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Abstract
In this article, a mixed dimensional elliptic partial differential equation is considered,
posed in a bulk domain with a large number of embedded interfaces. In particular,
well-posedness of the problem and regularity of the solution are studied. A fitted
finite element approximation is also proposed and an a priori error bound is proved.
For the solution of the arising linear system, an iterative method based on subspace
decomposition is proposed and analyzed. Finally, numerical experiments are presented
and rapid convergence using the proposed preconditioner is achieved, confirming the
theoretical findings.

Keywords Finite element method · Mixed dimensional partial differential equation ·
A priori error analysis · Subspace decomposition · Preconditioner

Mathematics Subject Classification 65N15 · 65N30

1 Introduction

Numerical simulation of diffusion processes in heterogeneous materials is compu-
tationally challenging since the data variation needs to be resolved. Thin structures
like cracks, fractures, and reinforcements are particularly difficult to handle. It is
often advantageous to instead model thin structures as lower dimensional interfaces,
embedded in a bulk domain. Mathematically, this results in a mixed dimensional par-
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tial differential equation (PDE), where the solution has bulk and interface components
that are coupled weakly. The aim of the paper is to study well-posedness and regularity
of mixed dimensional PDEs, construct and analyze a finite element method for solving
the problem, and to develop and implement a preconditioner for efficient numerical
solution of the resulting linear system.

Numerical solution to PDEs posed on surfaces is a well established field. An early
contribution to finite element approximation of the Laplace–Beltrami equation on
surfaces is due to Dziuk in [8], where a finite element approximation is constructed
on a polyhedral approximation of the surface. Other approaches include trace based
methods as in [5, 6, 18], where functions in the surface are represented by traces of
functions in the ambient space of higher dimension. The review articles [2, 9] survey
several methods for solving PDEs on surfaces. Finite element methods for coupled
bulk and interface problems are also well studied, see e.g., [10, 15].

Flow in porous media is probably the most prominent application for mixed dimen-
sional PDEs, see [1, 3, 7, 12, 15] and references therein. These methods are fitted,
meaning that the full geometry is resolved by the mesh. The bulk is three dimensional
and the interfaces are two dimensional surfaces representing fractures. There is also
related work treating three dimensional bulk domains with one dimensional embedded
structures. Such models include blood vessels embedded in tissue, see [11].

In this paper, we consider an elliptic mixed dimensional model problemwith a large
number of interfaces. The interface model is inspired by the works [3, 17], where a
general framework formultidimensional representations of fractured domains is devel-
oped, and the work [15], where Robin-type couplings between the bulk and interface
are studied. In the bulk and interfaces, we consider Poisson’s equation in d and d − 1
dimensions, respectively. In both cases, we use its primal form.We show that themodel
is well-posed and pay particular attention to problems with a large number of embed-
ded interfaces and how that affects the coercivity bound of the variational formulation
of the problem. We further formulate a fitted finite element method and prove a pri-
ori error bounds. Additionally, we propose a domain decomposition method based
on subspace correction, allowing for efficient numerical solution of problems with
complex coupled interface structures. In this part, we take inspiration from recently
developed subspace decomposition algorithms for spatial network models, see [13,
14]. We formulate the Schur complement on the union of interfaces and introduce
coarse subspaces, using coarse finite element spaces in the bulk interpolated onto the
interfaces. Finally, we present numerical examples in two spatial dimensions together
with regularity analysis.

Outline: In Sect. 2, we present the problem formulation and in Sect. 3, we formulate
a fitted finite element method and derive an a priori error bound. Section4 is devoted
to an iterative method for efficient solution of the resulting linear system. Finally, in
Sect. 5, we present numerical results.

2 Problem formulation

We consider Poisson’s equation in the bulk as well as in the interfaces and couple the
solutions in bulk and interfaces by Robin conditions. We are interested in the case
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when there is a large number of interfaces in the domain. Next follows a description
of the geometrical setting to accommodate for this partitioning. Then, we present the
model problem in weak form and establish its well-posedness.

2.1 Mixed dimensional geometry

We consider an open and connected domain � of Rd (d = 2 or 3) that is partitioned
into d + 1 (not necessarily connected) subdomains of different dimensionalities:

� = �0 ∪ · · · ∪ �d , (1)

where each �c (0 ≤ c ≤ d is the codimension) in turn is composed into a finite
number of disjoint and connected subdomain segments defined by a set Lc,

�c =
⋃

�∈Lc

�c
�, (2)

each of which is a planar hypersurface of codimension c.
In the following, we put some requirements on this decomposition of �. We define

topological subspaces Xc of Rd for subdomains in codimension c and topological
properties such as dense, closed, open, and operators such as closure (cl), boundary
(∂) and interior (int) for subdomains of codimension c should be interpreted in the
subspace topology of Xc. For a set ω, the notation ω̄ denotes the closure of ω in Rd .

For codimension c = 0, we let X0 = �, while for c > 0, we define the subspaces
Xc = Xc−1 \�c−1. We assume that for all � ∈ Lc, the subdomain segment�c

� is open
and that their union �c is dense. We add the requirement that either �c+1

j ⊆ ∂�c
i or

�c+1
j ∩ �̄c

i = ∅. This makes it possible to define the adjacency relation Ec between
subdomain segments i ∈ Lc and j ∈ Lc+1 by

(i, j) ∈ Ec if �c+1
j ⊆ ∂�c

i . (3)

This requirement admits a dense partitioning of a subdomain segment by subdomain
segments of one codimension higher. Thus subdomain segment boundary integrals
can be expressed as sums of integrals over other subdomain segments.

We focus entirely on the subdomains of codimension 0, 1 and 2. To simplify nota-
tion, we introduce I = L0, J = L1, and K = L2. To reduce the complexity of the
model, we have chosen to work in a simplified setting: We assume that all subdomains
segments�c

� are planar andpolyhedrons, polygonals, lines or points,whichever applies
in their respective dimension, and that they have Lipschitz boundary. Lipschitz bound-
ary rules out slit domains and means that, for example, an interface cannot end inside
a bulk without connecting to another interface. These assumptions can be relaxed at
the cost of a more detailed treatment of the interfaces as is done in [3, 17]. To handle
curved interfaces, it is possible to consider the planar setting here as an approximation
of the curved case. For sufficiently smooth curved interfaces, lift operators on both
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Fig. 1 An example of a domain � fulfilling our requirements

bulk and interfaces exist that enable an estimate of the error due to such a variational
crime, see [10].

In Fig. 1, we see an example of a domain fulfilling our requirements.

2.2 Model problem

Denote the L2-inner product and norm (u, v)ω = ∫
ω
uv dx , ‖v‖L2(ω) = (u, v)

1/2
ω ,

and let L2(ω) and H1(ω) be the usual Sobolev spaces of L2-integrable functions
and weak derivatives. If ω is a subdomain segment of codimension greater than 0,
then we interpret H1(ω) as H1(ω̂) after a rigid coordinate transformation of ω to a
subset ω̂ ⊂ R

d−c where the gradient operator, Poincaré inequalites, Green’s theorem,
and trace theorems in this lower dimensional space Rd−c can be applied. For clarity,
the symbol ∇τ is used to denote the gradient operator on subdomain segments of
codimension 1.

For functions in the bulk of the domain, we define the Hilbert space

V 0 = H1(�0) =
∏

i∈I
H1(�0

i ).

Occasionally, we refer to components v0i of v0 ∈ V 0 defined as the restriction of v0

to �0
i . Note that the domain �0 consists of the disconnected union of �0

i for i ∈ I
and no continuity between the subdomain segments is assumed. Further, V 0

0 = {v ∈
V 0 : v|∂� = 0} is the space of functions satisfying homogeneous Dirichlet boundary
conditions.
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For the functions in codimension 1, we define V 1 as follows. The functions in V 1

are strongly enforced to be continuous over common domains of codimension 2. Let
V 1
b = H1(�1) = ∏

j∈J H1(�1
j ) be a “broken” space and v1 = (v1j ) j∈J ∈ V 1

b be any

function with each v1j being the restriction of v
1 to�1

j . Then we define the constrained
space

V 1 = {v1 ∈ V 1
b : v1j |�2

k
− v1j ′ |�2

k
= 0 for all pairs ( j, k), ( j ′, k) ∈ E1}. (4)

We note that V 1 is a Hilbert space, since it is the kernel of the bounded and linear trace
operator on the Hilbert space V 1

b . Finally, we define V
1
0 = {v ∈ V 1 : v|∂� = 0}, and

V = V 0 × V 1 and V0 = V 0
0 × V 1

0 with norm

‖v‖V =
(
‖v0‖2H1(�0)

+ ‖v1‖2H1(�1)

)1/2
.

In the bulk domains i ∈ I , let Ai ∈ L∞(�0
i )with bounds 0 < α ≤ Ai ≤ ᾱ < ∞. In

the interfaces j ∈ J , let A j ∈ L∞(�1
j ) with bounds α ≤ A j ≤ ᾱ, and Bj ∈ L∞(�1

j )

with bounds 0 < β ≤ Bj ≤ β̄ < ∞. With the definition of the symmetric bilinear
form a,

a(v,w) =
∑

i∈I
(Ai∇v0i ,∇w0

i )�0
i
+

∑

j∈J

(A j∇τ v
1
j ,∇τw

1
j )�1

j

+
∑

(i, j)∈E0

(Bj (v
0
i − v1j ), w

0
i − w1

j )�1
j
,

and a right hand side functional F ∈ V ∗
0 (in the dual space of V0), the model problem

can be stated as to find u ∈ V0 such that for all v ∈ V0,

a(u, v) = F(v). (5)

The bulk and the interfaces are coupled by aRobin-type boundary condition, continuity
of the solution between the interface segments is enforced, and a Kirchoff’s law type
equation for the flux between interface segments applies. Non-homogeneous Dirichlet
boundary conditions defined on ∂� can be handled by picking any function g ∈
V satisfying the boundary conditions, setting F(v) = a(−g, v), solving (5), and
obtaining the solution as u + g.

Remark 1 (Bulk-interface coupling) For the bulk-interface coupling, we use bound-
ary conditions III as presented in [15] in a porous media flow setting. The interface
parameters A j and Bj translate to tangential and normal interface permeabilities K 1

τ

and K 1
n , and thickness t of the interface as follows: A j = K 1

τ t and Bj = K 1
n/t .

If the solution is sufficiently smooth, and if fi ∈ L2(�0
i ), f j ∈ L2(�1

j ), and

F(w) =
∑

i∈I
( fi , w

0
i )�0

i
+

∑

j∈J

( f j , w
1
j )�1

j
,

123



    2 Page 6 of 22 BIT Numerical Mathematics             (2024) 64:2 

then the weak formulation in (5) corresponds to the strong problem of finding u ∈ V0
such that

−divAi∇u0i = fi in �0
i ,

−divτ A j∇τu
1
j −

∑

i : (i, j)∈E0

Bj (u
0
i − u1j ) = f j in �1

j ,

with boundary conditions

u0i = 0 on �̄0
i ∩ ∂�,

u1j = 0 on �̄1
j ∩ ∂�,

n�0
i
· Ai∇u0i + Bju

0
i = Bju

1
j on ∂�0

i ∩ �1
j ,

u1j = u1j ′ on ∂�1
j ∩ ∂�1

j ′,∑

{ j : ( j,k)∈E1}
n�1

j
· A j∇τu

1
j = 0 on ∂�1

j ∩ �2
k .

Here nω is the outward normal defined on the boundary of the subdomains ω.

2.3 Well-posedness

To prove existence and uniqueness of solution for the problem (5), we prove that a is
coercive and bounded on V0 and apply the Lax–Milgram theorem. Coercivity cannot
be shown directly by a Poincaré or Friedrichs inequality since the subdomain segments
are disconnected and not all of them necessarily intersect the domain boundary. We
establish coercivity by an iterative procedure, starting to bound norms over subdomain
segments far from the domain boundary in norms over subdomain segments, and
proceed until we reach subdomain segments for which a Friedrichs inequality can be
used.

Lemma 1 The bilinear form a is coercive on V0, i.e., there is a C > 0 such that for
all v ∈ V0,

a(v, v) ≥ C(α−1 + β−1)−1‖v‖2V ,

and C depends only on the geometry of the subdomain segments {�c
�}c,�.

Proof In the following, C denotes a constant that is independent of the arbitrary func-
tion v = (v0, v1) ∈ V0 = V 0

0 × V 1
0 . The value of the constant is generally not tracked

between inequalities. Let i0 ∈ I be a subdomain segment that intersects the domain
boundary so that there is a Friedrichs inequality

‖v0i0‖L2(�0
i0

) ≤ C |v0i0 |H1(�0
i0

). (6)

We note that G = (I , J , E0) defines a bipartite undirected graph, where the sub-
domain segments of codimensionality 0 and 1 (I and J ) constitute the vertices and
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the edges E0 are the adjacency relations between subdomain segments. It is bipartite
because the edges connect vertices in I only with vertices in J and vice versa. Since�

is connected, i0 is reachable from all vertices in G. Then it is possible to define a walk
through G beginning at an arbitrary iN ∈ I and ending at i0. We express the walk as
the sequence of vertices it visits by (iN , jN , iN−1, jN−1, . . . , j1, i0) and require that
all vertices in G are visited at least once by the walk. We allow the same vertex to be
visited multiple times to guarantee the existence of such a sequence.

We make use of the following inequality, proven in e.g., [4, Eq. (5.3.3)], valid for
any v0i ∈ H1(�0

i ) and j such that (i, j) ∈ E0,

‖v0i ‖L2(�0
i )

≤ C

(∣∣∣∣∣

∫

�1
j

v0i ds

∣∣∣∣∣ + |v0i |H1(�0
i )

)
. (7)

Further, we note that by Hölder’s inequality, we have

∣∣∣∣∣

∫

�1
j

v0i ds

∣∣∣∣∣ ≤ |�1
j |1/2‖v0i ‖L2(�1

j )
, (8)

which together with (7) gives

‖v0i ‖L2(�0
i )

≤ C
(
‖v0i ‖L2(�1

j )
+ |v0i |H1(�0

i )

)
. (9)

The following trace inequality will be used, valid for v0i ∈ H1(�0
i ) for which (i, j) ∈

E0,

‖v0i ‖L2(�1
j )

≤ C
(
‖v0i ‖L2(�0

i )
+ |v0i |H1(�0

i )

)
. (10)

For i ∈ I , we have

‖v0i ‖2H1(�0
i )

= |v0i |2H1(�0
i )

+ ‖v0i ‖2L2(�0
i )

(9)≤ C

(
|v0i |2H1(�0

i )
+ ‖v0i ‖2L2(�1

j )

)

≤ C

(
|v0i |2H1(�0

i )
+ ‖v0i − v1j‖2L2(�1

j )
+ ‖v1j‖2L2(�1

j )

)
. (11)

We also have

‖v1j‖2L2(�1
j )

≤ 2‖v1j − v0i ‖2L2(�1
j )

+ 2‖v0i ‖2L2(�1
j )

(10)≤ 2‖v1j − v0i ‖2L2(�1
j )

+ C‖v0i ‖2H1(�0
i )

. (12)

Since the sequence (iN , jN , . . . , i0) contains all elements in both I and J , we can
rewrite the V -norm of v as follows,

123



    2 Page 8 of 22 BIT Numerical Mathematics             (2024) 64:2 

‖v‖2V =
∑

i∈I
‖v0i ‖2H1(�0

i )
+

∑

j∈J

‖v1j‖2H1(�1
j )

≤ ‖v0iN ‖2
H1(�0

iN
)
+ ‖v1jN ‖2

H1(�1
jN

)
+ ‖v0iN−1

‖2
H1(�0

iN−1
)
+ · · · + ‖v0i0‖2H1(�0

i0
)

(11)≤ C

(
|v0iN |2

H1(�0
iN

)
+ ‖v0iN − v1jN ‖2

L2(�1
jN

)

)
+ (C + 1)‖v1jN ‖2

H1(�1
jN

)

+‖v0iN−1
‖2
H1(�0

iN−1
)
+ · · · + ‖v0i0‖2H1(�0

i0
)

(12)≤ C

(
|v0iN |2

H1(�0
iN

)
+ ‖v0iN − v1jN ‖2

L2(�1
jN

)

)
+ (C + 1)|v1jN |2

H1(�1
jN

)

+2(C + 1)‖v1jN − v0iN−1
‖2
L2(�1

jN
)
+ (C(C + 1) + 1)‖v0iN−1

‖2
H1(�0

iN−1
)

+‖v1jN−1
‖2
H1(�1

jN−1
)
+ · · · + ‖v0i0‖2H1(�0

i0
)
. (13)

This procedure is then iterated, using (11) and (12). For the last term ‖v0i0‖2H1(�0
i0

)
, we

use Friedrichs inequality to bound it by C |v0i0 |H1(�0
i0

). The walk visits the vertices and

edges in the graph at most N times, and since we have iterated the steps N times, we
get

‖v‖2V ≤ NCN

⎛

⎝
∑

i∈I
|v0i |2H1(�0

i )
+

∑

(i, j)∈E0

‖v0i − v1j‖2L2(�1
j )

+
∑

j∈J

|v1j |2H1(�1
j )

⎞

⎠ ,

(14)

where we have added the terms for the edges from E0 that were not part of the walk.
The constant N is the length of the walk and depends on how the subdomain segments
are connected with each other and is thus also a constant depending on the geometry
of the problem. In the following, we do not track N and let C absorb it.

Finally, to obtain the coercivity bound, we use that α ≤ Ai , α ≤ A j and β ≤ Bj

for all i ∈ I and j ∈ J , and obtain from (14) and the definition of a that

‖v‖2V ≤ C(α−1 + β−1)a(v, v).
��

Lemma 2 The bilinear form a is bounded on V , i.e., there exists a C < ∞ such that
for all v ∈ V ,

a(v,w) ≤ C(ᾱ + β̄)‖v‖V ‖w‖V ,

and C depends only on the geometry of the subdomain segments {�c
�}c,�.

Proof Studying the first two sums of a, we note that

∑

i∈I
(Ai∇v0i ,∇w0

i )�0
i
+

∑

j∈J

(A j∇τ v
1
j ,∇τw

1
j )�1

j
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≤ ᾱ
(
‖v0‖H1(�0)‖w0‖H1(�0) + ‖v1‖H1(�1)‖w1‖H1(�1)

)

≤ ᾱ
(
‖v0‖H1(�0) + ‖v1‖H1(�1)

) (
‖w0‖H1(�0) + ‖w1‖H1(�1)

)

≤ 2ᾱ ‖v‖V ‖w‖V . (15)

The trace inequality from Eq. (10) gives us that for (i, j) ∈ E0,

‖v0i − v1j‖L2(�1
j )

≤ ‖v0i ‖L2(�1
j )

+ ‖v1j‖L2(�1
j )

≤ ‖v1j‖L2(�1
j )

+ C‖v0i ‖H1(�0
i )

.

Using this, we can conclude that the third sum of a satisfies

∑

(i, j)∈E0

(Bj (v
0
i − v1j ), w

0
i − w1

j )�1
j

≤
∑

(i, j)∈E0

C β̄
(
‖v0i ‖H1(�0

i )
+ ‖v1j‖H1(�1

j )

) (
‖w0

i ‖H1(�0
i )

+ ‖w1
j‖H1(�1

j )

)

≤ C β̄ ‖v‖V ‖w‖V , (16)

where the constantC also depends on the maximum number of interfaces surrounding
the subdomains. ��
Theorem 1 Under the above assumptions, Eq. (5) has a unique solution u ∈ V0.

Proof Since V0 is a Hilbert space, Lemmas 1 and 2 give coercivity and boundedness
of the bilinear form, and the right hand side F is assumed to be a bounded linear
functional on V0, the Lax–Milgram theorem guarantees existence of a unique solution
u ∈ V0. ��

3 Fitted finite element method

In this section, we introduce a fitted finite element discretization of the mixed dimen-
sional model problem and prove an a priori error bound.

3.1 Discretization

We let T 1
h, j be a quasi-uniform and shape-regular partition of �̄1

j , containing closed

simplices of diameter no greater than h, with T 1
h = ⋃

j∈J T 1
h, j . Further, we let T 0

h,i

be a corresponding partition of �̄0
i , with T 0

h = ⋃
i∈I T 0

h,i and such that the simplices

of T 1
h constitute the sides of some of the simplices in T 0

h . That is, if T 1
h = {K 1

ĵ
}ĵ and

T 0
h = {K 0

ı̂ }ı̂ , then for each pair ı̂, ĵ , either

– K 0
ı̂ ∩ K 1

ĵ
= ∅,

– K 0
ı̂ ∩ K 1

ĵ
= K 1

ĵ
or
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– K 0
ı̂ ∩ K 1

ĵ
∈ ∂K 1

ĵ
.

Similarly to what we did in Sect. 2.2, for the functions on the interface partition,
T 1
h , we define

V 1
b,h =

∏

j∈J

{v1 ∈ C(�̄1
j ) : v1 piecewise linear functions on T 1

h, j , v1 = 0 on ∂�}, and

V 1
h = {v1 ∈ V 1

b,h : v1j |�2
k
− v1j ′ |�2

k
= 0 for all pairs ( j, k), ( j ′, k) ∈ E1}.

For the functions on the bulk partition, T 0
h , we define

V 0
h =

∏

i∈I
{v0 ∈ C(�̄0

i ) : v0 piecewise linear functions on T 0
h,i , v0 = 0 on ∂�},

and use these definitions to define Vh = V 0
h × V 1

h . Then the finite element problem
reads: find uh ∈ Vh such that

a(uh, vh) = F(vh) for all vh ∈ Vh . (17)

We note that V 0
h ⊂ V 0 and V 1

h ⊂ V 1 are also Hilbert spaces and the argumentation
in Sect. 2.3 holds for the discretized equation as well. Thus, Lax–Milgram guarantees
the existence and uniqueness of a solution to (17).

3.2 Interpolation estimates

In this section, we introduce an interpolation operator Ih : V0 → Vh defined com-
ponentwise Ih(v0, v1) = (I0

hv
0, I1

hv
1), where I0

h and I1
h are Scott–Zhang [19]

interpolation operators onto V 0
h and V 1

h , respectively.
For each degree of freedom k (enumerating the Lagrange basis functions {ϕ0

k } of
V 0
h ), we choose an edge (or face if d = 3, etc.) K̃k in the support of ϕ0

k such that the
mesh vertex associated with k is contained in K̃k . Let ψ0

k be the L2(K̃k)-dual basis,
i.e.,

∫

K̃k

ϕ0
k′ψ0

k dx =
{
1 if k = k′,
0 otherwise,

and define

I0
hv

0 =
∑

k

(∫

K̃k

v0ψ0
k dx

)
ϕ0
k .

The interface interpolation operator I1
h is defined analogously.
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In the V -norm, we obtain the interpolation error estimate, for v ∈ V0,

||v − Ihv||V ≤ Ch

(∣∣∣
∣∣∣D2v0

∣∣∣
∣∣∣
L2(�0)

+
∣∣∣
∣∣∣D2v1

∣∣∣
∣∣∣
L2(�1)

)
. (18)

For proofs and further details on this interpolation, we refer to [4, 19].

3.3 A priori error estimate

In order to derive an a priori estimate, we use coercivity and boundedness (Lemmas 1
and 2) together with Galerkin orthogonality. For v ∈ Vh , it holds that

1

C(α−1 + β−1)
||u − uh ||2V ≤ a(u − uh, u − uh) = a(u − uh, u − v)

≤ C̃
(
ᾱ + β̄

) ‖u − uh‖V ‖u − v‖V .

Thus we obtain

||u − uh ||V ≤ C
(
α−1 + β−1

) (
ᾱ + β̄

) ||u − v||V . (19)

By choosing v = Ihu, and combining (18) and (19), we can thus state the following
theorem.

Theorem 2 (A priori error estimate.) Let uh ∈ Vh and u ∈ V be the solutions of (17)
and (5). Assume that u0i ∈ H2(�0

i ) and u1j ∈ H2(�1
j ). Then

||u − uh ||V ≤ Ch
(
α−1 + β−1

) (
ᾱ + β̄

) (∣∣∣
∣∣∣D2u0

∣∣∣
∣∣∣
L2(�0)

+
∣∣∣
∣∣∣D2u1

∣∣∣
∣∣∣
L2(�1)

)
.

4 Iterative solution based on subspace decomposition

Since the bulk domains are only connected through the interfaces, it is natural to
consider a Schur complement formulation.We propose an iterative solver of the Schur
complement equation that is based on subspace decomposition. The subspaces are
introduced using an artificial coarse mesh on top of the computational domain, see
Fig. 5 for an illustration and [13, 14] for more details. Given the subdomains, we use
an additive Schwarz preconditioner to solve for the Schur complement. Given the
solution on the interfaces, we solve for the decoupled bulk regions, using a direct
solver in parallel.
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4.1 Schur complement

We let {ϕ0
k } and {ϕ1

� } be the standard Lagrange bases of V 0
h and V 1

h respectively. Thus
the finite element solution uh ∈ Vh consists of the two parts u0h = ∑

k U
0
k ϕ0

k and
u1h = ∑

� U
1
� ϕ1

� . We denote by U0 and U1 the vectors (U 0
k )k and (U 1

� )�, respectively.
Let A and b be the resulting matrix and load vector from (17), using the above

mentioned basis. Then the system AU = b can be divided into

[
A00 A01

A10 A11

] [
U0
U1

]
=

[
b0
b1

]
, (20)

where A00 and A11 correspond to the degrees of freedom in the bulk and interfaces
respectively. The submatrices A01 and A10 = A�

01 describe the connections between
the interfaces and bulk regions. We form the Schur complement of the submatrix A00
and note that U1 solves

Ã11U1 := (
A11 − A10A

−1
00 A01

)
U1 = b1 − A10A

−1
00 b0 =: b̃1. (21)

The submatrix A00 is block diagonal which means that linear systems involving this
matrix can be solved in parallel using standard techniques. We therefore focus on how
to solve the Schur complement Eq. (21) efficiently.

4.2 Preconditioner based on subspace decomposition

The goal is to define a preconditioner for Eq. (21). Inspired by [13, 14], we introduce an
artifical quasi-uniform coarse (H > h) finite element mesh TH of the computational
domain with corresponding Q1-finite element space WH , see Fig. 5. We let {φ j }nj=1
be the set of bilinear (or trilinear) Lagrangian basis functions spanningWH . The mesh
TH is independent of the meshes T 0

h and T 1
h and thereby independent of the location

of the interfaces. Next, we let Inodal
h be the nodal interpolant onto V 1

h , which is the
finite element space for the interfaces on which the Schur complement equations are
posed. We define the coarse space

W0 = Inodal
h WH ⊂ V 1

h .

Furthermore, we define for j = 1, . . . , n,

Wj = {v ∈ V 1
h : supp(v) ⊂ supp(φ j )} ⊂ V 1

h .

Thereby, we have created a subspace decomposition of V 1
h , i.e., any v ∈ V 1

h can be
written as a sum v = ∑n

j=0 v j with v j ∈ Wj .
In the remainder of this section, we use matrix representations for functions and

operators on the interfaces. The functions {ϕ1
� }m�=1 are used as basis in V 1

h and the
matrices Q j ∈ R

m×m j are prolongation matrices mapping from functions in Wj to
V 1
h . As basis in Wj , for j = 0, the functions {Inodal

h φ j }nj=1 are used (i.e., m0 = n),
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while for j ≥ 1, we choose the smallest subset of {ϕ1
� }m�=1 spanning Wj , whose size

we denote by m j .
We now introduce the matrices

Tj = (Q�
j Ã11Q j )

−1Q�
j ∈ R

m j×m

and form the full preconditioner by the sum,

T =
n∑

j=0

Q jTj ∈ R
m×m . (22)

The matrix T is a preconditioner to (21),

T Ã11U1 = T b̃1.

Note that in order to compute one application of the preconditioner T , we need to solve
one global coarse scale problem (for j = 0, on the subspace W0) and n independent
local problems (for j ≥ 1, on the subspaces Wj ). All these solves are done using
a direct solver, which means that the technique we propose is semi-iterative. Under
some assumptions of the geometry of the interfaces, it is possible to show optimal
convergence properties of this preconditioner, in the meaning that the convergence
rate is independent of the fine scale mesh size h and the coarse scale mesh size H .

4.3 Convergence of the preconditioned conjugate gradient (PCG) method

This preconditioner has been thoroughly analyzed for spatial network problems in
[13]. In order to apply the convergence analysis presented there, we need to formulate
our Schur complement equation as an equation posed on a graph.We limit ourselves to
the case d = 2, so that the interfaces are one-dimensional.We letN be the set of nodes
in the interface finite element mesh T 1

h and let E be the set of edges connecting two
nodes, where an edge connecting two nodes x and y is represented by an unordered
pair {x, y}. This forms the graph G = (N , E). In [13], two operators are used in the
analysis: a weighted graph Laplacian L and a diagonal mass matrix M . They are both
symmetric and thereby uniquely defined by their corresponding quadratic forms:

(Lv1, v1) = 1

2

∑

x∈N

∑

{x,y}∈E

(v1(x) − v1(y))2

|x − y| ,

(Mv1, v1) = 1

2

∑

x∈N

∑

{x,y}∈E
v1(x)

2|x − y|,

for all v1 ∈ V 1
h , using the notation (v,w) = ∑

x∈N v(x)w(x). In the following, we
overload the notation for L , M , v ∈ Vh and v1 ∈ V 1

h with their matrix representations
compatible with (20).
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Theorem 3 If d = 2 and the Poincaré type inequality v�
1 Mv1 ≤ Dv�

1 Lv1 holds for
all v1 ∈ R

m and some D < ∞, then there exist constants c1, c2 > 0 such that

c1v
�
1 Lv1 ≤ v�

1 Ã11v1 ≤ c2v
�
1 Lv1.

Proof We start with the second inequality. From the construction of A11, it follows
that

αv�
1 Lv1 ≤ v�

1 A11v1 ≤ ᾱv�
1 Lv1 + β̄v�

1 Mv1.

Since A00 is symmetric and positive definite, v�
0 A−1

00 v0 > 0 and therefore
v�
1 A�

01A
−1
00 A01v1 ≥ 0. We conclude

v�
1 Ã11v1 ≤ ᾱv�

1 Lv1 + β̄v�
1 Mv1 ≤ (ᾱ + Dβ̄)v�

1 Lv1 =: c2v�
1 Lv1.

To prove the first inequality, we use that for v ∈ Vh ,

v�Av ≥ 1

C(α−1 + β−1)
||v||2V =: c1 ||v||2V .

Specifically, it holds for v = [−A−1
00 A01v1, v1]�. Thus,

v�
1 (A11 − A10A

−1
00 A01)v1 = v�Av ≥ c1 ||v||2V ≥ c1v

�
1 Lv1.

��
The assumption v�

1 Mv1 ≤ Dv�
1 Lv1 is fulfilled under assumptions of locality,

homogeneity and connectivity of the graph G on a scale R0. Locality means that all
the edges of the network are shorter than R0, homogeneity means that the variations
in total length of the subnetwork contained on a square with side length greater than
or equal to 2R0, are bounded by a constant, and connectivity means that for any
subnetwork contained in a square of size R ≥ R0, there is a connected subnetwork
contained in an extended square of side length 2R+2R0. The precise assumptions can
be found in Assumption 3.4 in [13]. In short, the theory is applicable if the interfaces
are connected and sufficiently dense in the computational domain. We have observed
that the preconditioner is still applicable and may give rapid convergence even if these
assumptions are not fulfilled.

Under Assumption 3.4 in [13], Theorem 3 holds. Moreover, with H ≥ R0, Theo-
rem 4.3 in [13] guarantees convergence of the conjugate gradient method for solving
Ã11U1 = b̃1 with preconditioner T , defined by Eq. (22). We let U (�)

1 denote the
approximate solution after � iterations and let |v|2

Ã11
= vT Ã11v. Then the following

error bound holds,

|U1 −U (�)
1 | Ã11

≤ 2

(√
κ − 1√
κ + 1

)�

|U1 −U (0)
1 | Ã11

,
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where κ is the condition number of T Ã11. Expressed in the V 1-norm, we have

‖u1h − u1,(�)h ‖V 1 ≤ C

(√
κ − 1√
κ + 1

)�

‖u1h − u1,(0)h ‖V 1 ,

where u1,(�)h ∈ V 1
h is the function corresponding to the vector U (�)

1 . We note that C
only depends on upper and lower bounds of the coefficients in Eq. (5), and have from
[13] that κ is independent of the mesh sizes h and H . Once the interface component
U (�)
1 has been computed, the bulk component U (�)

0 can be solved from

A00U
(�)
0 = b0 − A01U

(�)
1 .

Since A00 is block diagonal and each block corresponds to a finite element problem
on a bulk subdomain, standard techniques can be applied. We use a direct solver in
the numerical examples.

5 Numerical examples

We start by investigating the convergence theoretically and numerically for the pro-
posed method for some example problems. We then examine the number of iterations
needed for the preconditioned conjugate gradient method to converge, for two differ-
ent test cases. All numerical examples are two dimensional, d = 2, and posed on the
unit square.

5.1 Regularity and convergence

The solutions u0i on the bulk domains �0
i to Eq. (5) have H3/2-regularity. If the bulk

domain is convex it has H2-regularity. We formulate this result as a theorem and leave
the proof to Appendix A.

Theorem 4 Let � ⊂ R
2. Assume Ai ∈ C∞(�̄0

i ), A j ∈ C∞(�̄1
j ), B j ∈ C∞(�1

j ) and

fi ∈ L2(�0
i ) for all i ∈ I and j ∈ J . Then u0i ∈ H3/2(�0

i ) and u1j ∈ H2(�1
j ). If all

subdomains are convex, then additionally u0i ∈ H2(�0
i ).

We note that for convex domains, Theorem 4 guarantees that the assumptions of
Theorem 2 are satisfied and we can expect linear convergence in the energy norm.
In order to ensure that the method converges according to the theory, we solve a few
problemswith several different mesh sizes h. The problemswe choose for this analysis
are a domain with eight infinite interfaces and a domain with 27 finite interfaces, see
Fig. 2. Infinite interfaces here means straight lines that pass through the entire domain,
leading to convex subdomains, while finite lines leads to non-convex subdomains. For

these cases, we let Ai = 1, A j = 1, Bj = 1 and f = e−10
√

(x1− 1
2 )2+(x2− 1

2 )2 on both
the interfaces and the bulk areas. The mesh edges are split in two in each refinement
of the mesh. The solution using eight interfaces is presented in Fig. 4.
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Fig. 2 Domains in Sect. 5.1 on which the convergence analysis is performed

The energy norm a(uref, uref)1/2 of the reference solution uref is then calculated for
each setup and compared to the finite element approximations using different levels
of refinement. The initial mesh is fitted to the interfaces and minimal in the sense
that interfaces are not refined. We then refine the initial mesh uniformly, using reg-
ular refinement, four times. The reference solution is constructed using five uniform
refinements. The convergence result is presented in Fig. 3. We detect a linear con-
vergence rate, which agrees with the theory for the case of convex subdomains, and
a convergence rate (0.76) that exceeds the predicted one for the case of non-convex
subdomains.

5.2 Convergence of the iterative solver

We solve Eq. (5) on a unit square with roughly 200 infinite interfaces, using a
fine-scale mesh that is uniformly refined once, and using parameters Ai = 1 and

f = e−10
√

(x1− 1
2 )2+(x2− 1

2 )2 on both the interfaces and the bulk areas. See Fig. 5 for
an illustration of the domain. The effect of varying the coefficients A j and Bj are
tested for two and three different cases respectively. The coefficients Bj , describing
the coupling between the bulk and interface subdomains, either all have the value 0.01
(weakly coupled), 1 (moderately coupled), or 100 (strongly coupled). The coefficients
A j either all have the value 1, or are uniformly distributed random numbers in the
interval [0.01, 1] on the different interface mesh edges. For these setups, the condition
numbers of the full matrix varies in the range 1011 to 1015. Therefore, solving the
system iteratively, without a preconditioner, leads to very poor convergence (around
5000 – 10000 iterations in the presented examples).

The number of iterations needed to reach convergence using the preconditioner
presented in Sect. 4 for H = 1/8 (the grid in Fig. 5) and H = 1/16 are shown in Table
1.We see rapid convergence of the conjugate gradient method given the high condition
number for the initial system matrix. We note that a higher number of iterations for
the case Bj = 100, corresponding to strong coupling, is needed. The convergence rate
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Fig. 3 The energy norm of the error between approximations uh and the reference solution uref

Fig. 4 The reference solution uref to the first numerical example with eight interfaces
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Fig. 5 Domains in Sect. 5.2 using coarse grid mesh size H = 1/8 for the subspace correction

Table 1 Number of iterations until convergence using the preconditioner, on a domain with approximately
200 infinite interfaces

seems to be independent of, or only depend weakly on H , as suggested in the theory.
The dense distribution of interfaces and the rapid convergence suggests that Theorem
3 is applicable. It is however difficult to prove this statement since it depends on the
exact connectivity and density properties on the network of interfaces.

We also solve the problem on a domain with finite lines, leading to non-convex
subdomains. We do this for roughly 200 lines of length ≤ 0.2. The parameters are
the same as in the case of infinite interfaces, so we examine weakly, moderately
and strongly coupled cases where A j is either constantly 1 or uniformly distributed
between 0.01 and 1. The condition numbers of the full matrix vary in the range 108

to 1013. The number of iterations using a preconditioner are shown in Table 2. Again,
we notice that the preconditioner does a very good job and that the convergence rate is
independent or only weakly dependent on the method parameter H . We again need a
higher number of iterations for the case Bj = 100 corresponding to strong coupling.

Funding Open access funding provided by Chalmers University of Technology.
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Table 2 Number of iterations until convergence using the preconditioner, on a domain with approximately
200 finite interfaces

(a) H = 1/8

Bj

Aj [0.01, 1] 1

0.01 29 24
1 31 25
100 65 46

(b) H = 1/16

Bj

Aj [0.01, 1] 1

0.01 36 28
1 37 29
100 75 54

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Regularity

In this section, we prove that the regularity of a solution to Eq. (5) posed on a two
dimensional polygonal Lipschitz domain is H3/2 in the bulk regions in general and
H2 in case of convex subdomains. We also show that we have H2-regularity on the
interface segments.

The strong formulation of the problem posed on �0
i reads

−divAi∇u0i = fi , in �0
i ,

u0i = 0, on �̄0
i ∩ ∂�,

n�0
i
· Ai∇u0i + Bju

0
i = Bju

1
j , on ∂�0

i ∩ �1
j .

With the help of the product rule and the fact that Ai ≥ α > 0, this problem can be
rewritten as

−�u0i = fi + ∇Ai · ∇u0i
Ai

, in �0
i ,

u0i = 0, on �̄0
i ∩ ∂�,

n�0
i
· ∇u0i + Bj

Ai
u0i = Bj

Ai
u1j , on ∂�0

i ∩ �1
j .

(23)

We allow the subdomain �0
i to be non-convex, but assume � to be convex. We

let �k denote the segments of the boundary of �0
i . We let ωk denote the internal

angle at corner Pk , between �k and �k+1. Further, we let D be the set of indices of
boundary segments that have Dirichlet boundary conditions, i.e., the segments from
∂�. Similarly, we let R be the set of indices of the boundary segments equipped with
Robin boundary conditions. We let S be the set of indices k for which �k and �k+1
both belong to either D or R, and M be the set of indices k for which �k and �k+1
belong to one each of them.
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Fig. 6 An example of a
subdomain �0

i . Angles between
different types of boundary
conditions have to be smaller
than π , while other angles have
to be smaller than 2π

We have that ωk < π , k ∈ D ∪ M , because of our assumption that � is convex.
We also have that ωk < 2π for all other k. In Fig. 6, we visualize an example of a
subdomain �0

i .
We are now ready to prove Theorem 4.

Proof From Lax-Milgram we have that u0i ∈ H1(�0
i ) and u1j ∈ H1(�1

j ). Since

u0i ∈ H1(�0
i ), along with the assumptions that fi ∈ L2(�0

i ) and Ai is smooth and
positive,wehave that

(
fi + ∇Ai · ∇u0i

)
/Ai ∈ L2(�0

i ). Further,wehave that Bj/Ai ∈
C∞(∂�0

i ∩ �1
j ), Bj/Ai > β/ ||Ai ||∞ > 0 and Bju1j/Ai ∈ L2(∂�0

i ∩ �1
j ). We

have that ωk/(2π) /∈ N for k ∈ S and ωk/(2π) + 1/2 /∈ N for k ∈ M . Thus, all
the requirements of Theorem 2.1 and Proposition 3.1 from [16] are fulfilled for our
problem (23) and hence there exist constants α�

k depending on fi , Ai , Bj and u1j , such
that

u0i −
∑

0<λk,�<1

α�
ku

(0)
k,� ∈ H2(�0

i ), (24)

where

λk,� =
{

�π
ωk

, k ∈ S,(
� − 1

2

)
π
ωk

, k ∈ M,
� = 1, 2, 3, ... (25)

and

u(0)
k,�(r , θ) =

{
rλk,� sin

(
λk,�θ

)
, k ∈ D ∩ S or R ∩ M,

rλk,� cos
(
λk,�θ

)
, k ∈ R ∩ S or D ∩ M,

(26)

if λk,� /∈ N, which is the only case present in (24). The variables r and θ are the local
polar coordinates such that Pk = (0, 0), θ = 0 along �k+1 and θ = ωk along �k .
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For both k ∈ S and k ∈ M , we have that λk,l > 1
2 . With 1

2 < λk,l < 1, we have

that u(0)
k,l ∈ H3/2(�0

i ). Thus, we conclude that u
0
i ∈ H3/2(�0

i ). If all subdomains �0
i

are convex and the requirements of Theorem 4 are fulfilled, we see from Eq. (23) that
u0i ∈ H2(�0

i ).
Isolating one interface segment �1

j , one gets the partial differential equation:

−divτ A j∇τu
1
j −

∑

i : (i, j)∈E0

Bj (u
0
i − u1j ) = f j , �1

j ,

u1j = 0, �̄1
j ∩ ∂�,

u1j = u1j ′ , ∂�1
j ∩ ∂�1

j ′,∑

( j,k)∈E1

n�1
j
· A j∇τu

1
j = 0, ∂�1

j ∩ �2
k,

which, with � ⊂ R
2, becomes:

− d2

dx2
u1j = f j + ∑

i : (i, j)∈E0
Bj (u0i − u1j ) + d

dx A j
d
dx u

1
j

A j
, �1

j ,

u1j = 0, �̄1
j ∩ ∂�,

u1j = u1j ′, ∂�1
j ∩ ∂�1

j ′,
∑

( j,k)∈E1

A j
d

dx
u1j = 0, ∂�1

j ∩ �2
k,

where x is a parametrisation of the interface segment.
Since f j ∈ L2(∂�0

i ∩ �1
j ), and Bj and A j are smooth, we can conclude that

u1j ∈ H2(�1
j ). ��
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