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Adapting to uncertainty: Modeling adaptive investment decisions in the 
electricity system 
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H I G H L I G H T S  

• Low carbon electricity system transition driven by investor decisions. 
• New method factors in price uncertainties, dynamic hurdle rates, and loss aversion. 
• Low loss aversion investors exhibit a higher propensity to invest, but face heightened bankruptcy risks.  
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A B S T R A C T   

The electricity system is undergoing a rapid transformation, with the decisions of investors significantly shaping 
not only the future supply mix of the system, but also dictating the pace of this transition. Given the sector’s 
inherent complexities and uncertainties, investors are actively adapting their strategies to respond to evolving 
investment conditions. Effective policy design for low-carbon transition hinges on an understanding of these 
investment decisions. Traditional energy system models, however, often default to a simplistic view of static 
investment behavior, falling short of capturing the dynamics of adaptive decision-making. In response to these 
challenges, our study underscores the necessity of integrating adaptive investment decisions into energy system 
modeling. We introduce a novel approach to model investment decisions that accommodate the dynamic nature 
of hurdle rates, the uncertainties tied to the economic performance of various power plant technologies, and 
differences in investors’ levels of loss aversion. While conceptual, the model’s scale is comparable to the elec
tricity market of a country such as Germany. Our findings underscore the differences in investment decisions 
among adaptive and non-adaptive investors. In adaptive scenario, agents initially invest more in wind and solar 
technologies, but less in later years compared to the no-adaptive case. Furthermore, adaptive agents with less 
aversion to losses show higher equity values, but also face increased bankruptcy risks. By enhancing our 
modeling approach to incorporate heterogeneity in adaptive investment decisions, this study aims to contribute 
to the ongoing discourse on low-carbon energy transition and further development of energy system models.   

1. Introduction 

Investments in low-carbon power generation technologies are crucial 
for the global transition towards a zero-emission energy system [17,20]. 
Investors play a vital role in this process, as their financial support 
provides the capital needed for investments in these technologies. 

While investments in low-carbon technologies like wind and solar 
have been increasing rapidly during the past decades, the need for 
further investments remains substantial [19]. However, investors 
confront significant uncertainties and risks when deciding which tech
nologies to support, given the unpredictable nature of factors such as 

energy demand, technology performance, market conditions and policy 
landscapes. 

To manage risk and improve potential returns, investors adapt their 
investment decisions in response to changes in the market and political 
conditions [7,9,10,29,32]. Within the energy system context, these 
adaptive decisions influence the generation technologies investors 
choose and ultimately determine the pace of transition to a low-carbon 
energy system. An example of this is the adaptive strategies of investors 
in Germany in response to Germany’s Energiewende (“energy transi
tion”) policy. This policy integrated feed-in tariffs and other incentives 
for renewable energy generation, prompting investors to adapt their 
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strategies and reallocate capital towards wind and solar power projects, 
thereby aiding Germany in accelerating its transition towards a low- 
carbon energy system [4]. 

In this study, we aim to gain a deeper understanding of how in
vestors’ adaptive behavior influences their investment decisions within 
the electricity system and how this behavior contributes to the low- 
carbon transition. To achieve this, computational modeling emerges as 
a powerful tool and is commonly used for studying future energy sys
tems and simulating the complex interactions between investors, tech
nologies, and market dynamics, as evident by several literature review 
studies including [3,33,36]. 

In this study, we focus on the electricity system, assessing how in
dividual investment decisions influence its transition towards low- 
carbon solutions over the long term. To simulate these individual in
vestments, we employ a simulation technique known as agent-based 
modeling. This approach is particularly suited for this study, as it in
volves the use of ‘agents’—individual entities that make decisions and 
interact with their environment. These agents are characterized by their 
autonomy and adaptability, each following own decision-making pro
cesses and rules, as noted by Bonabeau [5]. 

Over recent years, several agent-based modeling tools have been 
developed specifically for analyzing investment decisions in the elec
tricity sector, especially in the context of its low-carbon transition. 
Notable examples include the works of Chappin [11], Mittal and Krejci 
[31], Chen et al. [12], Kraan et al. [28], Fraunholz et al. [15], Barazza 
and Strachan [2], Kell [24], Mason et al. [30], and Tao et al. [35]. 

However, a notable gap exists in existing models: they often overlook 
investors’ adaptive behavior. To our knowledge, only a handful of 
modeling studies have explicitly considered investors’ adaptive 
behavior in the context of investments in power generation technolo
gies. Noteworthy among these are: Kraan et al. [28], Chen et al. [12] and 
Barazza and Strachan [2]. Neglecting to account for this behavior can 
lead to oversimplified representations of the decision-making process 
and potentially misleading assessments of future investment trends. 

In the three aforementioned studies by Kraan et al. [28], Chen et al. 
[12] and Barazza and Strachan [2], investors adapt their investment 
decisions based on the profitability of their existing plants, but the exact 
adaptation rule is modeled differently in each study. Kraan et al. [28] 
capture investors’ adaptivity by employing dynamic discount rates for 
the investor’s entire portfolio. The profitability of investors’ portfolios 
dictates whether their discount rates will increase due to low profit
ability or decrease when profitability is high. If an investor’s discount 
rate exceeds a threshold, the investor goes bankrupt. In Chen et al. [12], 
investors exhibit varying preferences for distinct technologies. Their 
preferences are adjusted according to the historical profitability of each 
technology, employing a preference parameter that ranges from 0.95 to 
1.05. This parameter is then multiplied to adjust the utility value linked 
to investing in a specific technology, which ultimately dictates the in
vestor’s final investment decision. In Barazza and Strachan [2], the in
vestors evaluate a plant’s cumulative profits over the previous five 
years. If the profit index for the investment in this technology over the 
past five years is negative, the investment is then deemed unprofitable. If 
the plant continues to be unprofitable beyond the loss tolerance 
threshold of an investor, then investors will not invest in the same 
technology until it becomes profitable again. 

In this study, we build on existing literature and endeavor to enhance 
the modeling representation of adaptive investment decisions in new 
power plants. We focus on the investment decisions of power companies. 

Similar to the studies by Kraan et al. [28], Chen et al. [12] and 
Barazza and Strachan [2], our study also employs the agent-based 
modeling (ABM) approach. The ABM approach is well-suited for this 
study due to its ability to capture the emergent behavior of the system (e. 
g., energy transition) by modeling the behavior (e.g., investors’ invest
ment decisions) and interactions between agents and their environment 
(e.g., investors and the electricity market). More importantly, agent- 
based models can represent the learning and adaptation processes of 

agents (e.g., investors’ adaptive investment strategies), enabling this 
study to thoroughly analyze how adaptive behavior affects investors’ 
decisions and the overall dynamics of the transition. Moreover, agent- 
based models are particularly adept at capturing the heterogeneity 
and complexity of decision-making processes among individual agents 
(e.g., different types of investors). 

Similar to the studies by Kraan et al. [28], Chen et al. [12] and 
Barazza and Strachan [2], our study also enables agents to adapt their 
investment decisions according to the profitability of their existing 
plants, but in contrast to these three studies, our study takes into account 
that investors have varying hurdle rates for different power generation 
technologies [13,14,18,32]. A hurdle rate is the minimum rate of return 
on an investment required by an investor [25]. Investors use hurdle rates 
in discounted cash flow analysis to determine the net present value 
(NPV) or to compare with an investment’s internal rate of return (IRR). 
In both cases, the hurdle rate is critical for assessing an investment’s 
economic value and deciding whether to pursue a project. 

Furthermore, our study acknowledges that investors or companies 
respond differently to changes in market conditions [27,34,38]. Spe
cifically, the variety in investors’ levels of loss aversion. We adjust in
vestors’ hurdle rates based on their individual degrees of loss aversion. 
The concept of loss aversion, posits that individuals often give more 
weight to potential losses than to equal gains [22]. Although Kahneman 
and Tversky’s research predominantly targets individual decision- 
making, empirical evidence suggests that organization-level entities 
may also exhibit characteristics of loss aversion [23,39]. In this study, 
we refer to the concept of loss aversion as varying degrees of tolerance 
towards potential losses. 

Additionally, unlike the three previously mentioned studies by Kraan 
et al. [28], Chen et al. [12] and Barazza and Strachan [2], this study also 
takes into account that investment is subject to various sources of un
certainty in the power sector, explicitly integrating economic and reg
ulatory uncertainties in the model. Economic uncertainties are captured 
by the variability of future electricity demand and fuel prices, which 
include coal, natural gas, biogas, and nuclear fuels, while regulatory 
uncertainty is represented through the variability of carbon prices. 

Moreover, although the previous three studies have incorporated 
adaptive behavior in investors’ decision-making processes, Kraan et al. 
[28], Chen et al. [12] did not specifically analyze the impact of adaptive 
behavior on their investment choices. In other words, they include 
adaptive behavior as a component of their models, but do not specif
ically analyze the consequent impacts on investment decisions. Our 
study aims to thoroughly explore and analyze the effects of investors’ 
adaptive behavior on their investment choices. While Barazza and 
Strachan [2] did not examine the effect on the development of the low- 
carbon transition. In contrast, our study focuses on investigating both 
aspects of investors’ adaptive behavior and its impact on the energy 
transition. In addition, this study also explored the dynamic interplay 
among investment decisions, technology performances and market 
conditions. 

Lastly, contrasting with the many models mentioned above, which 
are not open source, our model adopts a more transparent approach. It is 
fully open source, with its code readily accessible via a weblink provided 
in Section 2.1. This openness not only ensures transparency regarding 
our model’s structure and implementation but also positions it as a 
potential useful tool for future research endeavors. 

To summarize, this research aims to contribute to the existing liter
ature by enhancing the modeling representation of companies’ adaptive 
investment decisions in the power sector. We present a novel agent- 
based approach to model investor behavior. This approach considers 
the adaptation of hurdle rates based on past economic performances 
specific to technologies, as well as the varying loss aversion levels 
among companies. Furthermore, this research aims to offer insights into 
the impact of companies’ adaptive behavior on their investment choices, 
in comparison to non-adaptive ones. This study also takes into account 
uncertainties in market conditions. By shedding light on the impact of 
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investors’ companies’ decisions under these conditions on the evolution 
of the electricity system’s capacity mix and pricing, this research seeks 
to offer knowledge for both energy system modelers and policymakers 
working towards a low-carbon transition in the power sector. 

The remainder of this paper is structured as follows: Section 2 out
lines the basic model structure, and in particular, describes the adap
tation rule, and presents the experimental design. Section 3 presents and 
discusses the results. In Section 4, we present a summary of the sensi
tivity analysis. Finally, Section 5 concludes the paper with a summary of 
our findings and their implications. 

2. Method 

2.1. Model description 

From a broader perspective, this study employs agent-based 
modeling techniques to simulate individual agents’ investment de
cisions and analyze the impact of these decisions on the overall system’s 
capacity mix and electricity price. Additionally, it examines the low- 
carbon transition of the electricity system and individual agents’ 
financial performance. 

Building on previous studies [21,42–44], we develop the model by 
including adaptive hurdle rates in agents’ decision-making processes, as 
well as by incorporating stochastic prices and stochastic electricity 
demand. 

This section will briefly describe the model with a focus on the 
adaptive rules. For a more detailed model description, one can look at 
the document at https://github.com/happiABM. The model code, 
implemented in Python 3.9, is open source and available at the same 
web location. 

2.2. Basic model framework 

This research employs a conceptual model of the electricity system. 
In our model, the agents are power companies that invest in, own, and 
run power plants. The model simulates agents’ investment decisions 
along with the supply and demand dynamics in the electricity market. 
There are five types of technologies that agents can choose to invest in — 
coal-fired plants, gas combined cycles plants (GCC)1, nuclear plants, 
wind, and solar photovoltaics (PV). Parameters for the power plants 
such as capital costs, size, emission intensity, etc. are provided in the 
supplementary. The simulation starts at a zero-carbon price and with 
only coal-fired and GCC power plants, which is the model steady-state 
solution without any stochasticity in prices and demand. These initial 
plants have varying lifetimes left and belong to an additional agent who 
does not engage in any new investments. In contrast, there are active 
agents starting with zero capacity but equipped with an initial capital of 
one billion euros. This capital enables these active agents to afford in
vestments in a few power plants from the first year.2 Subsequently, each 
year, power plants reaching the end of their lifetime are removed from 
the system, and agents take turns evaluating and making new in
vestments. This process, in turn, influences investments in later years by 
affecting the supply mix, electricity prices, and profitability of various 
technology types. As the outdated power plants are phased out and new 

investments are introduced, the system capacity undergoes a continuous 
evolution over time. 

2.3. Profitability evaluation 

Each year, agents take (randomly assigned) turns to make investment 
evaluations. Every agent assesses each type of technology individually, 
and then makes a final investment decision based on the expected 
profitability of each option. They choose the technology expected to 
provide the highest positive return. 

The agent employs the following steps to assess the potential prof
itability of an investment: first, the agent adds a hypothetical power 
plant of the type being examined to the existing capacity mix. Next, the 
agent forecasts future electricity demand, carbon prices, and fuel prices. 
This is done by using moving averages based on data from the previous 
five years. The agent then assumes these values will stay constant 
throughout the entire lifespan of the plant being assessed. 

Subsequently, the agent uses the forecasted values of the future 
electricity demand, carbon prices, and fuel prices to estimate the annual 
revenue streams throughout the lifetime of the potential plant. This is 
done by running the dispatch module of the model, which calculates the 
electricity price and production from the plant being assessed for the 
forthcoming year. The agents assume that the conditions remain for the 
whole plant’s lifetime. 

The agent then discounts and aggregates all future revenue streams 
to calculate the net present value (NPV) of investing in the potential 
plant. The NPV is then divided by the plant’s capital cost, denoted as I. 
This adjustment is beneficial when comparing plants of different scales 
or sizes as it provides a relative measure. Also, when funds are limited, 
one should pick the projects that offer the highest NPV per dollar of 
initial outlay [6]. This process determines the profitability index of 
investing in this potential plant of type T, denoted as πT. 

πT =
NPV

I
(1)  

NPV =
∑L

t=1

rt − ct
(
1 + γT

t

)t − I (2)    

• rt is the annual revenue generated by selling electricity from the 
hypothetical plant at year t.  

• ct is the operating cost for the plant at year t.  
• γT

t is the hurdle rate of technology T at the year t.  
• L is the plant’s lifetime. 

When evaluating the NPV of a potential investment, agents need to 
select a hurdle rate γ to discount future revenue streams as depicted in 
Eq. (2). As mentioned in the previous section, the hurdle rate is the 
minimum rate of return required for an investment to be considered 
worthwhile. The selection of hurdle rate significantly influences the 
anticipated profits of an investment option. 

Rather than utilizing a fixed hurdle rate as commonly found in en
ergy system modeling studies, this study allows agents to adapt their 
hurdle rates in response to shifting market conditions, or more specif
ically to how well previous investments in various technologies have 
performed. 

2.4. The adaptive rule 

The agent employs a distinct hurdle rate for each technology and 
adjusts it annually based on the historical economic performance of the 
respective technology, along with assumptions on the agent’s loss 
aversion level. The agent uses two indicators to adapt the hurdle rate for 
a given technology. 

The first indicator is the average ex-post profitability of a specific 

1 The GCC plant is fueled by either natural gas or biogas, depending on which 
has the lower operating cost when the carbon price is considered, i.e., natural 
gas and biogas are perfect substitutes.  

2 In our model, each agent must finance 30% of a power plant’s capital cost 
using their own funds. Given the capital costs of different types of power plants 
(listed in Table S3 of the supplementary materials), this initial capital enables 
agents to finance either three coal power plants or approximately eight gas 
combined cycle (GCC) plants. Notably, as the carbon price is set at zero during 
the initial 10 years, investing in other technologies apart from coal and GCC is 
not economically viable within this period. 
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technology T over the past N years at year t, denoted as CT
t . 

CT
t =

∑n=t− 1

n=t− N

CT
n

N
(3)  

where N = 5, representing a 5-year duration. CT
n is the ex-post profit

ability indicator in a given year n for the specific type of technology T 
and CT

n = rT
n − cT

n − aT
n , i.e., the annual revenue rT

n minus the operating 
cost cT

n and minus the annuitized capital cost of the plant aT
n . The 

annuitized cost of a plant is calculated as: 

aT
n = I⋅

μ
1 − (1 + μ)− L (4)    

• I is the capital cost of the plant.  
• μ is the annual bank interest rate.  
• L is the plant’s lifetime. 

The second indicator used to adjust the hurdle rate is the occurrence 
of positive annual profitability over the past N years, i.e., 

mT
t =

∑n=t− 1

n=t− N
if
[
CT

n > 0
]

then 1, else 0. (5)  

where mT
t represents the number of years for which the ex-post profit

ability is positive over the past N years. Then mT
t is used to compare with 

a threshold value λ. The λ represents an agent’s loss averse level. The 
higher the loss averse level, the larger λ. This approach resembles a 
retrospective application of the Value at Risk (VaR) method as it in
volves assessing the probability of losses and comparing them against a 
predefined threshold [25]. In this case, the loss distribution used by the 
agents is determined based on the experiences from the previous N 
years. 

For each technology, if CT
t ≥ 0 and if mT

t ≥ λ, then the agent will 
decrease the hurdle rate by 0.5 percentage points. On the other hand, if 
CT

t < 0 and mT
t ≤ λ, the agent will increase the hurdle rate by 0.5 per

centage points. In other conditions, the agent will keep the hurdle rate 
the same as last year. The minimum hurdle rate is 4% per year, matching 
the 4% yearly bank interest rate assumed in this study, i.e., μ =

4%/year3. 

2.5. The financial module 

This model also incorporates a financial module that monitors indi
vidual agents’ financial metrics, including cash, net annual income, debt 
level, and equity. 

This study assumes that each agent begins with an initial cash bal
ance of one billion euros. When investing, the agent is required to 
contribute 30% of the capital cost for each investment from their own 
account, while the remaining 70% is procured as a loan from the bank4, 
subject to a 4% annual interest rate. The loan is amortized and must be 
repaid over the course of the plant’s expected operational lifespan. 

Before proceeding with an investment, the agent must first ensure 

that it has sufficient cash to cover its interest charges and annuitized 
principal payments for the upcoming year. These obligations must be 
settled at the beginning of each year. If the agent has enough remaining 
cash after covering these expenses, it can proceed with the chosen in
vestment; otherwise, it will not be permitted to make further in
vestments in the current year. 

If an agent’s equity value falls below zero, the agent is deemed 
bankrupt and will be prohibited from making any further investments, 
but will continue operating its power plants. In this case, a new agent 
will be introduced into the system. The new agent starts with an initial 
capital and has the same initial risk aversion level as the bankrupted 
agent. 

For a comprehensive overview of the financial module and the whole 
model, readers are encouraged to consult the online model documen
tation at https://github.com/happiABM. 

2.6. Experiment setup 

The simulation starts at year 0 and runs for 150 years. The electricity 
system commences with coal and gas power plants, with installed ca
pacities of 64 GW and 2 GW, respectively, whose capacities reflect the 
steady-state solution for the model when the carbon price is zero and no 
stochasticity in fuel prices or electricity demand. Each year, plants that 
have reached the end of their operational lifespan are removed from the 
system, and agents assess new investment opportunities. 

Based on Jonson et al. [21], we employ 64 time slices to characterize 
the yearly variability of wind and solar energy, as well as fluctuations in 
electricity demand. While the model is not a direct representation of any 
specific existing system, the variability parameter reflects a country’s 
weather conditions and electricity demand, similar to Germany (see 
Table S1 in the Supplementary material for specific parameter values). 
The electricity demand, in response to its price, is assumed to follow an 
isoelastic function [21] and we assume that there is no exogenous trend 
influencing electricity demand. 

Carbon prices, fuel prices, and electricity demand (driven by other 
factors than prices) are assumed to adhere to stochastic processes as 
illustrated in Fig.1. The parameter values are established through a first- 
order autoregressive model (AR1), as demonstrated in Eq. (6). 

pt+1 = pt + ε1⋅(p − pt) + ε2⋅p⋅σ (6)  

where 
pt+1 is the price at time t+ 1. 
pt is the price at time t. 
ε1 is a constant that determines the weight of the mean reversion 

component. 
p: is the long-term mean price. 
ε2 : is a constant that determines the weight of the stochastic 

component. 
σ : is the volatility, which measures the level of fluctuations in the 

price. 
We simulate a scenario with a progressively increasing carbon price. 

The carbon price is initially set to zero for the first 10 years, but after that 
period, it follows a stochastic process with an upward trend, reaching an 
average of 100 euros per ton/CO2 around year 60. Additionally, the fuel 
prices–including coal, natural gas, biogas, and nuclear fuel, as well as 
electricity demand, also follow a stochastic process. However, the ex
pected long-term mean of these variables remains constant, as illus
trated in Fig. 1. The parameter values used to determine the fuel prices, 
carbon prices and electricity demand are listed in the supplementary 
material. 

2.7. Case design for the main analysis 

With this model setup, we investigate our research question by 
constructing two main cases – (1) a non-adaptive case, and (2) an 

3 This study simulates an electricity system comparable in size to that of 
Germany. Based on historical interest rate data from Germany between 2003 
and 2023, the peak rate during this period reached 6.55%, while the lowest 
point was at 1.76% Trading Economics [37]. Germany Bank Lending Rate. https 
://tradingeconomics.com/germany/bank-lending-rate.. Overall, the average 
interest rate throughout these two decades approximates to 4%.  

4 IEA [16]. The cost of capital in clean energy transitions. https://www.iea.or 
g/articles/the-cost-of-capital-in-clean-energy-transitions, International Energy 
Agency, Paris. estimates that the typical capital structure of low-carbon gen
eration investments in advanced economies is 33% equity and 67% debt, while 
36% equity and 64% debt for developing economies. 
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adaptive case. In both cases, we have four representative agents. In the 
non-adaptive case, all agents keep a fixed hurdle rate – 6%/year for all 
technologies throughout the simulation. In the adaptive case, all agents 
begin with a hurdle rate of 6% per year. However, they have the ability 
to adapt according to each technology’s performance as described in the 
previous section, and they exhibit varying levels of loss aversion. Among 
them, one agent is loss neutral with λ = 0, meaning that when making 
investment decisions, this agent only takes into account the average 
economic performance of a technology as defined in Eq. (3). The other 
three agents are loss averse, with λ = 1, λ = 3, and λ = 5, respectively. 
This indicates that, in addition to considering the average economic 
performance, these agents also account for the number of times a 
particular technology has generated negative profitability over the past 
five years and use this information to create a loss distribution. 

Each case is executed 1000 times with distinct realizations of the 
stochastic process. We then compare and analyze the outcomes at two 
levels — the electricity system level and the individual agent level. On 
the system level, we present the evolution of the capacity mix, the 
average electricity price and its volatility, and the economic perfor
mances of different technologies over time. At the agent’s level, we 
present each agent’s investment decisions, hurdle rates and financial 
performances. 

In addition, in the sensitivity analysis, we investigate more cases 
with varying assumptions regarding three key factors in our model: (1) 
stochastic processes, (2) capital costs of nuclear power plants, and (3) 
methods for forecasting future carbon and fuel prices. 

3. Results and discussion 

3.1. Installed capacity 

Fig. 2 displays the evolution of the capacity mix and the CO2 emis
sion in the system in both the non-adaptive case and the adaptive case. 
The figure shows the average value derived over the 1000 runs. In both 
cases, the system begins with coal and gas power plants, and gradually 
transits towards low-carbon energy sources as the carbon price rises over 

time. As coal is phased out and biogas is used as an alternative to natural 
gas in the GCC plant, emissions gradually decrease over time, eventually 
reaching zero after approximately year 60 on average. 

Wind power is the first low-carbon technology that expands, fol
lowed by solar photovoltaics (PV) and nuclear power. After the initial 
expansion, the capacity of wind declines around year 50 when nuclear 
starts to expand. For a comprehensive examination of the interplay be
tween various technologies, please see [21,43]. The system capacity 
reaches a stable mix approximately 90 years into the simulation. By this 
juncture, all coal-fired power plants have been phased out, due to the 
high carbon price. 

Fig. 3 illustrates the difference in installed system capacity when 
comparing the non-adaptive case with the adaptive case. These differ
ences can be observed during both the capacity expansion phase of wind 
and solar (approximately year 10 to 60) and the post-expansion phase of 
these technologies, albeit with distinct directional tendencies during 
these two phases. 

Throughout the expansion phase especially around year 30 to 60, it is 
evident that the adaptive case features, on average, a higher prevalence 
of wind and solar capacities, along with a modest rise in GCC and a 
marginal reduction in nuclear capacity compared to the non-adaptive 
case (see the first columns in Fig.3). Conversely, in the post-expansion 
phase after around year 60, the adaptive case displays a lower capac
ity of wind, solar, and GCC, while nuclear capacity is significantly higher 
relative to the non-adaptive case. 

Moreover, these two cases also display differences in the distribu
tions of the installed capacities across various technologies. These var
iations are based on different realizations of the stochastic process for 
fuel prices, carbon prices, and electricity demand (see the second and 
third columns in Fig.3). The difference between the non-adaptive and 
the adaptive cases is especially clear after year 50. We can see that in the 
non-adaptive case, there is a wider range between the 10th and 90th 
percentile for GCC and nuclear capacity while the adaptive case has a 
wider range in wind and solar capacities. This indicates that the 
attractiveness to invest in solar and wind is more sensitive to the reali
zation of the different stochastic processes than what GCC and nuclear 

Fig. 1. An illustration of the implementation of stochastic fuel prices and electricity demand. Each solid line represents the value realized in a single run and the 
dashed black line represents the mean value. The values follow mean reverting stochastic processes. For more details on the generation and implementation, please 
refer to the supplementary material Section S1. 
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are. 

3.2. Individual agents’ investments 

The annual investments of individual agents in the non-adaptive case 
(Fig. 4a) and the adaptive case (Fig. 4b) show that agents initially, when 
the carbon price is zero, invest primarily in coal and some GCC power 
plants. As carbon prices rise, investments in coal decline, and those in 
GCC and wind power expand. As the profitability of using coal power 
declines even further, investments in coal drop to zero. Around year 30, 
investments in wind peak. Owing to the rapid increase in wind power 

plants and their approximately 25-year lifespan, we observe recurring 
peaks in wind power investments every 25 years across the remaining 
model time horizon. These peaks represent new investments made to 
replace retiring plants. 

Following the investment peak in wind around year 30, agents begin 
to invest in nuclear power as it becomes competitive, as a result of 
increasing carbon prices. This implies that the complementary system of 
wind and GCC becomes more costly to use, see Jonson et al. [21] and 
Yang et al. [43] for a discussion. 

Fig. 4 also demonstrates the differences between the two cases. In the 
non-adaptive scenario, the agents’ uniform investment strategies lead to 

Fig. 2. The development of the system installed capacity and the corresponding CO2 emissions (black dashed line) over a period of 150 years. Panel (A) illustrates the 
non-adaptive case. Panel (B) illustrates the adaptive case. The results in each panel are the average values from 1000 simulation runs. 
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homogeneous investment decisions. Conversely, in the adaptive case, 
adaptive hurdle rates and heterogeneous loss aversion levels lead to 
diverse investment decisions, with less loss-averse agents investing 
more. In addition, during the expansion phase of wind and solar, 
adaptive agents together invest more in wind and solar compared to 
non-adaptive agents. During this period, even the agent with the highest 
loss aversion (λ = 5) invests a significant amount, only marginally lower 
than the agents in the non-adaptive scenario. Conversely, in the post- 
expansion phase, the trend shifts as adaptive agents collectively invest 
less in wind, solar, and GCC technologies, while increasing their in
vestments in nuclear power. Even though the least loss-averse agent (λ 
= 0) invests more in every technology compared to an agent in the non- 
adaptive case, the other three adaptive agents with higher loss-averse 
levels reduced their investments especially in wind and solar 
compared to the non-adaptive agents. This accounts for the differing 
installed capacity levels observed between the two cases at the system 
level as shown in Fig. 3. 

Further, one can also note that in relative terms, looking at the share 
of investment in the different technologies, the adaptive agents make 
fewer investments in wind and solar the more loss-averse they are. 

To dig further, the distinct investment decisions among agents stem 
from the varying hurdle rates employed in these two cases. In contrast to 
the non-adaptive case, where agents maintain a fixed hurdle rate of 6% 
per year, agents in the adaptive case adjust their hurdle rates for each 
technology according to the technology’s financial performance and the 
agent’s risk aversion level. 

Fig. 5 displays the average hurdle rates utilized by agents in the 
adaptive case. It is evident that initially during years 10 to 40, adaptive 
agents lower their wind and solar hurdle rates to below 6% per year. 
Additionally, the three least loss averse agents also decrease their hurdle 
rates for GCC. Consequently, agents in the adaptive scenario invest more 
in wind, solar, and GCC compared to the non-adaptive one as shown in 
Fig. 3 during the initial transition phase. 

After approximately year 40, all agents begin to increase their hurdle 
rates for wind and solar, with variations depending on individual loss 
aversion levels. In brief, this can be explained as follows, an increase in 
carbon prices results in a reduced reliance on coal and gas. Concurrently, 
there is an increase in investments in nuclear energy. This shift puts 
downward pressure on solar and wind energy, subsequently leading to a 
decrease in their profitability and investment rates. 

For GCC technology, three agents with risk aversion λ = 0, λ = 1, and 
λ = 3 initially decreased their hurdle rates before eventually increasing 
them, whereas the agent with the highest loss aversion (λ = 5) consis
tently raised their rates. 

In the case of nuclear technology, agents with lower risk aversion (λ 
= 0, λ = 1) kept hurdle rates below (or near) 6% throughout the period, 
while those with higher risk aversion (λ = 3, λ = 5) displayed significant 
increases, albeit lower than the increases observed for other technolo
gies. As demonstrated in our prior research, a lower hurdle rate tends to 
encourage investments in nuclear power, making it more appealing than 
other competitive technologies like GCC and wind energy [43]. 

Overall, greater loss aversion is correlated with higher increases in 

Fig. 3. Evolution of system installed capacity for each technology in both non-adaptive and adaptive scenarios. Each row represents a specific technology. The first 
column displays the average results derived from 1000 simulation runs. The second and third columns illustrate the range of installed capacity development for the 
non-adaptive case (second column) and adaptive case (third column). The inner shaded area in black represents the interquartile range (25th to 75th percentiles), 
while the grey-colored outer range depicts the broader spread between the 10th and 90th percentiles. 
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hurdle rates. To understand the reasons behind agents adjusting their 
hurdle rates in this manner, it is crucial to examine the financial per
formance of each technology. 

3.3. Individual technologies’ financial performances 

This section sheds light on the financial performance of each tech

nology. We use the five-year average ex-post profitability indicator, 
denoted by CT

t (as detailed in Eq. (4)). This indicator is then normalized 
by dividing it by the technology’s capacity, measured in MW. 

As depicted in Fig. 6, the five-year average ex-post profitability per 
MW demonstrates distinct patterns for each technology. Observing the 
median values, the profitability indicator for coal decreases 

Fig. 4. Annual Investment by four individual agents: Panel A represents the non-adaptive case, while Panel B shows the adaptive case. These figures illustrate the 
average result derived from 1000 simulation runs. Individual runs may result in (significant) differences. 

Fig. 5. Progression of four individual agents’ hurdle rates in the adaptive case. (The coal hurdle rate remains constant after approximately year 60 due to the absence 
of coal plants in the system, resulting in a lack of modeling data for hurdle rate adjustments.) This figure illustrates the average result derived from 1000 simulation 
runs. Individual runs may result in (significant) differences. 
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continuously after the introduction of the carbon price, as the running 
cost for coal power plants continues to rise more than the revenues. In 
the GCC case, initial carbon pricing stimulates profitability growth, 
followed by a decline as the carbon price continues to increase. After 
around the 50th year, a rebound occurs due to two factors: a rise in 
electricity prices (elaborated in the next section), and a fuel switch from 
natural gas to biogas5. For nuclear, its ex-post profitability indicator 
increases during its expansion period and then stays around that level 
thereafter. For wind and solar, both have increased profitability in the 
beginning when their capacities are expanding, but then drop after 
around year 30 and stay at a relatively stable level thereafter. 

For wind, this can be explained as shown in several previous studies 
(see e.g. [8,21,43]), which suggests that as wind energy is increasingly 
adopted due to a rise in carbon pricing, the relative value of additional 
wind plants, as expected, tends to decline. This is reflected in the 
lowering of the average electricity price received by wind producers 
compared to the overall average electricity price, as the installed wind 
capacity expands. This study also presents similar findings for solar 
energy, with the revenue received experiencing a downward trend as its 
capacity expands. 

Different technologies receive varying levels of ex-post profitability, 
primarily because their revenues per kWh of sold electricity varies (since 
they produce at different time slots). As illustrated in Fig.7 (A), before 
the introduction of a carbon price, coal power plants were the main 
electricity suppliers, with GCC plants contributing during peak hours. As 
wind and solar capacities began to expand (Fig.7B), coal production 
diminished, while GCC, wind, and solar production increased. Inter
estingly, during this period, wind and solar energy were occasionally 
produced at almost zero price. With subsequent increases in carbon 
price (Fig.7C), coal production declined further, primarily serving peak 
hours. Meanwhile, GCC plants switched from natural gas to biogas, and 
nuclear power started to contribute to the electricity supply. Eventually, 
when coal was phased out and the system capacity mix achieved a more 
stable state, nuclear energy emerged as the dominant source of elec
tricity production, providing power during both low and high electricity 
price periods. GCC primarily generated power during high-price pe
riods, while wind and solar energy production was mainly concentrated 
in low-price periods (Fig.7D) as windy and sunny conditions cause low 
prices. 

The distributions of ex-post profitability indicators of each technol
ogy displayed here correspond with the adaptation of agents’ hurdle 
rates, as discussed in the previous section. 

3.4. Electricity prices 

Fig. 8 compares the electricity prices for non-adaptive and adaptive 
cases, revealing several noteworthy findings. Firstly, it can be seen that 
in both instances, due to stochastic fuel prices, carbon prices and elec
tricity demand, annual electricity prices can vary widely. 

Firstly, the average electricity price escalates during the initial phase 
before slightly declining and stabilizing thereafter. This initial rise is 
caused by the growing carbon price, which increases the electricity 
prices since coal and sets the electricity price during most hours 
(Fig. 7B). This provides an incentive to invest in wind and GCC since the 
CO2 intensity is smaller for GCC than for coal power, which mitigates the 
increase in electricity prices. 

Secondly, an interesting observation is that the upper range shrinks 
between years 30 and 50. This is attributable to the large investments in 
wind and solar during this period as elaborated in Section 3.1 and 
Section 3.3, together with the fact that there is a large capacity of dis
patchable technologies in the system. The wind and solar power plants 
will lead to large production when it is windy and sunny, generating 
electricity at near-zero prices (Fig. 7C), During hours when solar and 
wind power production is low, the combined operation of coal and gas 
power plants, along with nuclear power plants, helps to stabilize elec
tricity prices. This leads to relatively low annual average electricity 
prices. 

Thirdly, after approximately year 60, all coal power plants are 
decommissioned, and biogas replaces natural gas as fuel for GCC plants. 
Consequently, electricity prices cease to increase alongside carbon pri
ces. Nevertheless, electricity prices remain elevated compared to the 
beginning of the modeling period due to the higher costs associated with 
technologies that have replaced coal, such as nuclear power. For a more 
comprehensive discussion on this topic, please refer to our previous 
publication, Yang et al. [43], specifically Section 4.2.1. 

Fourthly, as depicted in the third panel of Fig. 8, the average elec
tricity price in the adaptive scenario is lower than in the non-adaptive 
scenario. This can be explained by the larger capacity and the lower 
hurdle rate used by the dominant agent in the adaptive case. 

To gain a comprehensive understanding of electricity prices, it is 
essential to consider not only the prices themselves but also the asso
ciated volatility in the market. Previous studies [1,26,41,43] have 
demonstrated that a higher proportion of variable renewable energy 
sources contributes to an increased variance in electricity prices. This 
correlation is also evident in the present study, as illustrated in Fig. 10. 
In both instances, price volatility, quantified as the standard deviation of 

Fig. 6. Ex-post profitability indicators for each technology per MW in the adaptive case. In each panel, the inner colorfully shaded area shows the range from the first 
quartile (25th percentile, Q1) to the third quartile (75th percentile, Q3), and the outer lightgrey-shaded area shows the 10th percentile to the 90th percentile. The 
figure depicts the mean outcome of 1000 simulation runs. 

5 In the absence of stochastic fuel prices, and considering the fuel cost as
sumptions in this study (provided in the supplementary material), the GCC 
plants would utilize natural gas when the carbon price is below 78 euros per ton 
of CO2. However, if the carbon price rise above 78 euros per ton of CO2, the 
GCC plants would switch to using biogas. In this model, the carbon price sur
passes 78 euros per ton of CO2 around year 50. 
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electricity prices across various time intervals within a single year, ex
hibits an upward, although irregular, trajectory over time. 

When comparing the adaptive and non-adaptive cases, it is evident 

that the adaptive case exhibits reduced volatility, especially after around 
year 50, as depicted in Fig. 9. This outcome can be attributed to the 
adaptive case’s lower proportion of variable renewable energy 

Fig. 7. Panel (A)-(D) shows the electricity production at different price levels in the adaptive case without stochastic processes. (A) year 10; (B) year 35; (b) year 50; 
and (D) year 120. Note that as the carbon price increases over time, coal and gas switch position in the merit order curve at year 32, as the marginal cost of coal, 
including the carbon price, becomes higher than that of natural gas. Panel (E) shows the development of the total annual electricity production from each technology 
over time. 
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capacities, such as wind and solar, and a higher proportion of non- 
variable technologies, particularly nuclear power. 

3.5. Agents’ economic performances 

In this section, we analyze individual agents’ economic perfor
mances, measured by their equity over time and their bankruptcy rates 
in both the non-adaptive case and the adaptive case. 

In the non-adaptive case, since all agents are homogeneous, they 
exhibit similar levels of equity (Fig. 10A) and bankruptcy rate 
(Fig. 11A). (Their bankruptcy rates are not identical due to limited 
simulation runs.) 

In the adaptive case, a correlation can be observed between an 
agent’s loss aversion level, equity value (Fig. 10B), and bankruptcy rate 

(Fig. 11B): lower levels of loss aversion are associated with higher 
average equity values and an increased likelihood of the agent facing 
bankruptcy. This highlights the trade-off between risk and return. As 
demonstrated in the previous section, less loss-averse agents make more 
investments (Fig. 4B), so they have higher average equity values, but 
also exhibit higher bankruptcy rates. Investment inherently involves 
varying degrees of risk. Given the uncertainties in future market and 
policy conditions, aggressive agents take on higher levels of risk than 
agents who adopt a more conservative investment strategy. 

4. Summary of sensitivity analysis 

In this section, we summarize the results of a sensitivity analysis 
examining the impact of three key elements in our model: (1) stochastic 

Fig. 7. (continued). 
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processes, (2) capital costs of nuclear power plants, and (3) forecasting 
methods for future carbon and fuel prices. For detailed analysis and 
figures, see section S3 in the supplementary material. 

4.1. Stochastic processes 

The analysis assessed the impact of the six stochastic processes as 
detailed in Section 2.2, such as fuel prices, carbon prices and electricity 
demand. To evaluate the influence of each, we hold it constant in in
dividual sensitivity analysis, producing six distinct scenarios. The results 
showed that when natural gas and biogas prices are constant, there are 
fewer GCC plants but increased nuclear, wind, and solar capacities. This 
change underscores the influence of fluctuating gas prices on energy 
investments. Furthermore, scenarios with non-variable electricity de
mand exhibited both reduced electricity price volatility as well as 
smaller variations in investment amounts among different participants, 

revealing the important role demand plays in setting electricity prices 
and investment decisions. Financially, agents faced different bankruptcy 
rates based on the fluctuations of fuel prices and electricity demand, 
highlighting the intricate interplay between price stability and financial 
outcomes in the model. 

We also tested a scenario where the average fuel price for gases and 
nuclear are increasing over time. Results show that there are notable 
changes in the energy mix. Specifically, we observed a decrease in the 
investment in gas-fired and nuclear power plants (as expected) and an 
increase in wind and solar installations. 

4.2. Capital cost of nuclear power plants 

The cost of nuclear power plants is pivotal for energy investment 
decisions. We explore both lower and higher assumptions in the sensi
tivity analysis. We find that lower nuclear costs accelerate and increase 

Fig. 8. A comparative analysis of average annual electricity prices for non-adaptive and adaptive scenarios, derived from the outcome of 1000 simulation runs. The 
first two panels exhibit the interquartile range (IQR) as the central dark grey region, spanning from the first quartile (Q1, 25th percentile) to the third quartile (Q3, 
75th percentile), while the outer light grey regions signify the 10th and 90th percentiles. The median value is denoted by the solid line. In the third panel, both the 
mean and median values for the non-adaptive and adaptive cases are depicted. 

Fig. 9. The volatility (standard deviation) of electricity price within a year. The central dark grey region shows the first quartile (Q1, 25th percentile) to the third 
quartile (Q3, 75th percentile), while the light grey area signifies the 10th and 90th percentiles. The median value is denoted by the solid line. In the third panel, both 
the mean and median values for the non-adaptive and adaptive cases are depicted. 
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nuclear investments, whereas higher costs delay and reduce them, 
making investments unlikely beyond 9000 Euros per kW. Electricity 
prices corresponded proportionally to nuclear capital costs: cheaper 
nuclear led to lower electricity prices and vice versa. Additionally, price 

volatility is reduced with cheaper nuclear due to their stable production. 
When nuclear costs are higher, coal’s hurdle rate is lower, delaying its 
phase-out. 

Fig. 10. Individual agents’ equity value over time. (A) non-adaptive case; (B) adaptive case. The results are from 1000 simulation runs. The central dark grey region 
shows the first quartile (Q1, 25th percentile) to the third quartile (Q3, 75th percentile), while the outer lighter grey area signifies the 10th and 90th percentiles. 

Fig. 11. Bankruptcy rate for each agent in the non-adaptive case (panel A) and the adaptive case (panel B). The results are based on 1000 simulation runs.  
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4.3. Forecasting method 

In one test case, agents forecast future fuel and carbon prices by 
extrapolating trends from the past five years’ data instead of taking the 
average of the past five years. Although installed capacities in this sce
nario were largely consistent with the reference case, the first 60-year 
period exhibited an increase in GCC capacity and decreases in wind 
and solar capacities. These changes were driven by the expectation of 
future gas price reductions in cases where the trend where negative. 
Financially, this forecasting method increases the risk of bankruptcy. 
This risk increases because the extrapolation-based forecast does not 
align well with the model’s intrinsic stochastic price fluctuations, which 
revert to an average price (or price trend in the case of the CO2 price). 

5. Conclusion 

The electricity generation landscape has experienced a significant 
transformation in recent years, marked by unparalleled growth in the 
use of renewable energy sources [40]. The pivotal role of investors in 
this transition is crucial; their financial contributions are the necessary 
capital for the deployment of these renewable technologies. 

Investors, however, contend with substantial uncertainties and risks 
when deciding which technology to invest in. These uncertainties stem 
from a myriad of unpredictable elements like fluctuating electricity 
demand, technology performance, variable market conditions, and 
evolving policy landscapes. In such an uncertain investment environ
ment, investors strategically adapt their decisions to align with the 
prevailing circumstances. This propensity for adaptive decision-making 
can either expedite or impede the transition towards a low-carbon 
electricity system, a factor often overlooked in most energy system 
models. 

This research endeavors to contribute to the existing literature by 
developing the depiction of companies’ adaptive investment decisions in 
energy system models, utilizing a novel agent-based model. The model 
captures investment decisions under uncertain conditions, factoring in 
changes to hurdle rates that are influenced by the financial perfor
mances specific to each technology, and the different levels of loss 
aversion among investors. Moreover, our study sheds light on the impact 
of companies’ adaptive behaviors both on their investment choices and 
on the transition towards a low-carbon electricity system. There are 
three main findings from this study. 

Firstly, our model results indicate that when agents display adaptive 
behavior, they tend to invest more significantly in profitable technolo
gies compared to non-adaptive agents. In the context of this study, this 
leads to increased investment in wind and solar during the early tran
sition phase (approximately from year 20 to year 60 in the model) and 
an increase in nuclear investments later in the transition phase. The 
reason for this lies in the adaptive hurdle rate employed by agents. When 
a technology becomes competitive, agents respond by reducing the 
hurdle rate for that technology, thereby giving incentives to further 
investments. 

Secondly, our study reveals that when agents are adaptive, the 
average electricity price and its volatility generally tend to be lower 
compared to the scenario with non-adaptive agents. This can be attrib
uted to the lower hurdle rate applied by the dominant agents and larger 
investments made in the adaptive case. 

Thirdly, our study also uncovers those adaptive agents, depending on 
their degree of loss aversion, adjust their hurdle rates differently and 
consequently make distinct investment choices. Agents who are less 
averse to losses tend to invest more, whereas those who have a higher 
aversion to losses tend to invest less. Moreover, a lower level of loss 
aversion generally corresponds to a higher equity value but also results 
in a higher bankruptcy rate. This finding underlines the inherent trade- 
off between risk and returns. 

In summary, the contribution of this study is two-fold. Firstly, this 
research contributes to energy system modeling practice through the 

introduction of a novel agent-based model. This model accounts for the 
complexities of investment decision-making, including adaptiveness, 
risk aversion, and the uncertainties inherent in the electricity system. 
This innovative modeling tool effectively encapsulates the dynamic 
interplay among investment decisions, technology performances, and 
market conditions. It thus offers an alternative depiction of investment 
decisions and the complexities involved in energy transitions. 

Secondly, using this model, we conducted a comprehensive analysis 
of key aspects of the electricity system in the context of low-carbon 
transition. This includes examining the development of generation ca
pacity mix, electricity prices, and the profitability of various technolo
gies and investors. We believe that this work can strengthen the utility of 
energy system models in aiding decision-making processes and promote 
more effective decisions in the shift towards a low-carbon energy future. 
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[1] Ballester C, Furió D. Effects of renewables on the stylized facts of electricity prices. 
Renew Sustain Energy Rev 2015;52:1596–609. 

[2] Barazza E, Strachan N. The key role of historic path-dependency and competitor 
imitation on the electricity sector low-carbon transition. Energ Strat Rev 2021;33: 
100588. 

[3] Bazmi AA, Zahedi G. Sustainable energy systems: role of optimization modeling 
techniques in power generation and supply—a review. Renew Sustain Energy Rev 
2011;15(8):3480–500. 

[4] BMWK. Renewable-energy. F. M. F. E. A. A. Climate. https://www.bmwk.de/Red 
aktion/EN/Dossier/renewable-energy.html; 2023. 

[5] Bonabeau E. Agent-based modeling: methods and techniques for simulating human 
systems. Proc Natl Acad Sci 2002;99(suppl_3):7280–7. 

[6] Brealey RA, Myers SC, Allen F. Principles of corporate finance. McGraw-Hill/Irwin; 
2009. 

[7] Brigham EF. Hurdle rates for screening capital expenditure proposals. Financ 
Manag 1975;4(3):17–26. 

[8] Brown T, Reichenberg L. Decreasing market value of variable renewables can be 
avoided by policy action. Energy Econ 2021;100:105354. 

[9] Bruner RF, Eades KM, Harris RS, Higgins RC. Best practices in estimating the cost of 
capital: survey and synthesis. Financ Pract Educ 1998;8:13–28. 

J. Yang and D.J.A. Johansson                                                                                                                                                                                                               

https://doi.org/10.1016/j.apenergy.2023.122603
https://doi.org/10.1016/j.apenergy.2023.122603
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0005
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0005
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0010
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0010
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0010
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0015
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0015
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0015
https://www.bmwk.de/Redaktion/EN/Dossier/renewable-energy.html
https://www.bmwk.de/Redaktion/EN/Dossier/renewable-energy.html
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0025
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0025
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0030
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0030
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0035
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0035
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0040
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0040
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0045
http://refhub.elsevier.com/S0306-2619(23)01967-0/rf0045


Applied Energy 358 (2024) 122603

15

[10] Brunzell T, Liljeblom E, Vaihekoski M. Determinants of capital budgeting methods 
and hurdle rates in Nordic firms. Account Finance 2013;53(1):85–110. 
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