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Dense linear algebra operations appear very frequently in high-performance computing (HPC) applications,

rendering their performance crucial to achieve optimal scalability. As many modern HPC clusters contain

multi-GPU nodes, BLAS operations are frequently offloaded on GPUs, necessitating the use of optimized

libraries to ensure good performance. Unfortunately, multi-GPU systems are accompanied by two significant

optimization challenges: data transfer bottlenecks as well as problem splitting and scheduling in multiple

workers (GPUs) with distinct memories. We demonstrate that the current multi-GPU BLAS methods for tack-

ling these challenges target very specific problem and data characteristics, resulting in serious performance

degradation for any slightly deviating workload. Additionally, an even more critical decision is omitted be-

cause it cannot be addressed using current scheduler-based approaches: the determination of which devices

should be used for a certain routine invocation. To address these issues we propose a model-based approach:

using performance estimation to provide problem-specific autotuning during runtime. We integrate this

autotuning into an end-to-end BLAS framework named PARALiA. This framework couples autotuning with

an optimized task scheduler, leading to near-optimal data distribution and performance-aware resource

utilization. We evaluate PARALiA in an HPC testbed with 8 NVIDIA-V100 GPUs, improving the average

performance of GEMM by 1.7× and energy efficiency by 2.5× over the state-of-the-art in a large and diverse

dataset and demonstrating the adaptability of our performance-aware approach to future heterogeneous

systems.
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1 INTRODUCTION

Dense linear algebra operations occur very frequently in high-performance computing

(HPC) applications, making their performance critically important for their scalability. The
standardization of the Basic Linear Algebra Subprograms (BLAS) [1] in the early days of HPC
eased the development of scientific code, allowing domain experts to rely on standardized and
performance-optimized building blocks to implement more complex simulations at scale. The
ample regular parallelism of BLAS routines made them a good fit for GPUs, hence the existence of
many BLAS libraries for GPUs, the most common being cuBLAS, a CUDA-based BLAS library for
NVIDIA GPUs [2] which offered highly-optimized primitive BLAS operations with the constraint
that the input data must reside on GPU memory.

The success of GPUs resulted in the widespread adoption of multi-GPU nodes, with custom in-
terconnects between the GPUs. However, even the most GPU-friendly BLAS routines like general

matrix-matrix multiplication (GEMM) initially struggled to exploit the compute capabilities of
these nodes, only achieving small fractions of peak performance. The addition of multiple work-
ers to a single problem decreased data reuse and required additional communication, including
device-to-device (d2d) transfers over links with various bandwidths, while the domain decom-
position and engineering complexity for developing multi-GPU BLAS increased considerably. This
led the scientific community to the extension [3–6] or development [7–10] of many BLAS libraries
for multi-GPU systems where the input data can reside on host memory, on GPU memory, or a
combination of both. Despite supporting all these data configurations, the optimization of these
libraries focused only on the homogeneous case meaning that: a) all data reside on the CPU mem-
ory (henceforth full offload) and b) all GPUs were considered equal and always used regardless of
their performance contribution.

While this homogeneous case leads to a programmable drop-in replacement of legacy CPU code
with GPU-enabled code, it suffers from severe performance penalties and energy inefficiencies in
the general case. More specifically, it fails to provide a solid solution in applications that rely on a
series or a workflow of BLAS invocations, as is for example the case of iterative solvers or machine
learning pipelines. In these cases data that are produced by a BLAS kernel in the GPU(s) may be
consumed by subsequent BLAS kernel(s) again on the GPU(s), instead of always being updated on
the CPU. Additionally, deploying each single kernel execution on all GPUs is not always efficient,
since either the kernel itself may not be scalable, or a deployment of multiple concurrent kernels
would lead to a much more scalable or energy-efficient execution.

Figure 1 shows the performance of state-of-the-art multi-GPU libraries, executed with various
data placement configurations. BLASX and XKBLAS, the state-of-the-art multi-GPU level 3
libraries, perform well for GEMM in the full-offload cases, but their performance drops signifi-
cantly in all other data configurations, where a part of the data is stored in GPU memory before
execution. This is particularly noticeable for smaller problem sizes where the execution is more
communication-bound. Additionally, since both BLASX and XKBLAS use all available hardware
(i.e., all eight GPUs in our case) for all problem sizes, they result in low energy efficiency in the
cases where they cannot achieve high performance.

In this paper we present A Performance-Aware Runtime for Auto-tuning Linear Algebra, an end-
to-end solution for near-optimal performance-aware multi-GPU BLAS by utilizing auto-tuning
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Fig. 1. The GEMM performance (top) and energy efficiency (bottom, using the power-delay product) of
the state-of-the-art multi-GPU BLAS libraries BLASX and XKBLAS compared with our work, PARALiA, in
a multi-GPU cluster with 8 NVIDIA-V100 GPUs, for three problem sizes and four different data placements.
BLASX and XKBLAS offer competitive performance for the first placement but fail to adjust to the other
three more complex ones resulting in serious performance degradation, while PARALiA adjusts well to all
scenarios and offers increased performance. PARALiA also offers higher energy efficiency through device
selection with a negligible trade-off in performance.

and performance modeling during runtime in order to 1) optimize communication and avoid bot-
tlenecks deriving from data placement, and 2) select which devices to use and in what degree for
problem-efficient execution. Figure 1 shows that PARALiA provides robust performance regardless
of data placement, resulting in superior performance over the state of the art in the three mixed
data configurations. Additionally, in the smaller problem sizes where the GPUs are underutilized,
PARALiA adapts and uses fewer devices, achieving similar performance coupled with higher en-
ergy efficiently. Overall, this paper makes the following contributions:

(1) It introduces a portable multi-GPU communication optimization method, that encodes sys-
tem characteristics and adjusts communication routing during runtime in order to better fit
to different problem layouts (Section 3.2).

(2) It explores performance-aware workload distribution and device selection for multi-GPU
BLAS (Section 3.1), using performance modeling with a variety of target metrics (Section 3.3)
fueled by empirical micro-benchmarks (Section 3.4).

(3) It combines the above with a runtime tile scheduler into PARALiA, an end-to-end multi-GPU
BLAS framework offering device selection, coupled with performance-aware runtime task
scheduling, which demonstrates an average 1.7× performance and 2.5× energy efficiency
improvement over state-of-the-art libraries. (Section 4).

2 BACKGROUND

We define multi-GPU libraries as libraries that allow input data to reside on host memory, GPU
memory, or a combination of both and internally manage data distribution and computation on
multiple devices. Most existing multi-GPU BLAS libraries target Level-3 BLAS routines [3–10],
relieving the programmer from the complex optimizations required on multi-GPU systems, with
the optimization of level-1 and level-2 BLAS still left to the programmer due to their usually smaller
impact on total application performance. In this section, we present the performance bottlenecks of
multi-GPU Level-3 BLAS, as well as the algorithms and optimizations used by the current state-of-
the-art libraries to alleviate them. We additionally discuss the limitations of current optimization
approaches concerning the initial data distribution and the interconnect heterogeneity. Finally,
we discuss the absence of consideration for the resource utilization in existing multi-GPU BLAS
libraries, and the relevant efficiency and heterogeneity challenges.

The key architectural features that influence the performance, and thus, library design, in
multi-GPU setups are the distinct GPU memories and the increasingly complex underlying
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Fig. 2. An example of GEMM (M = N = 2K) 2D decomposition to sub-problems and data tiles (tiling size T =
M/2). The eight participating devices are distributed in a 2D grid of (DCrow , DCcol ) = (4, 2) to encourage hor-
izontal and vertical device-to-device (d2d) data movement between same row/column devices, respectively.
An optimized library employing software-implemented caching of RONLY tiles to GPUs can avoid 50% and
75% of h2d transfers for the A and B matrices, respectively, by using peer-to-peer d2d transfers.

interconnect. Consequently, unlike single GPU setups, where algorithmic optimizations mainly
target the internals of the BLAS kernels, multi-GPU setups include multiple devices acting as
parallel workers, introducing the notions of data decomposition, reuse, communication, sched-
uling, and load balancing. For simplicity, we categorize the optimization space for multi-GPU
BLAS into a) data domain decomposition, i.e., splitting the initial problem into sub-problems/tasks
(henceforth sub-kernels) and their distribution, b) communication overlap, avoidance, and routing

and c) load-balancing between GPUs.

2.1 Level-3 BLAS Decomposition and Distribution

Level-3 BLAS routines operate on matrices, and typically the problem is decomposed into
data-parallel tasks, following some matrix decomposition scheme. On multi-GPU setups, this
is necessary to exploit the multiple devices as parallel workers, similarly to multi-core or
multi-node execution [11]. Decomposition and distribution schemes are important, as they
determine the required amount of communication between workers. Early multi-GPU BLAS
libraries, such as the CUDA-based cuBLASXt [7], and its LAPACK-compatible wrapper NVBLAS

[8], use a simple round-robin scheme to distribute 2D tile-based sub-kernels to devices, resulting
in unnecessary communication. State-of-the-art libraries such as BLASX [9] and XKBLAS
[10] borrow the 2D block-cyclic decomposition and distribution from distributed computing,
which achieves a good homogeneous distribution of communication on a virtual 2D-grid of
workers.

In this work, we also employ the state-of-practice 2D block-cyclic decomposition/distribution.
Figure 2 shows an example of the 2D block-cyclic distribution used for Level-3 BLAS matrix-matrix
multiplication (GEMM). The available system devices are organized in a virtual 2D grid, which
should be as square as possible - for example, a 2 × 2 grid for four devices, a 4 × 2 or 2 × 4 grid for
eight devices, a 3 × 3 grid for nine devices, and so on.
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2.2 Communication Optimization

The 2D block-cyclic decomposition in GEMM depicted in Figure 2 results in a favorable commu-
nication pattern for the read-only tiles of matrices A and B. Every GPU requires the same number
of “row” tiles and “column” tiles from each of the input matrices. This is the basis for enabling
communication optimization, as communication is the main bottleneck in multi-GPU BLAS perfor-
mance on modern systems [9, 10, 12]. While different libraries have used different approaches for
improving communication performance, the optimization targets can be roughly classified into
communication overlap, avoidance, and routing.
Overlap: Overlap refers both to computation-communication overlap, as well as communication-
communication overlap, when this happens between different devices. Computation-
communication overlap is a common technique in GPU offload, both in single and multi-GPU
setups and it has been extensively explored in the past [12–15]. CUDA versions also frequently
increase the overlap potential by enabling additional GPU copy-engines [16]. In this work, we
also try to maximize overlap to improve the performance of Level-3 BLAS.
GPU Data caching: In a multi-GPU setup, the different GPUs have distinct memories. Because
of the problem distribution, data that is necessary for computations need to be transferred from
one device to another often. Although the effect of those transfers is mitigated by technologies
like RMA, a common approach to reduce redundant communication is data caching/buffering on
the GPU memory, as it also enables data reuse between subsequent subkernels. For example, in
Figure 2, if GPU 0 does not cache data tiles, it needs to fetchC00,A00,A01 andC01 twice, resulting in
12 tile fetches instead of 8 (50% increase in communication volume), which can worsen depending
on the problem size and the tiling size T .

BLAS libraries initially designed for CPUs [3–6] use simple buffers in GPU memories to support
some data caching, and cuBLASXt [7] follows the same design logic. Unfortunately, simple buffer-
ing is only sufficient for internal GPU caching, which fares well on a single GPU. Its performance
degrades rapidly as the number of GPUs increases, since it neglects the very fast connections be-
tween discrete GPU memories modern interconnects offer [9]. In this work, we employ a GPU data
caching scheme to reduce unnecessary communication and maximize data reuse.
Communication routing: Routing in a multi-GPU setup refers to selecting the fastest routes
for transfers between GPUs. In the context of Level-3 BLAS, the multiple GPUs require different
data tiles, which need to be transferred, and peer-to-peer transfers between GPUs (henceforth
d2d) usually have considerably higher bandwidth than CPU-GPU transfers (henceforth h2d/d2h).
To enable routing optimizations for multi-GPU BLAS, two components are necessary: 1) a cache
consistency-like logic for the GPU buffers, to ensure that data tiles are always up to date and their
Read/Write dependencies are respected, and 2) a way to distinguish the interconnect bandwidth
levels in order to select the ‘closest’ fetch location when a read-only (RONLY) tile is available
in multiple buffers. A solution like this is implemented in BLASX [9], which provides a hardware
abstraction of the underlying interconnect in a hierarchical representation, designed for commu-
nication optimization in multi-GPU systems. The hierarchical representation abstracts the system
as a cache hierarchy, with the CPU RAM being the main memory and the distinct GPU memories
being levels of caches. This representation favors data reuse (last-level cache ‘hits’) and the faster
GPU-GPU transfers (lower-level cache ‘hits’) to CPU-GPU transfers (cache ‘misses’), while a MESI-
like protocol enables sharing RONLY blocks between GPUs. Still, BLASX performance is hindered
by continuously writing back to the CPU and re-fetching output (WR) blocks. Moreover, recent
multi-GPU clusters from NVIDIA are connected with NVLink lanes, which may offer more than
one distinguishable bandwidth ‘levels’, compared to the simple distinction between ‘h2d’ and ‘d2d’
bandwidths. XKBLAS [10] overcomes the write-back bottleneck by performing lazy write-backs
of output data. It additionally considers a heuristic ‘ranking’ of distinguishable bandwidth levels
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Fig. 3. The communication pattern of BLASX, XKBLAS and PARALiA for a GEMM execution ( M = N = K
= 16384, T = 2048 ) in a testbed with 8 NVIDIA V100 GPUs interconnected by a mixed grid of NVLink1
and NVLink2 (more in Section 4), for two data placements: the full-offload case (all data at host memory
initially) and a case where the A, B and C matrices are initially populating the memories of GPUs 0, 1 and 2,
respectively. The heatmaps visualize all communication (source GPU = x axis, destination GPU = y axis); the
heat is the theoretical bandwidth of each connection and the displayed labels in each box denote the total
number of (equal byte) transfers passing from this connection during execution. The id = 8 is assigned to
the host memory. The bar plots aggregate the total transfers and their average bandwidth for each library.
PARALiA achieves a much higher average bandwidth for both cases by utilizing the ‘hottest’ links with the
highest bandwidths.

through information from the NVIDIA driver interface, and favoring transfers over device connec-
tions higher bandwidth. In our work, we also perform communication routing as a communication
optimization, through a different hardware abstraction and caching scheme.
The data placement hazard: While all the aforementioned optimizations target the full-offload
scenario, where all data are initially located on the CPU, BLAS multi-GPU libraries support input
data on any GPU. On modern systems, CPU-GPU (h2d/d2h) transfers are inherently much slower
than peer-to-peer, GPU-GPU (d2d) transfers, therefore having part of the input data available on
GPUs should lead to a less communication-bound problem.

However, as shown in Figure 1, the performance of BLASX and XKBLAS drops significantly in
all but the full-offload scenarios and only PARALiA provides the expected increased performance.
We demystify the cause for this counter-intuitive behavior in Figure 3, which shows the commu-
nication pattern, number of transfers and average achieved bandwidth for BLASX, XKBLAS and
our proposed runtime, PARALiA. BLASX suffers from excessive costly write-backs to the CPU due
to its caching policy, although these h2d/d2h could be completely avoided in the scenario where
all data are initially on the GPUs [10]. Additionally, BLASX is bandwidth-agnostic, with transfers
passing through a variety of bandwidth levels, since its hierarchical abstraction is only capable of
recognizing the difference between h2d/d2h and d2d, and is not sufficient for modern interconnects.
XKBLAS, on the other hand, avoids intermediate write-backs to the CPU due to its lazy write-back
design and provides a much more balanced communication map in the full-offload scenario, with a
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clear preference for the higher bandwidths. This desirable behavior does not extend to the scenario
where data initially populate GPUs 0, 1 and 2. On the contrary, the communication map becomes
more dense around these locations and creates a communication bottleneck, with a lot of extremely
low-bandwidth transfers. The cause of this meltdown lies in the core of current multi-GPU Level-3
BLAS optimization - the decomposition and distribution method. All usual distribution methods
(round-robin, block-cyclic, 2D block-cyclic, etc.) target a homogeneous, balanced scenario, where
data - and consequently the communication volume - is distributed between workers as equally
as possible. In the full-offload scenario, all data must first be fetched from the host (id = 8 in the
heatmaps), which in our testbed - and most modern HPC clusters - has the same bandwidth for
all h2d/d2h connections and therefore favors a balanced distribution. On the other hand, in the
second scenario, some GPUs are closer (higher d2d bandwidth) and some are further (lower d2d
bandwidth) from the data, which results in transfers passing through a variety of connections,
some of which are very slow. In our work, PARALiA, we take data placement into consideration
and optimize communication, under the assumption of heterogeneity in the underlying intercon-
nect, through an effective abstraction of the hardware, modeling, and autotuning. As shown in
Figure 3, our work achieves higher average bandwidth compared to other techniques regardless
of the initial data placement.

2.3 Load Balancing for Heterogeneity

State-of-the-art multi-GPU libraries attempt to mitigate the aforementioned problem of imbalance
between transfers, and also adapt to potential heterogeneous computational capabilities, by using
task load-balancing through work-stealing [9, 10]. However, although work-stealing can improve
load balancing, it disrupts the potential temporal locality offered by a good initial task decomposi-
tion and distribution, as is the 2D block-cyclic decomposition. Moreover, although work stealing
may address the load imbalance coming from small performance differences between GPUs, it
is not sufficient for heterogeneous workload distribution, as we will show in Section 4.4. Finally,
the work stealing mechanisms integrated in existing approaches are performance-agnostic; they
balance work between devices, without taking into account the computational capabilities of the
devices or the communication properties of the problem. This design results in inefficient resource
allocation and usage for BLAS execution, and is incompatible with future heterogeneous systems.
This monolithic design does not lead to efficient execution since it can’t adapt resource allocation
to BLAS problem characteristics and is incompatible with future heterogeneous systems.

In this work, we argue that a homogeneous distribution coupled with work-stealing is not able
to effectively handle the built-in heterogeneity of modern HPC systems for the case of BLAS, and
propose a model-based approach that adjusts the decomposition, communication, and task allo-
cation to the characteristics of 1) each different system through offline micro-benchmarks and 2)
each different BLAS problem and data placement during runtime. Our approach steps away from
the typical homogeneous distribution coupled with work stealing, as we believe that this approach
cannot simultaneously account for the interconnect layout, problem size, and data placement, and
therefore cannot effectively handle the built-in heterogeneity of modern multi-GPU HPC systems
for the case of BLAS.

3 THE PARALIA FRAMEWORK

In this section, we present the main contribution of this work; the PARALiA framework. First, we
demonstrate the high-level design, briefly describing the components involved in BLAS optimiza-
tion and exposing the decision knobs that can be autotuned.

Figure 4 shows the complete PARALiA framework that supports the efficient execution of
BLAS routines in a heterogeneous multi-GPU system. PARALiA is activated when user code
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Fig. 4. An overview of the PARALiA framework and its main components.

Fig. 5. An overview of the PARALiA autotuner and its prediction pipeline.

invokes a BLAS routine with routine data residing within the memory of any of the available
devices. The framework consists of three main components: a preprocessor (Section 3.5) that is
responsible for preparing the framework environment for execution, a scheduler (Section 3.6)
that is responsible for managing input/output data and invoking backend BLAS kernels, and
an autotuner (Section 3.1) that receives system and problem parameters from a database (Sec-
tion 3.4), a hardware abstraction (LinkMap, Section 3.2) and the routine invocation, and decides
which devices to utilize for BLAS execution, the granularity (tiling size) of the basic compu-
tational blocks and the data transfer routing. The PARALiA framework is a publicly available
open-source project.

3.1 The Autotuner Algorithm

The autotuner is the backbone of PARALiA’s optimization. Its purpose is to improve (1) communi-
cation throughput and (2) workload distribution for arbitrary system/problem configurations. Due
to the more generic nature of this problem, using a heuristic-based approach is bound to favor a
subset of configurations, based on which the heuristics were designed, that being either specific
system characteristics (e.g., number of CPUs/GPUs, inter-connectivity) or problem characteristics
(e.g., data size, placement). For this reason, the autotuner uses a model-based approach instead,
which looks at each configuration as a different problem, by combining its system and problem

characteristics at runtime.
The autotuning algorithm that commences during each routine invocation is shown in detail

in Figure 5. When a routine is invoked, the problem parameters are extracted from the routine.
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The autotuner loads pre-obtained transfer coefficients from the PARALiA database and uses them
to construct an abstraction of the system characteristics called LinkMap. Then, the autotuner
loops over candidate workload distributions, estimates their total performance and selects the
best one. Each workload distribution consists of a) a list of devnum devices (active_devids ), which
is a subset of the total system devices, b) a list of sub-kernel ratios (active_devr atio ) suggested
for each device, and c) a transfer routing map optimized for this specific distribution. Regarding
(a) and (b), since their combined search space is very large (active_devr atio are float values), we
instead decouple them by iterating on the possible device combinations active_devids (which
are discrete) and selecting their active_devr atio with a model-based method. Specifically, for
each device combination we start with equal sub-kernel ratios, and iteratively adjust the ratios
based on a performance prediction for each device (more in Section 3.3), until a active_devr atio

with similar performance per device (within 5%) is reached. Regarding (c), the autotuner adjusts
and optimizes the LinkMap to each aforementioned scenario using its specific problem charac-
teristics (more in Section 3.2). Finally, the best workload distribution is selected by using some
metric-related aggregator (e.g., maximum for time, sum for energy, etc.) on the performance of
each device obtained during the estimation of (b). We note that the autotuner also selects a tiling
size T for tile decomposition (as depicted in Figure 4), but this process is disconnected from
(a), (b) and (c) and performed based on CoCoPeLiA [12] due to its small impact in multi-GPU
performance.

3.2 The LinkMap Representation

Since the hardware abstractions of previous libraries target homogeneous distributions in
systems with similar device and interconnect capabilities, they are not suitable for any workload
distribution. To mitigate this we assume the most generic system in an abstraction called LinkMap,
capable of representing any system with arbitrary devices and connections between them. The
LinkMap abstraction disconnects from the notion of “CPU” and “Main memory” and treats all
parts of a system similarly; any candidate data location or available computational resource is
categorized as a device and is connected via links with all other devices, which are responsible
for data transfers between them. In the LinkMap representation each device is defined by a unique
id (devid ). While not common in current systems, different devices can share memory, in which
case the transfer link time between them is always equal to zero. Additionally, this abstraction
assumes a fully-connected virtual topology; even if an actual hardware connection does not exist
between a device pair. Therefore, this creates a fully-connected graph, with where devices are the
nodes and the links are the edges: the devnum nodes are connected via a 2D grid (devnum ,devnum )
of edges/links. The LinkMap representation is implemented in C++ as a class whose members and
functions are shown in Table 1. It consists of five 2D matrices link {lat,bw,bw−shar ed,route,sl }
that hold its values and three functions that are used during auto-tuning to update
them.

The LinkMap representation by itself does not contain any insights, it just represents the most
general case. Its usefulness is its adaptability to any system and problem data placement, which
happens during runtime and has three basic phases, implemented in the LinkMap functions. First,
once per program during the first routine invocation, load_link_weiдhts () loads the transfer coef-
ficients link {lat,bw,sl } from the database. This provides a basic System LinkMap containing empir-
ically obtained estimations for the system in general. Then during the autotuning of any routine,
estimate_problem_throuдhput () adjusts the LinkMap bandwidths (linkbw−shar ed ) according to the
current device/data configuration. Specifically, it assumes that all links that connect the devnum

devices (active_devids ) to the datanum data locations (datalocs ) perform transfers for the entire
routine execution, and apply the slowdown of simultaneous usage (Equation (6)) to the bandwidth
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Table 1. LinkMap Member and Functions used for Communication Optimization

System-wise:
linklat (destid , srcid ) The latency of each link.
linkbw (destid , srcid ) The isolated bandwidth of each link.
linksl (destid , srcid , s_destid , s_srcid )) The slowdown imposed by simultaneous usage on each pair of

links.
Problem-adjusted:
linkbw−shar ed (destid , srcid ) The sustainable bandwidth of each link for a device/data

configuration.
linkroute (destid , srcid ) The underlying route all transfers passing through a link must

follow.
Functions:
load_link_weiдhts () Initializes linkbw/lat/sl from the database.
estimate_problem_throuдhput () Estimates link {bw−shar ed } for a device/data configuration.
optimize_problem_routes () Re-routes communication for ’bad’ links for a for a device/data

configuration.

of each such link:

linkbw−shar ed (destid , srcid )

= linkbw (destid , srcid ) ×
devnum∑

i=0

datanum∑
j=0

linksl (destid , srcid ,active_devids (i ),datalocs (j )))

The final optimization phase is to calculate something similar to the shortest paths for this graph.
In our case, we want to reroute transfers that would pass through links with low bandwidth to series

of links of higher bandwidth. For example using three devices, if linkbw−shar ed (0 → 1) = 1Gb/s ,
linkbw−shar ed (0 → 2) = 3Gb/s and linkbw−shar ed (2 → 1) = 4Gb/s , the shortest transfer route
for 0 → 1 would be optimized to 0 → 2 → 1, since it would be faster to transfer data from
device 0 to device 1 through device 2, instead of using their direct link. To avoid very long
routes the re-routing algorithm (optimize_problem_routes ()) uses a max_hops argument that
limits the intermediate data locations (currently supported max_hops = {1, 2}), and we use
max_hops = 1 in our evaluation. Performing these intermediate ‘hops’ during runtime has a very
low overhead since PARALiA already holds tile buffers in all devices. Re-routing significantly
improves performance since 1) bandwidth is increased for the otherwise slowest transfers,
which are an important bottleneck, and 2) in level-3 BLAS, transferring a read-only data chunk
with additional ‘hops’ (like device 2 in the example) also stores it to these devices for potential
use.

3.3 Offload Performance Estimation

As explained in Section 3.1, the ratio adjustment and the total performance aggregation in the auto-
tuner use an estimation of the offload performance of each device (henceforth predmetr ic (devid )).
Performance prediction in multi-GPU setups is considerably more complex than on a single
GPU, as scheduling on multiple devices involves runtime decisions regarding data caching and
simultaneous resource utilization that are not static or known beforehand. For this reason, we
use a performance upper bound based on the full-overlap model [15], instead of using more
advanced overlap models [12, 14, 15]. We note that, for simplicity, all equations presented below
use time as the performance metric , but PARALiA supports more performance metrics that are
later explained in detail. Table 2 summarizes the modeling notation used in this work.

First, we combine the full-overlap upper bound [15] with the PARALiA database to get a
routine-specific, full-overlap prediction for each device’s total performance:
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Table 2. Modeling Notation used in this Work

Empirical values (from database):
texec (routine,devid ,D1[,D2[,D3]]) The execution time of routine in devid as a function of problem

size.
Wexec (routine,devid ,D1[,D2[,D3]]) The average power (in Watt) of routine in devid during

execution.
Problem parameters (from routine):
dims : D1[,D2[,D3]] Problem dimensions for BLAS level-1, 2 and 3, respectively.
datanum The number of total matrices and vectors used by this routine.
is {R,W } (datanum ) A flag [0,1] denoting if a matrix/vector is input/output,

respectively.
dataloc (datanum ) The data placement of each participating matrix/vector.
bytes (datanum ) The size in bytes of all matrices and vectors used by this

routine.
Estimated (model-based):
devnum The number of devices participating in multi-device parallel

execution.
active_devids (devnum ) A list containing the ids for each such device.
active_devr atio (devnum ) The percentage of the total sub-kernels assigned to each such

device.
predmetr ic (devid ) Ametric prediction required for devid to complete its assigned

sub-kernels.
total_pred_metric The total estimatedmetric (e.g., time, EDP) of multi-device

parallel execution.

pred_tbase (devid ) =max ��
�
texec (devid ,dims ), th2d

�
�
devid ,

isR∑
i

bytes (i )�
�
, td2h

��
�
devid ,

isW∑
j

bytes (j )��
�

��
�

(1)

where h2d stands for host-to-device and d2h for device-to-host transfers, and
∑is{R,W }
{i, j } are the

subsets of the datanum matrices/vectors that are problem inputs and outputs, respectively. To ad-
just the model for multi-device offload, we need to replace ‘h2d’ and ‘d2h’ time with the transfer
times of all links connecting datalocs to each device. To do this, first, we calculate the transfer time
for each link (tl ink ) as a function of transferred bytes with:

tl ink (destid , srcid ,bytes ) = linklat (devid , srcid ) +
bytes

linkbw−shar ed (destid , srcid )
(2)

by combining each link’s latency and bandwidth using the well-accepted latency/bandwidth model
[12, 14, 15, 17–19]. Then, we assume the best-case scenario, where all input matrices/vectors are
distributed equally between the devnum devices by combining Equation (1) with Equation (2) to
generalize for any initial data placement:

pred_tover (...) =max �
�
texec (...),

isR∑
i

tl ink

(
devid ,datalocs (i ),

bytes (i )

devnum

)
,

isW∑
j=0

tl ink

(
datalocs (j ),devid ,

bytes (j )

devnum

)
��
�

(3)

Equation (3) provides a more accurate prediction for the full-overlap performance of a routine,
if multi-GPU execution does not involve additional transfers/data sharing between devices. This as-
sumption works for level-1 and level-2 BLAS, but in level-3 BLAS decomposition each tile is reused
by many sub-kernels and therefore transferred to multiple devices throughout a routine’s lifetime.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 52. Publication date: December 2023.



52:12 P. Anastasiadis et al.

Since PARALiA uses a 2D block-cyclic decomposition (DCrow ,DCcol ) for level-3 BLAS, we consider
this baseline scenario of 1) exchanging equal portions of RONLY bytes between all decomposition
rows and columns and 2) no output data sharing. We estimate the proportional increase in transfer
volume for each device as:

extra_trans f er_bytes =
(DCrow − 1) + (DCcol − 1)

RONLYnum
· RONLY_sum_bytes

Where RONLYnum is the number of matrix/vectors with isR = 1 and isW = 0, and
RONLY_sum_bytes is the sum of their corresponding bytes . This represents a lower bound of
the added bytes due to multi-GPU BLAS3 data sharing for each device. We assume these bytes are
equally distributed between devices, and use the average bandwidth of all links to estimate the
additional transfer time:

textr a (devid ) = extra_trans f er_bytes · devnum∑devnum

idx=0
linkbw−shar ed [devid ][idx]

(4)

in which the extra communication in bytes for each device is multiplied by the inverse of its
average receive bandwidth, which serves as an average estimate for the expected bandwidth of
these transfers. We finally construct the full-overlap model used for the estimated performance

of each GPU in a multi-GPU environment by adding the extra transfer time of Equation (4) to
Equation (3):

predt (devid , ...) =max ��
�
texec (...), textr a (devid ) +

isR∑
i

tl ink (...),
isW∑

j

tl ink (...)��
�

(5)

Performance metrics: All the aforementioned models return a time prediction for the ex-
ecution on a single GPU. We use the maximum predicted execution time, total_pred_t =
max (predt (devid )) to evaluate different candidate workload distributions. PARALiA also supports
utilization/energy-centric metrics, based on the total power consumption of all GPUs in the multi-
GPU setup, total_pred_W , which we combine with total_pred_t to further enhance the workload
selection process. In this work, we use 1) performance (FLOPs = F LOP

time
), 2) an inverse energy-

delay product (EDPi = FLOPs2/W ) and 3) an inverse power-delay product (PDPi = FLOPs/W ) for
workload distribution (PARALiA select({FLOPs,EDPi , PDPi }, respectively). As evaluation metrics
we use performance (FLOPs , inGFLOPs orTFLOPs) and energy efficiency (PDPi , inGFLOPs/W ).
To support rapid experimentation with additional metrics, we have simplified the addition and
benchmarking of new metrics, requiring the modification of 3-4 lines of code only.

3.4 Database

The PARALiA database stores the empirical measurements required to construct PARALiA’s sys-
tem abstraction LinkMap, and to estimate performance in the autotuner. These measurements in-
clude transfer latencies and bandwidths, which are collected only once per system, and execution
time/Watt measurements, collected for each routine. The database is automatically built by PAR-
ALiA at installation time, with a set of automated micro-benchmarks (we denote this process as
the DB Builder), for all available devices and all connections between them.
Database Builder: The DB builder is an extension of the relevant component in CoCoPeLia [12],
which performs single-device BLAS routine benchmarks for all system devices, and extends the
set of system benchmarks to model transfers according to the requirements of the LinkMap rep-
resentation. In PARALiA’s DB builder, we opt for ease of use, robustness and short benchmarking
time. For ease of use, PARALiA provides a fully automated process for micro-benchmarking
and for producing the empirical transfer models. Additionally, PARALiA is easily extensible to
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accommodate new backend BLAS library options, providing micro-benchmark template scripts,
which can be easily modified with new routine invocations and any additional parameters. For
robustness, for each benchmarked value, we repeat measurements until the 95% confidence
interval of the mean falls within 5% of the reported mean value (taking at least 10 measurements
to obtain these means). Finally, for short benchmarking times, we try to strike a balance between
the number of measurements required for robustness, and their overall execution time. The DB
builder benchmarks the computation time of the different backend BLAS routines. The minimum
problem dimensions and steps are static and predefined for all benchmarks, while the maximum di-
mensions are calculated based on the available memory of the target device. The results of the DB
builder are stored as a database and made available to the framework for all subsequent calls in the
system.
Kernel lookup: The offload performance models used in the autotuner require an estimate for the
routine execution time and average Watts per device. Using the same technique as in CoCoPeLia
[12], we only collect measurements for the time/power of fine-grained chunks of specific, small
tiling sizes, namely {t ,W }exec (routine,devid ,T [,T [,T ]]), for which we then use value lookup in
the database. The average GPU Watt consumption is obtained by sampling Watt values at regu-
lar intervals with the CUDA nvml-driver during each routine benchmark and averaging these.
Micro-benchmarks are performed per routine and per device (devnum ×routinenum times) and use
separate BLAS backends depending on the target devid . Devices with 0 ≤ devid < cuda_dev_num
are reserved for available CUDA devices and devices with dev_id >= cuda_dev_num are reserved
for available CPUs (usually one). The value lookup micro-benchmarks use cuBLAS for NVIDIA
GPUs and OpenBLAS for CPUs, but are easily extensible with minimal adjustments to other devid

ranges (e.g., for AMD devices) or for different BLAS implementations (e.g., a custom GPU imple-
mentation instead of cuBLAS) that follow the BLAS standard.
Transfer coefficients: To obtain link {lat,bw } , we follow the most widely used semi-empirical
approach; we measure a set of transfer times and use them to fit the coefficients of basic linear
models for transfer time. We obtain linklat empirically as the average latency of multiple
single-byte transfers. For linkbw , we run benchmarks for square transfers with dtype = double ,

for D1 = D2 = 256
stepad=256
−−−−−−−−−→

√
max_device_memory/2, and use least square regressions on the

obtained samples in the manner of [20]. Then, we estimate the slowdown linksl for simultaneous
link usage (e.g., transfer overlap for any two links), assuming it imposes a constant throughput
slowdown and does not affect latency. This slowdown is calculated with a single micro-benchmark

for each link; first, for the link of interest, a large transfer (D1 = D2 =
√
max_device_memory/2)

is tested isolated (tl ink1), and then, it is tested overlapped (tl ink1−l ink2over
) with multiple similar

transfers on the other link, resulting in the slowdown:

sll ink1−l ink2 = (tl ink1−l ink2over
)/tl ink1 (6)

Since the method of obtaining the sl is empirical, we assume a maximum slowdown of
sll ink1−l ink2 = 2.0 (i.e., the effective bandwidth is halved), to avoid empirical errors spilling into
the models. For all transfer experiments we use the PARALiA wrapped functions for transfers,
which currently use the cudaMemcpy2DAsync routine in their back-end with pinned host memory,
as required by these asynchronous calls.

3.5 Preprocessor

The PARALiA preprocessor is responsible for the framework initialization and the transformation
of problem data for BLAS execution in a multi-GPU system, which is broken down into the three
basic operations described next.
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Environment setup: This operation is performed when a BLAS routine is invoked for the first
time or with a new set of parameters. It allocates buffers, initializes data structures, and performs
backend-specific actions, like creating CUDA streams and events, to be used by the scheduler.
Tile decomposition: The bulk of preprocessing in BLAS libraries involves decomposing the prob-
lem data into smaller chunks, usually referred to as tiles. As most similar multi-GPU libraries
[6, 7, 9, 10], in PARALiA we decompose vectors to 1D tiles and matrices to 2D square tiles, using
a tiling size T provided by the autotuner. After data decomposition into tiles, PARALiA identifies
all sub-kernels deriving from this decomposition, generating the relevant data/task dependencies.
Device initialization: This operation initializes the devices that will participate in BLAS
execution (active_devids ) and distributes sub-kernels to them, proportionally to their assigned
problem ratios (active_devr atio ). PARALiA supports multiple sub-kernel distribution patterns
(Sequential, Round-Robin, 1D-cyclic and 2D-cyclic) and by default uses Round-Robin for BLAS
1 & 2 and 2D-cyclic for BLAS3. Unlike scheduler-centric multi-GPU libraries [9, 10] that rely on
dynamic load-balancing, PARALiA follows a static approach since load-balancing is based on
effective performance estimation performed before scheduling.

3.6 Scheduler

The PARALiA scheduler manages data caching in distinct device memories, and data transfers
between memories, invokes all sub-kernels on their assigned devices, and synchronizes their exe-
cution and results, as analyzed below.
Data caching: For this operation, PARALiA uses a Software_buffer C++ class, similar to BLASX
and XKBLAS, which represents a buffer in each device with a distinct memory, and can store 1D
and 2D tiles. Each Software_buffer holds a number of blocks depending on the problem size
and per-device memory limitations, and employs a simple block-sequential write-back policy to
swap tiles during sub-kernel execution, using a MESI-like protocol similar to BLASX [9]. This
Software_buffer in each device is initialized the first time a program calls a PARALiA BLAS
routine, and is updated/extended in subsequent calls to match their device and size requirements.
Sub-kernel invocation: The scheduler spawns active_devnum POSIX threads, that are responsi-
ble for invoking sub-kernels in their corresponding devices.

After a sub-kernel is invoked, it issues three sub-tasks: a) the requests for all its input tile de-
pendencies (e.g., fetching tiles if they are not available in its device memory), b) the sub-kernel
computations to be performed after dependencies are met, and c) potential data write-backs to
the initial memory location for any tile it modified. The optimization of sub-kernel invocation
order is important for multi-GPU BLAS scheduling, since it affects both task parallelism and the
communication and data reuse pattern [9, 10]. We leave the sub-kernel order problem for future
work because PARALiA focuses on model-assisted communication and workload distribution, not
dynamic scheduling techniques.
Synchronization: The sub-tasks of each sub-kernel (i.e., fetch data, compute, writeback) are exe-
cuted asynchronously and overlapped with sub-tasks from other sub-kernels (software pipelining)
and on other devices (multi-GPU) using CUDA events to enforce data dependencies and CUDA
streams to enable overlap. After all sub-kernels are invoked, the scheduler synchronizes all sub-
tasks and returns the result and control to the user upon completion.

4 EVALUATION

In this section, we evaluate the performance of PARALiA and compare it with state-of-the-art
libraries. First, we introduce the testbed and the evaluation dataset we use for our experiments
and illustrate its corresponding LinkMap representation. Then, we provide a full evaluation of
PARALiA’s DGEMM performance and compare it against cuBLASXt [7], BLASX [9] and XKBLAS
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Table 3. The Vulcan CLX-AI Testbed System Characteristics

Vulcan CLX-AI CPU GPU
Computation: 4 X Intel Xeon Gold 8 X NVIDIA Tesla V100

6240 CPU FP peak 14 TFlop/s
18 cores @ 2.60GHz DP peak 7 TFlop/s

Memory: 768GB DDR4 32 GB HBM2
760 GB/s

Interconnect: PCIe Gen3 ×16 NVlink 1.0/2.0
OS: Rocky Linux release 8.7 CUDA Driver -
Kernel: 4.18.0-425.3.1.el8.x86_64 510.108.03
Compiler: g++ 11.2.0 CUDA 11.6
Opt. flags: -O3 -O3, -arch=sm_75

Fig. 6. The System Linkmap for the CLX-AI

interconnect.

[10], using both performance (Tflops) and energy efficiency (Gflops/W) metrics. We compare three
versions of PARALiA, with each version using a different approach for workload distribution, based
on the estimated routine performance, inverse energy-delay (EDPi ) or inverse power-delay(PDPi )
as described in Section 3.3. Finally, we showcase that PARALiA also adapts better than previous
approaches to a heterogeneous system, which we emulate using a different predefined per-device
load in our testbed.

4.1 Experimental Setup

For the performance evaluation we use a single testbed: the “clx-ai” nodes of HLRS’ HPC clus-
ter VULCAN, HPC cluster at HLRS [21]. System details are presented in Table 3, along with the
interconnect bandwidths stored in the LinkMap for the 9 devices (8 GPUs + CPU which are illus-
trated in Figure 6). The interconnect utilizes a mix of NVlink-1 (24 GB/s) and NVlink-2 (48 GB/s)
for inter-GPU connectivity and PCiE (12 GB/s) for all CPU-GPU communication. In addition, we
note that CPUs share PCIe bandwidth in sets of two (e.g., GPU 0-1, 2-3, etc.). For time measure-
ments we use wrapped timers based on clock_gettime, with device synchronization (cudaDevice
Synchronize()) also included; both timer and synchronization overhead were less than 1% for all
benchmarks. We perform 20 executions for large benchmarks and 100 for small ones, after 10
warm-up runs, and we report the median time/performance of these runs. The allocation time
needed for CPU/GPU buffers is not modeled or included in the total time, and all matrices/vectors
are initialized with random values before execution. We use pinned host memory to enable asyn-
chronous CUDA calls and the caches/buffers are flushed between runs. The above configuration
is consistent for all our experiments and all state-of-the-art libraries we include in this work.

4.2 Evaluation Dataset

4.2.1 Routine Selection. While the PARALiA framework is designed to support all BLAS levels,
level-1 and level-2 are rarely offloaded to GPUs/accelerators as standalone calls - they usually
follow or precede level-3 BLAS invocations which can fully utilize the extreme computational
capabilities of GPUs. We therefore only implement a subset of BLAS routines (axpy, dot, gemv)
as proof-of-work with the PARALiA’s wrappers and do not include any level-1 or level-2 BLAS
routines in our evaluation. On the other hand, the usual evaluation trend for multi-GPU level-3
BLAS publications is to report the performance of most or all level-3 BLAS routines they
implement, for multiple supported datatypes. Due to the very high resource cost of benchmarking
multi-GPU level-3 BLAS, this usually leads to small datasets with specific characteristics, which
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as we mentioned in Section 1, is the main problem of previous approaches. Due to this, their
evaluations explore only a fraction of potential problems, resulting in potential underlying
bottlenecks never brought to light. We choose a different benchmarking approach for PARALiA;
we select a large, diverse dataset and focus solely on double-precision floating-point matrix-matrix
multiplication (dgemm) for performance evaluation. We make this choice for three reasons. First,
GEMM is by far the most common level-3 BLAS routine; all other level-3 BLAS kernels are either
datatype-specialized GEMM implementations or internally perform mostly GEMM computations
(68-93% according to BLASX [9], which increases further with problem size), and therefore follow
similar performance trends. Second, as the most generic level-3 BLAS routine, GEMM, depending
on its input/output size and shape, results in a plethora of different arithmetic intensities, which
can be used to expose bottlenecks for transfer-, memory- and compute-bound problems with a
single implementation. Third, because our total resources are limited, we prefer to cover a diverse
dataset to expose hidden bottlenecks, instead of presenting similar results for multiple routines.

4.2.2 Dataset Characteristics. Since most state-of-the-art multi-GPU level-3 BLAS libraries use
the same cuBLAS single-GPU routines at the backend, they have similar performance peaks when
communication is not a bottleneck. We therefore try to include a good percentage of problems
that potentially have performance differences due to communication/scheduling. The main char-
acteristics of GEMM that change its communication/computation ratio are the problem size and
problem shape, and additionally, for multi-GPU setups, the initial residing memory for each of the
input/output matrices. We consequently explore 21 square problem sizes (Msq = Nsq = Ksq =

(2
step=1
−−−−−→ 22) · 210), 21 fat-by-thin problems (Mf at = Nf at = (8

step=4
−−−−−→ 32) · 210,Kthin =

Mf at

r
, r ∈

[2, 8, 32]) and 21 thin-by-fat problems (Kf at = (12
step=4
−−−−−→ 36) · 210,Mthin = Nthin =

Kf at

r
, r ∈

[2, 8, 32]) for 10 location combinations (more in Figure 7) for a total of 630 problems. We assume
each matrix initially exists in a single location and is not pre-distributed to multiple devices, to
maintain compatibility with the BLAS API standard and to be able to compare performance with
existing multi-GPU BLAS libraries, which also follow the standard. For each such problem, we
measure the execution time t of 1) cuBLASXt, 2) BLASX, 3) XKBLAS and 4) four PARALiA variants
(PARALiA comm_opt, PARALiA select(PERF), PARALiA select(EDPi ), PARALiA select(PDPi )). PAR-

ALiA comm_opt only optimizes communication without employing device selection, while the
other three versions also select the best device configuration for optimizing the relevant metric.
We exclude other libraries like SuperMatrix [3] and PARSEC [6] that were designed taking older
GPU architectures into account, as they are outperformed by both BLASX and XKBLAS.

4.3 Comparison with State-of-the-art

4.3.1 Performance. Figure 7 shows the evaluation results for the entire dataset. As previous
work also outlines, cuBLASXt has very low performance due to its static round-robin decomposi-
tion as well as the absence of a data caching and reuse logic. On the other hand, BLASX provides
good performance for the full-offload (h,h,h) scenario for initial data locations, which drops
considerably in all other location combinations. This pattern holds for all three data shapes, and
is more evident in fat-thin and thin-fat problems because they are more communication-bound
than the square shape, for which GEMM has the highest arithmetic intensity. XKBLAS follows a
similar pattern, with only one distinguishable characteristic; it has the highest full-offload (h,h,h)
performance of all libraries, but the performance degradation in all other location combinations
is much larger than BLASX, resulting in inferior performance. We attribute this to the extra
heuristics XKBLAS uses for limiting writebacks and task scheduling and its very lightweight
scheduler, which are designed around the optimization of the full-offload scenario. While we are
working on overcoming both those issues, we also believe that this would not occur in modern
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Fig. 7. Performance of dgemm with cuBLASXT, BLASX, XKBLAS, and two variants of PARALiA (one always
utilizing all GPUs and one selecting the workload distribution to maximize the inverse energy-delay product
- EDPi ), on the dataset described in Section 4.2. Each row corresponds to a different data shape M,N ,K and
each boxplot group corresponds to a different data location, with дemmloc = (Aloc ,Bloc ,Cloc ), where loc
= h corresponds to data on host and loc = devid to the corresponding device’s memory. The right subfigure
aggregates results for each problem shape.

systems that are not as heavily bound by h2d PCIe transfers. The simpler BLASX is better in this
case, since writing back to the host and then re-fetching to the GPUs with h2d/d2h transfers (PCIe
bandwidth = 12 GB/s), is better than performing d2d between distant devices which results in
extremely slow transfers through PCIe, bridges and potentially NUMA connections (bandwidth
< 6 GB/s), which cannot be overlapped. Nevertheless, this is a very interesting observation - the
dethroning of BLASX by XKBLAS as the state of the art for multi-GPU setups was based only
on the full-offload comparison. Looking behind the curtain, BLASX does provide more robust
multi-GPU performance in the general case - which further stresses the importance of a more
diverse dataset for a fair performance evaluation. Both PARALiA implementations offer a 1.8-2X
mean performance improvement over BLASX and XKBLAS and exhibit superior performance for
all location and shape configurations, except full-overlap, where our choice to not use sub-kernel
order selection heuristics gives XKBLAS a 5-10% performance advantage. The performance gain
versus BLASX and XKBLAS varies for all other configurations, with the two PARALiA implemen-
tations displaying almost similar performance and ultimately approaching peak performance (e.g.,
being compute-bound) by better utilizing the faster NVLink connections due to the optimized
LinkMap. In summary, Figure 7 illustrates that PARALiA outperforms previous approaches in
terms of performance (details in Section 4.3.3) in a complete, diverge dataset, containing various
transfer- and compute- bound cases, due to its better communication optimization scheme.

4.3.2 Energy Efficiency. Figure 8 presents results on energy efficiency for our dataset using the
inverse power-delay product (PDPi in Gflops/W). Both PARALiA implementations have superior
PDPi than the state of the art, which for PARALiA comm_opt versus cuBLASXt, BLASX, XKBLAS

is due to their performance difference, since they all utilize all 8 available GPUs. On the other
hand, PARALiA select (EDPi ) has the best PDPi for all configurations, providing an 8% higher
average PDPi than PARALiA comm_opt with only 0.5% less mean performance. It is also evident
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Fig. 8. Energy efficiency of dgemm (Gflops/W) for all problem configurations presented in Figure 7. cuBLASXt,
BLASX, XKBLAS and PARALiA comm_opt have PDPi s relative to their performance (since they all utilize
all 8 system GPUs), resulting in a much better PDPi for PARALiA due to its higher performance. On the
other hand, PARALiA select(EDPi ) also takes into account the energy-performance relation when considering
how many devices to use and therefore has a much better PDPi with only imposing a minor performance
difference.

that the mean PDPi improvement via selection mostly affects smaller problems (boxplots lower
parts defer more) and depends on problem shape (Mean improvement: sq = 1%, fat-thin = 8%. thin-
fat = 15%). Both these behaviors derive from the fact that device selection is only meaningful for
partially communication-bound problems, since for purely computation-bound ones selecting all
devices will always yield the highest EDPi . Summing up, PARALiA provides the highest energy
efficiency for all configurations, coupling better overall performance with efficient device selection
for communication-bound problems.

4.3.3 In-depth Analysis. While PARALiA’s communication optimizations affect most of the
dataset, making their performance contribution easily distinguishable, device selection benefits
only problems that still remain communication-bound after the aforementioned optimization. Con-
sequently, since in Figures 7 and 8 such problems are overshadowed by the compute-bound por-
tion of the total dataset, we include Table 4 to better demonstrate the effect of selection by splitting
the dataset to two equal (310-320) parts, denoted small (S) and large (L), along with the total (T)
dataset mean values. We also include two other versions of PARALiA selection, select(PERF) and
select(PDPi ), to showcase the effect of different optimization metrics, and make three basic obser-
vations.

First, the means show how PARALiA comm_opt, PARALiA select(PERF) and PARALiA

select(EDPi ) vastly outperform all previous approaches in terms of performance in all (S, L, T)
problems, with PARALiA select(PERF) having a (geo)mean performance improvement in (S, L, T)
of (4.6×, 5.6×, 5.1×) over cublasXt, (1.6×, 2.0×, 1.8×) over BLASX and (2.3×, 2.5×, 2.4×) over XK-

BLAS, and PARALiA select(EDPi ) (4.3×, 5.5×, 4.8×) over cublasXt, (1.5×, 2.0×, 1.7×) over BLASX

and (2.2×, 2.5×, 2.3) over XKBLAS. For all the above cases, the communication optimization yields
similar results in (S, L, T), with slightly better speedup on large problems due to previous libraries
struggling with the interconnect optimization, while PARALiA already reaches compute-bound
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Table 4. A Summary of the Performance of dgemm for the Whole Dataset for Each Implementation,

using the
mean (Gf lop )
mean (metr ic ) [22]

Implementation Performance (Gflops) PDPi (Gflops/W)
Small (S) Large (L) Total (T) Small (S) Large (L) Total (T)

cuBLASXt 1827 8516 7484 0.79 3.68 3.23
BLASX 4913 24755 21486 2.12 10.69 9.28
XKBLAS 3569 18572 15895 1.54 8.02 6.86
PARALiA comm_opt 9396 45840 39996 4.06 19.79 17.27
PARALiA select(PERF) 10641 46066 40933 5.32 19.94 18.06
PARALiA select(EDPi ) 9453 45433 39804 6.30 20.16 18.64
PARALiA select(PDPi ) 3970 6700 6530 13.71 23.14 22.56

Small problem (S), large problem (L) and total dataset (T) percentages are displayed separately for extra clarity

regarding the underlying performance. PARALiA comm_opt, PARALiA select(PERF) and PARALiA select(EDPi ) vastly

outperform previous approaches, with PARALiA select(PERF) offering the best performance and PARALiA

select(EDPi ) being more balanced between performance and energy efficiency as intended. PARALiA select(P DPi )

leads to relatively low performance coupled with the best P DPi .

performance earlier. PARALiA select(PDPi ) on the other hand leads to vastly inferior performance,
since PDPi alone is a bad metric in multi-GPU due to often selecting 1 GPU to provide the most
flops/W.

Second, all PARALiA implementations also outperform previous approaches in terms of energy
efficiency, with PARALiA select(PERF) having a (geo)mean PDPi improvement in (S, L, T) of (7.8×,
5.6×, 6.6×) over cublasXt, (2.7×, 2.0×, 2.3×) over BLASX and (4.0×, 2.5×, 3.2×) over XKBLAS, PAR-

ALiA select(EDPi ) (9.0×, 5.7×, 7.1×) over cublasXt, (3.1×, 2.0×, 2.5×) over BLASX and (4.6×, 2.6×,
3.4×) over XKBLAS and PARALiA select(PDPi ) (17.0×, 7.0×, 10.8×) over cublasXt, (5.8×, 2.5×, 3.8×)
over BLASX and (8.6×, 3.2×, 5.2×) over XKBLAS. Unlike performance which is mainly driven by
the LinkMap optimization, the additional PDPi improvement derives from device selection, which
is evidently higher in the small (S) problems where most selection occurs. As anticipated, PAR-

ALiA select(PDPi ) offers the best energy efficiency by far, since the selection target is also the
evaluation metric, select(PERF) improves PARALiA comm_opt PDPi as a byproduct of using fewer
devices when they provide similar performance and select(EDPi ) provides a solid PDPi in between
the other two (leaning towards performance) as intended.

Third, we consider PARALiA select(EDPi ) to provide the best performance-PDPi trade-off, fo-
cusing on performance but also accounting for energy efficiency in order to avoid very inefficient
choices (like for example using 8 devices to get a 5% speedup from using 2), resulting in huge
PDPi improvement in small problems (1.5× over PARALiA comm_opt) with a similar performance.
This energy efficiency improvement is virtually free to the user, deriving solely from performance
awareness, and is the main motivation behind our work. Additionally, the means for select(PERF)

and select(EDPi ) show that selection can also lead to better performance even disregarding
energy whatsoever, depending on the communication-boundedness of the problem. Summing
up, PARALiA vastly outperforms previous approaches in terms of both performance and energy
efficiency, with PARALiA select(EDPi ) offering near-optimal performance due to communication
optimization coupled with superior PDPi due to performance awareness delivered from the
auto-tuning runtime.

4.4 Applicability to Heterogeneous Platforms

Device selection in homogeneous systems is meaningful for communication-bound problems
but can be even more beneficial in heterogeneous systems, where devices can have different
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Fig. 9. DGEMM performance (Tflops) and energy
efficiency (Gflops/W) for half of the problem con-
figurations presented in Figure 7. BLASX and
XKBLAS schedulers do not adjust well to differ-
ent computation devices, while PARALiA still pro-
vides improved performance and PDPi , which is
boosted by better workload distribution.

Table 5. A Table Summarizing the GEMM Performance
for the Whole Dataset for Each Implementation, using

the
mean (Gf lop )
mean (metr ic ) [22] for Half of the Small (HS), Large

(HL) and Total (HT) Problems of Table 4 Ran on a Hetero-
geneous Emulated System

Implementation Performance P DPi

(Gflops) (Gflops/W)
(HS) (HL) (HT) (HS) (HL) (HT)

BLASX 5036 18621 17316 2.21 8.2 7.6
XKBLAS 5379 16782 15520 2.36 7.4 6.8
PARALiA comm_opt 12056 24892 24146 5.5 10.9 10.6
PARALiA select(PERF) 12160 27221 28117 6.2 14.7 13.2
PARALiA select(EDPi ) 9453 26154 25645 7.9 15.3 15.1

PARALiA outperforms all multi-GPU scheduler-based

approaches both in performance and energy efficiency,

further boosted by a better workload selection.

computation capabilities. While heterogeneous multi-device systems are not common nowadays,
computational heterogeneity will probably be more commonplace in the future. Heterogeneous-
like execution scenarios can also appear in current homogeneous multi-device systems, by
applying different power management policies or sharing devices between users/processes. For
this reason, we include a proof-of-concept application of our approach to an artificial heteroge-
neous system, which we emulate by loading the GPUs of the Vulcan clx-ai cluster with different
computation workloads running in other processes. We configure these workloads empirically to
represent GPUs with lower performance, resulting in the following double FP peak adjustments:
GPU {0,1,4,6} = 3.5 Tflops, GPU {2,3} = 5 Tflops and GPU {5,7} = 7 Tflops (original peak). We also do
not adjust the power consumption of each device, resulting in different energy efficiency for each
device category (e.g.,GPU {5,7} are more energy efficient thanGPU {2,3}, etc.). This leads to a total sys-
tem DP peak of 38 Tflops (vs 56 Tflops for the original system), and a PDPi peak of 17.5 (vs 26 in the
original system). We also note that a homogeneous-distribution DP peak (without load-balancing)
is 3.5·8 = 28 Tflops for future reference. Additionally, we limit the dataset to less than half the prob-
lems, by doubling the data size iteration steps and the minimum size for a total of 250 problems,
and exclude cublasXT due to extreme benchmark times and having no load-balancing mechanism
whatsoever. The results for this heterogeneous-emulated system are shown in Table 5 and Figure 9.

Figure 9 contains the aggregated performance (left) and energy efficiency-PDPi (right) box-
plots for the entirety of the aforementioned heterogeneous dataset of 250 problems (HS - 90, HL
- 160), which now leans more towards computation-bound problems since the peak performance
has lowered considerably while the interconnect is the same. BLASX, XKBLAS and PARALiA

comm_opt follow similar performance and PDPi patterns with the homogeneous system, albeit
at lower peak as expected. Communication optimization is still an issue for BLASX and XKBLAS

resulting in superior performance for PARALiA comm_opt, but all three approaches are limited
by the aforementioned homogeneous-distribution peak around 28 Tflops. On the other hand,
PARALiA select(EDPi ) manages to provide a better workload distribution, which results in better
performance by approaching the peak of 38 Tflops for large problems, and has far superior PDPi

both due to better performance and due to awareness of the different characteristics of each
emulated device. Summing up, PARALiA select(EDPi ) vastly outperforms previous approaches
both in terms of performance and energy efficiency in the heterogeneous system as well, now
further boosted by a better workload distribution in different devices.
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Table 5 shows the achieved mean performance in a similar layout with Section 4.3 for the small
(HS), large (HL) and total (HT) dataset also displaying results for PARALiA select(PERF). PARALiA

select(PDPi ) is omitted due to always selecting fromGPU {5,7} as expected without adding any addi-
tional insights. Since the performance is already visualized in Figure 9 we use Table 5 for problem
size-related insights and mean comparison, making the following observations. First, PARALiA
versions still outperform previous approaches in all subsets, but with a smaller performance dif-
ference added to the baseline PARALiA comm_opt from communication optimization. Specifically,
PARALiA select(PERF) has a (geo)mean performance improvement in (S, L, T) of (2.2×, 1.7×, 1.8×)
over BLASX and (2.0×, 1.9×, 1.9×) over XKBLAS, and PARALiA select(EDPi ) has (1.8×, 1.6×, 1.6×)
over BLASX and (2.0×, 1.7×, 1.7×) over XKBLAS. This is expected, since by reducing peak per-
formance and removing smaller problems from the total dataset, the impact of communication
optimization is limited since many problems now become compute-bound. Second, the impact of
workload selection increases performance and energy efficiency both for PARALiA select(PERF)

and PARALiA select(EDPi ) in respect to PARALiA comm_opt, since devices with lower computa-
tional power are used for a smaller part of the problem or omitted by the auto-tuning runtime.
This is more visible in the large (HL) problems which are compute-bound, since in small (HS)
problems the communication optimization is still more important. The difference between PAR-

ALiA select(PERF) and PARALiA select(EDPi ) becomes more evident when comparing them with
PARALiA comm_opt; PARALiA select(PERF) offers 1.12× mean performance and 1.3× mean PDPi

improvement while PARALiA select(EDPi ) offers 1.06× performance and 1.5× PDPi . Summing up,
both PARALiA select(PERF) and PARALiA select(EDPi ) benefit from workload selection, offering
different insights and balance between performance and energy in the heterogeneous system, out-
lining the increased importance of additional metrics for such future systems.

5 RELATED WORK

This section provides basic background on BLAS modeling and auto-tuning, its role in BLAS opti-
mization and how it is applied on different architectures. We first focus on research work on CPU
BLAS, as it includes the first approaches of autotuning at runtime for performance improvement.
We then look at research work on GPU BLAS, which is concerned with computation and com-
munication performance prediction, therefore offers background on modeling. Finally, we discuss
the background in hybrid CPU-GPU approaches, which are relevant to the problem of splitting a
workload appropriately to utilize different computational resources, encapsulating heterogeneity
challenges.

5.1 CPU BLAS Autotuning

Since BLAS is an important part of a plethora of scientific code and solvers, from the early days
of computing it played a vital role in scientific code optimization. Dongarra [1] firstly defined the
BLAS standard as a set of “black box” routines that should follow a specific input/output layout
and should be optimized by vendors and library providers transparently to the user, without any
additional performance tuning from the side of the user. This black-box approach required per-
formance engineering effort to reimplement or tune BLAS routines for every new generation of
hardware. To offset this, Whaley et al. [11] implemented ATLAS, the most well-known BLAS au-
totuning framework, which uses their automated empirical optimization of software (AEOS)

technique. ATLAS explores many possible routine implementations, tuning itself to each new sys-
tem empirically by testing them and timing them, in order to improve cache utilization, increase
parallelism and load balance sub-problems. In a similar notion, Van Zee and Vsan de Geijn [23]
defined a set of a few kernels that can be used to optimize all BLAS 2 and BLAS 3 operations using
empirical knowledge, and later Low et al. [24] proved that an analytic approach is sufficient for

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 52. Publication date: December 2023.



52:22 P. Anastasiadis et al.

replacing the empirical part with auto-tuning. These techniques are not used directly in our work,
but they form the groundwork for most BLAS-related autotuning and model-based optimization.

5.2 GPU BLAS Autotuning

Regarding GPU BLAS implementations, cuBLAS [2] was the first library to provide high perfor-
mance on a single GPU, expecting, however, the data to be available in the GPU. cuBLAS autotunes
the CUDA kernel block sizes internally, based on pre-performed offline empirical testing for each
NVIDIA GPU. When the data reside outside the GPU memory, the execution of a BLAS routine re-
quires data transfers as well. Gregg and Hazelwood [25] were the first to highlight the problem of
data transfer overheads, arguing against the trend to exclude transfer overheads in the scientific
reporting of the performance of GPU applications, and proposed a taxonomy for data transfers
and their impact on offload performance. Numerous works model CPU-GPU transfers, using vari-
ants of the linear latency-bandwidth model for PCIe transfers [17, 26–28] and machine learning
[27] to provide user insights, without, however, specifically targeting BLAS, or integrating them
in an autotuner. The inclusion of transfers in GPU performance prediction improved accuracy, but
whenever there was communication/computation overlap, simplistic models still failed to predict
the actual performance. As highlighted by Hoefler et al. [13], modeling overlap areas is a crucial
step in performance modeling. Towards this direction, Gómez-Luna et al. [14] explored the use
of CUDA streams for 3-way concurrency, but they consider the stream creation time as the only
overlap overhead. Werkhoven et al. [15] enhanced this work by offering multiple performance
models for communication/computation overlap for various common offload scenarios (RMA, 2-
way, 3-way), introduced stream transfer overlap latency, and provided methods to obtain the op-
timal number of CUDA streams for a given problem. In a similar notion, Liu et al. [19] offered a
mathematical framework for software pipelining on GPUs using non-equal tiles, which focused
on partitioning, scheduling, and granularity. All these models offer high accuracy, however, their
modeling approach does not capture all problem characteristics present in BLAS. Moreover, they
were never used in practice for autotuning, and therefore never faced the practical problems of
transfer prediction in real systems, where empirical bandwidths defer from their theoretical coun-
terparts depending on many parameters like the type of src/dest memory (normal, unified, pinned)
or the underlying sharing of interconnect resources [29–31]. In our previous work CoCoPeLia [12],
which aimed to create an autotuner that would selected good tiling sizes for domain decomposition
in single-GPU BLAS, we had to overcome both of these problems to enable performance estimation.
To overcome the first problem, we modified these models to account for common BLAS charac-
teristics, like data reuse and bidirectional transfers. To overcome the second problem, we created
an automated pipeline which fueled these models with offline empirical tests and integrated these
into an end-to-end BLAS framework, which provides state-of-the-art performance for single-GPU
BLAS.

5.3 Hybrid CPU-GPU/Heterogeneous Autotuning

Several research works focus on CPU-GPU hybrid BLAS execution, a topic relevant to our work,
because of the problem of heterogeneous splitting, namely the splitting of a BLAS problem into
subproblems, based on performance estimations for the execution on the CPU and the GPU, in-
tegrated in an end-to-end solution. Luk et al. [32] first proposed such an end-to-end solution for
model-based CPU-GPU splitting for a subset of BLAS routines. Their solution employs an initial
benchmark run, through which their backend BLAS functions obtain linear models for CPU and
GPU performance, store them in a database (file) and utilize them in subsequent runs, to split a
problem depending on its predicted CPU and GPU performance. Tomov et al. [4] envisioned a het-
erogeneous LAPACK and made use of BLAS-level parallelism, where the program is represented as
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a collection of BLAS-based tasks and dependencies. To this end, they use task graphs to represent
BLAS task dependencies and use the CPU for small kernels, the execution of which is inefficient on
GPUs, and the GPU for everything else, overlapping CPU and GPU work and transfers. Humphrey
et al. [33–35] developed CULA, a CUDA framework which enables GPU-CPU simultaneous execu-
tion, with each one running predefined routine parts most fit to its paradigm. Bernabé et al. [18]
employed CPU-GPU hybridization auto-tuning based on micro-benchmarks run at the time of the
library installation, which were used to feed polynomial model coefficients. Finally, Ma et al. [36]
explored energy efficiency, splitting the problem during execution until a balance between CPU-
GPU execution time is reached, and then scaling frequencies to limit energy consumption. All the
above approaches do not take into account transfers and overlap in their modeling/assumptions,
favoring the GPU even in cases that the problem is transfer bound if its computational capability
is larger than the CPU, and do not target multi-GPU systems. This leaves a wide gap between
multi-GPU libraries and hybrid/heterogeneous BLAS research. In our work, PARALiA, we bridge
this gap with high-quality subproblem scheduling and communication optimization on multiple
GPUs, together with performance awareness and device selection, to ensure resource utilization
for any type of heterogeneity.

6 CONCLUSION

In this work, we have presented PARALiA, an end-to-end framework for multi-GPU BLAS
execution. Similar to existing multi-GPU BLAS approaches, PARALiA employs problem splitting,
subproblem scheduling, and computation-communication overlap to maximize the performance
of BLAS routines on multi-GPU setup. Contrary to existing approaches, PARALiA puts emphasis
on optimizing the communication, through a generic hardware abstraction, which allows for
more accurate performance estimation, offered by an autotuner to the scheduler component
within PARALiA. Additionally, PARALiA performs careful device selection, based on a pre-set
optimization target, which can be performance or some energy-related metric, avoiding resource
waste.

We evaluate PARALiA on a multi-GPU testbed which exposes heterogeneous connections be-
tween the devices. Our experiments focus on the performance of GEMM with double-precision,
as a representative level-3 BLAS. Our evaluation shows that PARALiA outperforms the state-of-
the-art BLASX and XKBLAS multi-GPU BLAS frameworks with a (geo)mean improvement of 1.7×
and 2.4× respectively, with significant performance gains for routine executions where the data
originally reside on the various GPUs. We additionally show how, with device selection and by
setting different optimization targets, PARALiA is able to achieve high performance coupled with
better energy efficiency, with a (geo)mean improvement of 2.5× versus BLASX and 3.4× versus
XKBLAS. Finally, PARALiA adjusts well to a heterogeneous system with different compute ca-
pabilities among the GPUs, offering improved performance and superior energy efficiency over
BLASX and XKBLAS.

We conclude that, despite the common conception that level-3 BLAS routines are well-suited
for multi-GPU systems, high performance for any problem size and data location can only be
achieved by minimizing communication costs. As multi-GPU setups become more heterogeneous,
both resource selection and communication optimization have increasing importance for the per-
formance and energy efficiency of BLAS libraries alike. In the future, we aim to extend PARALiA
with more sophisticated scheduling techniques, and we will work towards the generalization
of the autotuning approach of PARALiA and the extensibility of the PARALiA components for
other important compute libraries. Finally, looking at advanced multi-GPU systems, with more
balanced bandwidth levels, we aim to improve our rerouting algorithm to balance overlap and
address congestion issues.
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