
On proving that an unsafe controller is not proven safe

Downloaded from: https://research.chalmers.se, 2025-07-01 14:50 UTC

Citation for the original published paper (version of record):
Selvaraj, Y., Krook, J., Ahrendt, W. et al (2024). On proving that an unsafe controller is not proven
safe. Journal of Logical and Algebraic Methods in Programming, 137.
http://dx.doi.org/10.1016/j.jlamp.2023.100939

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

J. Log. Algebraic Methods Program. 137 (2024) 100939

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming

journal homepage: www.elsevier.com/locate/jlamp

On proving that an unsafe controller is not proven safe ✩

Yuvaraj Selvaraj a,b,∗, Jonas Krook a,b, Wolfgang Ahrendt b, Martin Fabian b

a Zenseact, Lindholmspiren 2, 417 56, Göteborg, Sweden
b Chalmers University of Technology, Chalmersplatsen 4, 412 96, Göteborg, Sweden

A R T I C L E I N F O A B S T R A C T

Keywords:

Hybrid systems

Automated driving

Formal verification

Loop invariant

Theorem proving

Cyber-physical systems are often safety-critical and their correctness is crucial, such as in the case
of automated driving. Using formal mathematical methods is one way to guarantee correctness
and improve safety. Although these methods have shown their usefulness, care must be taken
because modelling errors might result in proving a faulty controller safe, which is potentially
catastrophic in practice. This paper deals with two such modelling errors in differential dynamic
logic, a formal specification and verification language for hybrid systems, which are mathematical
models of cyber-physical systems. The main contributions are to provide conditions under which
these two modelling errors cannot cause a faulty controller to be proven safe, and to show how
these conditions can be proven with help of the interactive theorem prover KeYmaera X. The
problems are illustrated with a real world example of a safety controller for automated driving,
and it is shown that the formulated conditions have the intended effect both for a faulty and a
correct controller. It is also shown how the formulated conditions aid in finding a loop invariant

candidate to prove properties of hybrid systems with feedback loops. Furthermore, the relation
between such a loop invariant and the characterisation of the maximal control invariant set is
discussed.

1. Introduction

Cyber-physical systems (CPS) [1] typically consist of a digital controller that interacts with a physical dynamic system and is often
employed to solve safety-critical tasks. For example, an automated driving system (ADS) has to control an autonomous vehicle (AV)
to safely stop for stop signs, avoid collisions, etc. It is thus paramount that CPS work correctly with respect to their requirements.
One way to ensure correctness of CPS is to use formal verification [2,3]. Formal verification requires a formal model of the CPS, and
an increasingly popular family of models of CPS are hybrid systems [4–6], which are mathematical models that combine discrete and
continuous dynamics.

To reason about the correctness of a CPS, hybrid systems can model the different components of the CPS and their interactions [7],
thus capturing the overall closed-loop behaviour. In general, hybrid systems that model real world CPS may involve three main
components: a plant model that describes the physical characteristics of the system, a controller model that describes the control
software, and an environment model that captures the behaviours of the surrounding world in which the controller operates, thereby

✩ This work was supported by FFI, VINNOVA under grant number 2017-05519, Automatically Assessing Correctness of Autonomous Vehicles – Auto-CAV, and by the
Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

* Corresponding author at: Zenseact, Lindholmspiren 2, 417 56, Göteborg, Sweden.

E-mail addresses: yuvaraj.selvaraj@zenseact.com (Y. Selvaraj), jonas.krook@zenseact.com (J. Krook), ahrendt@chalmers.se (W. Ahrendt), fabian@chalmers.se
Available online 19 December 2023
2352-2208/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

(M. Fabian).

https://doi.org/10.1016/j.jlamp.2023.100939

Received 25 February 2023; Received in revised form 8 December 2023; Accepted 14 December 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:yuvaraj.selvaraj@zenseact.com
mailto:jonas.krook@zenseact.com
mailto:ahrendt@chalmers.se
mailto:fabian@chalmers.se
https://doi.org/10.1016/j.jlamp.2023.100939
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2023.100939&domain=pdf
https://doi.org/10.1016/j.jlamp.2023.100939
http://creativecommons.org/licenses/by/4.0/

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

defining the operational domain. The goal for the controller is to choose control actions such that the requirements are fulfilled for all

possible behaviours of the hybrid system.

Typically, the environment is modelled using nondeterminism to capture all possible behaviours of the surrounding world. How-

ever, assumptions on the environment behaviour are necessary to limit the operational domain and remove behaviours that are
too hostile for any controller to act in a safe manner. For example, if obstacles are assumed to appear directly in front of an AV
when driving, no controller can guarantee safety. While the assumptions in the formal models are necessary to make the verification
tractable, there are subtle ways in which formal verification can provide less assurance than what is assumed [8]. In other words, as
a result of the verification, the designer may conclude the controller to be safe in the entire assumed operational domain, whereas in
reality some critical behaviours where the controller is actually at fault might be excluded from the verification. One possible cause
for such a disparity between what is verified and what is assumed to be verified is the presence of modelling errors. In such cases, if
a controller is verified to be safe, this leads to unsafe conclusions that might be catastrophic in practice.

This paper deals with two such modelling errors by making them subject to interactive verification. In the first erroneous case, the
environment assumptions and the controller actions interact in such a way that the environment behaves in a friendly way to adapt to
the actions of the controller that exploits the friendliness. Then, a faulty controller may be proven safe since the environment reacts
to accommodate bad control actions. An example of this is a faulty ADS controller that never brakes, together with an environment
that reacts by always moving obstacles to allow the controller not to brake.

In the second erroneous case, the assumptions about the environment and/or other CPS components remove all behaviours in
which any action by the controller is needed. In this case, the assumptions over-constrain the allowed behaviours. For example,
if the assumptions restrict the behaviour of the AV to an extent that only braking is possible, then a faulty ADS controller can be
proven safe because nothing is proven about the properties of the controller. In the worst-case, the assumptions remove all possible

behaviours, thereby making the requirement vacuously true.

In both cases, a faulty controller can be proven safe with respect to the requirements for the wrong reasons, i.e., unintended
modelling errors, thus resulting in potentially catastrophic operation of the CPS in practice. Modelling errors are in general hard
to address because every model is an abstraction and there exists no ubiquitous notion of what a correct model means. Therefore, a
systematic way to identify and avoid modelling errors is highly desirable as it reduces the risk of unsound conclusions when a model
is formally proven safe with respect to the requirements. Typically, the requirements specify (un)desired behaviour of the closed-loop
system within the operational domain and are expressed in some logical formalism to apply formal verification. Differential dynamic
logic (dL) [9,10] is a specification and verification language that can be used to formally describe and verify hybrid systems. The
interactive theorem prover KeYmaera X [6] implements a sound proof calculus [9,10] for dL and can thus mathematically prove that
the models fulfil their specified requirements.

The main contributions of this paper, Theorem 1 and Theorem 2, formulate and prove conditions that when fulfilled, ensure the
model cannot be proven safe if it is susceptible to the above modelling errors. Essentially, a loop invariant is used not only to reason
about the model inductively but also to ensure that the interaction between the controller and the other components in the model is
as intended; the two theorems provide conditions on the relation between the assumptions and the loop invariant. Furthermore, these
conditions give hints as to when a suggested loop invariant for the model is sufficiently strong to avoid modelling errors. It is also
shown that this loop invariant is equivalent to the characterisation of the maximal control invariant set, an important property within
control engineering for which closed-form expressions are given by [11]. The problems are illustrated with a running example of an
automated driving controller that shows that they can appear in real models. It is then proven that the formulated conditions have
the intended effect. Finally, it is shown by example that the method captures the problematic cases and also increases confidence in
a correct model free from the considered modelling errors.

This paper extends our previous work [12] with the following contributions:

• extended preliminaries in Section 2 including descriptions about proof rules of dL sequent calculus [9];

• extensive discussion on rigorous modelling concepts and vacuous truth in Section 4.1;

• Section 5.1 shows that the theorems can be applied to models other than the running example using the verified European Train
Control System models [13];

• Section 6 shows equivalence between the sufficiently strong loop invariant, and the characterisation of the maximal control
invariant set [11];

• extensive coverage of related works in Section 7 including a discussion on the similarities of exploiting controllers in dL to those
in reactive synthesis [14].

2. Preliminaries

The logic dL uses hybrid programs (HP) to model hybrid systems. An HP α is defined by the following grammar, where α, β are
HPs, 𝑥 is a variable, 𝑒 is a term1, and 𝑃 and 𝑄 are formulas of first-order logic of real arithmetic (FOL)2:

α ∶∶= 𝑥 ∶= 𝑒 | 𝑥 ∶=∗ | ?𝑃 | 𝑥′ = 𝑓 (𝑥)&𝑄 | α ∪ β | α; β | α∗

1 Terms are polynomials with rational coefficients defined by 𝑒, ̃𝑒 ∶∶= 𝑥 | 𝑐 ∈ℚ | 𝑒 + 𝑒 | 𝑒 ⋅ 𝑒.

2

2 First-order logic formulas of real arithmetic are defined by 𝑃 , 𝑄 ∶∶= 𝑒 ≥ 𝑒 | 𝑒 = 𝑒 | ¬𝑃 | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 →𝑄 | 𝑃 ↔𝑄 | ∀𝑥𝑃 | ∃𝑥𝑃 .

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

Table 1

Semantics of HPs [9]. 𝑃 , 𝑄 are first-order formulas, α, β are HPs.

Statement Semantics

�𝑥 ∶= 𝑒� =
{
(ω,ν) ∶ν =ω(𝑥 ∶= 𝑒)

}
�𝑥 ∶=∗� =

{
(ω,ν) ∶ 𝑐 ∈ℝ and ν =ω(𝑥 ∶= 𝑐)

}
�?𝑃 � =

{
(ω,ω) ∶ω ∈ �𝑃 �

}
�𝑥′ = 𝑓 (𝑥)&𝑄� =

{
(ω,ν) ∶φ(0) =ω(𝑥′ ∶= 𝑓 (𝑥)) and φ(𝑟) = ν for a solution

φ ∶ [0, 𝑟]→𝒮 of any duration 𝑟 satisfying φ ⊧ 𝑥′ = 𝑓 (𝑥) ∧𝑄

}
�α ∪β� = �α� ∪ �β�

�α; β� = �α�◦�β� =
{
(ω,ν) ∶ (ω,μ) ∈ �α�, (μ,ν) ∈ �β�

}
�α∗� = �α�∗ =

⋃
𝑛∈ℕ

�α𝑛� with α0 ≡ ?𝑡𝑟𝑢𝑒 and α𝑛+1 ≡α𝑛;α.

Each HP α is semantically interpreted as a reachability relation �α� ⊆ 𝒮 ×𝒮, where 𝒮 is the set of all states. If 𝒱 is the set of
all variables, a state ω ∈𝒮 is defined as a mapping from 𝒱 to ℝ, i.e., ω∶ 𝒱 →ℝ. The notation (ω, ν) ∈ �α� denotes that final state
ν is reachable from initial state ω by executing the HP α. ω�𝑒� denotes the value of term 𝑒 in state ω, and for 𝑥 ∈𝒱, ω(𝑥) ∈ ℝ
denotes the real value that variable 𝑥 has in state ω. Given a state ω1, a state ω2 can be obtained by assigning the values of the
terms {𝑒1, … , 𝑒𝑛} to the variables 𝑦 = {𝑦1, … , 𝑦𝑛} ⊆𝒱, and letting the remaining variables in 𝒱 be as in ω1, that is, ω2(𝑦𝑖) =ω1�𝑒𝑖�
for 1 ≤ 𝑛, and, for all 𝑣 ∈𝒱 ⧵ 𝑦, ω2(𝑣) =ω1(𝑣). Let ω2 =ω1(𝑦1 ∶= 𝑒1, … , 𝑦𝑛 ∶= 𝑒𝑛) be a shorthand for this assignment. For a FOL
formula 𝑃 , let �𝑃 � ⊆𝒮 be the set of all states where 𝑃 is true, thus ω ∈ �𝑃 � denotes that 𝑃 is true in state ω. If 𝑃 is parameterised
by 𝑦1, … , 𝑦𝑛, then ω ∈ �𝑃 � means that ω ∈ �𝑃 (ω(𝑦1), … , ω(𝑦𝑛))�. A summary of the program statements of HPs and their transition
semantics [9] is given in Table 1.

The sequential composition α; β expresses that β starts executing after α has finished. The nondeterministic repetition α∗ expresses
that α repeats 𝑛 times for any 𝑛 ∈ ℕ0. The nondeterministic choice operation expresses that the HP α ∪ β can nondeterministically
choose to follow either α or β. The nondeterministic assignment 𝑥 ∶=∗ assigns an arbitrary (real) number to 𝑥. The test action ?𝑃 has
no effect in a state where 𝑃 is true, i.e., the final state ω is same as initial state ω. However, if 𝑃 is false when ?𝑃 is executed, then
the current execution of the HP aborts, meaning that no transition is possible and the entire current execution is removed from the set
of possible behaviours of the HP. Pragmatically, nondeterministic assignment and the test action are often combined in HPs, because
this allows a declarative style of HP programming. For instance, 𝑥 ∶=∗; ? 𝑄 intuitively means “choose 𝑥 such that 𝑄 holds”. Test
actions can also be combined with sequential composition and the choice operation to define (deterministic) if-statements as:

if (𝑃) then α f i ≡ (?𝑃 ; α) ∪ (?¬𝑃) (1)

Here, the two test actions are used to discard (by aborting) unwanted computations, like choosing to not execute α even if 𝑃 is true. In
a similar fashion, test actions can be combined with sequential composition and nondeterministic repetition to define (deterministic)
while-statements as:

while (𝑃) do α od ≡ (?𝑃 ; α)∗; (?¬𝑃) (2)

Here, ?¬𝑃 discards executions where the chosen number of iterations is too small, whereas ?𝑃 discards executions where the chosen
number of iterations is too large.

HPs model continuous dynamics as 𝑥′ = 𝑓 (𝑥) & 𝑄, which describes the continuous evolution of 𝑥 along the differential equation
system 𝑥′ = 𝑓 (𝑥) for an arbitrary duration (including zero) within the evolution domain constraint 𝑄. The evolution domain constraint
applies bounds on the continuous dynamics and is a first-order formula that restricts the continuous evolution within that bound. 𝑥′
denotes the time derivative of 𝑥, where 𝑥 is a vector of variables and 𝑓 (𝑥) is a vector of terms of the same dimension.

The formulas of dL include formulas of first-order logic of real arithmetic and the modal operators [α] and ⟨α⟩ for any HP
α [9,10]. A formula θ of dL is defined by the following grammar (φ, ψ are dL formulas, 𝑒, ̃𝑒 are terms, 𝑥 is a variable, α is an HP):

θ ∶∶= 𝑒 = 𝑒 | 𝑒 ≥ 𝑒 | ¬φ | φ ∧ψ | ∀𝑥φ | [α]φ (3)

The dL formula [α] φ expresses that all non-aborting executions of HP α (i.e., the executions where all test actions are successful)
end in a state in which the dL formula φ is true. The formal semantics are defined by �[α] φ� = {ω ∈ 𝒮 ∶ ∀ν ∈ 𝒮. (ω, ν) ∈ �α� →
ν ∈ �φ�} and �∀𝑥 φ� = {ω ∈𝒮 ∶ ν ∈ �φ� for all ν ∈𝒮 that agree with ω except on 𝑥}. The dL formula ⟨α⟩ φ means that there exists
some non-aborting execution leading to a state where φ is true. ⟨α⟩ φ is the dual to [α] φ, defined as ⟨α⟩ φ ≡ ¬[α]¬φ. Similarly,
>, ≤, <, ∨, →, ↔, ∃𝑥 are defined using combinations of the operators in (3). A dL formula θ is valid, denoted ⊧ θ, if �θ� =𝒮.

The logic dL and the interactive theorem prover KeYmaera X [6] support the specification and verification of hybrid systems.
The dL formula (init) → [α] (guarantee) can be used to specify the correctness of an HP α with respect to the requirement guarantee.
It expresses that, if the initial conditions described by the formula init are true, then all (non-aborting) executions of α only lead
3

to states where formula guarantee is true. KeYmaera X takes such a dL formula as input and attempts to construct a proof for the

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

formula, successively decomposing it into several sub-goals according to the sound proof rules of dL [9,10], until all leaves of the
proof tree are trivially true and can thus be “closed”. As this proof technique for dL, and its realisation in KeYmaera X, play a central
role for this work, a brief introduction to some of its principles is given in the following.

KeYmaera X uses a sequent calculus, which is a set of (sequent) rules used to construct proofs. A (dL) sequent has the form Γ ⊢Δ
(where Γ and Δ are finite sets of dL formulas), and is semantically equivalent to the formula

⋀
φ∈Γφ →

⋁
ψ∈Δψ. To prove a sequent

Γ ⊢ Δ means to prove one of the formulas in Δ, under the assumption that all formulas in Γ are true. If the overall objective is to
prove a single (dL) formula φ, then the initial goal will be the sequent ⊢φ, i.e., Γ is empty, and Δ only contains φ. This goal will be
successively decomposed by rules during proof construction. Some of the rules only exploit the propositional, or first-order, structure
of a formula. One example of such a rule is:

Γ ⊢ 𝑃 ,Δ Γ ⊢𝑄,Δ
∧R Γ ⊢ 𝑃 ∧𝑄,Δ

Other rules of the sequent calculus for dL are concerned with decomposing hybrid programs appearing in the modalities of dL
(like α in [α]φ or ⟨α⟩φ). Concerning nondeterministic choice and sequential composition, for brevity the sequent rules here are not
given here, but just the equivalences that are exploited by the rules (in a left-to-right fashion):

[α ∪ β]φ↔ [α]φ ∧ [β]φ, (4)

[α;β]φ↔ [α][β]φ. (5)

Through sufficiently many applications of these equivalences ((4), (5)), the leading modal operator “[⋅]” will sooner or later contain
elementary statements that can be resolved by other rules. For instance, if the elementary statement is a test action of the form ?𝑃 ,
the following equivalence applies:

[?𝑃]φ↔ (𝑃 → φ). (6)

The rules for resolving all elementary statements are not presented here, but it is worth noting that deterministic and nondeterministic
assignment, 𝑥 ∶= 𝑒 and 𝑥 ∶=∗, are resolved by substitution and quantification, respectively. More details about the proof rules are
found in [9] and their implementation in KeYmaera X in [15].

Note that in all of the above equivalences, φ may well contain further modal operators. For instance, a formula of the form
[?𝑃 ; δ]ψ would first be transformed to [?𝑃][δ]ψ, using (5), and then transformed to (𝑃 → [δ]ψ), using (6). In such a fashion, proofs
of arbitrary HPs can be constructed by decomposing the HP into elementary statements, which are then resolved individually.

The treatment of nondeterministic repetition (loops) deserves special attention. One of the important rules for handling an HP of
the form α∗ is the following:

Γ ⊢ ζ,Δ ζ ⊢ [α]ζ ζ ⊢ φ
loop

Γ ⊢ [α∗]φ,Δ

Here, ζ is a loop invariant, provided by the user or by some heuristic, to inductively reason about an arbitrary number of repetitions of
α. Given a (candidate for a) loop invariant ζ, applying the loop invariant rule will split the current proof branch into three branches:

(i) Γ ⊢ ζ, Δ, i.e., the invariant holds before executing the loop,

(ii) ζ ⊢ [α] ζ, i.e., the invariant remains true after one iteration of α, given that the invariant was true beforehand,

(iii) ζ ⊢φ, i.e., the invariant implies the post-condition of the loop, φ.

Finding suitable loop invariants is a well known bottle-neck of program verification. This is very true also for the verification of HPs
using dL. The work presented in this article is however devoted to a different problem, namely that an unsuitable loop invariant may
lead to proving an erroneous system, with a faulty controller, correct. This problem is treated in the following sections.

3. Problem scope

This paper considers hybrid systems with closed-loop feedback control as described by Model 1. The dL formula (7) models the
CPS as an HP that repeatedly executes in a loop and expresses the requirement on the CPS by the formula guarantee. The HP in (7)

is composed of four different components, each of which is an HP and assigns four variables: the dynamic state 𝑠 which evolves
continuously, the control actions 𝑎, the environment actions 𝑒, and the time progress 𝜏 . Though the variables in Model 1 are scalars,
4

they can in general be vectors of any dimension.

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

Perception

(env)

Nominal
Controller

(aux)

Safety
Controller

(ctrl)

Actuators

(plant)

𝑥𝑐

vehicle

state

𝑎𝑎

Fig. 1. Architecture of the automated driving feature.

Model 1: The general model considered.

(init)→ [(env; aux; ctrl; plant)∗] (guarantee) (7)

env ≜ 𝑒 ∶=∗; ?𝑃 (𝑠, 𝑒, 𝑎) (8)

aux ≜ 𝑎 ∶=∗; ?𝑄(𝑠, 𝑒, 𝑎) (9)

ctrl ≜ if ¬ok(𝑠, 𝑒, 𝑎) then 𝑎 ∶=∗; ?𝐶(𝑠, 𝑒, 𝑎) f i (10)

plant ≜ 𝜏 ∶= 0; 𝑠′ = 𝑓 (𝑠, 𝑒, 𝑎), 𝜏′ = 1 & 𝐹 (𝑠, 𝑒, 𝑎, 𝜏) ∧ 𝜏 ≤ 𝑇 (11)

The environment (env) in (8) describes the environment behaviour using a nondeterministic assignment followed by a test. The
environment action 𝑒 is nondeterministically assigned a real value which is then checked by the subsequent test for adherence to the
environment assumptions 𝑃 , which define the operational domain. The auxiliary system (aux) describes the internal digital system
that the controller interacts with, in addition to the environment. Similarly to env, aux (9) nondeterministically assigns a real value to
the control action 𝑎 followed by a subsequent test which checks whether the internal assumptions 𝑄 hold. These internal assumptions
typically describe conditions that stem from the design of the CPS such as physical limits on the system actuators.

The controller’s (ctrl) task is to ensure that the requirement guarantee is fulfiled and is modelled as an if-statement as seen in (10).
First, the control action 𝑎 set by aux is tested with ok. If the test is not ok, then ctrl overrides the control action 𝑎 by the control
law 𝐶 , and finally it passes on the control action to the plant (11), which models the physical part of the system. It is described as an
ordinary differential equation. However, the sampling time of ctrl is bounded, so the evolution of plant must stop before the sampling
time 𝑇 [3].

In the most abstract setting, the parameterised FOL formulas in Model 1 are treated as uninterpreted predicates, which could be
replaced by any concrete hybrid model with specific formulas and HPs, as long as the assignment of values to variables follows the
flow of Model 1. Hence, the conclusions drawn from Model 1 can be applied and used for a wide variety of hybrid systems.

Running Example: Automated Driving Controller

To illustrate the problems and solutions, this paper considers an example of an in-lane automated driving feature for an AV, the
ego-vehicle. Fig. 1 shows a simplified architecture of the automated driving feature, which can be modelled as an HP of the general
form in Model 1. The safety requirement is for the ego-vehicle to safely stop for obstacles, even stationary, that have entered its path.

The perception senses the world around the ego-vehicle and corresponds to the env in Model 1. The env models the perception
algorithms that communicate the obstacle position 𝑥𝑐 to the controller and thus the env assumptions describe the dynamics of the
obstacles appearing in the ego-vehicle’s path. The nominal controller, described by aux, represents any algorithm solving the nominal
driving task subjected to different constraints (e.g. comfort) and requests a nominal acceleration. Thus, aux of the form in (9) allows to
keep the model parametric to arbitrary nominal controller implementations while being regarded as a black box. The aux assumptions
therefore capture design conditions on the nominal controller such as always requesting an acceleration within certain bounds.

The safety controller described by ctrl ensures that only safe control actions, i.e., acceleration commands 𝑎, are communicated to
the actuators. It evaluates the nominal acceleration and overrides it with a safe acceleration if needed, thereby satisfying the safety
requirement. Thus, the verification of the safety requirement can be limited to verifying the decision logic in one component, the
safety controller.

The plant is a dynamic model of the ego-vehicle. It is modelled as a 2nd order system, a double integrator with position 𝑥 and
velocity 𝑣 of the ego-vehicle as the dynamic states, and the acceleration 𝑎 as the single control input, as seen in (14) of Model 2. The
ego-vehicle is not allowed to drive backwards, so 𝑣 must be non-negative through the entire evolution. In other words, the evolution
would stop before 𝑣 gets negative.

In the next section, the general dL formula in (7) is refined with concrete descriptions of env, aux, and ctrl to illustrate the
modelling errors where a faulty controller can be proven safe. However, init, plant, and guarantee remain unchanged in the subsequent
models and are shown in Model 2. The initial condition init (12) specifies that the ego-vehicle starts stationary (𝑣 = 0) at an arbitrary
position 𝑥 before the position 𝑥𝑐 of an obstacle. It also sets up assumptions on the constant parameters such as the minimum safety
and nominal acceleration 𝑎𝑚𝑖𝑛

𝑠
and 𝑎𝑚𝑖𝑛

𝑛
, and maximum nominal acceleration, 𝑎𝑚𝑎𝑥

𝑛
, and that the sampling time 𝑇 is positive. These

constant parameters do not change value during the execution of the HP [(env; aux; ctrl; plant)∗], and therefore the assumptions on
the constant parameters remain true in all contexts. The requirement that the ego-vehicle must stop before stationary obstacles is
5

expressed by the post condition guarantee (13), which says that the obstacle’s position may not be exceeded.

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

Model 2: Example hybrid system.

init ≜ 𝑣 = 0 ∧ 𝑥 ≤ 𝑥𝑐 ∧ 𝑎𝑚𝑖𝑛

𝑠
> 0 ∧ 𝑎𝑚𝑎𝑥

𝑛
> 0 ∧ 𝑎𝑚𝑖𝑛

𝑛
> 0 ∧ 𝑎𝑚𝑖𝑛

𝑠
> 𝑎𝑚𝑖𝑛

𝑛
∧ 𝑇 > 0 (12)

guarantee ≜ (𝑥 ≤ 𝑥𝑐) (13)

plant ≜ 𝜏 ∶= 0; 𝑥′ = 𝑣, 𝑣′ = 𝑎, 𝜏′ = 1 & 𝑣 ≥ 0 ∧ 𝜏 ≤ 𝑇 (14)

4. Discovering modelling errors

This section presents two erroneous models to illustrate how a faulty ctrl can be proven safe with respect to guarantee. In the first
case, shown in Model 3, improper interaction between env and ctrl results in env adapting to faulty ctrl actions. Such an erroneous
model can be proven safe since the loop invariant ζ is not strong enough to prevent improper interactions. Theorem 1 gives conditions
to strengthen ζ to avoid such issues. In the second erroneous case, Model 5, the error arises due to over-constrained env and aux
assumptions that discard executions where ctrl is at fault. Theorem 2 presents conditions to identify and avoid errors due to such
over-constrained assumptions.

4.1. Exploiting controller

Consider Model 3 where the assumptions on env and aux are given by (15) and (16) respectively. env assigns 𝑥𝑐 such that it is
possible to brake and stop before the position of the obstacle. This is necessary since if an obstacle appears immediately in front of
the moving ego-vehicle it is physically impossible for any controller to safely stop the vehicle. aux is a black box, but it is known that
the nominal acceleration request 𝑎 is bounded. The ctrl test ok (18) checks whether maximal acceleration for a time period of 𝑇 leads
to a violation of the requirement, and if it does, the controller action 𝐶 (19) sets the deceleration to its maximum. This maximum
deceleration is a symbolic value, parameterised over the other model variables.

Model 3: ctrl is exploiting.

env ≜ 𝑥𝑐 ∶=∗; ?
(
𝑥𝑐 − 𝑥 ≥

𝑣2

2𝑎𝑚𝑖𝑛
𝑛

)
(15)

aux ≜ 𝑎 ∶=∗; ? (−𝑎𝑚𝑖𝑛

𝑛
≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥

𝑛
) (16)

ctrl ≜ if ¬ok(𝑥, 𝑣, 𝑥𝑐 , 𝑎) then 𝑎 ∶=∗; ?𝐶(𝑥, 𝑣, 𝑥𝑐 , 𝑎) f i (17)

ok(𝑥, 𝑣, 𝑥𝑐 , 𝑎) ≜

(
𝑥𝑐 − 𝑥 ≥ 𝑣𝑇 +

𝑎𝑚𝑎𝑥
𝑛

𝑇 2

2

)
(18)

𝐶(𝑥, 𝑣, 𝑥𝑐 , 𝑎) ≜ 𝑎 = −𝑎𝑚𝑖𝑛

𝑠
(19)

Denote by θ the dL formula (7) together with the definitions of Model 2 and Model 3. θ is proved [16] with the loop invariant
ζ1 ≡ 𝑥 ≤ 𝑥𝑐 . Though the goal is to find a proof that θ is valid, and thereby establish that ctrl is safe with respect to guarantee, it is in
this case incorrect to draw that conclusion from the proof, as will now be shown.

The env assumption (15) discards executions where the distance between the obstacle position 𝑥𝑐 and the ego-vehicle position 𝑥

is less than the minimum possible braking distance of the ego-vehicle. This assumption is reasonable as it only discards situations
where it is physically impossible for ctrl to safely stop the vehicle. Still, infinitely many env behaviours are possible since 𝑥𝑐 is
nondeterministically assigned any value that fulfils the assumption. Among other behaviours, this allows 𝑥𝑐 to remain unchanged
between subsequent executions, as would be the case for stationary obstacles. However, due to improper interaction between env
and a faulty ctrl, env can be forced by ctrl to not have 𝑥𝑐 constant. In a scenario where 𝑥𝑐 marks an obstacle, this would mean that,
in the model, env can be forced by ctrl to move the obstacle when ego-vehicle comes too close.

Consider a state ω0 ∈ �ζ1�, illustrated in Fig. 2a, such that

ω0(𝑥) = 0 ω0(𝑥𝑐) = 1 ω0(𝑇) = 1 ω0(𝑣) = 0 ω0(𝑎) = 1.8 ω0(𝑎𝑚𝑎𝑥
𝑛

) = 2 ω0(𝑎𝑚𝑖𝑛
𝑛

) = 3 .

The ego-vehicle is currently at (𝑥, 𝑣) = (0, 0) as shown by the black circle. The hatched area represents all the points in the 𝑥𝑣-plane
from which it is possible to stop before the obstacle position, 𝑥𝑐 , at the dashed vertical line. It holds that (ω0, ω0) ∈ �env� since
𝑥𝑐 − 𝑥 = 1 ≥ 02∕(2 × 3) = 𝑣2∕(2𝑎𝑚𝑖𝑛

𝑛
), so the assumptions on env allow 𝑥𝑐 = 1. This can also be seen in the figure since the black circle

is within the hatched area. The arrow labelled 𝑎 in Fig. 2a represents the acceleration request by aux, and if plant evolves for 1 second
with 𝑎 as input, the ego-vehicle ends up at the white circle. As 𝑎 is within the bounds of aux, it holds that (ω0, ω0) ∈ �aux�. The
controller ctrl is ok with this choice since 𝑥𝑐 is not passed if maximum acceleration 𝑎𝑚𝑎𝑥

𝑛
is input to plant, as illustrated by the grey

circle in the figure. Formally, 𝑥𝑐 − 𝑥 = 1 ≥ 0 × 1 + 2 × 12∕2 = 𝑣𝑇 + 𝑎𝑚𝑎𝑥
𝑛

𝑇 2∕2 and therefore it holds by (18) that ω0 ∈ �ok(𝑥, 𝑣, 𝑎𝑛, 𝑎)�.
Thus, (ω0, ω0) ∈ �ctrl�. Let ω1 =ω0(𝑥 ∶= 0.9, 𝑣 ∶= 1.8). Now it holds that (ω0, ω1) ∈ �plant�, i.e., starting at 𝑥 = 0 and 𝑣 = 0, with
𝑎 = 1.8 as input, plant evolves to 𝑥 = 0.9 and 𝑣 = 1.8 in 1 second.

After plant has evolved and the system has transited to ω1, the ego-vehicle is now at the black circle in Fig. 2b. It is clear that
6

ω1 ∈ �ζ1� as 𝑥 ≤ 𝑥𝑐 . The intersection of the dashed curve with the 𝑥-axis in Fig. 2b represents the lower bound for 𝑥𝑐 to satisfy (15)

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

𝑥

𝑣

𝑥𝑐
(𝑥, 𝑣)

𝑎

(a) Graphical representation of the state ω0. The hatched area
contains all points in the 𝑥𝑣-plane from which it is possible to stop
before the obstacle 𝑥𝑐 . The invariant ζ1 evaluates to true in the
shaded area.

𝑥

𝑣

𝑥𝑐

(𝑥, 𝑣)

𝑥+
𝑐

(b) Graphical representation of the state ω1. A friendly env dis-

cards all obstacle positions in the interval between 𝑥𝑐 and the start
of the thick black line, and places the obstacle along the interval
indicated by 𝑥+

𝑐
.

Fig. 2. The controller chooses an action such that the plant evolves to a state where 𝑥 ≤ 𝑥𝑐 . In the next loop iteration, env moves 𝑥𝑐 to adapt to the controller’s action.

in the state ω1. Therefore, in the next iteration, 𝑥𝑐 can only be positioned somewhere along the interval indicated by the thick black
line in Fig. 2b and all other values are discarded by (15). Semantically, as 𝑥𝑐 − 𝑥 = 0.1 < 22∕(2 × 3) = 𝑣2∕(2𝑎𝑚𝑖𝑛

𝑛
), it follows that

(ω1, ω1) ∉ �env� so 𝑥𝑐 cannot be kept constant between iterations.

To summarise, it holds that ω0 ∈ �ζ1�, (ω0, ω1) ∈ �env; aux; ctrl; plant�, and ω1 ∈ �ζ1�. The acceleration requested by aux is ok’d
by ctrl in ω0 because the worst-case acceleration 𝑎𝑚𝑎𝑥

𝑛
in ω0 leads to a state that fulfils ζ1, and therefore also fulfils guarantee. Since

there exists no control action allowed by the system dynamics in the assumed operational domain that can fulfil guarantee from ω1,
the decision made by ctrl is unsafe in this case. However, since (ω1, ω1) ∉ �env�, Model 3 can be proven to fulfil guarantee with this
faulty ctrl.

So, the model is proven to fulfil guarantee only because env is not allowed to keep the obstacle stationary. Thus, ctrl exploits the
behaviour of env to move the obstacle so ctrl can keep accelerating rather than stopping safely. Though env is assumed to discard
only those behaviours where it is physically impossible for ctrl to fulfil guarantee, the interaction between env and ctrl causes env to
behave in a friendly way to adapt to faulty ctrl actions, thereby discarding env behaviours in which 𝑥𝑐 remains constant.

Problem 1. How can a requirement be formalised that guarantees, together with the dL formula (7), that the controller does not enforce
particular environment actions to establish safety?

Observe from Fig. 2a that for the state ω0, the shaded area describes the region where the loop invariant ζ1 holds. The hatched
area describes the states from where it is possible for ctrl to stop before the obstacle 𝑥𝑐 , i.e., all the 𝑥𝑣-points for which the env
assumption 𝑥𝑐 − 𝑥 ≥ 𝑣2

2𝑎𝑚𝑖𝑛
𝑛

in (15) is true. The shaded area contains some states in the 𝑥𝑣-plane that are outside of the hatched area.
From these states it is not possible for ctrl to stop before 𝑥𝑐 . Thus, control actions leading to such states should not be allowed.
However, ζ1 is not strong enough to prevent this. So why was it possible to prove Model 3 with an invariant as weak as ζ1? The
reason is that this weak invariant is preserved only because all environment behaviours which would violate a more reasonable
invariant are discarded. If ζ1 is strengthened to allow only states contained in the hatched area then the controller is prevented from
exploiting the environment. In other words, any state allowed by the loop invariant shall also be allowed by the env assumptions,
i.e., a good loop invariant should imply the env assumptions, such that the loop invariant does not force the environment to react.

The assumption 𝑥𝑐 − 𝑥 ≥ 𝑣2

2𝑎𝑚𝑖𝑛
𝑛

in (15) corresponds to 𝑃 in the generalised Model 1. Therefore, it can be hypothesised from the
above observation that the required condition to solve Problem 1 can be stated as ζ → 𝑃 , where ζ is the loop invariant and 𝑃 is
the env assumptions. Indeed, the condition ζ → 𝑃 solves Problem 1 for Model 3. However, Problem 1 is not specific to Model 3

and it remains unestablished whether ζ → 𝑃 solves Problem 1 for models of the general form considered in Model 1. For example,
in Model 3, the controller exploits the friendliness of env to not keep the obstacle position 𝑥𝑐 constant between iterations, i.e.,
𝑥𝑐 ≠ 𝑥+

𝑐
for two env actions (𝑥𝑐, 𝑥+𝑐). Admittedly, such a behaviour does not characterise friendly behaviour in all models. In order to

generalise the above to a larger class of behaviours environments should be allowed to expose, first express the condition ζ → 𝑃 in a
different way, as follows: ∀𝑠. ∀𝑒. ∀𝑒1.

(
ζ(𝑠, 𝑒) ∧ 𝑒 = 𝑒1 → ⟨env⟩ (𝑒 = 𝑒1)

)
. Note that the diamond operator is used here (“⟨α⟩”), instead

of the box operator, thereby stating that “there exists a run”, instead of “for all runs”. The formula says that, if the invariant holds,
then env has the option to leave the old and the new 𝑒 identical. Now, it is possible to generalise the option to not move (𝑒 = 𝑒1)
to a general relation 𝑅 of environment values, modelling actions which the environment should always be allowed to take, i.e., the
model should not force the environment out of actions according to 𝑅.

In general, the relation between two env values (𝑒0, 𝑒1) can be any relation 𝑅 ⊆ ℝ × ℝ. Note that 𝑅 only defines certain be-

haviours in the assumed operational domain. In Model 3, the exploiting controller could be proven safe because the environment
behaves friendly by discarding some behaviours characterised by 𝑅. This is illustrated in Fig. 2b where 𝑥𝑐 cannot be kept constant as
7

(ω1, ω1) ∉ �env�.

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

Definition 1. If there exists two states ω0 and ω1 that differ only in the assignment of the env variable 𝑒, i.e., ω0(𝑒) = 𝑒0 and
ω1 =ω0(𝑒 ∶= 𝑒1), and such that (𝑒0, 𝑒1) ∈ 𝑅 and (ω0, ω1) ∉ �env�, then the environment env is friendly w.r.t. the relation 𝑅. Thus,
env is unfriendly if (𝑒0, 𝑒1) ∈𝑅 → (ω0, ω1) ∈ �env� is true in all states ω0 and ω1 that differ only in the assignment of the env variable
𝑒.

The hypothesis ζ → 𝑃 can now be generalised to include the relation 𝑅 to describe the existence of an unfriendly env as:

ρ ≡ ∀𝑠.∀𝑒.∀𝑒1.
(
ζ(𝑠, 𝑒) ∧𝑅(𝑒, 𝑒1)→ ⟨env⟩ (𝑒 = 𝑒1)

)
, (20)

where ζ is parameterised to make it explicitly depend on the variables of the HP. The meaning of ρ is that, if a state fulfils the
invariant, then for every next env value 𝑒1 characterised by 𝑅 there is at least one execution of env in which the value 𝑒1 is chosen.

The loop invariant ζ1 ≡ 𝑥 ≤ 𝑥𝑐 is used to prove the dL formula (7) with the definitions of Model 2 and Model 3. Thus, it follows
that ⊧ ζ1 → [env; aux; ctrl; plant] ζ1 holds by (ii). But, ζ1 is not strong enough to prevent control actions that exploit friendly env
behaviours. For instance, as illustrated in Fig. 2, the control action that leads to ω1 from ω0 should not be allowed since env
must discard some behaviours from ω1 for ζ1 to be preserved later on. These discarded behaviours include all executions where
(aux; ctrl; plant) do not preserve ζ1. Thus ctrl exploits env to act friendly such that ζ1 is preserved.

Definition 2. A controller ctrl exploits a friendly environment env w.r.t. the relation 𝑅 if there exists a loop invariant ζ that is
preserved by the loop body, i.e. ⊧ γ, with

γ ≡ ∀𝑠.∀𝑒.
(
ζ(𝑠, 𝑒)→ [env; aux; ctrl; plant]ζ(𝑠, 𝑒)

)
, (21)

while at the same time the following holds

∃𝑠.∃𝑒0.∃𝑒.
(
ζ(𝑠, 𝑒0) ∧𝑅(𝑒0, 𝑒) ∧ ⟨aux; ctrl; plant⟩¬ζ(𝑠, 𝑒)

)
. (22)

(Note that aux, ctrl, and plant can read 𝑠 and 𝑒, as well as modify 𝑠, but not modify 𝑒.)
Thus, ctrl exploits env if it makes it necessary for env to behave friendly. In the following theorem it is shown that an exploiting

controller can be prevented if the loop invariant is strong enough to ensure the existence of an unfriendly environment.

Theorem 1. Let 𝑠 and 𝑒 be variables used in plant and env respectively as defined in Model 1. Let ζ(𝑠, 𝑒) be a loop invariant candidate, and
let 𝑅 be a relation over the domain of 𝑒. Let γ (21) be the dL formula from the inductive step (ii) of the loop invariant proof rule, and let ρ
be as defined by (20). If γ ∧ ρ is valid, then the loop invariant candidate ζ(𝑠, 𝑒) is sufficiently strong to prevent an exploiting controller.

Proof. The following dL formula is proved [16] in KeYmaera X:

γ ∧ ρ→ ∀𝑠.∀𝑒0.∀𝑒.
(
ζ(𝑠, 𝑒0) ∧𝑅(𝑒0, 𝑒)→ [aux; ctrl; plant]ζ(𝑠, 𝑒)

)
. (23)

This asserts that the loop invariant is strong enough to prevent ctrl from exploiting env’s friendly behaviour because the clause
implied by γ ∧ ρ in (23) is the negation of (22). □

In addition to solving Problem 1, Theorem 1 gives hints on how the loop invariant must be constructed. In some cases, as in Fig. 2

where 𝑥𝑐 ≤ 𝑥+
𝑐

, it suggests that ζ ≡ 𝑃 might be a loop invariant candidate. In summary, Theorem 1 is useful in two ways:

(i) By adding ρ to a dL formula, it is known that a proof of validity is not because env is friendly to ctrl,
(ii) ρ can also be a useful tool to aid in the search for a loop invariant.

On Rigorous Modelling and Vacuous Truth

For the specific model instance considered in this section, it is paramount that the environment may be unchanged, or else be
too friendly. As shown, a controller could otherwise exploit the environment. The environment is too friendly because, in certain
states, the dL formula is vacuously true. From a modelling perspective, the formula may become vacuously true because there is a
test without a default case. A default case is a branch of a nondeterministic choice that may never become false, and it is considered
good modelling practice to always include a default case to avoid vacuously true statements [17]. Adding a default case works by
ensuring that there is always at least one execution that the environment may execute.

A simple default case is the skip action. It is modelled by adding ∪ ?true to the test that might be vacuously true. In the case
of (8), adding a skip action, as shown in Model 4, ensures that there is always an execution where the environment variable 𝑒 is not
changed by the environment. That is, adding a skip action always allows the environment to be constant. Hence, adding the skip
action as a default case for the environment in Model 5 would not allow the controller to cheat.

Model 4: Default case for env.

(init)→ [((env∪? true); aux; ctrl; plant)∗] (guarantee) (24)
8

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

In this particular case, adding the skip action prevents the environment from being too friendly. Other models might require a
more complicated default case. Mistakes might be introduced in complicated models, and it might be difficult to identify whether
best practice is being followed or not. On the contrary, the method presented in this section is helpful because it will ensure that the
complete model cannot be proven if the environment is too friendly, and it is much more general than adding a single default case.

The method presented in this section can completely capture the effect of adding a skip action. If the relation 𝑅 is reflexive, then
(20) and (21) imply that the model resulting from adding skip to env, as in (24), is valid.

Lemma 1. Let 𝑠 and 𝑒 be variables used in plant and env respectively as defined in Model 1. Let ζ(𝑠, 𝑒) be a loop invariant candidate, and
let 𝑅 be a reflexive relation over the domain of 𝑒. Let γ (21) be the dL formula from the inductive step (ii) of the loop invariant proof rule,
and let ρ be as defined by (20). If γ ∧ ρ is valid, then it follows that a skip action can be added in parallel to the environment, as in (24),
without affecting the satisfiability of the dL formula γ.

Proof. The following dL formula is proved [18] in KeYmaera X:

γ ∧ ρ ∧ ∀𝑒.𝑅(𝑒, 𝑒)→ ∀𝑠.∀𝑒.
(
ζ(𝑠, 𝑒)→ [(env∪?𝑡𝑟𝑢𝑒); aux; ctrl; plant]ζ(𝑠, 𝑒)

)
.

This asserts that the addition of a skip action does not alter the satisfiability of the loop step if 𝑅 is reflexive. □

Lemma 1 shows that 𝑅 being reflexive is a sufficient condition to imply a skip action. Lemma 2 shows that proving the model
with the skip action implies that 𝑅 can be extended to be reflexive.

Lemma 2. Let 𝑠 and 𝑒 be variables used in plant and env respectively as defined in Model 1. Let ζ(𝑠, 𝑒) be a loop invariant candidate, and
let 𝑅0 be a relation over the domain of 𝑒. Let γ be the dL formula from the inductive step (ii) of the loop invariant proof rule applied to the
general model with skip Model (24), i.e.,

γ ≡ ∀𝑠.∀𝑒.
(
ζ(𝑠, 𝑒)→ [(env∪?𝑡𝑟𝑢𝑒); aux; ctrl; plant]ζ(𝑠, 𝑒)

)
.

If γ is valid, for a controller ctrl guaranteed to not exploit a friendly environment w.r.t. 𝑅0 , then ctrl is also guaranteed to not exploit a
friendly environment w.r.t. 𝑅 =𝑅0 ∪ 𝐼 .

Proof. Let the negation of (22) be denoted by ξ. That is,

ξ ≡ ∀𝑠.∀𝑒0.∀𝑒.
(
ζ(𝑠, 𝑒0) ∧𝑅(𝑒0, 𝑒)→ [aux; ctrl; plant]ζ(𝑠, 𝑒)

)
.

It is to be shown that γ implies ξ for all (𝑒, 𝑒) ∈𝑅 ⊆𝑅0 ∪ 𝐼 . This is done by taking an arbitrary ω ∈ �γ� and showing that ω ∈ �ξ�.

Assume that ω ∈ 𝒮 satisfies γ, i.e., ω ∈ �γ�. By the semantics of dL, this means that for all ν ∈ 𝒮 that coincide with ω ex-

cept on 𝑠, 𝑒0, and 𝑒, it holds that ν ∈ �ζ(𝑠, 𝑒) → [(env∪ ?𝑡𝑟𝑢𝑒); aux; ctrl; plant] ζ(𝑠, 𝑒)�. Consider an arbitrary such ν. Two cases
will be distinguished; either ν ∈ �𝑅(𝑒, 𝑒0)� or ν ∉ �𝑅(𝑒, 𝑒0)�. In the first case, it trivially follows that ν ∈ �ζ(𝑠, 𝑒0) ∧ 𝑅(𝑒0, 𝑒) →
[aux; ctrl; plant] ζ(𝑠, 𝑒)�.

In the second case, ν ∉ �𝑅(𝑒, 𝑒0)�. Again, two cases can be distinguished; either ν ∈ �𝑅0(𝑒0, 𝑒)� or ν ∈ �𝐼(𝑒0, 𝑒)�. If ν ∈ �𝑅0(𝑒0, 𝑒)�,
it follows that ν ∈ �ζ(𝑠, 𝑒0) ∧ 𝑅(𝑒0, 𝑒) → [aux; ctrl; plant] ζ(𝑠, 𝑒)�, because ctrl is guaranteed to not exploit a friendly environment
w.r.t. 𝑅0. If ν ∈ �𝐼(𝑒0, 𝑒)�, it follows that 𝑒0 = 𝑒 in the state ν. Recall that ν ∈ �ζ(𝑠, 𝑒) → [(env∪ ?𝑡𝑟𝑢𝑒); aux; ctrl; plant] ζ(𝑠, 𝑒)�. If
ν ∉ �ζ(𝑠, 𝑒)�, then ν ∉ �ζ(𝑠, 𝑒0)�, and it entails that ν ∈ �ζ(𝑠, 𝑒0) ∧𝑅(𝑒0, 𝑒) → [aux; ctrl; plant] ζ(𝑠, 𝑒)�. If, on the other hand, ν ∈ �ζ(𝑠, 𝑒)�,
then ν ∈ �[(env∪ ?𝑡𝑟𝑢𝑒); aux; ctrl; plant] ζ(𝑠, 𝑒)�. As (ν, ν) ∈ �[env∪ ?𝑡𝑟𝑢𝑒]�, it follows that ν ∈ �[aux; ctrl; plant] ζ(𝑠, 𝑒)�. Recall also
that 𝑒0 = 𝑒 in ν. Thus, ν ∈ �ζ(𝑠, 𝑒0)�, ν ∈ �𝑅(𝑒0, 𝑒)� and ν ∈ �[aux; ctrl; plant] ζ(𝑠, 𝑒)�, which means that ν ∈ �ζ(𝑠, 𝑒0) ∧ 𝑅(𝑒0, 𝑒) →
[aux; ctrl; plant] ζ(𝑠, 𝑒)�.

In all cases, ν ∈ �ζ(𝑠, 𝑒0) ∧ 𝑅(𝑒0, 𝑒) → [aux; ctrl; plant] ζ(𝑠, 𝑒)�, so it follows that ω ∈ �ξ�. As ω was chosen arbitrarily, it follows
that ctrl is guaranteed to not exploit a friendly environment w.r.t. 𝑅. □

It is now clear that adding a skip action as a default case in env is in some sense equivalent to ensuring that 𝑅 is reflexive.

4.2. Unchallenged controller

The previous section dealt with modelling problems where ctrl causes env to exhibit friendly behaviours despite correct env
assumptions. This section discusses modelling problems due to over-constrained assumptions, whereby ctrl is never challenged.

Consider Model 5, identical to Model 3, except for aux ((25) and (26)). As before, aux is a black box. However, in addition to the
acceleration bounds, aux also fulfils a design requirement req given by (26). req describes that the nominal controller only requests
an acceleration 𝑎 such that the ego-vehicle does not travel more than the braking distance (with 𝑎𝑚𝑖𝑛

𝑛
) from any given state in one

execution of 𝑇 duration. Similar to Model 3, the requested acceleration is passed to the plant if the ctrl test ok (18) is true; if not, the
9

controller action 𝐶 (19) sets the maximal possible deceleration.

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

Model 5: ctrl is unchallenged.

aux ≜ 𝑎 ∶=∗; ?
(
−𝑎𝑚𝑖𝑛

𝑛
≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥

𝑛
∧ req

)
(25)

req ≜

(
(𝑣+ 𝑎𝑇 ≥ 0)→ 𝑣𝑇 + 𝑎𝑇 2

2
≤

𝑣2

2𝑎𝑚𝑖𝑛
𝑛

)
∧
(
(𝑣+ 𝑎𝑇 < 0)→ 𝑎 ≤ −𝑎𝑚𝑖𝑛

𝑛

)
(26)

To verify that ctrl fulfils guarantee (13), the dL formula (7) together with the definitions in Model 2 and Model 5 must be proven
valid. Though the validity can indeed be proven in KeYmaera X using the loop invariant ζ1 ≡ 𝑥 ≤ 𝑥𝑐 , ctrl is faulty. Strong env and
aux assumptions might result in the invariant ζ being true in all HP executions irrespective of ctrl’s actions, and hence ctrl is never
verified. This manifests itself in Model 5; env assigns 𝑥𝑐 such that it is possible to brake to stop before the position of the obstacle,
and aux assumes that the ego-vehicle does not travel more than the braking distance in 𝑇 time. Therefore, guarantee is true for all
executions of [env; aux; plant], i.e., the model fulfils guarantee no matter which branch of ctrl is executed. Thus, this problem with
strong env and aux assumptions, i.e., an over-constrained model such that ctrl is not challenged in any HP execution, may allow a
faulty controller be proven safe.

Problem 2. How can a requirement be formalised that guarantees, together with the dL formula (7), that safety is not established due to an
unchallenged controller?

In general, if aux and/or env assumptions are too strong, many relevant executions may be discarded when the respective
tests fail. A worst-case situation is when a contradiction is present in the assumption, thereby discarding all possible executions
of the HP. In that case, the dL formula (7) is vacuously true, irrespective of the correctness of ctrl. In situations where all pos-

sible executions are discarded due to failed tests, a potential work-around is to check for such issues by proving the validity of
init → ⟨env; aux; ctrl; plant⟩ (guarantee) to verify that there exists at least one execution of the hybrid program that fulfils guarantee.
However, that work-around is not helpful to discover models susceptible to Problem 2 because it is possible to prove that there is
at least one execution of (env; aux; ctrl; plant) for which guarantee is true even in over-constrained systems as seen in the HP with
definitions of Model 2 and Model 5.

Observe that if ctrl is removed from the dL formula (7) and the formula is still valid, then ctrl is not verified. Equivalently, if the
invariant is preserved when ctrl is removed from the dL formula, i.e., χ ≡ ∀𝑠. ∀𝑒. ∀𝑎. ζ → [env; aux; plant] ζ is valid, then ctrl is not
verified. So the negation, i.e.,

¬χ ≡ ∃𝑠.∃𝑒.∃𝑎.ζ ∧ ⟨env; aux; plant⟩¬ζ , (27)

can be proved to ascertain the absence of Problem 2 in the proof of (7).

Definition 3. For hybrid systems described by Model 1 where the loop body is defined by (env; aux; ctrl; plant), ctrl is challenged w.r.t.
env, aux, plant, and the loop invariant ζ if ζ ∧ ⟨env; aux; plant⟩ ¬ζ is true in some state.

However, proving ¬χ (27) might not be beneficial in practice. While failed attempts to prove ¬χ might illuminate modelling
errors, the presence of env, aux, plant, and their interaction might complicate both the proof attempts and the identification of
problematic fragments of the HP, especially for large and complicated models.

Note that if there exists one execution of (env; aux) that does not preserve the invariant ζ, then ctrl must choose a safe control
action such that the hybrid system can be controlled to remain within the invariant states, i.e., �ζ�. However, this is not sufficient to
conclude that the controller is verified to be safe since it could be the case that for all such invariant violating executions, the plant
forces the hybrid system back into the invariant states. Therefore, it is necessary that not all executions of the uncontrolled plant
reestablish the invariant. So, if (env; aux) does not preserve the invariant, plant does not reestablish the invariant, then ctrl is indeed
verified to be safe as shown in Theorem 2.

Theorem 2. Let 𝑠, 𝑒, and 𝑎 be variables used in plant, env, and ctrl respectively as defined in Model 1, and let the loop invariant candi-

date ζ(𝑠, 𝑒, 𝑎1) be a specific instantiation of the dL formula ζ(𝑠, 𝑒, 𝑎). Let

ψ ≡ ∃𝑠.∃𝑒.∃𝑎1.
(
ζ(𝑠, 𝑒, 𝑎1) ∧ ⟨env; aux⟩(¬ζ(𝑠, 𝑒, 𝑎) ∧ ⟨plant⟩¬ζ(𝑠, 𝑒, 𝑎1))) . (28)

Then, if ψ is valid, ctrl is challenged in some executions of [env; aux; ctrl; plant].

Proof. The following dL formula is proved [16] in KeYmaera X:

ψ→ ∃𝑠.∃𝑒.∃𝑎1.ζ(𝑠, 𝑒, 𝑎1) ∧ ⟨env; aux; plant⟩¬ζ(𝑠, 𝑒, 𝑎1) . (29)

The dL formula ψ (28) states that there exists at least one execution of (env; aux) where the invariant is not preserved, and plant
does not always reestablish the invariant. The implied clause (29) asserts that ctrl is challenged by Definition 3. □

By the conjunction of ψ (28) to a dL formula of the form (7), Theorem 2 can be used to identify Problem 2 and also the problematic
10

fragments in all models of the form of Model 1. Furthermore, in HPs of the form (env; ctrl; plant)∗, with no distinction between env

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

Table 2

Summary of validity results for incorrect and correct models.

Model Loop Conjuncts Valid Reason

invariant

3 ζ1 – Yes Exploiting controller

3 ζ1 ρ1 No Invariant not strong enough

3 ζ2 ρ2 No Controller does not fulfil requirement

5 ζ1 – Yes Unchallenged controller

5 ζ1 ¬χ1 No Invariant preserved without controller

6 ζ1 – Yes

6 ζ1 ρ1 ∧¬χ1 No Invariant not strong enough

6 ζ2 ρ2 ∧¬χ2 Yes

and aux, Theorem 2 can still be used to determine whether the env assumption is over-constrained. In addition, ψ provides insights
to aid in the search of a loop invariant and its dependency on the HP variables.

5. Results

This section shows how Theorem 1 and Theorem 2 are used to

(i) identify that Model 3 and Model 5 are deceptive for the verification of ctrl,
(ii) aid in the identification of a candidate loop invariant, and

(iii) increase confidence in the fidelity of Model 6 where the errors are corrected.

The HPs and the KeYmaera X proofs are available from [16].

The dL formula (7) with the definitions in Model 2 and Model 3, denoted as θ, is proved in KeYmaera X with the loop invariant
ζ1 ≡ 𝑥 ≤ 𝑥𝑐 . Therefore it follows from (ii) that ⊧ γ, where γ ≡ ζ1 → [env; aux; ctrl; plant] ζ1. By Theorem 1, ρ must hold for Model 3

to conclude the absence of Problem 1. The formula

¬ρ1 ≡ ∃𝑥.∃𝑣.∃𝑥𝑐.∃𝑥+𝑐 .¬
(
𝑥 ≤ 𝑥𝑐 ∧𝑥𝑐 ≤ 𝑥+

𝑐
→

⟨
𝑥𝑐 ∶=∗; ? (𝑣2 ≤ 2𝑎𝑚𝑖𝑛

𝑛
(𝑥𝑐 − 𝑥))

⟩
(𝑥𝑐 = 𝑥+

𝑐
)
)
, (30)

expressed from (20) for Model 3 with ζ(𝑥, 𝑣, 𝑥𝑐) ≡ ζ1 and 𝑅(𝑥𝑐, 𝑥+𝑐) ≡ 𝑥𝑐 ≤ 𝑥+
𝑐

is proven valid in KeYmaera X, thereby confirming that
Model 3 is susceptible to Problem 1.

As ⊧ ¬ρ1, it follows that a stronger loop invariant is needed to not verify an exploiting ctrl. A possible candidate is the env
assumption (15), so let ζ2 ≡ 𝑣2 ≤ 2𝑎𝑚𝑖𝑛

𝑛
(𝑥𝑐 − 𝑥). For this choice of loop invariant, ρ2 is valid with ζ(𝑥, 𝑣, 𝑥𝑐) ≡ ζ2 and 𝑅(𝑥𝑐, 𝑥+𝑐) ≡

𝑥𝑐 ≤ 𝑥+
𝑐

. However, γ cannot be proven with ζ2 since the ctrl actions do not maintain ζ2, as already illustrated in Fig. 2. Hence, the
exploiting ctrl cannot be proven to fulfil guarantee. These results are summarised in the first three rows of Table 2.

Model 6: Correct env, aux, and ctrl.

env ≜ 𝑥𝑐 ∶=∗; ?
(
𝑥𝑐 − 𝑥 ≥ 𝑣2

2𝑎𝑚𝑖𝑛
𝑛

)
(31)

aux ≜ 𝑎𝑛 ∶=∗; ?
(
−𝑎𝑚𝑖𝑛

𝑛
≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥

𝑛

)
(32)

ctrl ≜ if ¬ok(𝑥, 𝑣, 𝑥𝑐 , 𝑎) then 𝑎 ∶=∗; ?𝐶(𝑥, 𝑣, 𝑥𝑐 , 𝑎) f i (33)

ok ≜ 𝑥𝑐 − 𝑥 ≥ 𝑣𝑇 +
𝑎𝑚𝑎𝑥
𝑛

𝑇 2

2
+

(
𝑣+ 𝑎𝑚𝑎𝑥

𝑛
𝑇
)2

2𝑎𝑚𝑖𝑛
𝑛

(34)

𝐶(𝑥, 𝑣, 𝑥𝑐 , 𝑎) ≜ 𝑎 = −𝑎𝑚𝑖𝑛

𝑠
(35)

The next two rows of Table 2 summarise the results of the dL formula (7) with the definitions in Model 2 and Model 5 which
is proved using the loop invariant ζ1. Therefore it follows from (ii) that ⊧ γ. By Theorem 2, ⊧ ¬χ (27) must hold to ensure that ctrl
is indeed verified safe. However the dL formula χ1 (36) with ζ1 and env, aux, plant defined by (15), (25), and (14), respectively, is
proven in KeYmaera X and thus, it follows that Model 5 is vulnerable to Problem 2.

χ1 ≡ (𝑥 ≤ 𝑥𝑐)→ [env; aux; plant] (𝑥 ≤ 𝑥𝑐) (36)

The last three rows of Table 2 summarise the results of the dL formula

κ ≡ (init)→ [(env; aux; ctrl; plant)∗] (guarantee), (37)

where the definitions of env, aux, and ctrl are given in Model 6 and the rest in Model 2. Based on the insights about Model 3 and
Model 5 from Table 2, Model 6 rectifies Problem 1 and Problem 2. Similar to the previous models, the env assumption (31) assigns
11

𝑥𝑐 such that it is possible to brake to stop before the obstacle and aux (32) is a black box. Unlike the previous models, the ctrl test

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

ok in (34) not only checks whether the worst-case acceleration is safe in the current execution but also checks whether, in doing so
guarantee is fulfilled in the next loop execution.

The dL formula κ (37) is proved in KeYmaera X using the loop invariant ζ1 ≡ 𝑥 ≤ 𝑥𝑐 . Since 𝑅(𝑥𝑐, 𝑥+𝑐) ≡ 𝑥𝑐 ≤ 𝑥+
𝑐

is also applicable
for Model 6, it follows from ⊧ ¬ρ1 (30) that ζ1 is not sufficiently strong to solve Problem 1. The stronger invariant candidate

ζ2 ≡ 𝑣2 ≤ 2𝑎𝑚𝑖𝑛
𝑛

(𝑥𝑐 − 𝑥) (38)

is used to prove κ (37) and since ⊧ ρ2, it is concluded that ζ2 is sufficiently strong to solve Problem 1 for Model 6.

Finally, to confirm that Model 6 is not susceptible to Problem 2, ψ from Theorem 2 must be valid. The dL formula ψ2 (39) is
proven in KeYmaera X:

ψ2 ≡ ∃𝑥.∃𝑣.∃𝑥𝑐.
(
ζ(𝑥, 𝑣, 𝑥𝑐 , 𝑎𝑚𝑖𝑛

𝑛
) ∧ ⟨env; aux⟩(¬ζ(𝑥, 𝑣, 𝑥𝑐 , 𝑎) ∧ ⟨plant⟩¬ζ(𝑥, 𝑣, 𝑥𝑐 , 𝑎𝑚𝑖𝑛

𝑛
)
))

, (39)

where env, aux and plant are as defined in (31), (32) and (14) respectively. Note that the stronger loop invariant ζ2 ≡ ζ(𝑥, 𝑣, 𝑥𝑐, 𝑎𝑚𝑖𝑛
𝑛

)
is a specific instantiation of the dL formula ζ(𝑥, 𝑣, 𝑥𝑐, 𝑎) given by:

ζ(𝑥, 𝑣, 𝑥𝑐 , 𝑎) ≡ (𝑣+ 𝑎𝑇 ≥ 0)→ (𝑣+ 𝑎𝑇)2 ≤ 2𝑎𝑚𝑖𝑛
𝑛

(
𝑥𝑐 − 𝑥− 𝑣𝑇 − 𝑎𝑇 2

2

)
∧ (𝑣+ 𝑎𝑇 < 0)→ 𝑣2 ≤ 2𝑎𝑚𝑖𝑛

𝑛
(𝑥𝑐 − 𝑥) . (40)

With this result, i.e., ⊧ ψ2, it follows from Theorem 2 that ⊧ ¬χ2 for the choice of ζ2. Thus, it entails that Model 6 is bereft of
Problem 1 and Problem 2, as summarised in the last row of Table 2.

5.1. Analysing other verified models: the European train control system

Table 2 presents the results obtained from applying Theorem 1 and Theorem 2 to the automated driving controller example. This
section shows how the theorems can be used to analyse other verified models by using the European Train Control System (ETCS)
models from Platzer and Quesel [13].

Model 7 shows the hybrid system model of ETCS (see Fig. 5 in [13]). ETCS is a standard to ensure safe operation of trains in
addition to their high throughput. To formally analyse the ETCS, Platzer and Quesel [13] model it as a HP with two independent and
parallel components as shown in (41). The first component train𝑟 consists of three sequentially composed HPs: drive (46) which models
the train dynamics using a double integrator model (similar to the automated driving example), a speed supervision component
spd (43), and a supervisory train controller, the automatic train protection unit atp𝑟 (44). The train’s acceleration 𝜏.𝑎 is dynamically
adjusted by atp𝑟 to maintain safe operation.

The second component in (41) is the radio block controller rbc𝑟, which determines the train’s movement permissions based on
the current track situation. Trains are only allowed to operate within their current movement authority, modelled using the vector
𝑚 = (𝑑, 𝑒, 𝑟). The train controller atp𝑟 must control the train’s movement in such a way that beyond position 𝑚.𝑒, the train’s velocity
𝜏.𝑣 must not exceed 𝑚.𝑑. In addition, the train should respect the recommended speed 𝑚.𝑟 in the current track segment. As shown
in (47), rbc𝑟 either updates the movement authority by assigning new values to 𝑚 or uses emergency messages to initiate immediate
braking response from the train controller.

For brevity, a detailed explanation about all the components of the ETCS model is not given and the reader is encouraged to refer
to Platzer and Quesel [13] for more information. However, it should be noted that components rbc𝑟, spd, atp𝑟, and drive in Model 7

are considered analogous to env, aux, ctrl, and plant in Model 1 for the analysis in this section.

Model 7: ETCS model from Platzer and Quesel [13].

𝐸𝑇𝐶𝑆𝑟 ≜ (train𝑟 ∪ rbc𝑟)∗ (41)

train𝑟 ≜ 𝑠𝑝𝑑; 𝑎𝑡𝑝𝑟; 𝑑𝑟𝑖𝑣𝑒 (42)

𝑠𝑝𝑑 ≜ (? 𝜏.𝑣 ≤𝑚.𝑟; 𝜏.𝑎 ∶=∗; ? − 𝑏 ≤ 𝜏.𝑎 ≤𝐴) ∪ (? 𝜏.𝑣 ≥𝑚.𝑟; 𝜏.𝑎 ∶=∗; ? − 𝑏 ≤ 𝜏.𝑎 ≤ 0) (43)

𝑎𝑡𝑝𝑟 ≜ SB ∶= 𝜏.𝑣2−𝑚.𝑑2

2𝑏
+
(

𝐴

𝑏
+ 1

)(
𝐴

2
𝜖2 + 𝜖𝜏.𝑣

)
; 𝑎𝑡𝑝 (44)

𝑎𝑡𝑝 ≜ if (𝑚.𝑒− 𝜏.𝑝 ≤ SB ∨ rbc.𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = emergency) then 𝜏.𝑎 ∶= −𝑏 f i (45)

𝑑𝑟𝑖𝑣𝑒 ≜ 𝑡 ∶= 0;
(
𝜏.𝑝′ = 𝜏.𝑣 ∧ 𝜏.𝑣′ = 𝜏.𝑎 ∧ 𝑡′ = 1 ∧ 𝜏.𝑣 ≥ 0 ∧ 𝑡 ≤ 𝜖

)
(46)

rbc𝑟 ≜ (rbc.message ∶= emergency) ∪
(
𝑚0 ∶=𝑚; 𝑚 ∶=∗; ?𝑚.𝑟 ≥ 0 ∧ 𝑚.𝑑 ≥ 0 ∧ 𝑚0.𝑑

2 −𝑚.𝑑2 ≤ 2𝑏 (𝑚.𝑒−𝑚0.𝑒)
)

(47)

Platzer and Quesel [13] verify (see Proposition 5 in [13]) that the train controller preserves safety with respect to the movement
authority, that is, that the formula

ζ𝑒 → [𝐸𝑇𝐶𝑆𝑟](𝜏.𝑝 ≥𝑚.𝑒→ 𝜏.𝑣 ≤𝑚.𝑑)
12

is valid. ζ𝑒, given by

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

ζ𝑒 ≡ 𝜏.𝑣2 −𝑚.𝑑2 ≤ 2𝑏(𝑚.𝑒− 𝜏.𝑝) ∧𝑚.𝑑 ≥ 0 ∧ 𝜏.𝑣 ≥ 0 ∧ 𝑏 > 0, (48)

is used as the loop invariant to prove the safety of ETCS in [13].

To analyse whether the verified Model 7 is susceptible to Problem 1 and Problem 2, ρ (20) from Theorem 1 and ψ (28) from
Theorem 2 can be used. The dL formula:

ρ𝑒 ≡ ∀rbc.message.∀𝑚0.∀𝑚.∀𝑚+.
(
ζ𝑒 ∧𝑚.𝑒 ≤𝑚+.𝑒→ ⟨rbc𝑟⟩(𝑚.𝑒 =𝑚+.𝑒)

)
,

and the dL formula:

ψ𝑒 ≡ ∃𝑧.∃𝑣.∃𝑚.

(
ζ𝑒 ∧ ⟨rbc𝑟; 𝑠𝑝𝑑⟩ (¬ζ′𝑒 ∧ ⟨𝑑𝑟𝑖𝑣𝑒⟩¬ζ𝑒)) (49)

are proved in KeYmaera X [16], thereby confirming that Model 7 does not suffer from Problem 1 or Problem 2. Note that ζ′
𝑒

in (49)

is a specific instantiation of the loop invariant ζ𝑒 (48), similar to (40).

Though the results from the ETCS model are unsurprising, it bears evidence that Theorem 1 and Theorem 2 can be applied to
analyse verified models other than the automated driving example considered in this paper. Furthermore, the results from the ETCS
model, together with the results from the automated driving example, provide some hints on the usability and the scalability of
the approach. In a nutshell, to analyse a given model, Theorems 1 and 2 have to be proven. In this regard, the theorem prover
KeYmaera X provides support for both interactive and automated proving [6,15,19].

6. On control and loop invariance

Control Engineering is a branch of engineering that deals with the design and implementation of a control system to regulate the
behaviour of a given dynamic system, the plant. Input values to the plant are dynamically chosen by the control system to effect
changes to the output of the plant, and the task is to keep the plant’s output within some tolerances despite the plant being subject
to disturbances.

Within control engineering there is the notion of a control invariant set, a subset of the state-space such that starting within it, the
system can be controlled to always stay within it. This is an important notion as it defines the boundaries of the behaviour within
which a given controller can confine the controlled system. As is shown in this section, the control invariant set is directly related to
the loop invariant used to prove the correctness of the control system treated in this work.

6.1. General case

Formally, the dynamics of a controlled system can be described by the general differential equation3:

𝐱̇(𝑡) = 𝑓 (𝐱,𝐮),

which updates the state of the system from the current state 𝐱 and the current control input value 𝐮. Here, 𝑓 ∶  × → ℝ𝑛 is an
arbitrary function over the 𝑛-dimensional state-space  ⊆ℝ𝑛 and the 𝑝-dimensional control input  ⊆ℝ𝑝.

A set CIS(𝑓,  , ) ⊆  is control invariant if for 𝐱(0) ∈ CIS(𝑓,  , ) there exists some control input 𝐮(𝑡) ∈  such that 𝐱(𝑡) ∈
CIS(𝑓,  , ), ∀𝑡 ≥ 0. We parametrize CIS by the dynamics 𝑓 and the set of control values  to make explicit that the control
invariant set depends on these parameters; different dynamics and different control abilities lead to different control invariant sets.
Using a logic approach, we represent sets as (Boolean) expressions. For instance, we express 𝐱 ∈ CIS(𝑓,  , ) as CIS(𝑓,  , )(𝐱).

Expressed in dL, the control invariant set can be described as the invariant (𝑇 ≥ 0):

CIS(𝑓, ,)(𝐱)→ ⟨𝐮 ∶=∗; ? (𝐮)⟩ [𝑡 ∶= 0; 𝑡′ = 1,𝐱′ = 𝑓 (𝐱,𝐮)& 𝑡 ≤ 𝑇]CIS(𝑓, ,)(𝐱). (50)

That is, if the current state is in the control invariant set, there can be selected some control input value such that any execution
from the current state under the chosen control input will remain in the control invariant set.

The union of two control invariant sets is also a control invariant set, thus, the maximal control invariant set exists and is
unique [11]. This set is bounded above and below by the upper and lower bounds of the control signals 𝑢 ∈  and 𝑢 ∈  , re-

spectively. For specific cases, analytical expressions of CIS(𝑓,  , ) are known [11].

The proof system of KeYmaera X relies on the general loop invariant rule:

Γ ⊢ ζ,Δ ζ ⊢ [α]ζ ζ ⊢ φ
loop .

Γ ⊢ [α∗]φ,Δ

However, as is well-known in the program verification community, suitable loop invariants for formal program verification are
notoriously difficult to find. Also, the theory of program verification does not provide guarantees of a found loop invariant being
the weakest possible one, even if that is indeed desired. Both problems can potentially be addressed by results for maximal control
invariant sets, which may then help to find loop invariants useful in the verification of the types of models treated in this work.
13

3 The dot is used to distinguish the mathematical notation of derivation from the dL notation that uses the prime.

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

For the specific case of a controlled system, the dL calculus could provide a dedicated control invariant set rule:

Γ ⊢ CIS(𝑓, ,),Δ CIS(𝑓, ,) ⊢ [discr; plant]CIS(𝑓, ,) CIS(𝑓, ,) ⊢ φ
controlInvSet ,

Γ ⊢ [(discr; plant)∗]φ,Δ

where discr is the discrete part of the control loop, in our model discr ∶= env; aux; ctrl.
Importantly, the middle premise of the rule is not necessarily correct by construction, see (50), as CIS is agnostic towards the

discrete part of the control loop. In particular, though CIS is aware of the maximal and minimal control inputs, it is agnostic to the
behaviour of the controller; a specific controller may choose control signal inputs that do not keep the system within CIS. Indeed, we
must prove that any given controller always chooses control input values that respect the invariance of CIS. However, the advantage
of using the controlInvSet rule would be that CIS(𝑓,  , ) can be computed by some algorithm for control invariant sets (such as
given by [11], see below), so that the invariant does not have to be provided by the user (via interaction or program annotation),
instead it can be computed as part of the rule application4.

A systematic exploitation of this insight is future work, but in the next section we investigate a special case relevant to the material
of the previous sections of this paper.

6.2. Single input 2nd order linear system

This paper concerns single input 2nd order linear integrator systems (see (14)) of the form:{
𝑥̇1 = 𝑢

𝑥̇2 = 𝑥1

with the state-space  = [𝑥1, 𝑥2]𝑇 ∈ ℝ2 and the control signal  = [𝑢] ∈ ℝ. The dynamics of such a controlled linear system is
typically expressed in matrix form as:

𝐱̇(𝑡) =𝐴𝐱(𝑡) +𝐵𝐮(𝑡),

where in this particular case:

𝐴 =
[
0 0
1 0

]
, and 𝐵 =

[
1
0

]
.

Thus, we have that 𝑓 ∶=𝐴𝐱(𝑡) +𝐵𝐮(𝑡).
Both  and  are subject to rectangular constraints:

 = {𝐱 ∈ℝ2 |𝑥
𝑖
≤ 𝑥𝑖 ≤𝑥𝑖, 𝑖 = 1,2} , and  = {𝑢 ∈ℝ |𝑢 ≤ 𝑢 ≤𝑢} ,

where 𝑥
𝑖

and 𝑢, and 𝑥𝑖 and 𝑢, are minimum and maximum values, respectively, of 𝑥𝑖 and 𝑢, and where it is assumed that 𝑢 < 0 <𝑢,
to exclude uncontrollable systems.

Given such a 2nd order integrator system with rectangular constraints, Doeser et al. [11] give an analytical characterisation of
the maximal control invariant set contained in  for an upper state bound 𝑥𝑛 ≤𝑥𝑛 and a lower input bound 𝑢 ≤ 𝑢 as:{

𝑥2 − 𝑥2 +
𝑥21
2𝑢 if 𝑥1 ≥ 0

𝑥2 − 𝑥2 otherwise,

where the condition on 𝑥1 guarantees that 𝑡 ∈ℝ>0.

In the specific case of this paper (see Model 2), the control signal 𝑢 is the acceleration, so that 𝑥1 is the velocity 𝑣, and 𝑥2 the
position 𝑥. Thus:{

𝑣̇ = 𝑎

𝑥̇ = 𝑣,

with the acceleration bounded 𝑢 = −𝑎𝑚𝑖𝑛
𝑛

≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥
𝑛

=𝑢, which fulfils the constraint 𝑢 < 0 <𝑢. Also, both 𝑥 and 𝑣 are bounded,
𝑥2 = 0 ≤ 𝑥 ≤ 𝑥𝑐 =𝑥2, and 𝑥1 = 0 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥 =𝑥1, so there are rectangular state constraints. Thus, since 𝑣 = 𝑥1 ≥ 0, the maximal
control invariant set can be written as:

𝐶2 =
{⟨𝑥, 𝑣⟩ ∈ℝ2 |𝑥𝑐 − 𝑥− 𝑣2

2𝑎𝑚𝑖𝑛
𝑛

≥ 0
}

.

The characterisation of 𝐶2 can be re-arranged so that 𝐶2 can be written as:

𝐶2 =
{⟨𝑥, 𝑣⟩ ∈ℝ2 |𝑣2 ≤ 2𝑎𝑚𝑖𝑛

𝑛
(𝑥𝑐 − 𝑥)

}
,

14

4 The presented rule is idealised in so far as it is not pattern-matching friendly.

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

which is the exact same expression as the loop invariant ζ2 (38), so that 𝐶2 can be given as:

𝐶2 = {⟨𝑥, 𝑣⟩ ∈ℝ2 |ζ2(𝑥, 𝑣)}.
Thus, the loop invariant necessary to correctly prove the considered type of hybrid systems correct can be – and in this example is

– identical to the characterisation of the maximal control invariant set. In fact, [11] gives closed-form expressions for maximal control
invariant sets up to 4th order dynamics (with single inputs), which can serve as candidates for loop invariants for the verification of
such systems.

7. Related work

The European Train Controller System (ETCS) [13], Model 7, is very similar to the other models of this paper. Though not
explicitly stated, the modelling pitfalls are avoided for the ETCS models by the use of an iterative refinement process that determines
a loop invariant based on a controllability constraint. The process is used to design a correct controller rather than to verify one.
However, as shown in Section 5.1, the approach presented in this paper can be used to analyse the ETCS model to increase confidence
in the design.

An alternative to guarantee CPS correctness is runtime validation [20], where runtime monitors are added to the physical imple-

mentation, monitoring whether the system deviates from its model. If it does, correctness is no longer guaranteed, and safe fallbacks
are activated. However, for Model 3, the safe fallback would be activated too late since ctrl had already taken an unsafe action when
the violation of the env assumptions are detected. Furthermore, the safe fallbacks might cause spurious braking for Model 5.

The issue in Model 3 is not unique to dL; the issue manifests itself similarly in reactive synthesis [21,22]. The cause of the issue,
in both paradigms, stems from the logical implication from the env assumptions to the ctrl actions and requirements. Instead of taking
actions to fulfil the consequent, an exploiting ctrl can invalidate the premise to fulfil the implication. However, Bloem et al. [21]

conclude that none of the existing approaches completely solve the problem and emphasize the need for further research.

Essentially, the loop step (ii) ζ ⊢ [α] ζ for (7) of Model 1 becomes ζ ∧ env ∧ aux ∧ ctrl ∧ plant → ζ during the proof calculus.
Evidently, whenever env is false, the entire formula is true. So, if in one execution ctrl can force the hybrid system into a state in
which ζ is true but env is false, then the loop step becomes trivially true in the next execution.

In reactive synthesis, the formula that must be fulfilled is abstractly stated as 𝐴 → 𝐺, where 𝐴 represents the formula that the
environment is assumed to fulfil, whereas 𝐺 is the formula which the controller must guarantee to fulfil. As can be seen, the formula
is trivially true if the environment does not fulfil its assumptions. Like for the problem with the cheating controller in dL, the reactive
synthesis controller may also exploit the environment and force the system into a state from which the environment cannot fulfil its
assumptions. See for instance Majumdar et al. [22] for a concrete example.

One way to solve the reactive synthesis problem is to convert the formula and the interactions between the environment and
the controller into a two-player game, which is constructed such that if the controller wins a play the implication is true, and if the
environment wins a play the implication is false. The game consists of states, where each state belongs to either the controller or
the environment. In a play, the controller and the environment choose the next state depending on who owns the current state, and
a player’s choice of next state from each state is called its strategy. Whether a play is won by the controller or the environment is
determined based on which states are visited during the play. A state is winning for a player if there exists a strategy such that, no
matter what strategy the other player is using, the first player wins all plays starting in that state that are played according to that
strategy. The set of winning states of a player is its winning region. The other states are the winning region for the other player.
Thus, to be guaranteed to win, a player’s strategy must always choose the next state from its winning region. With such a strategy
for the first player, the other player will never have the choice to leave the first player’s winning region.

Any state from which the controller can force the game into a dead end or into a set of states where the environment assumptions
are not fulfilled is part of the winning region of the controller. The consequence becomes that the controller can “cheat” and instead
of winning by fulfilling its own guarantees, it prevents the environment from fulfilling its assumptions.

The situation can be viewed in a similar way in the loop step. ζ → [env; ctrl; plant](ζ) essentially means that, if starting in a state
set defined by ζ, then env and ctrl must choose actions such that the same state set defined by ζ is reached after plant has been
applied. If env is viewed as an adversarial and ctrl as the entity for which a strategy shall be found, then the loop step requires that,
for the controller to win the game and fulfil the guarantee, if starting in a state in which ζ holds, then, no matter what env chooses
to do, ctrl must be able to choose a next state in which ζ holds. Thus, it is possible to view ζ as a definition of a winning region for
ctrl. If the loop step formula is valid, then the model of ctrl is a winning strategy with respect to env and ζ.

The problem in Section 4.1 occurs because the “winning region” for ctrl includes states that lead to dead ends for env. Those dead
ends arise because env cannot fulfil its assumptions in the entire winning region. So, similar to the reactive synthesis case, ctrl can
play by a strategy that forces env into dead ends.

The solution put forth in Section 4.1 restricts ζ and removes states from the winning region of ctrl; states from which it is
impossible for env to fulfil its assumptions are removed, thus preventing ctrl to completely restrict env. In other words, the set of
states in which the assumptions are fulfilled is always reachable. This is very similar to the statement “Satisfaction [. . .] requires
checking whether the set [of states fulfilling the assumptions of the environment] remains reachable from any reachable state in the
game graph realising [all plays induced by the controller’s strategy]” [22]. Although reactive synthesis and dL are very different, the
solution to a vacuous env in Theorem 1 and the solution to a falsified assumption by Majumdar et al. [22] seem, on a high level, to
solve the same type of problem with the same general technique. That is, preventing falsification of the assumptions by restricting
15

the controller’s winning region to states from which it is possible to eventually reach states where the assumptions are fulfilled.

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

Theorems 1 and 2 put conditions on individual components, but these conditions, in the form of the loop invariant, stem from the
same global requirement. Müller et al. [23] take the other approach and start with separate requirements for each of the components
to support the global requirement. The goal of the decomposition is to ease the modelling and verification effort, and not directly to
validate the model. However, these methods would likely be beneficial in tandem.

The contributions of this paper give additional constraints, apart from the three implications of the loop rule, that can aid the
construction of invariants. This might be useful in automatic invariant inference, which is a field of active research where loop
invariants are synthesized. Furia and Meyer [24] note that the automatic synthesis of invariants based on the implementation (or
the model) might be self-fulfilling, and go on to argue that the postconditions and the global requirements must be considered
in the invariant synthesis. This paper, however, suggests that, for certain models, it might not be sufficient to consider only the
postconditions in the invariant synthesis.

8. Conclusions

This paper shows that modelling errors present a risk of unsound conclusion from provably safe, but erroneous models, which
is a big problem not only for safety-critical systems. This paper formulates and proves conditions in Theorem 1 and Theorem 2

that, when fulfilled, help identify and avoid two kinds of modelling errors that may result in a faulty controller being proven safe.
Furthermore, the formulated conditions aid in finding a loop invariant which is typically necessary to verify the safety of hybrid
systems. Moreover, it is shown that this loop invariant coincides with the characterisation of the maximal control invariant set as
defined for control engineering systems, which is the largest set of states such that starting within it the system can be controlled
to stay within it. This is an interesting observation that suggests that to find suitable loop invariants it might be useful to look into
methods from the control engineering community to find (maximal) control invariant sets.

Using a running example of an automated driving controller, the problematic cases are shown to exist in practical CPS designs.
The formulated conditions are then applied to the erroneous models to show that the errors are captured. Finally, the errors are
rectified to obtain a correct model, which is then proved using a loop invariant that satisfies the formulated conditions, thus ensuring
absence of the two modelling errors discussed in this paper.

A natural extension of this work will be to investigate also other kinds of modelling errors that might arise in the verification of
complex CPS designs. Moreover, it would also be beneficial to investigate the connection between loop invariants and differential
invariants, which are used to prove properties about hybrid systems with differential equations without their closed-form solutions.

The starting point for this work is the insight that by erroneous modelling it is easy to obtain vacuous safety proofs for controlled
systems without noticing. The overall problem of drawing wrong conclusions from proofs in the presence of modelling errors is
well known, and typically addressed on the meta level, in an informal manner. The main contribution of this work is to show how
two specific classes of modelling errors can be excluded using formal verification technology itself. In general, we are convinced that
more attention is needed to systematically address modelling and specification errors, with the help of tools, and with a high level of
confidence.

CRediT authorship contribution statement

Yuvaraj Selvaraj: Conceptualization, Formal analysis, Software, Writing – original draft, Writing – review & editing. Jonas
Krook: Conceptualization, Formal analysis, Software, Writing – original draft, Writing – review & editing. Wolfgang Ahrendt: Con-

ceptualization, Formal analysis, Supervision, Writing – original draft, Writing – review & editing. Martin Fabian: Conceptualization,
Formal analysis, Supervision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] E. Lee, Cyber-physical systems - are computing foundations adequate?, Position Paper for NSF Workshop on Cyber-Physical Systems: Research Motivation,
Techniques and Roadmap, vol. 2, 2006.

[2] J. Michael, D. Drusinsky, D. Wijesekera, Formal verification of cyberphysical systems, Computer 54 (2021) 15–24, https://doi .org /10 .1109 /MC .2021 .3055883.

[3] Y. Selvaraj, W. Ahrendt, M. Fabian, Formal development of safe automated driving using differential dynamic logic, IEEE Trans. Intell. Veh. 8 (2022) 988–1000,
https://doi .org /10 .1109 /TIV .2022 .3204574.

[4] R. Alur, T.A. Henzinger, E.D. Sontag (Eds.), Hybrid Systems III – Verification and Control, Lecture Notes in Computer Science, vol. 1066, Springer, 1996.

[5] R. Alur, Formal verification of hybrid systems, in: 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT), 2011,
pp. 273–278.

[6] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, A. Platzer, KeYmaera X: an axiomatic tactical theorem prover for hybrid systems, in: International Conference on
Automated Deduction, Springer, 2015, pp. 527–538.

[7] A. Benveniste, Compositional and uniform modelling of hybrid systems, in: R. Alur, T.A. Henzinger, E.D. Sontag (Eds.), Hybrid Systems III, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1996, pp. 41–51.

[8] P. Koopman, A. Kane, J. Black, Credible autonomy safety argumentation, in: 27th Safety-Critical Systems Symposium, 2019, pp. 34–50.

[9] A. Platzer, Logical Foundations of Cyber-Physical Systems, vol. 662, Springer, 2018.
16

[10] A. Platzer, Logics of dynamical systems, in: 27th Annual IEEE Symposium on Logic in Computer Science, IEEE, 2012, pp. 13–24.

http://refhub.elsevier.com/S2352-2208(23)00093-7/bib69D8F91D226DEBB591F3D9E3E1605823s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib69D8F91D226DEBB591F3D9E3E1605823s1
https://doi.org/10.1109/MC.2021.3055883
https://doi.org/10.1109/TIV.2022.3204574
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib33EF5DBC20C75A260796BDF48335BFB4s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib3E3443E9B9505D76D78E0F4D717CF99Bs1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib3E3443E9B9505D76D78E0F4D717CF99Bs1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bibEE5AFE21A53E8A967095732D3B078DC1s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bibEE5AFE21A53E8A967095732D3B078DC1s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib5F8A4B5BECF4D13E67D558EA63073C5Es1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib5F8A4B5BECF4D13E67D558EA63073C5Es1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib6AB16E3500E89049755A23F56BF9530Fs1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bibBCCDAC774A42242D622065B8BC0CBE35s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bibC647D73B7413175248FD41417A3450C2s1

Journal of Logical and Algebraic Methods in Programming 137 (2024) 100939Y. Selvaraj, J. Krook, W. Ahrendt et al.

[11] L. Doeser, P. Nilsson, A.D. Ames, R.M. Murray, Invariant sets for integrators and quadrotor obstacle avoidance, in: 2020 American Control Conference (ACC),
2020, pp. 3814–3821.

[12] Y. Selvaraj, J. Krook, W. Ahrendt, M. Fabian, On how to not prove faulty controllers safe in differential dynamic logic, in: A. Riesco, M. Zhang (Eds.), Formal
Methods and Software Engineering, Springer International Publishing, Cham, 2022, pp. 281–297.

[13] A. Platzer, J.-D. Quesel, European train control system: a case study in formal verification, in: K. Breitman, A. Cavalcanti (Eds.), Formal Methods and Software
Engineering, Springer, 2009, pp. 246–265.

[14] O. Kupferman, P. Madhusudan, P.S. Thiagarajan, M.Y. Vardi, Open systems in reactive environments: control and synthesis, in: CONCUR 2000 — Concurrency
Theory, in: Lecture Notes in Computer Science, vol. 1877, Springer, Berlin, Heidelberg, 2000, pp. 92–107.

[15] S. Mitsch, A. Platzer, A retrospective on developing hybrid system provers in the keymaera family: a tale of three provers, in: Deductive Software Verification:
Future Perspectives: Reflections on the Occasion of 20 Years of KeY, Springer, 2020, pp. 21–64.

[16] Y. Selvaraj, J. Krook model-pitfalls-dl, https://doi .org /10 .5281 /zenodo .6821673, 2022.

[17] J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, A. Platzer, How to model and prove hybrid systems with KeYmaera: a tutorial on safety, Int. J. Softw. Tools Technol.
Transf. 18 (2016), https://doi .org /10 .1007 /s10009 -015 -0367 -0.

[18] Y. Selvaraj, J. Krook, model-pitfalls-dl, https://github .com /yuvrajselvam /model -pitfalls -dl, 2023.

[19] S. Mitsch, Implicit and explicit proof management in KeYmaera X, in: Proceedings of the 6th Workshop on Formal Integrated Development Environment, in:
EPTCS, vol. 338, 2021.

[20] S. Mitsch, A. Platzer, ModelPlex: verified runtime validation of verified cyber-physical system models, Form. Methods Syst. Des. 49 (2016), https://doi .org /10 .
1007 /s10703 -016 -0241 -z.

[21] R. Bloem, R. Ehlers, S. Jacobs, R. Könighofer, How to handle assumptions in synthesis, in: K. Chatterjee, R. Ehlers, S. Jha (Eds.), Proceedings 3rd Workshop on
Synthesis, SYNT, in: EPTCS, vol. 157, 2014, pp. 34–50.

[22] R. Majumdar, N. Piterman, A.-K. Schmuck, Environmentally-friendly GR(1) synthesis, in: Tools and Algorithms for the Construction and Analysis of Systems,
2019, pp. 229–246.

[23] A. Müller, S. Mitsch, W. Retschitzegger, W. Schwinger, A. Platzer, Tactical contract composition for hybrid system component verification, Int. J. Softw. Tools
Technol. Transf. 20 (2018) 615–643, https://doi .org /10 .1007 /s10009 -018 -0502 -9.

[24] C.A. Furia, B. Meyer, Inferring loop invariants using postconditions, in: A. Blass, N. Dershowitz, W. Reisig (Eds.), Fields of Logic and Computation: Essays
17

Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday, Springer, 2010, pp. 277–300.

http://refhub.elsevier.com/S2352-2208(23)00093-7/bib80354A79A7F13001D3DF72523BE89637s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib80354A79A7F13001D3DF72523BE89637s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib59668FA12BEBF916DD9D911094428448s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib59668FA12BEBF916DD9D911094428448s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib9CA8819CAA52A1D7655FD8146242ADCFs1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib9CA8819CAA52A1D7655FD8146242ADCFs1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib9A84BF50399CE45BCC5B422D0FDFD802s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib9A84BF50399CE45BCC5B422D0FDFD802s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib12988E9A58E27A29AEA021518B3BAEC3s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib12988E9A58E27A29AEA021518B3BAEC3s1
https://doi.org/10.5281/zenodo.6821673
https://doi.org/10.1007/s10009-015-0367-0
https://github.com/yuvrajselvam/model-pitfalls-dl
http://refhub.elsevier.com/S2352-2208(23)00093-7/bibB89209D663AB5C871E62626DC2C262BDs1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bibB89209D663AB5C871E62626DC2C262BDs1
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib839DC0643FABD9B8826A91828C918EB2s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib839DC0643FABD9B8826A91828C918EB2s1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib07D403342265E3F0569B43F89341D6FAs1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bib07D403342265E3F0569B43F89341D6FAs1
https://doi.org/10.1007/s10009-018-0502-9
http://refhub.elsevier.com/S2352-2208(23)00093-7/bibE10993BBAC031D1153F7A63785B7E6DFs1
http://refhub.elsevier.com/S2352-2208(23)00093-7/bibE10993BBAC031D1153F7A63785B7E6DFs1

	On proving that an unsafe controller is not proven safe
	1 Introduction
	2 Preliminaries
	3 Problem scope
	4 Discovering modelling errors
	4.1 Exploiting controller
	4.2 Unchallenged controller

	5 Results
	5.1 Analysing other verified models: the European train control system

	6 On control and loop invariance
	6.1 General case
	6.2 Single input 2nd order linear system

	7 Related work
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

