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ABSTRACT 
The distribution system operator lacks the knowledge of 
the heating system used by their customers to make sound 
grid planning decisions. Energy declaration from 
buildings and the large-scale rollout of smart meters 
provides an excellent opportunity to classify the heating 
system used. This paper proposes a machine-learning-
based approach using a support vector machine (SVM) 
with daily load curves (mean and standard deviation of 
consumption) extracted from smart meter measurements. 
Three heating types are analysed: district heating, exhaust 
air heat pump, and direct electric heating. The 
performance was compared among the classifiers using 
daily load curves extracted over one year, for each month, 
each week, and each day of the year. The highest average 
accuracy of 92.6% was obtained for the SVM classifier 
using daily load curves extracted for each week of a year 
as features. Furthermore, the classifier showed a higher 
performance than using an ensemble of SVM or random 
forest classifiers (90.6%/90.5%) proposed in the 
literature. Lastly, an error analysis of the misclassification 
was carried out, including building characteristics and 
geographical analysis. 

INTRODUCTION 
Distribution system operator (DSO) needs to know their 
customers' heating types when making grid planning 
decisions. In 2018, about 50% of the heating in detached 
houses in Sweden came from electricity [1]. However, 
there is no obligation for electricity consumers to notify 
the grid operator of energy efficiency measures or the type 
of heating system used. It is difficult to make sound grid 
planning if consumers change their heating types without 
notifying their DSO. On the other hand, the large-scale 
rollout of smart meters for consumers, with publicly 
available data, provides a great opportunity to characterise 
the heating types of end-users. This information can be 
used by the DSO to make better grid planning decisions. 
 
Different approaches have been used to classify electrical 
consumers including unsupervised [2] - [4] and supervised 
machine learning approaches [5] - [8]. The unsupervised 
methods cluster different load patterns. However, to 
classify new consumers’ heating types, a post-analysis and 
interpretation are required to identify the characteristic of 
the different clusters. Classification by supervised 
machine learning on the other hand does not require post-
analysis and interpretation. Authors [5] and [6] used a 

support vector machine (SVM) classifier to classify 
different properties of electricity consumers using a 
corresponding set of features extracted from smart meter 
measurements. The feature set in [6] was further extended 
in [7] and [8], evaluating multiple classifiers including 
random forest (RF) and SVM. SVM was found to be one 
of the best-performing classifiers among supervised 
classifiers for heat pump detection [8]. Though the authors 
in [7] and [8] used an extensive set of features extracted 
from smart meter measurements (91 features per week), 
the relationship between different months was not 
considered in a single classifier. Instead, the authors in [7] 
proposed an ensemble classifier, combining the result from 
a classifier of each week. Furthermore, [6] - [8] collected 
consumer class from survey data, which is usually time-
consuming. 
 
This paper aims to develop a new SVM classifier with 
daily load curves as features for classifying household 
heating types by using smart meter measurements and 
publicly available building data. The main contribution of 
this paper includes: 

• identifying residential heating types using SVM 
together with daily load curves extracted from 
smart meter measurements, 

• comparing classification performance using daily 
load curves for a year, each month, each week, 
and each day. 

The performance of the proposed SVM classifier is 
evaluated through testing using smart meter measurement 
data collected from households in a city in Sweden. 
Analyses of misclassification were also performed.  

CLASSIFICATION MODEL FRAMEWORK 
The proposed framework seen in Fig. 1 uses a supervised 
machine learning classifier for the heating type of 
electricity consumers. The proposed method uses a soft-
margin SVM with load curves extracted from smart meter 
measurements as feature input. Further details are 
described in the following subsections. 

 
Fig. 1: Framework of consumer classification 
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Daily load curve extraction 
Typical daily load curves are often used to describe and 
cluster the characteristics of electricity consumers, as in 
[2] - [4]. In [9], a daily load curve is defined by the average 
and standard deviation of electricity. These curves can be 
obtained for different seasons, temperature intervals, day 
of the week, etc. Fig. 2 shows an example of daily load 
curves extracted for each month of a year, including both 
the average value (top) and standard deviation (bottom) of 
electricity consumption. Consumers with three different 
heating types are plotted: district heating (DH), exhaust air 
heat pump (EAHP) and direct electric heating (DEH). It 
can be seen that the averaged daily load curve differs 
between the DH and the electric-based heating types 
(EAHP and DEH) in both the magnitude and shape within 
the day, as well as the magnitude within the year. EAHP 
and DEH also shows similarities when the load (and its 
variation) elevates during the winter period. 

 
Fig. 2: Average daily load curves extracted for each month of the 
year. Top: average consumption; Bottom– standard deviation 

This paper will evaluate the classification performance 
based on daily load curves. Note that the load curves are 
treated as static features by the classifier. That is, the time 
sequence of the time-dependent features is not considered.  

Overview of support vector machine 
SVM is a binary classifier (two classes) that often shows 
good performance in various classification tasks [10]. The 
aim is to find a hyperplane that separates the two classes 
with the highest margin. A soft-margin SVM allows 
training samples to violate this margin. These are 
penalised by 𝐶𝐶 ∙ 𝜉𝜉𝑖𝑖, where 𝐶𝐶 is a constant (specified before 
training) and 𝜉𝜉𝑖𝑖 a slack variable for the sample 𝒙𝒙𝑖𝑖. The 
value of 𝜉𝜉𝑖𝑖 increases as the sample are further away from 
the “right side” of the hyperplane. Samples that do not 
violate the margin are not penalised, in other words, 𝜉𝜉𝑖𝑖 =
0. Allowing errors in the training set makes it more robust 
against individual training samples. The objective function 
of the SVM can be defined as [11]: 

 
min
𝒘𝒘,𝑏𝑏

1
2
‖𝒘𝒘‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (1) 

subject to: 
 𝑦𝑦𝑖𝑖 ⋅ (𝒘𝒘 ⋅ 𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖 (2) 

for 𝑖𝑖 =  1, … ,𝑁𝑁 and 𝜉𝜉𝑖𝑖 ≥  0. 𝑁𝑁 is the number of training 
samples and 𝒘𝒘 is the normal vector to the hyperplane.     
𝒘𝒘 ⋅  𝒙𝒙𝑖𝑖 + 𝑏𝑏 =  0 is the hyperplane separating the two 
classes, where 𝑏𝑏 is a constant and: 

 
𝑦𝑦𝑖𝑖 = � +1 𝐢𝐢𝐢𝐢 class 𝑗𝑗

−1 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐢𝐢𝐨𝐨𝐨𝐨
 (3) 

By extension, a radial basis function (RBF) kernel is used 
to deal with non-linear separable classes, with the feature 
vector 𝒙𝒙𝑖𝑖 mapped from the feature space to a higher-
dimensional space. The SVM seeks a hyperplane that best 
separates the classes in that higher-dimensional space. The 
kernel is a Gaussian function and is given as [11], [12]: 

 𝐾𝐾(𝒙𝒙,𝒙𝒙′) =  𝑒𝑒−𝛾𝛾 �𝒙𝒙−𝒙𝒙′�
2
 (4) 

where ‖𝒙𝒙 − 𝒙𝒙′‖ is the Euclidean distance between two 
points, and 𝛾𝛾 the hyperparameter to tune. The greater the 
value of 𝛾𝛾, the closer the points need to be deemed similar. 
This results in a more complex decision boundary, which 
could lead to overfitting. Conversely, a low value of 𝛾𝛾 
results in a less complex decision boundary, which could 
lead to underfitting of the model. 

Training and classification 
SVM with multi-class classification 
To solve a multi-class classification problem, we use a 
one-vs-rest classifier, whereby each class in 𝑀𝑀 is 
compared with the remaining 𝑀𝑀 − 1 classes, resulting in 
𝑀𝑀 binary classifier if more than two classes. An unseen 
sample is assigned to the class with the maximum number 
of votes from the 𝑀𝑀 binary classifiers [12]. 
 
Imbalanced classes 
To balance the importance between the multiple classes, a 
weighting factor inversely proportional to the number of 
samples 𝑁𝑁𝑘𝑘 of a given class 𝑘𝑘 was used, 

 𝑤𝑤𝑘𝑘  =  
𝑁𝑁
𝑀𝑀𝑁𝑁𝑘𝑘

 , (5) 

where 𝑁𝑁 the total number of samples. The minimisation in 
(1) is instead [12]: 

     min
𝒘𝒘,𝑏𝑏

1
2
‖𝑤𝑤‖2 + 𝐶𝐶 ⋅ � 𝑤𝑤𝑘𝑘𝜉𝜉𝑖𝑖

𝑦𝑦𝑖𝑖=1

 , (6) 

 
Classification process 
Once the decision boundary is found using (6) and all 
training samples, the trained classifier can be used to test-
run. That is, classifying consumers’ heating type based on 
data that have not been used to develop the classifier.  

RESULTS 

Setup of experiments 
Data description 
The dataset consists of hourly smart meter measurements 
collected from households in a Swedish city over one year 
(2017). The labels (heating type) and heated area (for error 
analysis) were collected from the building’s energy 
declaration [13]. One and two-family households with 
only one smart meter and with one of the three common 
heating types are considered: DH, EAHP and DEH. 
 
Pre-processing 
Missing values were linearly interpolated if only two 
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successive values were missing. Consumers with missing 
data after the interpolation were filtered out as it is out of 
the scope to approximate the smart meter measurements. 
Furthermore, due to a change of sampling frequency 
(faulty communication), consumers with smart meter 
measurements with less than 0.1 kWh/h difference 
between two adjacent hours for a rolling window of 20 
hours were also removed. Lastly, both the training and test 
set were normalised using the mean 𝑚𝑚𝑙𝑙 and standard 
deviation 𝑠𝑠𝑙𝑙 of each feature 𝑙𝑙 in the training set. The 
normalised sample 𝑥𝑥�𝑖𝑖𝑙𝑙 were obtained by: 

 
𝑥𝑥�𝑖𝑖𝑙𝑙 =

𝑥𝑥𝑖𝑖𝑙𝑙 − 𝑚𝑚𝑙𝑙

𝑠𝑠𝑙𝑙
 (7) 

 
Dataset partition and cross-validation 
A fivefold cross-validation was used to evaluate the 
performance. The data were split randomly into five equal-
sized and non-overlapping folds according to the number 
of consumers/households. That is, data sequences from 
individual consumers were used only in training or testing, 
with 80% used for training and 20% used for testing. Each 
fold was used as the test set only once, with the remaining 
four folds used as the training set. The classifier was re-
trained using the corresponding training set and optimised 
hyperparameters. Table 1 summarises the size of the 
training and test set for the different heating types studied. 
 
Table 1: Number of individual customers exclusively used in each 
training/test set fold partition. 

Heating type Training Testing Total 
DH 1286 (41%) 322 (10%) 1608 (51%) 

EAHP 426 (14%) 107 (3%) 533 (17%) 
DEH 793 (26%) 198 (6%) 991 (32%) 
Total 2505 (80%) 627 (20%) 3132 (100%) 

 
Hyperparameter tuning 
A grid search of the hyperparameters was performed, with 
𝐶𝐶 ∈ {100, 101, 102, 103, 104, 105} and 𝛾𝛾 ∈ {10−7, 10−6, 
10−5, 10−4, 10−3, 10−2}. Using a two-fold cross-
validation on the training set, the parameter combination 
with the highest accuracy was selected for the final 
classifier.  
 
Criteria for performance evaluation 
The total accuracy, and the precision, recall and F1-score 
of each heating type 𝑐𝑐 were used to evaluate the 
performance of the model, defined as: 

 
Accuracy =

∑ 𝑇𝑇𝑃𝑃𝑐𝑐𝐶𝐶
𝑐𝑐=1

∑ 𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑃𝑃𝐶𝐶𝐶𝐶
𝑐𝑐=1

 (8) 

 
Precision𝑐𝑐 =

𝑇𝑇𝑃𝑃𝑐𝑐
𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑃𝑃𝐶𝐶

 (9) 

 
Recall𝑐𝑐 =

𝑇𝑇𝑃𝑃𝑐𝑐
𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝐶𝐶

 (10) 

 
F1,𝑐𝑐 = 2

Precision𝑐𝑐 ⋅ Recall𝑐𝑐
Precision𝑐𝑐 + Recall𝑐𝑐

 (11) 

where 𝐶𝐶 is the total number of classes, 𝑇𝑇𝑃𝑃𝑐𝑐 the true 
positive, 𝐹𝐹𝑃𝑃𝑐𝑐 the false positive, and 𝐹𝐹𝑁𝑁𝑐𝑐 the false negative 
for class 𝑐𝑐. 

Results and discussion 
Overall performance 
The effectiveness of the proposed model was evaluated by 
performing fivefold cross-validation. Table 2 compares 
the performance of SVM with daily load curves extracted 
over a year, for each month, each week and each day of the 
year, respectively, resulting in 48 features (24 hours mean 
and standard deviation values), 576 features (48×12 
months), 2496 features (48×52 weeks), and 8760 features 
(24×365 days). Note that daily load curves extracted over 
each day are the same as the original hourly smart meter 
measurement data but normalized according to (7). 
Comparing the results, Table 2 shows that increasing the 
number of features increases the performance of the 
classifier, with daily load curves for each week showing 
the best performance (92.6% accuracy). Though using the 
normalised hourly smart meter measurement directly as 
features showed a lower accuracy (91.8%), the SVM still 
showed a high performance, even though the number of 
features surpasses the number of training samples (risk for 
overfitting), and the data was non-stationary. It was noted 
that tuning the hyperparameters was essential, whereas 
poorly tuned hyperparameters showed a substantially 
reduced performance as the number of features increased.  
 
For all models, it is seen that the model had more 
difficulties distinguishing the electricity-based heating 
types than DH. The higher performance of the DH class 
was expected as the average consumption (see Fig. 2) was 
in general lower than the electricity-based heating sources. 
Furthermore, the high F1-score of DH (high precision and 
recall) shows that the models had higher difficulties 
distinguishing EAHP from DEH. As also seen in Fig. 2, 
the average profile of the electricity-based heating sources 
showed similar characteristics.  
Comparing to existing classifiers 

The proposed classifier with daily load curves was 
compared to the classifier proposed in [7] and [8], using 

Table 2: Performance of the fivefold cross-validation using a daily load curve extracted over a year, for each month, each week, and each 
day of the year, without weekday differentiation. All performance values are averaged ± standard deviation. 

Daily load curve Precision (%) Recall (%) F1-score Accuracy 
 DH EAHP DEH DH EAHP DEH DH EAHP DEH Total 

Over a year 97.8 ± 0.6 55.1 ± 3.2 79.5 ± 1.0 92.5 ± 1.3 70.7 ± 1.5 74.3 ± 3.7 95.1 ± 0.6 61.9 ± 2.1 76.8 ± 2.1 83.0 ± 0.9 
Over each month 98.3 ± 0.6 79.2 ± 2.1 90.3 ± 2.0 94.3 ± 0.2 86.1 ± 3.4 91.9 ± 2.2 96.3 ± 0.3 82.5 ± 0.8 91.1 ± 1.1 92.1 ± 0.4 
Over each week 98.5 ± 0.7 83.0 ± 1.4 88.7 ± 1.6 94.9 ± 0.7 83.3 ± 2.0 93.7 ± 1.4 96.7 ± 0.6 83.1 ± 0.6 91.1 ± 0.8 92.6 ± 0.3 
Over each day 98.5 ± 1.0 85.5 ± 3.0 85.3 ± 1.3 95.1 ± 0.9 77.3 ± 4.2 94.2 ± 1.5 96.8 ± 0.5 81.1 ± 1.4 89.6 ± 0.6 91.8 ± 0.3 
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only smart meter measurements. The work in [7] further 
improved household classification using smart meter 
measurements as proposed in [5] and [6]. Note that the 
authors evaluated multiple machine learning algorithms, 
however, for this comparison, we only consider SVM and 
RF which showed the highest performance in [8]. 
Furthermore, a grid search using a two-fold cross-
validation was used where the best-performing 
hyperparameters were selected. Searching grid was 𝐶𝐶 ∈
{100, 101, 102, 103, 104, 105} and 𝛾𝛾 ∈ {10−7, 10−6, 10−5, 
10−4, 10−3, 10−2} for SVM and for RF the minimum 
number of samples required to be a leaf node 
{2,4,8,16,32}. Table 3 summarises the performance of the 
test set. The results show that the proposed classifier using 
a daily load curve for each week of the year results in a 
better average test accuracy (92.6%) than the SVM and RF 
developed in [7] (90.6%/90.5%). Even though the 
precision or recall was lower for some heating types of the 
proposed classifier, the F1-score was the highest for all 
three heating types. 
 
Model and error analysis 
An important step in model development is analysing 
classification errors. This is done to better understand the 
misclassifications and see if there are any errors/biases. 
 
Building characteristics 
The classification error was evaluated by assessing the 
heated area and age of the building and whether there are 
systematic patterns between the correctly and incorrectly 
classified consumers, see Fig. 3. It is seen that for DH, the 
average heated area (left figure) was greater for the 
wrongly classified consumers than for the correctly 
classified ones. This could indicate that using the heated 
area in the modelling could further increase the 
performance of the model. However, the difference 
between the correctly and incorrectly classified consumers 
was small for exhaust air heat pumps and direct electric 
heating. Further studies are needed to analyse the 
background of this pattern. 
 
Furthermore, Fig. 3 shows a major difference in building 
age (right figure) between the different heating types; 
EAHP were normally found in newer buildings; DEH as 
the only heating source was found mainly in houses from 

 
Fig. 3: Classification performance as a function of left) heated 
area and right) age of the building. The boxplot was based on the 
test classification from all folds. 

the 70s; DH was seen in both newer and older houses. The 
age of the building could be included in the model. 
However, there is a risk that the classifier will show a bias, 
such as classifying a consumer with an older house with an 
EAHP installed as DEH. Instead, the age of a building may 
be seen as an indication of whether there is an increased 
probability of changing the heating system. Nonetheless, it 
is seen that the building of correct classified samples was 
on average slightly newer. Further analysis should be 
devoted to how to incorporate the age of the building into 
the model without inducing bias. 
 
Geographical analysis 
The geographical analysis of the misclassifications in Fig. 
4. shows that some areas were over-represented with 
misclassifications. This could indicate a geographical bias, 
which could be further investigated. For instance, it was 
found out that in one area with a high misclassification 
rate, the consumers had collectively changed their heating 
system from DH to EAHP. On one hand, the example 
shows that the energy declaration may be outdated since it 
was issued. This can cause errors in the training process 
and especially in the evaluation of the model. On the other 
hand, it also shows that the classification model can 
indicate whether a consumer's heating system has changed. 
This information is particularly useful to DSOs in their 
grid-planning process. Further discussions can be found in 
the report in [14]. 

CONCLUSION 
The proposed SVM framework has successfully classified 
the heating type of electricity consumers using smart meter 
measurements only. Households with one out of three 
common heating types were evaluated, including DH, 
EAHP and DEH. The proposed SVM using daily load 
curve for each week of the year as features showed the best  

Table 3: Comparing to existing classifier by fivefold cross-validation. All performance values are averaged ± standard deviation. 
Method Precision (%) Recall (%) F1-score Accuracy 

 DH EAHP DEH DH EAHP DEH DH EAHP DEH Total 
Proposed SVM with 
daily load curve over 
each week 

98.5 ± 0.7 83.0 ± 1.4 88.7 ± 1.6 94.9 ± 0.7 83.3 ± 2.0 93.7 ± 1.4 96.7 ± 0.6 83.1 ± 0.6 91.1 ± 0.8 92.6 ± 0.3 

SVM with ensemble 
classifier [7]* 95.1 ± 1.2 93.8 ± 3.2 83.3 ± 1.6 96.4 ± 0.7 64.2 ± 1.5 95.6 ± 0.4 95.7 ± 0.9 76.2 ± 1.9 89.0 ± 1.0 90.6 ± 0.5 

RF with ensemble 
classifier [7]* 96.3 ± 0.4 91.0 ± 3.8 82.5 ± 1.3 94.8 ± 0.8 67.7 ± 4.7 95.9 ± 0.7 95.5 ± 0.5 77.6 ± 3.9 88.7 ± 0.6 90.5 ± 0.5 

* Only using feature extracted from smart meter measurements, not including weather-based features 
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Fig. 4: Misclassification rate per zip code, based on the test 
classification from all folds. (This map was created using 
ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the 
intellectual property of Esri and are used herein under license. 
Copyright © Esri. All rights reserved. For more information 
about Esri® software, please visit www.esri.com) 
 
performance, with a classification accuracy of 92.6%. 
When the normalised hourly smart meter measurements 
were used directly as features, the performance was still 
good with an accuracy of 91.8%. Furthermore, compared 
to existing classifiers using an ensemble classifier with 
SVM and RF, the proposed method showed a higher 
performance (compared to 90.6% and 90.5%). This shows 
that including the load curve in one classifier can achieve 
higher performance. Moreover, the posterior analysis, 
using publicly available building data, showed some key 
findings that can be used to further investigate 
misclassified samples to improve the classification 
accuracy. First, misclassified consumers with DH tended 
to have a larger heated area than the correctly classified 
ones. Second, a geographical analysis of the misclassified 
consumers showed a good indication of whether there was 
a geographical bias. This is valuable information for the 
distribution system operator during their long-term grid 
planning and should be further investigated. 
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