VDCA Swedish Vehicle Dynamics Competence Area

Proceedings from 2023 Vehicle Dynamics seminar

version modified 2024-01-13 12:00

editors: Fredrik Bruzelius <u>fredrik.bruzelius@chalmers.se;</u> Lars Drugge <u>larsd@kth.se;</u> Bengt Jacobson <u>bengt.jacobson@chalmers.se</u>

The contents of these proceedings include both **presentations and poster material** and are published at <u>https://research.chalmers.se/en/publication/539363</u>. It will also be available at <u>https://kth.diva-portal.org/</u> and <u>https://www.sveafordon.com/</u>.

The seminar was arranged by Vehicle Dynamics Competence Area and Swedish Vehicular Engineering Association (SVEA, <u>https://www.sveafordon.com/</u>).

Contents

Contents

Announcement of the Seminar

Registered participations

Introduction to the seminar

Presentation 1: Development of frame test rig with MBS simulations Joakim Eriksson, Scania

Presentation 2: *Vehicle dynamics testing in a moving-base driving simulator* Sogol Kharrazi, VTI

Presentation 3: *Cold Climate Testing: Why Arjeplog and Colmis in northern Sweden become a hub for the global automotive industry every winter* Per Gyllenberg and Benjamin Minshaw, Colmis

Presentation 4: AstaZero tracks Håkan Andersson, Astazero

Presentation 5: *Suspension design as part of complete vehicle development* Yansong Huang, VCC and Chalmers

Presentation 6: *Tyre rolling resistance at various operational conditions and limitations in current tyre labelling* Jukka Hyttinen, Scania and KTH

Presentation 7: *Tyres and the purposes of models* Edo Drenth and Niklas Fröjd, Volvo Trucks

Presentation 8a: Vehicle Engineering MSc programme, Mikael Nybacka, KTH

Presentation 8b: Mobility engineering MSc programme, Dag Bergsjö, Chalmers

Poster 1: *Quantify and mimic the feedback through the steering wheel at some driving conditions* Aron Dalemo, Polestar & Chalmers

Poster 2: *Using torque vectoring to improve steering predictability while minimizing energy use in Heavy electric vehicles* Jonas Persson and Jonathan Åkesson, Volvo Trucks & Chalmers

Poster 3: *Continuously controlled damping tuning on four poster rig* Jesper Ramsberg, VCC & Chalmers

Poster 4: *Optimised force distribution algorithm and model* Guglielmo Nappi and Sanjay Banerjee, Scania & KTH

Poster 5: *Modelling and measurements of singularity-induced vehicle motion during low-speed driving* Luca Mereu, Politecnico di Torino & Chalmers

Note that the pdf file is generated with these "headings as pdf bookmarks", so you can also navigate via the "bookmark pane" in your pdf reader.

Announcement of the Seminar

Vehicle Dynamics seminar 2023

Testing, development, and verification for Vehicle Dynamics

About the seminar

The seminar will be in "hybrid format", meaning that both participation is possible either inreal-life and on-line.

In-real-life

Wednesday 2023-05-24, CET 09:00-16:30 at

AstaZero Test Track, https://www.astazero.com/

Göksholmen 1, SE-504 91 Sandhult

Location code (Plus Code): QQHH+9V Sandhult

On-line:

Link to on-line meeting will be sent to those who register as on-line.

Registration

Registration is made via <u>https://www.sveafordon.com/event/test-development-and-verification-for-vehicle-dynamics-2023/</u>. If you are member, it is good if you log in before registration.

You will get a confirmation that you are registered.

Seminar costs

The seminar is free for SVEA members. SVEA will sponsor food (fika and light lunch) for members (incl. pending membership applicants) who attend in-real-life.

For non-members attending in-real-life there will be a fee of 210 SEK (>membership fee).

So, we encourage to apply for SVEA membership (<u>https://www.sveafordon.com/en/for-members/register/</u>). SVEA membership fee is 200 SEK/year (junior 0 SEK, senior 100 SEK).

Purpose with the seminar

- Present and discuss interesting issues within and challenges for Testing, development, and verification for Vehicle Dynamics
- Create understanding and interest for vehicle dynamics
- Develop, increase, and spread competence
- Networking between engineers, organisations, and students

SVEAs objectives

- To make vehicular technology's voice heard in an increasingly more challenging debate among different vehicle types and transport modes both domestic and globally
- To build a network for efficient distribution of technological information
- o To attract the next generation of Swedish vehicular engineers

Agenda

Moderator: Ingemar Johansson, Chairman of SVEA

09:00-09:40	Coffee and registration		
09:40-09:50	Welcome	Ingemar Johansson (SVEA), Bengt Jacobson (VDCA), Håkan Andersson (AstaZero)	
09:50-11:30	Session 1: Presentations (20+10 min each):		
	1. Development of frame test rig with MBS simulations	Joakim Eriksson, Scania	
	2. Vehicle dynamics testing in a moving-base driving simulator	Sogol Kharrazi, VTI	
	3. Cold Climate Testing: Why Arjeplog and	Per Gyllenberg and	
	<i>Colmis in northern Sweden become a hub for the global automotive industry every winter</i>	Benjamin Minshaw, Colmis	
	Micro presentations of posters (3 min each):		
	<i>Quantify and mimic the feedback through the steering wheel at some driving conditions</i>	Aron Dalemo, Polestar & Chalmers	
	Using torque vectoring to improve steering predictability while minimizing energy use in Heavy electric vehicles	Jonas Persson Jonathan Åkesson, Volvo Trucks & Chalmers	
11:30-12:30	Demo tour		
	4. <i>AstaZero tracks</i> . Starts with small presentation, then we join in a bus to go out to the tracks.	Håkan Andersson (AstaZero)	
12:30-13:30	Light lunch with networking and poster discussion		

13:30-14:45	Session 2: Presentations (20+10 min each):		
	5. Suspension design as part of complete vehicle development	Yansong Huang, VCC and Chalmers	
	6. Tyre rolling resistance at various operational conditions and limitations in current tyre labelling	Jukka Hyttinen, Scania and KTH	
	Micro presentations of posters (3 min each):		
	Continuously controlled damping tuning on four poster rig	Jesper Ramsberg, VCC & Chalmers	
	Optimised force distribution algorithm and model	Guglielmo Nappi and Sanjay Banerjee, Scania & KTH	
	Modelling and measurements of singularity-induced vehicle motion during low-speed driving	Luca Mereu, Politecnico di Torino & Chalmers	
14:45-15:15	Coffee with networking and poster discussion		
15:15-16:15	Session 3: Presentations (20+10 min each):		
	7. Tyres and the purposes of models	Edo Drenth and Niklas Fröjd, Volvo Trucks	
	8. Swedish vehicle engineering education		
	$\circ~$ KTH, Vehicle engineering	 Mikael Nybacka, KTH 	
	 Chalmers, Mobility engineering 	 Dag Henrik Bergsjö, Chalmers 	
	• Discussion	• All	
16:15-16:30	Wrap-up		
	 Feedback on present years seminar. Proposals for next year. Discussion on smaller events beside yearly seminar ("workshops") 		

Poster exhibition

There will be an exhibition of posters. It can be, e.g., master theses or PhD theses, both concluded and almost concluded. Please contact Lars Drugge <u>larsd@kth.se</u> or Bengt Jacobson <u>bengt.jacobson@chalmers.se</u> if you would like to propose a poster.

Each poster presenter should do a poster and a "micro presentation" with a few slides. Then also be available for questions at the poster stands.

Proceedings

There will be proceedings from the seminar. This means that the presenters, including poster presenters, are welcome with a paper, or at least a public version of their presentation material. The proceedings will be published on the web. It will include a list of seminar participants, unless you ask us to not list your name.

The seminar is arranged by the Swedish Vehicle Dynamics Competence Area (VDCA) and hosted by SVEA. The seminar is arranged with VDCA representatives from:

AstaZero CEVT Chalmers KTH VTI AFRY Automotive Scania Volvo Cars Volvo GTT

VDCA Swedish Vehicle D	ynamics Competence Area
SWEDISH VEHICULAR ENGINEERING ASSOCIATION SVERIGES FORDONSTEKNISKA FÖRENING	

Registered participations

57 registered

NY.		
Name	Affiliation	e-mail
Aakash Rishi	Chalmers	aakashr@student.chalmers.se
Alireza Marzbanrad	Combine	rad.alireza62@gmail.com
Anton Albinsson	Polestar	antonalbinsson@hotmail.com
		aron.dalemo@polestar.com;
Aron Dalemo	Polestar & Chalmers	aron.dalemo@hotmail.se
Bengt J H Jacobson	Chalmers	bengt.jacobson@chalmers.se
Benjamin Minshaw	Colmis	benjamin@colmis.com
Carl Emvin	Chalmers	emvin@chalmers.se
Dag Bergsjö	Chalmers	dagb@chalmers.se
Daniel Korhonen	Scania	daniel.korhonen@scania.com
		Dinesh.ramachandran@scania.com;
Dinesh Ramachandran	Scania	rk.dini@gmail.com
Dragan Sekulic	Chalmers	dragan.sekulic@chalmers.se
Edo Drenth	Volvo VAS	edo.drenth@volvo.com
Egbert Bakker	Volvo Cars	ebakker@bahnhof.se
Eriksson Joakim	Scania	joakim.y.eriksson@scania.com
Fredrik Bruzelius	Chalmers	fredrik.bruzelius@chalmers.se
Guglielmo Nappi	Scania & KTH	guglielmo.nappi@yahoo.com
Gunnar Olsson		gu.olsson@telia.com
Gustav Vallinder	Scania	gustav.vallinder@scania.com
Göran Holmgren	Colmis	goran@colmis.com
Henrik Hvitfeldt	КТН	hhv@kth.se
Håkan Andersson	Astazero	hakan.andersson@astazero.com
Ingemar Johansson	SVEA	ingemarj55@gmail.com
		ramsberg@student.chalmers.se;
Jesper Ramsberg	Chalmers och Polestar	jesper.ramsberg@gmail.com
Jezdimir Milosevic	Scania	jezdimir.milosevic@scania.com
Joakim Eriksson	Scania	joakim.y.eriksson@scania.com
Jolle IJkema	Scania	jolle.ijkema@scania.com
Law as Davisa	Value Trusplace Chalmann	perssjon@student.chalmers.se;
Jonas Persson	Volvo Trucks & Chaimers	jongkos@student.chalmers.se
Ionathan Åkesson	Volvo Trucks & Chalmers	jonakes@student.chainers.se; i akesson99@gmail.com:
Jukka Hyttinen	Scania and KTH	julka hyttinen@scania.com
	KTH	larsd@kth.se
Laura Didinger	Scania	Laura Didinger@scania.com
Laura Diuliger	Volvo Trucks & Chalmore	leon henderson@volvo.com
	Politecnico di Torino &	luca mereu@studenti polito it:
Luca Mereu	Chalmers	lucamereu10@hotmail.it

Mahmoud Selim	Scania	mahmoud.selim@scania.com
Maliheh Sadeghi Kati	Volvo Trucks & Chalmers	maliheh.sadeghi.kati@volvo.com
Markus Agebro	Scania	markus.agebro@scania.com
Mathias Lidberg	Fraunhofer	mathias.lidberg@gmail.com
Matthias Klomp	VCC & Chalmers	matthijs.klomp@volvocars.com
Mikael Nybacka	КТН	mnybacka@kth.se
Niklas Fröjd	Volvo GTT	Niklas.Frojd@volvo.com
Niklas Sehlstedt	Scania	niklas.sehlstedt@scania.com
Pedro Lima	Scania	pedro.lima@scania.com
Per Gyllenberg	Colmis	per@colmis.com
Per-Olov Fryk		pof1949@yahoo.se
Rickard Green	Scania	rickard.green@scania.com
Samira Deylaghian	Chalmers	samira.deylaghian@chalmers.se
Sanjay Banerjee	Scania & KTH	sanjayb@kth.se
Shounak Bhattacharyya	Scania	shounak.bhattacharyya@scania.com
Shreekara Ramesh		rshreekara@chalmers.student.se; rshreekara@gmail.com
Smit Sapria	VTI	smit.saparia@vti.se
Sogol Kharrazi	VTI	sogol.kharrazi@vti.se
Ted Demner	Scania	ted.demner@scania.com
Vinayanand Bangalore Venkatesh Prasad		vinayanandbv@gmail.com
Wenliang Zhang		zhang.wenliang@outlook.com
Xujing Song	КТН	xujing@kth.se
Yansong Huang	VCC and Chalmers	yansong.huang@volvocars.com
Ömur Can Kayaokay	Scania	omur.can.kayaokay@scania.com

Introduction to the seminar

VDCA Swedish Vehicle Dynamics Competence Area

Introduction Vehicle Dynamics Seminar 2023 Testing, development and verification for Vehicle Dynamics

Wednesday 2023-05-24 at AstaZero

Issued by: Bengt Jacobson and Ingemar Johansson Date: 2023-05-23

Introduction

- Introduction Vehicle Dynamics Seminar Testing, development and verification for Vehicle Dynamics (BJ)
- VDCA Swedish Vehicle Dynamics Competence area (BJ)
- SVEA Swedish Vehicular Engineering Association (IJ)
- Why Vehicle Dynamics (IJ)
- Practical details and agenda today (BJ)

Purpose with the Seminar:

- Present and discuss interesting issues within and challenges for Testing, development, and verification for Vehicle Dynamics
- Create understanding and interest for Vehicle Dynamics
- Develop, increase and spread competence
- Networking between engineers, organisations and students

Thank you to AstaZero for hosting the seminar.

Special thank you to Håkan Andersson and Henrik Biswanger who have made this possible

Introductions:

Bengt Jacobson

Professor and group leader Vehicle Dynamics,

Division of Vehicle Engineering and Autonomous Systems, Mechanics and Maritime sciences,

Chalmers University of Technology

Gothenburg Sweden

and

Leader of VDCA

• Ingemar Johansson Chair of the Board SVEA

Testing, development and verification for Vehicle Dynamics

- Vehicle Dynamics Seminar, an annual seminar, since 2013
- This year is the subject for the seminar is: "Testing, development and verification for Vehicle Dynamics"
- There is currently a lot of work ongoing to develop new analysis and simulation tools for the development process for vehicles
- Therefore is the development process for vehicles now more efficient where more alternatives can be tested in analysis tools, lead-times have been shortened and test and development in vehicles has been reduced
- However, test and development in vehicles will still be required to develop the attributes that are important for the driver and to subjectively assess how the complete vehicle works

VDCA - Swedish Vehicle Dynamics Competence Area

VDCA is since last year a working group within SVEA

SVEA - Swedish Vehicular Engineering Association

- SVEA, the Swedish Vehicular Engineering Association, is a society for people working in the Swedish Automotive industry and in the education and research within automotive engineering
- SVEA is a society that keeps itself updated about developments in the automotive industry and in research and informs its members and the public about any changes in e.g. technology and work processes
- SVEA arranges Seminars that can be of interest to its members. The purpose of the seminars is to present the current status and expected future solutions within selected technical areas
- SVEA is a member of FISITA, which gives us access to a world-wide organization for automotive engineers with a reach to over 200,000 engineers in 35 countries. FISITA provides a global platform for knowledge exchange between industry, societies and academia, helping to guide the future direction of the automotive mobility engineering profession
- SVEA has around 200 individual members and several corporative memberships. We are actively working to increase the membership numbers

Why Vehicle Dynamics

- Vehicle Dynamics is a vehicle attribute that is critical for the vehicle performance, e.g. passive safety and how the vehicle is perceived by the driver
- Vehicle Dynamics is affected by e.g. the suspension systems, the steering system, wheel and tyres, brakes and the propulsion system
- The Vehicle Dynamics is developed from the mechanical systems and nowadays also by control systems and active systems
- Ride comfort is another vehicle attribute that is related to Vehicle Dynamics. Ride Comfort and Vehicle Dynamics need to be balanced and therefore must the Vehicle Dynamics be at a high level to allow for good Ride Comfort
- Automated driving systems need to have good Vehicle Dynamics when the controls systems are developed
- Therefore is Vehicle Dynamics a key attribute when a vehicle is developed

Practical details and agenda today

Practical details:

- The Seminar is a Hybrid meeting, i.e. in-real-life meeting and on-line meeting. This may create some difficulties that we need to resolve during the day
- On-line attendees should ask questions in the Comments, but if necessary you can also ask questions directly in the on-line meeting
- Every presentation is planned to take 20 minutes and there are 10 minutes for questions and discussion
- The Poster presentations are planned to take 3 minutes and questions and discussions are planned in breaks

Agenda points:

- 09:40-09:50 Welcome and Introduction
- 09:50-11:30 Session 1: 3 presentations and 2 posters
- 11:30-12:30 Demo Tour AstaZero, presentation and bus tour
- 12:30-13:30 Lunch, networking and poster discussions
- 13:30-14:45 Session 2: 2 presentations and 3 posters
- 14:45-15:15 Coffee, networking and poster discussion
- **15:15-16:15 Session 3:** 1 presentation and 1 point about Vehicle Engineering Education
- 16:15-16:30 Wrap up

SVERIGES FORDONSTEKNISKA FÖRENING

Agenda

Start	End	No	What	Who	From
09:00	09:40		Coffee and registration		
09:40	09:50		Welcome	Ingemar Johansson	SVEA
				Bengt Jacobson	VDCA & Chalmers
				Håkan Andersson	AstaZero
09:50	11:30		Session 1 Presentations (20+10 min each)		
09:50	10:20	1	Development of frame test rig with MBS simulations	Joakim Eriksson	Scania
10:20	10:50	2	Vehicle dynamics testing in a moving-base driving simulator	Sogol Kharrazi	VTI
10:50	11:20	3	Cold Climate Testing: Why Arjeplog and Colmis in northern Sweden become	Per Gyllenberg	Colmis
			a hub for the global automotive industry every winter	Benjamin Minshaw	
			Session 1 Posters (3 min each)		
11:20	11:23		Quantify and mimic the feedback through the steering wheel at some	Aron Dalemo	Polestar &
			driving conditions		Chalmers
11:23	11:26		Using torque vectoring to improve steering predictability while minimizing	Jonas Persson	Volvo Trucks &
			energy use in Heavy electric vehicles	Jonathan Åkesson	Chalmers
11:26	11:29				
11:30	12:30		Demo Tour AstaZero test facility		
		4	AstaZero tracks. Short presentation	Håkan Andersson	AstaZero
			Bus tour test facitility		
12:30	13:30		Light lunch with networking and poster discussion		

Agenda

13:30	14:45		Session 2: Presentations (20+10 min each)		
13:30	14:00	5	Suspension design as part of complete vehicle development	Yansong Huang	VCC and Chalmers
14:00	14:30	6	Tyre rolling resistance at various operational conditions and limitations in	Jukka Hyttinen	Scania and KTH
			current tyre labelling		
			Session 2 Posters (3 min each)		
14:30	14:33		Continuously controlled damping tuning on four poster rig	Jesper Ramsberg	VCC & Chalmers
14:33	14:36		Optimised force distribution algorithm and model	Guglielmo Nappi	Scania & KTH
				Sanjay Banerjee	
14:36	14:39		Modelling and measurements of singularity-induced vehicle motion during	Luca Mereu	Politecnico di Torino &
			low-speed driving		Chalmers
14:45	15:15		Coffee with networking and poster discussion		
15:15	16:15		Session 3: Presentations (20+10 min each)		
15:15	15:45	7	Tyres and the purposes of models	Edo Drenth	Volvo Trucks
				Niklas Fröjd	
15:45	16:15	8	Swedish vehicle engineering education		
			KTH, Vehicle engineering	Mikael Nybacka	ктн
			Chalmers, Mobility engineering	Dag Henrik Bergsjö	Chalmers
			Discussion		
16:15	16:30		Wrap-up		
			Feedback on this seminar	Ingemar, all	
			Proposals for next year	Ingemar, all	

Presentation 1: **Development of frame test rig with MBS simulations** Joakim Eriksson, Scania

JOAKIM ERIKSSON, SCANIA

Development of new frame test rig with MBS simulations

SCANIA

Agenda

Introduction

Background

Simulations contribution

Timeline

Result

Summary

Introduction

Name: Joakim Eriksson

Working experience: 10 years at Scania

Position: Calculation engineer at truck chassis department

Background: Engineering Physics at Umeå University

Background

- Existing frame rig was old
- Boundary conditions
- Improved capacity & speed
- More drive channels
- Input channels specific for BEV components

MBS contribution to frame rig development

- Obtain loads from full vehicle simulations
- Evaluate and rank different concepts for boundary conditions
- Loads & durability of rig components
- Dimensioning of struts & cylinders
- Geometry assurance
- Strategies for obtaining drive signals & editing test track measurements

Time [s]

Time [s]

Time (s)

2023-05-24 Scania CV / Joakim Eriksson / Development of new frame test rig with MBS simulations

Corner module

- Four cylinders
- Four degrees of freedom
 - Vertical
 - Lateral
 - Longitudinal
 - Brake torque
- Attaches to the hub
- Available for three axles

Required measurement channels for controlling the rig

- Wheel force transducers
 - Longitudinal and lateral wheel actuators
 - Braking torque
- Distance axle frame
 - Vertical wheel actuators (leaf suspension)
- Air spring force (calibrated strain gauges)
 - Vertical wheel actuators (air suspension)
- Frame twist angle
 - Twist input actuator
- Bending strain gauge on rod
 - BEV boundary condition actuators

Rig control method

Test vehicle

Measured data

Virtual model

RPC Pro

Summary

 \checkmark

The rig is now operational

Large increase in test speed

Ability to test BEV vehicles

The rig design will be able to handle any obstacle we have at Scania test track

SCANIA

Joakim Eriksson Calculation Engineer | Truck Chassis Development | Scania CV AB Phone: +46 8 553 701 89 Mobile: +46 70 08 781 13 Scania CV AB, By118, 151 87 Södertälje, Sweden joakim.y.eriksson@scania.com

Presentation 2: *Vehicle dynamics testing in a moving-base driving simulator* Sogol Kharrazi, VTI

Vehicle Dynamics testing in a moving-based driving simulator

Sogol Kharrazi

SVEA Vehicle Dynamics Seminar, 2023

vti

Short information about me

Senior researcher VTI, Vehicle systems and driving simulation unit

Adjunct associate professor Linköping University, Vehicular systems division

I got my PhD from Chalmers in 2012.

Introduction

Driving simulators are used in a broad spectrum of applications. However, using driving simulators as a tool for vehicle dynamics testing has not been so common.

Driving simulators can be a valuable addition to the tool chain for vehicle dynamics development.

- Flexible: vehicle design, driving scenario and surroundings can be changed
- Repeatable
- Safe
- Immediate changes possible: a fresher recollection of previous experiences

VTI moving-base driving simulators

SIM III, Linköping

SIM IV, Gothenburg

Vehicle dynamics in Sim IV

Sim IV has been used to assess and compare the dynamics of different heavy vehicles.

More specifically, to compare driver's perception of performance of High Capacity Transport (HCT) vehicles vs. conventional vehicle combinations.

First step was to tune the motion cueing algorithm for lateral dynamics assessment of heavy vehicles.

Tuning was performed subjectively, with help from a small group of professional test truck drivers

Pre-study

• The objective was to investigate whether Sim IV can provide a realistic driving experience with respect to the modifications of a heavy vehicle model.

IS TONT?T

• A modelled single unit truck was used in the study, driven by 10 professional test drivers working at Volvo.

Pre-study

The drivers drove and compared the baseline truck with 4 modified versions of it with different parameter sets.

- **Parameter set 1:** Increased roll stiffness: a 100 % and 50% increase of the roll stiffness of the rear and front axles of the truck
- **Parameter set 2:** Decreased roll stiffness: a 40% decrease on the rear axles roll stiffness
- **Parameter set 3:** Softer rear tires: a 25% decrease on the cornering stiffness of the tires at rear axles
- **Parameter set 4:** Increased roll understeer: a roll steer coefficient of -0.45 is considered to model roll understeering, in contrast to a zero roll-steer coefficient for the baseline vehicle

Results of the pre-study

The drivers' deduction of the applied changes on the truck were categorized as **correct**, **quite correct**, or **incorrect**

- For parameter set 3 (softer rear tires), 75% of the drivers guessed the parameter change completely **correct** while the remaining drivers also had a **quite correct** deduction.
- The results for the other three parameter sets were also very promising.
- There were only 2 incorrect answers, out of a total of 32

Main simulator study

55 truck drivers participated in the study, and each driver drove a pair of vehicles, a conventional heavy vehicle and an HCT vehicle, in SIM IV.

	Heavy Vehicle Combination	
1	Tractor-Semitrailer	40T/16.5m
2	Tractor-Semitrailer-Dolly-Semitrailer (Adouble)	80T/30m
3	Truck-Centre Axle Trailer	40T/19m
4	Truck-Centre Axle Trailer-Centre Axle Trailer	74T/28m
5	Truck-Dolly-Semitrailer (Nordic)	64T/25m
6	Truck-Dolly-Link Trailer-Semitrailer (Truck-Bdouble)	83T/32m

Main simulator study

After each drive, the drivers were asked to rate different aspects of the vehicle performance, in a 7-grade scale, with questions such as:

- How easy it is to keep the vehicle on the desired path on the curvy roads
- How they perceive the roll stability of the vehicle on the curvy roads
- How they perceive the trailers, stable or oscillatory, during overtaking and lane changes.
- How easy it is to control the vehicle.

There was also one concluding question, asking the drivers to compare the controllability of the two vehicles they drove.

Results, driving experience

Average ranking of the total driving experience realism was 5.2 out of 7.

	Average rating (?/ 7)	Standard deviation
Roads	5.0	1.23
Surrounding	4.6	1.35
Braking	4.7	1.44
Accelerations	4.8	1.44
Sound	4.7	1.55
Suspensions	4.8	1.52
Cabin vibrations	4.9	1.37
Steering feel	4.7	1.56
Manoeuvrability	4.7	1.33
Speed perception	4.7	1.55

Results, subjective vs objective evaluation

Results, controllability of the vehicles

Models' parameterization was done so that one pair had a similar performance (Nordic & Truck-Bdouble). The drivers' ranking of the controllability matched the expectations based on the parametrization.

- Adouble vs tractor-semitrailer: 4.8 / 7, slightly more difficult
- Truck-Bdouble vs Nordic: 3.7 / 7, almost the same
- Truck single CAT vs Duo CAT: 4.9 / 7, slightly more difficult

vti

ANTERNA .

Conclusions

- The tested simulator has the capability of providing satisfactory feedback to the drivers so that they could correctly deduce the vehicle changes and perceive the differences in performance of various vehicles.
- There was a strong correlation between drivers' perceived performance of the vehicles and the objective performance measures.
- Moving base driving simulators can benefit the field of vehicle dynamics testing, not as a replacement but rather a complementing tool in the existing test chain.

For more information refer to the following publications

- S. Kharrazi, B. Augusto and N. Fröjd, "Vehicle dynamics testing in motion based driving simulators," Vehicle System Dynamics, 2019.
- S. Kharrazi, B. Augusto and N. Fröjd, "Assessing dynamics of heavy vehicles in a driving simulator," Journal of Transportation Research Part F: Traffic Psychology and Behaviour, vol. 65, pp. 306-315, 2019.
- B. Augusto, S. Kharrazi and N. Fröjd, "Vehicle Dynamics Testing in Driving Simulators A Case Study for Heavy Vehicles," ViP Publication, report 2017-3, 2019.
- S. Kharrazi, F. Bruzelius and U. Sandberg, "Performance based standards for high capacity transports in Sweden-FIFFI project 2013-03881-Final report," VTI, report 948A, 2017.

Future plans

Driveability assessment in Sim III

PREDICTing and evaluating driveability and performance of zero emission heavy duty vehicles

Scania, VTI, LiU, KTH

Thank you!

sogol.kharrazi@vti.se

Presentation 3:

Cold Climate Testing: Why Arjeplog and Colmis in northern Sweden become a hub for the global automotive industry every winter Per Gyllenberg and Benjamin Minshaw, Colmis

About the presenters

Per Gyllenberg

Benjamin Minshaw

Deputy Manager @ Colmis

Worked in a variety of roles at the company until becoming the Deputy Manager (2018)

Bachelor Degree in Economics (BSc)

Marketing Manager @ Colmis

Worked in a variety of roles at the company until becoming the Marketing Manager (2019)

Master in Business Administration (MBA)

COLMIS

Vehicle Dynamics Seminar 2023

AstaZero & Online - May 24th, 2023

66°03'06"N 18°01'12"E

2023-05-22

The home of Winter Testing.

Agenda

This is Colmis Why Arjeplog Why Colmis Q&A Session

This is Colmis.

An open and independent winter proving ground that serves the global automotive industry.

Our purpose.

Everything you need, in one place. So that you can focus on the testing.

Our way.

COLMI

Not a customer, a partner.

A customised cold test solution.

Your success is our success.

Together we are Colmis.

2023-05-22

"If you are looking for a reliable supplier Colmis is the one to choose." Contract customer -23

"Colmis has a relaxed atmosphere, they don't panic, they're friendly and professional. You can have a nice chat with them but you can also have a technical discussion and talk about some problems and they will solve it."

Spot customer -22

Source: Independent Consultancy Audit

2023-05-22

How would you rate your overall satisfaction with your stay at Colmis this season (comparing it to previous years, if applicable)?

Source: Customer Survey Season 2022/2023

Why Arjeplog.

2018-2019 2019-2020 2020-2021 2021-2022 2022-2023 5°C Average Temperature 0°C -5°C -10°C -15°C -20°C NAL NON DEC MAR OCT NON DEC FEB MAR APR OCT NON DEC JAN FEB MAR APR OCT JAN FEB MAR DEC NAL FEB APR NOV DEC NAL FEB APR NON MAR OCT OCT

Maximum temperature to Minimum temperature (average)

Average Temperature / Lowest reached Temperature during the month

Global Winter Testing Hub: OEMs & suppliers Confidentiality: Scarcely populated Area infrastructure: Network of public roads Access: 1h from airport

Why Colmis?

Safety First.

BEG 11S

Sustainability & Quality

ColmisPlus Vehicle development support

Also third party supply of materials & equipment for testing, project coordination, and much more...

SIMLOC

Accommodation

>90 hotel and apart-hotel roomsPrivate house rentals, apartments, cabins.Comfortable, flexible, nearby.

12000 m² Workshops & Office space

>90

Hotel rooms + rental of private houses/apartments

>50 land & lake-ice tracks 700 km of tracks

CHARLES IS

employees

The Land Tracks

Some examples of many

Dynamic Area

Twisted Humps and Cobble Stone

Circle Track

Hill Tracks 10-20%

Split-µ

Forest Track

The Lake Tracks

体的制作

The Lake Tracks

Ice thickness (cm)	Maximum permissible gross weight (also applies to vehicle trailer) (tonnes)	Maximum permissible axle load (tons)	Minimum distance to another vehicle
20	2		
25	3		
30	4		
40	7	5	40
50	12	7	40
60	16	10	40
70	20	10	40
80	25	10	40
90	30	10	40

Still 84cm today!

The workshops and offices

EV Charging

Infrastructure.

COLMIS

Cold Chambers.

An open proving ground.

2023-05-22

What comes next?

ADAS & Autonomous Driving

More EVs (+ Hybrids) & Hydrogen

New Mobility Trends

Facing Climate Change

Stay updated.

Questions?

A warm welcome. To a cold place. For a safer road ahead.

COLMIS

per@colmis.com benjamin@colmis.com PHONE: +46(0)730789288

Presentation 4: *AstaZero tracks* Håkan Andersson, Astazero

Presentation 5: Suspension design as part of complete vehicle development Yansong Huang, VCC and Chalmers

Presentation 6:

Tyre rolling resistance at various operational conditions and limitations in current tyre labelling

Jukka Hyttinen, Scania and KTH

Presentation 7: *Tyres and the purposes of models* Edo Drenth and Niklas Fröjd, Volvo Trucks

PURPOSE DRIVEN TYRE MODEL FIDELITY

Keeping the Connection

Volvo Autonomous Solutions

Volvo | Niklas Fröjd / Edo Drenth | Internal

2023-05-23

Volvo Group

EMPLOY 100.000 PEOPLE, PRODUCTION IN 18 COUNTRIES SELLS ON 190 MARKETS.

Group Trucks Technology

FEM

Semi-detailed 2-track (VTM)

Modelica

MBS

ASM for HIL/SIL/MIL verification

Single-track models for online for control design

Model data

Executable model

The suspension and steering

The truck frame

7

The swap-body superstructure

The tipper

Timber

Tyres

1. Useful linear tyre model for single-track modeling

$$F_{y} = C_{\alpha} \times \alpha$$
$$C_{\alpha} = K_{c} \times F_{z}$$

2. Useful non-linear tyre model for two-track modeling

$$K_{c} = K_{c0} \left(1 + k \frac{F_{Z} - F_{Z0}}{F_{Z0}} \right)$$
$$F_{y} = \mu \times F_{z} \times \sin \left(C \times \operatorname{atan} \left(\frac{K_{c}}{\mu C} \alpha \right) \right)$$

Vision

- V.A.S. portable application software can be entirely **verified** virtually
 - and solely validated in the vehicle

CA27100 Vehicle | VAS22 - Robust Tyre Model / Edo Drenth | Internal

Mission

Develop reusable and portable vehicle simulation models for all stages of the virtual verification of software applications

Starting point

445/65 R22.5

Pacejka 2002 – combined slip

Extrapolated parameters from truck tyre parameter sets

The TA15 will be on "rails"

Measured and fitted

Truck tyre

Pacejka 2002 – combined slip

Overfitted within available data?

What do we have?

- Basic notion of uniaxial slip characteristics
 - Magic Formula
- Similarity methods
 - Theoretical slips
- Longitudinal slip stiffness
- Cornering stiffness
- Peak friction characteristics
 - Declining with load
 - Asymptotic?
- Identical asymptote for friction?

Source: Tyre and Vehicle Dynamics, Hans B Pacejka

Reverse Engineering

- Use existing parameter sets (backward compatible)
- Remove all shift functions
 - Symmetric tyre characteristics
- Utilise Magic Formula 2002 main parameter interrelationships
 - B, C, D and E
 - Forthcoming ISO standard
 - Heavy commercial vehicles and buses Vehicle dynamics simulation and validation – Tyre model for lateral estimation of heavy vehicle combinations operated at dry paved road surface

Source: Tyre and Vehicle Dynamics, Hans B Pacejka

VAS22 tyre model features

• 21 parameters

- PAC02 backward compatible
 - The remaining parameters have identical meaning
 - Can read a full set of PAC02 parameters
 - Will throw DTCs for non-plausible parameter values
- Robustness
 - All characteristics are asymptotically sound beyond validity range

kappaPeak	: -0.15	
PCX1	: 1.45	
PDX1	: 0.85	
PDX2	: -0.05	
PDX3	: 0	
PKX1	: 8.0	
PKX2	: 7.0	
РКХЗ	: -0.3	
	Pure slip lateral	
alphaPeak	: 17.1887338539 de	eg
PCY1	: 1.3	
PDY1	: 0.75	
PDY2	: -0.05	
PDY3	: 0.2	
PKY1	: -13.0	
PKY2	: 1.8	
РКҮЗ	: 0.2	
	Pure slip aligning torque	
QCZ1	: 1.2	
QDZ1	: 0.1	
QDZ2	: -0.003	
QDZ3	: 0.0	
QDZ4	: 0.0	

445/65 R22.5

VAS22 – combined slip

Minimum set of parameters

385/55 R22.5

VAS22 – combined slip

Minimum set of parameters

Tyre model fidelity

Perhaps vice versa

The tyre model at hand represents a possible outcome of a real tyre

Presentation 8a: Vehicle Engineering MSc programme, Mikael Nybacka, KTH

Presentation 8b: *Mobility engineering MSc programme,* Dag Bergsjö, Chalmers

MASTER'S PROGRAMME MOBILITY ENGINEERING

MCS, 120 CR, 2 YEARS

DEVELOP TOMORROW'S MOBILITY SYSTEMS!

Program integrating aerospace, automotive engineering, marine technology and railway technology

Dag Bergsjö <u>dagb@chalmers.se</u> Program Director MPMOB

Aim of MP

Train students:

- To develop safe, sustainable, high-performance mobility solutions.
- To understand features, design requirements and challenges of the present and future mobility solutions.
- To gain a holistic knowledge of mobility solutions and the ability to apply them for different transportation needs and environments.

MPMOB: programme in a nutshell

Broad knowledge on mobility

- Mechatronics for mobility
- Propulsion for mobility
- Connected fleets and automated data collection
- Systems engineering

In-depth knowledge in one of these profiles

• Aerospace engineering

Automotive engineering

- Fluids
- Structural
- Artificial intelligence
- Active and passive safety
- Powertrain and propulsion systems
- Vehicle engineering and aerodynamics
 - Structures

Fluid

- Marine technology and naval architecture
- Systems engineering

Railway technology

- Railway mechanics
- Structural deterioration
- Asset management

MPMOB: facilities for education

Hybrid powertrain lab

Driving simulator

Brake rig for rail

CHALMERS

Low-speed wind tunnel

Resource for vehicle research (REVERE)

Maritime simulator

Low-pressure compressor rig

MPMOB: study plan

- Compulsory courses for 52.5 ECTS
- Compulsory elective courses for 37.5 ECTS (to be chosen among 32 different courses)
- Elective courses for 30 ECTS (to be chosen from 12 different Master programmes)

MPMOB: project work

- Project in aerospace (Aerospace engineering)
- Automotive engineering project (Automotive engineering)
- Marine design project (Marine technology)
- Project in railway technology (Railway technology)
- Chalmers formula students (Automotive engineering)

MPMOB: industrial connections

- Abetong
- Autoliv
- Alstom
- Consulting companies (Alten, Altran, ÅFRY, Atkins)
- China Euro Vehicle Technology (CEVT)
- GKN Aerospace
- Green Cargo
- Heart Aerospace
- Lucchini

- SAAB
- SSPA
- Stena Line
- SJ
- SweMaint
- Trafikverket
- Volvo Group
- Volvo Cars
- Wabtec

Lunch Seminars (Fall 2023)

SAS & Heart aerospace (spring 2023)

MPMOB: research-based education

http://www.charmec.chalmers.se/

SWEDISH MARITIME COMPETENCE CENTRE

https://lighthouse.nu/

https://www.chalmers.se/en/centres/cerc/Pa ges/default.aspx

TechForH2 – Hydrogen Centre

https://www.chalmers.se/en/departments/m2/news/Pag es/TechForH2---for-a-sustainable-hydrogen-economyof-tomorrow.aspx

MPMOB: international opportunities

- Double degree with University of Stuttgart (automotive engineering)
- Nordic Master in Maritime engineering, within Nordic Five Tech (marine technology)
- Erasmus exhanges (<u>https://cth.moveon4.de/publisher/1/eng#</u>)

MPMOB: job opportunities

- Design of parts and systems (e.g., yacht designer, powertrain integration engineer)
- Simulation engineer (e.g., crash simulation engineer, vehicle dynamics CAE engineer)
- Asset management (e.g., asset management railway engineer, maintenance engineer)
- Technical sales engineer
- Project manager
- Research & development (e.g., railway technical specialist, traffic safety research specialist)
- Academia (e.g., PhD student)
- Other (e.g., offshore engineer)

Poster 1:

Quantify and mimic the feedback through the steering wheel at some driving conditions Aron Dalemo, Polestar & Chalmers

Master Thesis Micro Presentation

Aron Dalemo

Polestar

Background & Aim

Result

Quantify and mimic the feedback through the steering wheel during some driving condition

Aron Dalemo

Model

Reference model

Different scenarios

Low friction

Estimate current friction based on self-aligning torque. Only gives reasonable values when steady state. This could be due to longitudinal dynamics

Axle saturation

Adds torque to help the driver in scenarios with a saturated axle

Dashed road markings

The general idea is to look at peaks and their placements.

The largest challenge is to not catch the same phenomena in other driving situations Shows potential

Driving over crest while turning

Is incorporated in the reference model and main transfer function with height sensors

Rutted roads

The rutted part can be sensed in the tie rods and also in the height sensors.

Not possible to sense in time, more than one wheel has to pass and then it is too late

Poster 2:

Using torque vectoring to improve steering predictability while minimizing energy use in Heavy electric vehicles

Jonas Persson and Jonathan Åkesson, Volvo Trucks & Chalmers

ON TORQUE VECTORING TO IMPROVE STEERING PREDICTABILITY WHILE MINIMISING POWER LOSS IN HEAVY ELECTRIC VEHICLES USING MODEL **PREDICTIVE CONTROL**

VOLVO

Volvo Trucks
Master's Thesis Jonas Persson and Jonathan Åkesson Chalmers University of Technology
2023-05-22

VOLVO

Background

- · Varying distribution of propulsion between e-axles will change the handling characteristics, which can make the vehicle unpredictable to steer.
- ٠ Separate motors on left and right side allows for micromanaging of lateral dynamics through torque vectoring.

2023-05-22 2

Volvo Trucks

VOLVO

Pedal

Interpreter/

Reference

Prediction

Reference generator

Drive

 δ_{SWA}

Our Solution

- MPC based approach to generate a global force request to the control allocator
- Control allocator distributing global force to actuator level
- Interpretation of driver's input to generate references
- Rate of change for steering wheel angle and yaw rate
- Yaw rate controller based on bicycle model

Volvo Trucks	
Department name Document name/ Issuer Classification	

3

vehicle

Vehicle statu:

 $-T_{Act}$

Control

Allocation

High-level

controller

VOLVO

Predictable steering behaviour with Torque Vectoring

Steering wheel angle for emergency braking during cornering. Yaw rate controller aids in lateral stability, resulting in:

- less lateral sway,
- shorter braking distance
- and a more manageable manoeuvre for the driver.

Volvo Trucks Department name | Document name/ Issuer | Classification

2023-05-22 4

ON TORQUE VECTORING TO IMPROVE STEERING PREDICTABILITY WHILE MINIMISING POWER LOSS IN HEAVY ELECTRIC VEHICLES USING MODEL PREDICTIVE CONTROL

Jonas Persson and Jonathan Åkesson

VOLVO

Department of Mechanics and Maritime Sciences Chalmers University of Technology

Background

- Varying distribution of propulsion between e-axles will change the handling characteristics, which can make the vehicle unpredictable to steer.
- Separate motors on left and right side allows for micromanaging of lateral dynamics through torque vectoring.

Yaw rate for acceleration during cornering. At 10s, switch in power distribution between e-axles introduce a yaw moment on the vehicle.

Steering wheel angle while accelerating during cornering. At 20s, step increase in speed causing different distributions of power to behave differently.

- MPC based approach to generate v to the control allocator
- Control allocator distributing global force to actuator level
- Interpretation of driver's input to generate references
- Rate of change for steering wheel angle and yaw rate
- Yaw rate controller based on bicycle model

ON TORQUE VECTORING TO IMPROVE STEERING PREDICTABILITY WHILE MINIMISING POWER LOSS IN HEAVY ELECTRIC VEHICLES USING MODEL PREDICTIVE CONTROL

Jonas Persson and Jonathan Åkesson

Department of Mechanics and Maritime Sciences Chalmers University of Technology

Predictable steering behaviour with Torque Vectoring

Steering wheel angle for emergency braking during cornering. Yaw rate controller aids in lateral stability, resulting in:

- less lateral sway,
- shorter braking distance
- and a more manageable manoeuvre for the driver.

Switch in propulsion mode during steady state cornering. Yaw rate controller aids the driver in lateral stability during mode switch.

- Short haul driving simulation, road from Hällered to Alingsås (approx. 2.8 km).
- Lateral control reduce degrees of freedom and restricts power loss optimisation.
- A second controller (v_{des}) constructed to only engage when necessary, resulting in lower power use compared to previously.

The Model

- MPC evolves the linear model over a time horizon.
- Single track model with linear tyre dynamics for yaw control.
- MPC solves quadratic optimisation to find the optimal control sequence u*.
 - Steering angle and external forces are treated as disturbances.

Conclusion

Lateral control using torque vectoring on heavy vehicles allows for:

 $A_{in} \cdot \mathbf{z} \leq b_{in}$

- reduced braking distance during cornering;
- increased stability on low friction surfaces;
- reduced steering compensation from driver during emergency manoeuvres;
- and minimised change in vehicle behaviour, originating from power loss optimisation.

All this, with minimal increase in power use.

Poster 3: Continuously controlled damping tuning on four poster rig Jesper Ramsberg, VCC & Chalmers

Development of method for objective tuning of semi active dampers on a four poster rig

Jesper Ramsberg

Supervisor: Ajay Daniel, Volvo Cars, Examiner: Fredrik Bruzelius, Chalmers

Chalmers University of Technology & Volvo Cars, Göteborg

Figure 1: On rig optimisation loop

Introduction

- Active systems in passenger vehicles can improve comfort without comprising as much in handling as could have been traditionally required.
- Semi active dampers, sometimes called CCD, can improve ride quality and comfort while maintaining good handling characteristics
- CCD is often tuned by experienced vehicle dynamicists that can subjectively interpret the vehicle behavior and understand the

- An optimisation was setup with the new metric in combination with and abruptness metric
- Genetic algorithm was used in CAE
- Patternsearch was used on the rig
- A complete vehicle with CCD was setup in the optimisation loop

- measured data.
- An objective method for CCD tuning could complement the subjective tuning to achieve an overall better result.
- A four poster rig is useful when repeatedly exciting a complete vehicle.
- Combining subjective judgement with objective measurement on the rig can be a useful tool for creating damper settings

What has been done

- Initially a primary ride metric suitable for CCD was found
- Metric was validated on four poster rig in a blind study.
- Experienced vehicle dynamicists took part in the study

Figure 3: Vehicle setup on rig for optimisation

- The vehicle is excited continuously with a realistic recorded road
- A computer was connected to the ECU controlling the CCD and updating the controller according to the algorithm.

Results and further work

- A good metric for primary ride control was found in Primary ride control = $\frac{\text{RMS}(V_{\text{body}})}{\text{RMS}(V_{\text{Road}})}$
- Metric has clear trend between control and the amount of

damping

- A solid optimisation method on the rig updated the damper parameters in an effective way.
- A blind test done on track proved that the optimisation had effect on the damper settings
- The cost function must be tuned well to achieve desirable results from the optimisation, a good balance between primary ride control and abruptness. Or extended with more ride properties to cover the broader spectrum of ride comfort

Master thesis at VEAS, Chalmers 2023

Poster 4: *Optimised force distribution algorithm and model* Guglielmo Nappi and Sanjay Banerjee, Scania & KTH

Sanjay & Guglielmo

Optimised force distribution algorithm and model

Model info

23/05/2023

Thesis topic and model overview

Aim:

Deliver a proven auto-generated vehicle model, limited to longitudinal and lateral forces inputs to solve the optimal force distribution between available force actuators and predict body dynamics.

Model characteristics:

Reconfigurable: The model is auto-generated from the available variant codes for the vehicles.

Prediction model: The model is valid and estimates accurately the body dynamics in longitudinal and lateral motion.

Dynamic model: Not limited to kinematic approximations as it includes forces in input. **Controllable:** Includes requested force from the driver.

Test Procedure:

- Isolated **longitudinal** dynamics manoeuvre
- Isolated lateral dynamics manoeuvres
- **Combined** longitudinal and lateral dynamics
- Hill climbs

Software used:

Vehicle modelling based on Simulink with MATLAB 2020b scripts.

Test procedure and results

Measured parameter Estimated parameter Longitudinal velocity 12s/u Vx_predicted Vx_measured 100 150 200 50 Time (seconds) Yaw rate 0.2-0.1rad/s -0.2 -0.3 Yaw_rate_measured Yaw_rate_predicted 100 50 150 200 Time (seconds) Longitudinal acceleration 0.5 2vs-0.5 Ax_measured Ax_predicted -1.5 100 50 150 200 Time (seconds) Lateral acceleration 2. m/s^2 Ay_predicted Ay_measured 100 150 200 Guglielmo Nappi & Sanjay Banerjee 3 24/05/2023 Time (seconds)

Poster 5:

Modelling and measurements of singularityinduced vehicle motion during low-speed driving

Luca Mereu, Politecnico di Torino & Chalmers

Modelling and measurements of singularity-induced vehicle motion during low-speed driving

LUCA MEREU CHALMERS UNIVERSITY OF TECHNOLOGY

Supervisor: Mats Jonasson, VEAS, M2 Examiner: Petri Piiroinen, Division of Dynamics, M2

Background and problems

slip variable

Classic (Pacejka) force models

$$s_{\chi} = \frac{\omega \cdot R - v_{\chi}}{|\omega \cdot R|} \longrightarrow F_{\chi} = D \cdot \sin(C \cdot \tan^{-1}(B \cdot (1 - E)) \cdot s_{\chi} + E \cdot \tan^{-1}(B \cdot s_{\chi})))$$

LuGre Distributed Tyre Model

$$F_x = \sum_{i=1}^N \mu(v_r(t), N) \cdot p(N) \cdot \Delta \xi$$

With $p(\xi)$ being the load distribution within the contact patch.

The friction term $\mu(v_r(t), \xi)$ takes into account the bristles deflection behaviour.

The LuGre friction model is implemented in a complete longitudinal vehicle model to capture and compare the acceleration behaviour of a real car braking manoeuvre.

Vehicle model results

LUCA MEREU

Thanks for your attention

LUCA MEREU CHALMERS UNIVERSITY OF TECHNOLOGY

Supervisor: Mats Jonasson, VEAS, M2 Examiner: Petri Piiroinen, Division of Dynamics, M2

Modelling and measurements of singularity-induced vehicle motion during low-speed driving

LUCA MEREU CHALMERS UNIVERSITY OF TECHNOLOGY

Supervisor: Mats Jonasson, VEAS, M2 Examiner: Petri Piiroinen, Division of Dynamics, M2

Background and problems

slip variable

Classic (Pacejka) force models

$$s_{\chi} = \frac{\omega \cdot R - v_{\chi}}{|\omega \cdot R|} \longrightarrow F_{\chi} = D \cdot \sin(C \cdot \tan^{-1}(B \cdot (1 - E)) \cdot s_{\chi} + E \cdot \tan^{-1}(B \cdot s_{\chi})))$$

LuGre Distributed Tyre Model

$$F_x = \sum_{i=1}^N \mu(v_r(t), N) \cdot p(N) \cdot \Delta \xi$$

With $p(\xi)$ being the load distribution within the contact patch.

The friction term $\mu(v_r(t), \xi)$ takes into account the bristles deflection behaviour.

The LuGre friction model is implemented in a complete longitudinal vehicle model to capture and compare the acceleration behaviour of a real car braking manoeuvre.

Vehicle model results

LUCA MEREU

Thanks for your attention

LUCA MEREU CHALMERS UNIVERSITY OF TECHNOLOGY

Supervisor: Mats Jonasson, VEAS, M2 Examiner: Petri Piiroinen, Division of Dynamics, M2