function. If the function is constant, returning b : B, we immediately know that the only
decision tree allowed is Res b. If it is not constant, we pick any index i, any decision tree
t0 for the subfunction setBit i 0 f and t1 for the subfunction setBit i 1 f recursively. We get
back to this in Section 3.1 after some preparation.

Note that we do not use binary decision diagrams (BDDs) to represent our decision
trees. An example of a decision tree for the majority function maj3 on three bits is defined
by the expression ex1 visualised in Figure 6.

ex1= Pick 0 (Pick 2 (Res 0) (Pick 1 (Res 0) (Res 1)))
(Pick 1 (Pick 2 (Res 0) (Res 1)) (Res 1))

We will define several functions as folds over DecTree and to do that we introduce a
type class TreeAlg (for “Tree Algebra”) which collects the two methods res and pic which
are then used in the fold to replace the constructors Res and Pick.

class TreeAlg a where
res :: B → a
pic :: Index → a → a → a

foldDT :: TreeAlg a⇒DecTree → a

4 The use of Fin n also means that the interpretation of indices is local: the 3-bit example
ex0= Pick 0 (Pick 0 (Res 0)) (Pick 1 (Res 1)) in Agda corresponds to the global interpretation
Pick 0 (Pick 1 (Res 0)) (Pick 2 (Res 1)). We use the global view in ex1 and figures for readability.

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


8 J. Jansson and P. Jansson

Fig. 6. An example of a decision tree for maj3. The root node branches on the value of bit 0. If it is
0, it picks bit 2, while if it is 1, it picks bit 1. It then picks the last remaining bit if necessary.

foldDT (Res b) = res b
foldDT (Pick i t0 t1)= pic i (foldDT t0) (foldDT t1)

The TreeAlg class is used to define our decision trees but also for several other purposes.
(In the implementation, we additionally require some total order on a to enable efficient
set computations.) We see that our decision tree type is the initial algebra of TreeAlg and
that we can reimplement a generic version of ex1 which can be instantiated to any TreeAlg
instance:

instance TreeAlg DecTree where res= Res; pic= Pick;

ex1 :: TreeAlg a⇒ a
ex1= pic 0 (pic 2 (res 0) (pic 1 (res 0) (res 1)))

(pic 1 (pic 2 (res 0) (res 1)) (res 1))

2.3 Expected cost

For a function f and a specific input xs : Bn, the cost of evaluating f according to a decision
tree t is the length of the path from root to leaf dictated by the bits in xs. We then let the
bits be independent and identically distributed with probability p ∈ [0, 1] for 1 and compute
the expected cost (averaging over all 2n inputs). Expected cost can be implemented as an
instance of TreeAlg.

newtype Poly a= P [a]
type ExpCost a= Poly a
instance Ring a⇒ TreeAlg (ExpCost a) where res= resPoly; pic= pickPoly

expCost :: Ring a⇒DecTree → Poly a
expCost= foldDT

Note that the expected cost of any decision tree for a Boolean function of n bits will always
be a polynomial. We represent polynomials as lists of coefficients: P [1, 2, 3] represents
λp → 1+ 2× p+ 3× p2 and use evalP : Ring a⇒ Poly a → (a → a) to evaluate poly-
nomials. The polynomial implementation borrowed from Jansson et al. (2022) includes
the polynomial ring operations ((+), (−), (×)), gcd, divMod, symbolic derivative, and
ordering. The res and pic functions are as follows:

resPoly :: Ring a⇒B → a
resPoly b= zero

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


Level-p-complexity of Boolean functions 9

pickPoly :: Ring a⇒ Index → Poly a → Poly a → Poly a
pickPoly i q0 q1 = one+ (one− xP)× q0 + xP× q1

Here zero= P [ ] and one= P [1] represent const 0 and const 1, respectively, while xP=
P [0, 1] is “the polynomial x”. For pickPoly q0 q1, we first have to pick one bit and then
if this bit is 0 (with probability P(xi = 0)= (1− p)) we get q0 which is the polynomial for
this case. If the bit is instead 1 (with probability P(xi = 1)= p) we get q1. The expected cost
of the decision tree ex1 is 2+ 2p− 2p2. From now on we will use Haskell’s overloading
to write 0 and 1 for zero and one even when working with polynomials.

2.4 Complexity

Now that we have introduced expected cost, we can introduce the level-p-complexity Dp(f )
as the pointwise minimum of the expected cost over all of f ’s decision trees:

Dp(f )=minimum {evalP (expCost t) p | t← genAlgn f }
genAlgn :: (BoFun bf , TreeAlg a, Ord a)⇒ bf → Set a

where the generation of decision trees is explained in Section 3.1. When minimizing we
do not necessarily get a polynomial, but a piecewise polynomial function. For simplicity,
we represent a piecewise polynomial function as a set of polynomials:

type PPoly a= Set (Poly a)
evalPP :: (Ring a, Ord a)⇒ PPoly a → (a → a)
evalPP qs p=minimum (map (λq → evalP q p) qs)

This representation will be inefficient if the set is big, but as a specification it works fine
and we will later use thinning to keep the set small (see Sections 3.2 and 3.4). We say that
one polynomial q is “uniformly worse” than another polynomial p when p x � q x for all
0 � x � 1 and p x < q x for some 0 < x < 1. For some polynomials, we cannot determine
which is worse, see Figure 1 where four polynomials all intersect. In this case, they are
incomparable.

When computing the level-p-complexity, it would be possible to take both f and the
probability p as arguments and return the smallest expected cost for that probability, but
we prefer to just take f as an argument and compute a piecewise polynomial function
representation. In this way, we can analyze the result symbolically to find minima, maxima,
number of polynomial pieces, etc.

2.5 Examples of Boolean functions and their costs

Now that we have introduced expected cost and level-p-complexity, we give a few exam-
ples of Boolean functions and their costs to give a feeling of how the computations work.
The impatient reader can skip forward to Section 3. As mentioned earlier (in Section 2.1),
we present the Boolean functions as Haskell functions for readability, but every example
has a BDD counterpart.

For the constant functions (constn b), there is just one legal decision tree t= Res b and
thus expCost t= 0 which gives Dp(constn b)= 0. For the dictator function, there are many
decision trees, but as we can see in Figure 5, picking bit 0 first is optimal and gets us to the

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


10 J. Jansson and P. Jansson

Fig. 7. The recursive structure of the parity function (parn). The pattern repeats all the way down to
par0 = const0 0.

constant case just covered. Thus, the optimal tree is optTree= Pick 0 (Res 0) (Res 1), and
we can compute the expected cost as follows.

expCost optTree= 1+ (1− xP)× 0+ xP× 0= 1 .

which gives Dp(dictn)= 1.
The parity function can be defined as

count :: Eq a⇒ a → [a] → Int
count x= length ◦ filter (x )

parn :: Bn → B

parn = odd ◦ count 1

In this case, all bits have to be picked to determine the parity, regardless of input. We prove
that for all decision trees t of parn or ¬ parn, we have that expCost t= n using induction
over n. For the base case, n= 0 we have that par0 = const0 0 and ¬ par0 = const0 1 so that
expCost t= 0 for all decision trees t as shown above. For the induction step we assume
that for all decision trees t of parn or ¬ parn we have that expCost t= n and show that for
all decision trees t of parn+1 or ¬ parn+1 we have that expCost t= n+ 1. Any decision tree
for parn+1 or ¬ parn+1 is of the form Pick i t0 t1 where t0 and t1 are decision trees for parn
or ¬ parn as seen in Figure 7.

To calculate the expected cost, we get

expCost (Pick i t0 t1)= 1+ (1− xP)× (expCost t0)+ xP× (expCost t1)
= 1+ (1− xP)× n+ xP× n= 1+ n

Thus, the induction proof is complete and as expCost t= n for all decision trees then also
the minimum is n, thus Dp(parn)= n. Comparing Figure 5 with Figure 7, we see that the
minimum depth of the dictator tree is 1, while the minimum depth of the parity tree is n. The
parity function and the constant function are interesting extreme cases of Boolean functions
as they have highest and lowest possible level-p-complexity n and 0. Either all bits have
to be picked to determine the parity or none of them need to be picked to determine the
constant function.

We now introduce the Boolean function same which checks if all bits are equal:

same :: Bn → B

same bs= and bs∨¬ (or bs)

Using same we construct the example sim5 from the introduction. We first split the bits
into two groups, one with the first three bits and the second with the last two bits. On the
first group, called as, we check if the bits are not the same, and on the second group, called
cs we check if the bits are the same.

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


Level-p-complexity of Boolean functions 11

sim5 :: B5 → B

sim5 bs=¬ (same as)∨ same cs
where (as, cs)= splitAt 3 bs

The point of this function is to illustrate a special case where the best decision tree depends
on p so that the level-p-complexity consists of more than one polynomial piece. This
computation is shown in Section 4.1.

One of the major goals of this paper was to calculate the level-p-complexity of 9 bit
iterated majority called maj2

3. When extending the majority function to maj2
3, we use maj3

inside maj3.

maj23 :: B9 → B

maj23 bs=maj3 [maj3 bs0, maj3 bs1, maj3 bs2 ]
where (bs0, rest)= splitAt 3 bs

(bs1, bs2 )= splitAt 3 rest

majn :: Bn → B

majn bs= count 1 bs � count 0 bs

It is hard to calculate Dp(maj2
3) by hand because there are very many different decision

trees, and this motivated our Haskell implementation.

3 Computing the level-p-complexity

In this section, we explain how to compute the level-p-complexity of a Boolean function f
by recursively “generating all candidates” followed by “picking the best one(s)”. The naive
approach would be to generate all decision trees of f and then minimizing, but already for
the 9-bit function maj2

3 that is intractable. To reduce the number of polynomials, we use the
algorithm design technique thinning. We compare polynomials by using Yun’s algorithm
and Descartes rule of signs. Further, since the same subfunctions often appear in many
different nodes, we can save a significant amount of computation time using memoization.

The top level complexity computation (from Section 2.4) can be simplified a bit:

Dp(f )=minimum {evalP (expCost t) p | t← genAlgn f }
{ comprehension syntax }

=minimum (map (λt → evalP (expCost t) p) (genAlgn f ))
{ map (g ◦ h)=map g ◦map h }

=minimum (map (λq → evalP q p) (map expCost (genAlgn f )))
{ fuse expCost into the tree algebra generation }

=minimum (map (λq → evalP q p) (genAlgn f ))
{ let best p=minimum ◦map (λq → evalP q p) }

= best p (genAlgn f )

and we start by explaining genAlgn. The decision trees of a function f can be described in
terms of the decision trees for the immediate subfunctions (f i

b = setBit i b f ) for different
i : Index and b : B. In fact, we can immediately generate elements of any tree algebra, not
only decision trees, by using res and pic instead of Res and Pick. (That is used in the
“fuse” step of the calculation above.) When we explain the algorithm we write “decision
tree” to make it feel more concrete, but we will in the end mostly use it to directly compute
expected cost polynomials.

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


12 J. Jansson and P. Jansson

Fig. 8. A simplified computation tree of genAlg3 maj3. In each node, f 
→ ps shows the input f and
output ps= genAlgn f of each local call. As all the functions involved are “symmetric” in the index
(setBit i b f == setBit j b f for all i and j), we only show edges for 0 and 1 from each level.

3.1 Generating decision trees and other tree algebras

The complexity computation starts from a Boolean function f : BoolFun n and generates
all decision trees for it. There are two top level cases: either the function f is constant (and
returns b : B), in which case there is only one decision tree: res b; or the function f still
depends on some of the input bits (and thus the arity is at least 1). In the latter case, for
each index i : Index, we can generate two subfunctions f i

0 = setBit i 0 f and f i
1 = setBit i 1 f .

We then recursively generate a decision tree t0 for f i
0 and t1 for f i

1 and combine them to
a bigger decision tree using pic i t0 t1. This is done for all combinations of i, t0, and t1
in a set comprehension. To make it easier to later extend the definition (for thinning and
memoization), we make the recursive step explicit.

genAlg :: (BoFun bf , TreeAlg a, Ord a)⇒N → bf → Set a
genAlg= genAlgStep genAlg

genAlgStep :: (BoFun bf , TreeAlg a, Ord a)⇒ (N → bf → Set a) → (N → bf → Set a)
genAlgStep genA n f | Just b← isConst f = {res b}
genAlgStep genA (n+ 1) f = {pic i t0 t1 | i←{0 . . n}, t0← genA n f i

0 , t1← genA n f i
1 }

We would like to enumerate the cost polynomials of all the decision trees of a par-
ticular Boolean function (n= 9, f =maj2

3 is our main goal). Without taking symmetries
into account, there are 2× n immediate subfunctions f i

b and if Tg is the cardinality of the
enumeration for subfunction g we have that

Tf =
n−1∑

i=0

Tf i
0
× Tf i

1

These numbers can be really big if we count all decision trees, but if we only care
about their cost polynomials, many decision trees will collapse to the same polynomial,
making the counts more manageable (but still possibly really big). Even the total number
of subfunctions encountered (the number of recursive calls) can be quite big. If all the
2× n immediate subfunctions are different, and if all of them would generate 2× (n−
1) different subfunctions in turn, the number of subfunctions would be 2n × n!. But in
practice many subfunctions will be the same. When computing the polynomials for the
9-bit function maj2

3, for example, only 215 distinct subfunctions are encountered.
As a smaller example, for the 3-bit majority function maj3, choosing i= 0, 1, or 2 gives

exactly the same subfunctions. Figure 8 illustrates a simplified call graph of genAlg3 maj3

and the results (the expected cost polynomials) for the different subfunctions. In this case,

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


Level-p-complexity of Boolean functions 13

all the sets are singletons, but that is very unusual for more realistic Boolean functions. It
would take too long to compute all polynomials for the 9-bit function maj2

3, but there are 21
distinct 7-bit subfunctions, and the first one of them already has 18021 polynomials. Thus,
we can expect billions of polynomials for maj2

3, and this means we need to look at ways
to keep only the most promising candidates at each level. This leads us to the algorithmic
design technique of thinning.

3.2 Thinning

The general shape of the specification has two phases: “generate all candidates” followed
by “pick the best one(s).” The first phase is recursive, and we would like to push as much as
possible of “pick the best” into the recursive computation. In the extreme case of a greedy
algorithm, we can thin the intermediate sets all the way down to singletons, but even if the
sets are a bit bigger than that we can still reduce the computation cost significantly. A good
(but abstract) reference for thinning is the Algebra of Programming book (Bird & de Moor,
1997, Chapter 8) and more concrete references are the corresponding developments in
Agda (Mu et al., 2009) and Haskell (Bird & Gibbons, 2020). In this subsection, the main
focus is on specification and correctness, with Agda-like syntax for the logic part.

The “pick the best” phase is best p=minimum ◦map (λq → evalP q p) of type
Set (Poly r) → r for some ring of scalars r (usually rational numbers). In this context,
it is clear that in the generation phase, we can throw away any polynomial which is “uni-
formly worse” than some other polynomial and this is what we want to use thinning for.
We are looking for some “smallest” polynomials, but we only have a preorder, not a total
order, which means that we may need to keep a set of incomparable candidates (elements
x � y for which neither x≺ y nor y≺ x). We first describe the general setting and move to
the specifics of our polynomials later.

We start from a strict preorder (≺) : a → a → Prop (an irreflexive and transitive rela-
tion). You can think of Prop as B because we only work with decidable relations and finite
sets in this application. As we are looking for minima, we say that y dominates x if y≺ x.

We lift the order relation to sets in two steps. First, ys ≺̇ x means that ys dominates x,
meaning that some element in ys is smaller than x. If this holds, there is no need to add x
to ys because we already have at least one better element in ys. Then ys ≺̈ xs means that ys
dominates all of xs.

(≺̇) : Set a → a → Prop
ys ≺̇ x=∃ y ∈ ys. y≺ x

(≺̈) : Set a → Set a → Prop
ys ≺̈ xs=∀ x ∈ xs. ys ≺̇ x

Finally, we combine subset and domination into the thinning relation:

Thin ys xs= (ys⊆ xs)∧ ys ≺̈ (xs \\ ys)

We will use this relation in the specification of our efficient computation to ensure that
the small set of polynomials computed, still “dominates” the big set of all the polynomials
generated by genAlgn f .

But first we introduce the helper function thin : Set a → Set a which aims at removing
some elements, while still keeping the minima in the set. Later, we will use the function

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


14 J. Jansson and P. Jansson

genAlgTn f specified similarly to genAlgn f but using the helper function thin. It has to
refine the relation Thin which means that if ys= thin xs then ys must be a subset of xs
(ys⊆ xs) and ys must dominate the rest of xs (ys ≺̈ (xs \\ ys)). A trivial (but useless) imple-
mentation would be thin= id, and any implementation which removes some “dominated”
elements could be helpful. The best we can hope for is that thin gives us a set of only
incomparable elements. If thin compares all pairs of elements, it can compute a small-
est thinning. In general that may not be needed (and a linear time greedy approximation
is good enough), but in some settings almost any algorithmic cost which can reduce the
intermediate sets will pay off. We collect the thinning functions in the type class Thinnable:

class Ord a⇒ Thinnable a where
thin :: Set a → Set a
thinStep :: Set a → a → Set a
cmp :: a → a → Maybe Ordering
dominatesS :: Set a → a → B

-- greedy default definitions inspired by Bird & Gibbons (2020)
thin= S.foldl thinStep S.∅
thinStep ys x= if ys ≺̇ x then ys else S.insert x ys
ys ≺̇ x= S.member 1 (map (‘check‘x) ys)

where check y x= cmp y x ∈ [Just LT , Just EQ]

The greedy thin starts from an empty set and considers one element x at a time. If the set
ys collected thus far already dominates x, it is returned unchanged, otherwise x is inserted.
The optimal version also removes from ys all elements dominated by x. It is easy to prove
that thin implements the specification Thin.

The method cmp is a more informative version of (≺): it returns Just LT , Just EQ, or
Just GT if the first element is smaller, equal, or greater than the second, respectively, or
Nothing if they are incomparable.

Our use of thinning. Now we have what we need to specify when an efficient genAlgTn f
computation is correct. Our specification (spec n f ) states a relation between a (very big)
set xs= genAlgn f and a smaller set ys= genAlgTn f , we get by applying thinning at each
recursive step. We want to prove that ys⊆ xs and ys ≺̈ (xs \\ ys) because then we know we
have kept all the candidates for minimality.

spec n f = let xs= genAlgn f
ys= genAlgTn f

in (ys⊆ xs)∧ (ys ≺̈ (xs \\ ys))

genAlgT = genAlgStepThin genAlgT
genAlgStepThin genT n f = thin (genAlgStep genT n f )

We can first take care of the simplest case (for any n). If the function f is constant (returning
some b : B), both xs and ys will be the singleton set containing res b. Thus, both properties
trivially hold.

We then proceed by induction on n to prove Sn =∀ f : BoolFun n. spec n f . In the base
case n= 0 the function is necessarily constant, and we have already covered that above.
In the inductive step case, assume the induction hypothesis IH = Sn and prove Sn+1 for a
function f : BoolFun (n+ 1). We have already covered the constant function case, so we

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


Level-p-complexity of Boolean functions 15

focus on the main recursive clause of the definitions of genAlgn f and genAlgTn f when the
fixpoint definitions have been expanded:

genAlgn+1 f = {pic i x0 x1 | i← [1 . . n], x0← genAlgn f i
0 , x1← genAlgn f i

1 }
genAlgTn+1 f = thin {pic i y0 y1 | i← [1 . . n], y0← genAlgTn f i

0 , y1← genAlgTn f i
1 }

All subfunctions f i
b : BoolFun n used in the recursive calls satisfy the induction hypothesis:

spec n f i
b . If we name the sets involved in these hypotheses xsi

b and ysi
b, we can thus assume

ysi
b ⊆ xsi

b and ysi
b ≺̈ (xsi

b \\ ysi
b).

First, the subset property: we want to prove that genAlgTn+1 f ⊆ genAlgn+1 f , or equiva-
lently, ∀ y. (y ∈ genAlgTn+1 f )⇒ (y ∈ genAlgn+1 f ). Let y ∈ genAlgTn+1 f . We know from
the specification of thin and the definition of genAlgTn+1 f that y= pic i y0 y1 for some
y0 ∈ ysi

0 and y1 ∈ ysi
1. The subset part of the induction hypothesis gives us that y0 ∈ xsi

0 and
y1 ∈ xsi

1. Thus, we can see from the definition of genAlgn+1 f that y ∈ genAlgn+1 f .
Now for the “domination” property we need to show that ∀ x ∈ xs \\ ys. ys ≺̇ x where

xs= genAlgn+1 f and ys= genAlgTn+1 f . Let x ∈ xs \\ ys. Given the definition of xs it must
be of the form x= pic i x0 x1 where x0 ∈ xsi

0 and x1 ∈ xsi
1. The (second part of the) induction

hypothesis provides the existence of yb ∈ ysi
b such that yb ≺ xb. From these yb we can build

y′ = pic i y0 y1 as a candidate element to “dominate” xs.
We can now show that y′ ≺ x by polynomial algebra:

true
=⇒ -- Follows from the induction hypothesis

(y0 ≺ x0)∧ (y1 ≺ x1)
=⇒ -- In the interval (0, 1) both 1− xP and xP are positive

1+ (1− xP)× y0 + xP× y1 ≺ 1+ (1− xP)× x0 + xP× x1
⇔ -- Def. of pic for polynomials

pic i y0 y1 ≺ pic i x0 x1
⇔ -- Def. of y′ and x

y′ ≺ x

We are not quite done, because y′ may not be in ys. It is clear from the definition of
genAlgTn+1 f that y′ is in the set ys′ sent to thin, but it may be “thinned away.” But, either
y′ ∈ ys= thin ys′ in which case we take the final y= y′ or there exists another y ∈ ys such
that y≺ y′ and then we get get y≺ x by transitivity.

To sum up, we have now proved that we can push a powerful thin step into the recursive
enumeration of all cost polynomials in such a way that any minimum is guaranteed to
reside in the much smaller set of polynomials thus computed.

The specific properties we need from (≺) (in addition to the general requirements for
thinning) are that (pos+) and (pos×) are monotonic (for polynomials 0≺ pos) and that
q0 ≺ q1 implies evalP q0 p � evalP q1 p for all 0 � p � 1.

3.3 Memoization

The call graph of genAlgTn f is the same as the call graph of genAlgn f and, as men-
tioned above, it can be exponentially big. Thus, even though thinning helps in making
the intermediate sets exponentially smaller, we still have one source of exponential com-
putational complexity to tackle. Fortunately, the same subfunctions often appear in many

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


16 J. Jansson and P. Jansson

different nodes and this means we can save a significant amount of computation time using
memoization.

The classical example of memoization is the Fibonacci function. Naively computing
fib (n+ 2)= fib (n+ 1)+ fib n leads to exponential growth in the number of function calls.
But if we fill in a table indexed by n with already computed results we can compute fib n
in linear time.

Similarly, here we “just” need to tabulate the result of the calls to genAlgn f so as
to avoid recomputation. The challenge is that the input we need to tabulate is now a
Boolean function, which is not as nicely structured as a natural number index. Fortunately,
thanks to Hinze (2000), Elliott, and others we have generic Trie-based memo functions
only a hackage library away5. The MemoTrie library provides the Memoizable class
and suitable instances and helper functions for most types. We only need to provide a
Memoizable instance for BDDs, and we do this using inSig and outSig from the BDD
package (decision-diagrams). They expose the top-level structure of a BDD: Sig bf is
isomorphic to Either B (Index, bf , bf ) where bf = BDDFun. We define our top-level func-
tion genAlgThinMemo by applying memoization to genAlgTn (or, more specifically, to
genAlgStepThin).

3.4 Comparing polynomials

As argued in Section 3.2, the key to an efficient computation of the best cost polynomials
is to compare polynomials as soon as possible and throw away those which are “uniformly
worse.” The specification of p≺ q is p x � q x for all 0 � x � 1 and p x < q x for some 0 <

x < 1. Note that (≺) is a strict preorder — if the polynomials cross, neither is “uniformly
worse” and we keep both. A simple example of two incomparable polynomials is xP and
1− xP which cross at p= 1/2.

If we have two polynomials p and q, we want to know if p � q for all inputs in the
interval [0, 1]. Equivalently, we need to check if 0 � q− p in that interval.

cmpPoly :: (Ord a, Field a)⇒ Poly a → Poly a → Maybe Ordering
cmpPoly p q= cmpZero (q− p)

As the difference is also a polynomial, we can focus our attention to locating polynomial
roots in the unit interval.

If there are no roots (Figure 9a) in the unit interval, the polynomial stays on “one side
of zero,” and we just need to check the sign of the polynomial at any point. If there is
at least one single root (Figure 9b), the original polynomials cross and we return Nothing.
Similarly for triple roots or roots of any odd order. Finally, if the polynomial only has roots
of even order (some double roots, or quadruple roots, etc. as in Figure 9c) the polynomial
stays on one side of zero, and we can check a few points to see what side that is. (If the
number of distinct roots is r we check up to r+ 1 points to make sure at least one will be
nonzero and thus tell us on which side of zero the polynomial lies.)

To compare polynomials, we thus need to implement the root-counting functions
numRoots and numRoots′:

5 Available on hackage as the MemoTrie Haskell package.

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://hackage.haskell.org/package/MemoTrie
https://doi.org/10.1017/S0956796823000102


Level-p-complexity of Boolean functions 17

(a) (b) (c)

Fig. 9. To compare two polynomials p and q we use root counting for q− p and these are the three
main cases to consider.

numRoots :: (Ord a, Field a)⇒ Poly a → Int
numRoots= sum ◦ numRoots′

numRoots′ :: (Ord a, Field a)⇒ Poly a → [Int ]

We will not provide all the code here, because that would take us too far from the main
topic of the paper, but we will illustrate the main algorithms and concepts for root counting
in Section 3.5. The second function computes real root multiplicities: numRoots′ p= [1, 3]
means p has one single and one triple root in the open interval (0, 1). From this we get
that p has 2= length [1, 3] distinct real roots and 4= sum [1, 3] real roots if we count
multiplicities.

Using the root-counting functions, the top level of the polynomial partial order
implementation is as follows:

cmpZero :: (Ord a, Field a)⇒ Poly a → Maybe Ordering
cmpZero p | isZero p = Just EQ

| all even (numRoots′ p)= if any (0<) vals then Just LT
else if any (0>) vals then Just GT
else Just EQ

| otherwise =Nothing -- incomparable
where r = length (numRoots′ p) -- the number of distinct roots

rp2 = fromIntegral (r+ 2)
points= [ i / rp2 | i← take (r+ 1) (iterate (1+) 1)]
vals =map (evalP p) points

3.5 Isolating real roots and Descartes rule of signs

This section explains how to do root counting by combining Yun’s algorithm and Descartes
rule of signs. As explained in Section 3.4, the root counting is the key to implementing
comparison, which is needed for thinning. First out is Yun’s algorithm (Yun, 1976) for
square-free factorization: given a polynomial p it computes a list of polynomial factors pi,
each of which only has single roots, and such that p=C

∏
i pi

i. Note the exponent i: the
factor p2, for example, appears squared in p. If p only has single roots, the list from Yun’s
algorithm has just one element, p1, but in any case we get a finite list of polynomials, each
of which is “square-free.”6

6 Yun’s algorithm is built around repeated computation of the polynomial greatest common divisor of p and its
derivative, p′. See the associated code for the details.

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


18 J. Jansson and P. Jansson

Second in line is Descartes rule of signs that can be used to determine the number of
real zeros of a polynomial function. It tells us that the number of positive real zeros in
a polynomial function f is the same, or less than by an even number, as the number of
changes in the sign of the coefficients. Together with some polynomial transformations,
this is used to count the zeros in the interval [0, 1).

If the rule gives zero or one, we are done: we have isolated an interval [0, 1) with either
no root or exactly one root. For our use case, we do not need to know the actual root, just
if it exists in the interval or not.

If the rule gives more than one, we do not quite know the exact number of roots yet
(only an upper bound). In that case, we subdivide the interval into the lower [0, 1/2) and
upper [1/2, 1) halves. Fortunately, the polynomial coefficients can be transformed to make
the domain the unit interval again so that we can call ourselves recursively. After a finite
number of steps, this bisection terminates, and we get a list of disjoint isolating intervals
where we know there is exactly one root in each. (The number of steps is on the order of
the two-logarithm of the minimum distance between two distinct roots.)

Combining Yun and Descartes, we implement our “root counter,” and thus our partial
order on polynomials.

4 Results

Using the method from the previous section, we can now calculate the level-p-complexity
of Boolean functions with our function genAlgThinMemo. First, we return to our example
from the beginning (sim5), where we get several polynomials which are optimal in differ-
ent intervals. Then, we calculate the level-p-complexity for maj2

3 which is lower than the
proposed result in Jansson (2022), which means that our current method is better.

4.1 Level-p-complexity for sim5

When we run genAlgThinMemo 5 sim5 it returns a set of four polynomials:

{P1(p)= 2+ 6p− 10p2 + 8p3 − 4p4, P2(p)= 4− 2p− 3p2 + 8p3 − 2p4,

P3(p)= 5− 8p+ 9p2 − 2p4, P4(p)= 5− 8p+ 8p2}
We do not compute their intersection points, but we know that they do intersect in
the unit interval. The four polynomials were shown already in Figure 1. The level-p-
complexity for sim5 is the piecewise polynomial, pointwise minimum, of these four,
with two different polynomials in different intervals: Dp(sim5)= P4(p) for p ∈ [≈ 0.356,≈
0.644] and Dp(sim5)= P1(p) in the rest of the unit interval. As seen in Figure 10, the
level-p-complexity has two maxima.

4.2 Level-p-complexity for maj2
3

When running genAlgThinMemo 9 maj2
3 we get {P [4, 4, 6, 9,−61, 23, 67,−64, 16]},

which means that the expected cost (P∗) of the best decision tree (T∗) is

P∗(p)= 4+ 4p+ 6p2 + 9p3 − 61p4 + 23p5 + 67p6 − 64p7 + 16p8 .

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


Level-p-complexity of Boolean functions 19

Fig. 10. Level-p-complexity of sim5, where the dots show the intersections of the costs of the
decision trees.

This can be compared to the decision tree (that we call Tt) conjectured in Jansson (2022)
to be the best. Its expected cost is slightly higher (thus worse):

Pt(p)= 4+ 4p+ 7p2 + 6p3 − 57p4 + 20p5 + 68p6 − 64p7 + 16p8 .

The expected costs for decision trees T∗ and Tt was shown already in Figure 2. Comparing
the two polynomials using cmpPoly P∗ Pt shows that the new one has strictly lower
expected cost than the one from the thesis. The difference, illustrated in Figure 3, factors
to exactly and we note that it is non-negative in the whole interval.

The value of the polynomials at the endpoints is 4, and the maximum of P∗ is ≈ 6.14
compared to the maximum of Pt which is ≈ 6.19. The conjecture in Jansson (2022) is
thus false and the correct formula for the level-p-complexity of maj2

3 is P∗. At the time of
publication of Jansson (2022), it was believed that sifting through all the possible decision
trees would be intractable. Fortunately, using a combination of thinning, memoization, and
exact comparison of polynomials, it is now possible to compute the correct complexity in
less than a second on the author’s laptop.

5 Conclusions

This paper describes a Haskell library for computing level-p-complexity of Boolean func-
tions and applies it to two-level iterated majority (maj2

3). The problem specification is
straightforward: generate all possible decision trees, compute their expected cost poly-
nomials, and select the best ones. The implementation is more of a challenge because of
two sources of exponential computational cost: an exponential growth in the set of decision
trees and an exponential growth in the size of the recursive call graph (the collection of
subfunctions). The library uses thinning to tackle the first and memoization to handle the
second source of inefficiency. In combination with efficient data structures (binary decision
diagrams for the Boolean function input, sets of polynomials for the output), this enables
computing the level-p-complexity for our target example maj2

3 in less than a second.
From the mathematics point of view, the strength of the methods used in this paper to

compute the level-p-complexity is that we can get a correct result to something which is

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000102


20 J. Jansson and P. Jansson

very hard to calculate by hand. From a computer science point of view, the paper is an
instructive example of how a combination of algorithmic and symbolic tools can tame a
doubly exponential computational cost.

The library uses type classes for separation of concerns: the actual implementation type
for Boolean functions (the input) is abstracted over by the BoFun class; and the cor-
responding type for the output is modeled by the TreeAlg class. We also use our own
class Thinnable for thinning (and preorders) and the Memoizable class from hackage. This
means that our main function has the following type:

genAlgThinMemo :: (BoFun bf , Memoizable bf , TreeAlg a, Thinnable a)⇒
N → bf → Set a

All the Haskell code is available on GitHub7, and parts of it has been reproduced in Agda
to check some of the stronger invariants. One direction of future work is to complete the
Agda formalization so that we can provide a formally verified library, perhaps helped by
Swierstra (2022); van der Rest & Swierstra (2022).

The set of polynomials we compute are all incomparable in the preorder and, together
with the thinning relation this means that we actually compute what is called a Pareto front
from economics: a set of solutions where no objective can be improved without sacrificing
at least one other objective. It would be interesting to explore this in more detail and to see
what the overlap is between thinning as an algorithm design method and different concepts
of optimality from economics.

The computed level-p-complexity for maj2
3 is better than the result conjectured in

Jansson (2022), and the library allows easy exploration of other Boolean functions. With
the current library, the level-p-complexity of iterated majority on 3 levels (27 bits) is out
of reach, but with Christian Sattler and Liam Hughes we are exploring a version special-
ized to “iterated threshold functions” which can handle this case (see code in the GitHub
repository).

Acknowledgments

The authors would like to extend their gratitude to Jeffrey Steif for the idea of exploring
level-p-complexity and for supervising the preceding work, reported in Jansson (2022).
Further, we would like to thank Tim Richter and Jeremy Gibbons for taking their time to
give valuable feedback on the first draft of this paper. The authors thank the JFP editors
and reviewers, whose helpful and constructive comments have lead to significant improve-
ments of the original manuscript. The work presented in this paper heavily relies on free
software, among others on GHC, Agda, Haskell, git, Emacs, LATEX and on the Ubuntu
operating system, Mathematica, and Visual Studio Code. It is our pleasure to thank all
developers of these excellent products.

Conflicts of Interest

None.

7 The paper repository is at https://github.com/juliajansson/BoFunComplexity.

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://github.com/juliajansson/BoFunComplexity
https://doi.org/10.1017/S0956796823000102


Level-p-complexity of Boolean functions 21

References

Bird, R. & de Moor, O. (1997) Algebra of Programming. Prentice-Hall.
Bird, R. & Gibbons, J. (2020) Algorithm Design with Haskell. Cambridge University Press.
Bryant, R. E. (1986) Graph-based algorithms for Boolean function manipulation. IEEE Trans.

Comput. C-35(8), 677–691. https://doi.org/10.1109/TC.1986.1676819.
Buhrman, H. & De Wolf, R. (2002) Complexity measures and decision tree complexity: A survey.

Theor. Comput. Sci. 288(1), 21–43.
Garban, C. & Steif, J. E. (2014) Noise Sensitivity of Boolean Functions and Percolation. vol. 5.

Cambridge University Press.
Hinze, R. (2000) Generalizing generalized tries. J. Funct. Program. 10(4), 327–351.
Jansson, J. (2022) Level-p-complexity of Boolean Functions. Master’s thesis. Chalmers University

of Technology. Available at: https://hdl.handle.net/20.500.12380/304584.
Jansson, P., Ionescu, C. & Bernardy, J.-P. (2022) Domain-Specific Languages of Mathematics.

vol. 24 of Texts in Computing. College Publications.
Knuth, D. E. (2012) The Art of Computer Programming, Volume 4A: Combinatorial Algorithms,

Part 1. Pearson Education India.
Landau, I., Nachmias, A., Peres, Y. & Vanniasegaram, S. (2006) The lower bound for evaluating

a recursive ternary majority function: an entropy-free proof. Undergraduate Research Reports,
Department of Statistics, University of California, Berkeley.

Leonardos, N. (2013) An improved lower bound for the randomized decision tree complexity of
recursive majority. In International Colloquium on Automata, Languages, and Programming.
Springer, pp. 696–708.

Magniez, F., Nayak, A., Santha, M., Sherman, J., Tardos, G. & Xiao, D. (2016) Improved bounds
for the randomized decision tree complexity of recursive majority. Random Struct. Algor. 48(3),
612–638.

Mu, S., Ko, H. & Jansson, P. (2009) Algebra of programming in Agda: Dependent types for relational
program derivation. J. Funct. Program. 19(5), 545–579.

O’Donnell, R. (2014) Analysis of Boolean functions. Cambridge University Press.
Swierstra, W. (2022) A well-known representation of monoids and its application to the function

‘vector reverse’. J. Funct. Program. 32, e10.
van der Rest, C. & Swierstra, W. (2022) A completely unique account of enumeration. Proc. ACM

Program. Lang. 6(ICFP).
Wegener, I. (1987) The Complexity of Boolean Functions. John Wiley & Sons.
Yun, D. Y. (1976) On square-free decomposition algorithms. In Proceedings of the Third ACM

Symposium on Symbolic and Algebraic Computation. New York, NY, USA: Association for
Computing Machinery, pp. 26–35.

https://doi.org/10.1017/S0956796823000102 Published online by Cambridge University Press

https://doi.org/10.1109/TC.1986.1676819
https://hdl.handle.net/20.500.12380/304584
https://doi.org/10.1017/S0956796823000102

	Level-p-complexity of Boolean functions using thinning, memoization, and polynomials
	Introduction
	Vote counting example: iterated majority
	Cost and complexity
	Contributions
	Motivation

	Background
	Boolean functions
	Decision trees
	Expected cost
	Complexity
	Examples of Boolean functions and their costs

	Computing the level-p-complexity
	Generating decision trees and other tree algebras
	Thinning
	Memoization
	Comparing polynomials
	Isolating real roots and Descartes rule of signs

	Results
	Level-p-complexity for sim5
	Level-p-complexity for maj32

	Conclusions


