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Abstract

One of the main tasks in nuclear safeguards is the inspection of Spent Nuclear Fuel (SNF) to
detect possible diversions of their special nuclear material content, e.g., 235U and 239Pu. These
inspections verify the declared SNF via passive measurements of characteristic signatures such
as the emissions of neutrons and gamma rays. The current PhD research investigates different
aspects for the development of a novel non-intrusive methodology that can enhance safeguards
inspections of SNF assemblies, and it includes two main parts. In the first part, simulations
are performed to evaluate the feasibility of measuring the neutron flux and its gradient inside
the empty guide tubes of a SNF assembly with a miniaturized detector made of an array of
optical fiber-based neutron scintillators. In addition, experiments are carried out to characterize
these types of neutron scintillators. The results of this preparatory work show that neutron flux
gradient measurements in SNF assemblies may be a viable option and provide insights for the
construction of a prototype of a detector for the purpose. In the second part of the research, the
application of machine learning models based on Artificial Neural Networks (ANNs) is studied
to process measured SNF signatures and reconstruct the arrangement of the fuel pins in an
assembly. The objective of this part is two-fold. On one hand, ANN models are explored for
the task of determining possible diversion patterns from SNF signatures collected inside the
accessible guide tubes. On the other hand, the advantage of using the neutron flux gradient as
input to the algorithm is evaluated. The training and testing of the ANN models are performed
with synthetic datasets generated from Monte-Carlo simulations of a typical PWR SNF assembly,
considering the intact configuration and different degrees and patterns of diversion. The results
show that the models effectively predict diversions and characterize most of them to a good
extent. In addition, the use of the neutron flux gradient, which is not analyzed during standard
inspections, is proven to be advantageous.

KEYWORDS: nuclear safeguards, spent nuclear fuel, neutron scintillator, flux gradient detector,
machine learning, artificial neural networks
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Chapter 1

Introduction

Nuclear technology presents a spectrum of societal benefits, encompassing both its capacity to
serve as a reliable and low-carbon energy source and its potential to foster technological inno-
vation. The advancements driven by nuclear technology impact several fields such as energy
production, medicine, materials science and engineering, and industrial processes, thereby un-
derscoring its multifaceted role in the sustainable development of our society.

As an energy source, nuclear power plants contribute substantially to meeting electricity demands
and offering a stable base-load supply that complements intermittent renewable sources. One
aspect of their attractiveness is related to the reduced greenhouse gas emissions, so they can aid
in mitigating climate change. Presently, nuclear energy is utilized in over 30 countries covering
approximately 10% of the global electricity supply through the operation of 411 nuclear power
plants worldwide. In addition, 58 reactors are currently under construction [2].

However, the potentially perilous ramifications stemming from any misapplication of nuclear
technology, e.g., for the construction of nuclear weapons, remain indisputable. It is noteworthy
that the origins of nuclear technology are rooted in weaponry development, and it was only
subsequently that its potential for civilian utilization and power generation became apparent.
The dual nature of this technology, which can be applied for both peaceful and military purposes
emphasises the importance of creating robust safeguards to prevent nuclear proliferation and
ensure the safe and secure use of nuclear materials.

In this chapter a historical background and an introduction to nuclear safeguards are given
in section 1.1, a description of spent nuclear fuel and the importance of safeguarding it are
discussed in section 1.2, the objectives of the doctoral research are introduced in section 1.3, and
the structure of the thesis is provided in section 1.4.

1.1 Nuclear safeguards

In the aftermaths of the atomic bombing of Hiroshima and Nagasaki during the second world war
in 1945, there was a growing awareness of the need to control and monitor nuclear materials to
prevent their misuse. The creation of The United Nations (UN) in the same year highlighted the
importance of international cooperation in managing nuclear technology. In 1953, the Atoms
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For Peace initiative was introduced, advocating the peaceful use of nuclear technology while
controlling its proliferation. In 1957, the International Atomic Energy Agency (IAEA) was
established as an autonomous agency under the UN to ensure the safe and secure application
of nuclear technology [3]. Later, the Nuclear Nonproliferation Treaty (NPT) came into force in
1970, which became a cornerstone of the nuclear nonproliferation regime [4]. It aimed to prevent
the spread of nuclear weapons and promote nuclear disarmament.

International treaties and agreements such as the NPT are one of the main categories that
constitute a state’s legal and institutional framework regarding nuclear nonproliferation [5]. In
order to assure that states honor their international obligations, the NPT established a system
of safeguards to verify compliance with its provisions, overseen by the IAEA. This system of
safeguards comprises a set of technical and non-technical measures that are applied in nuclear
facilities in order to detect any misuse of nuclear materials or technology either by the state
itself or by other actors (e.g., terrorist groups). The main objective of safeguards is to account
for nuclear materials at all times at the facility and to detect potential diversions in a timely
manner. The IAEA approach to safeguards is based on a system of Nuclear Material Accountancy
and Control (NMAC) complemented by containment, surveillance, and monitoring measures.
Nuclear material accountancy deals, amongst others, with the registration of nuclear materials
and a system of bookkeeping checks and balances that provides an accurate record of the stocks
and movements of nuclear materials in time and space [6].

Nuclear facilities are commonly divided into two types from a safeguards application point of
view, i.e., item facilities and bulk facilities. In item facilities, all nuclear materials are kept in
item form and the integrity of the item remains unaltered during its time at the facility [7].
In this case, the IAEA safeguards are based on item accountancy procedures, Non-Destructive
Assay (NDA) measurements, and verification of the integrity of the items [7]. Examples of item
facilities are most power reactors, critical assemblies, and storage installations for spent fuel. On
the other hand, bulk facilities are facilities where nuclear materials are held, processed, or used
in bulk forms [7]. Bulk facilities may be organized for safeguards purposes into multiple Material
Balance Areas (MBAs) by separating activities related to the storage and assembly of discrete
items from the ones involving storage or processing of bulk materials [7]. In such facilities,
flow and inventory values declared by the operator are verified by the IAEA via independent
measurements and observations. Examples of bulk handling facilities are plants for conversion,
enrichment, fuel fabrication, spent fuel reprocessing, and storage facilities for bulk materials.

1.2 Spent nuclear fuel

Currently, the majority of nuclear power reactors in operation are Light Water Reactors (LWRs),
i.e, Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs). As of 2022, out
of 411 operational nuclear reactors, 301 (73.2%) are PWRs and 42 (10.2%) are BWRs [2]. LWRs
are item facilities in which the fuel typically consists of uranium dioxide (UO2) pellets sealed
within zirconium alloy tubes to form fuel rods. The fuel rods are then clustered in assemblies
which are arranged in the reactor core. The assemblies can differ in size, shape and design
depending on the reactor type. Figure 1.2.1 shows a schematic of a standard 17x17 nuclear fuel
assembly used for PWRs. The reactor core of a PWR contains 150 to 200 fuel assemblies and the
one of a BWR contains 400 to 800 fuel assemblies. Approximately one-third of these assemblies
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are replaced every 1-2 years according to the refueling process. This results in a large number of
discharged assemblies, the so-called Spent Nuclear Fuel (SNF) assemblies, along the operating
lifetime of a plant.

Figure 1.2.1: Schematics of a close-up of a 17x17 PWR fuel assembly.

LWRs are thermal systems, i.e., most of the fission reactions that generate energy are induced
by thermal neutrons. The uranium used in the fresh fuel for these reactors is enriched so that
the concentration of the fissile isotope 235U is increased from the natural level of 0.7% up to
3-5%, see Figure 1.2.2 (a). This provides the necessary amount of 235U to sustain the nuclear
fission chain reaction in a LWR core. In a fission reaction, the 235U nuclei is split by a neutron
releasing, together with a substantial amount of energy (∼200 MeV), two (or more) lighter
nuclei known as fission products which are highly unstable and radioactive, and on average 2-3
additional neutrons which can serve to continue the nuclear chain reaction. As the fuel ”burns”
in the core during operation, the 235U is consumed and both fission products and minor actinides
accumulate, see Figure 1.2.2 (b). Therefore, the ability of the fuel to sustain the fission chain
reaction diminishes over time. When the fuel is depleted, it is removed from the reactor and
replaced with new fresh fuel, a process known as ”refueling”. The Spent Nuclear Fuel (SNF) is
then stored underwater in cooling pools located at the facility to dissipate its decay heat and
protect against radiation release. Depending on the strategy for handling SNF, the assemblies
are later moved into an interim storage which can be either wet (bigger cooling pools than the
ones on site) or dry (concrete casks). Eventually, the spent fuel is transferred to a reprocessing
facility (closed fuel cycle) or is encapsulated in copper canisters for a permanent repository
disposal (open fuel cycle) [8].
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Figure 1.2.2: Typical composition of LWR fresh fuel (a) and spent fuel after in-core irradiation (b).

SNF is particularly sensitive from a safeguards perspective because of its residual fissile material
content such as 235U and 239Pu, where the residual 235U is the remnant of the initial enrichment
while the residual 239Pu is the byproduct of neutron capture reactions in 238U. According to
the requirements from the IAEA, while in wet storage, SNF assemblies from LWRs are regularly
inspected to verify that their content corresponds to the declaration provided by the power
utilities. Each SNF assembly has a specification as a fresh assembly from the manufacturer, an
irradiation history, and an associated burn-up and cooling time from the power utility, which
allow to estimate the isotopic content of the assembly. Verifying the total fissile content of an
assembly is a very time and resource demanding task which can only be performed by Destructive
Assay (DA) methods. Therefore, for practical reasons, it suffices to rely on NDA techniques
to ensure that no fuel material has been illicitly removed from the assembly. In the field of
nuclear safeguards, any statistically significant deviations between the declared amount of nuclear
materials and the amount determined by the verification measurements are known as ”Defects”.
Three levels of defects must be considered according to the IAEA [7]:

• ”Gross Defect” which refers to a defect in an item, e.g., a fuel assembly, that has been
completely falsified to the maximum extent possible so that all or most of the declared
material is missing.

• ”Partial Defect” which refers to a defect in an item that has been falsified to such an extent
that some fraction of the declared amount of material is still present.

• ”Bias Defect” which refers to a defect in an item that has been slightly falsified so that
only a small fraction of the declared amount of material is missing.

Currently, several NDA techniques are used to detect defects in SNF assemblies. The Digital
Cherenkov Viewing Device (DCVD) [9], the Fork Detector (FD) [10] and the Passive Gamma
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Emission Tomography (PGET) [11] are examples of techniques that are approved for inspections
by the IAEA and have been extensively applied for many years [12]. These techniques rely on
the passive measurement of characteristic signatures of the spent fuel such as the emissions of
neutrons, gamma rays, or Cherenkov light. The neutrons emitted in SNF mainly come from the
spontaneous fission of minor actinides such as 242Cm, 244Cm and 252Cf [13]. The gamma radiation
is due to the radioactive decay of fission products such as 134Cs and 137Cs. The emissions of
neutrons and gamma rays play a crucial role in the characterisation of spent nuclear fuel since
their levels depend on the specific fuel composition and irradiation history.

The interpretation of the measurements performed with NDA techniques are mainly based on
data analysis and statistical methods that are carried out by the inspectors. In addition, the
analysis usually aims at the detection of coarse diversions of nuclear material. Some techniques,
e.g., the PGET, can provide pin-level resolution, however they are laborious since they require
the movement of the fuel assemblies from their storage positions in the SNF pools.

1.3 Objectives of the research

The main objective of the PhD research presented in this thesis is to investigate different aspects
in support of the development of a novel non-intrusive methodology that can enhance safeguards
inspections of SNF assemblies from LWRs and the detection of partial defects.

The overall concept of the methodology consists of two steps. In the first step, the thermal
neutron flux and its gradient are measured via miniaturized angular-sensitive detectors that
can be inserted in the empty guide tubes of the SNF assembly. Following this procedure, the
assembly does not need to be moved from its storage location. In the second step, an algorithmic
processing of the measurements is used to characterize possible anomalies in terms of their extent
and their location. The approach has the potential of reducing the amount of expert judgement
required for the interpretation of the measurements and providing more detailed estimations,
and therefore it can facilitate the decision process of the safeguards inspectors.

To enable the measurements of the neutron flux and its gradient inside the SNF assembly, sim-
ulations are performed in this PhD research to evaluate the feasibility of detecting the neutron
flux simultaneously at different locations inside the empty guide tubes of a SNF assembly with
a miniaturized detector made of an array of optical fiber-based neutron scintillators, and thus
deriving the local neutron flux gradient. In addition, experimental work is carried out to charac-
terize these types of neutron scintillators and obtain insights for the construction of a prototype
of the detector.

For the processing of the measured SNF signatures to retrieve the arrangement of the fuel
pins in the assembly, the application of machine learning models based on Artificial Neural
Networks (ANNs) is studied. The objective of this part of the PhD research is two-fold. On
the one hand, ANN models are explored for the task of detecting the fuel pins and determining
possible diversion patterns via SNF signatures collected at different points inside the system
(corresponding to the accessible guide tubes). On the other hand, the advantage of providing
information on the neutron flux gradient as input feature to the algorithm is evaluated.
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1.4 Structure of the thesis

The structure is as follows. Chapter 2 summarizes Papers I, II and III and is arranged in
two parts. The first part discusses the conceptual design and the Monte-Carlo evaluation of a
miniaturized gradient detector suitable for the methodology under investigation and made of an
array of tiny optical fiber-based neutron scintillators. The second part of Chapter 2 describes
the experimental work that was conducted at Chalmers and at SCK CEN to evaluate optical
fiber-based neutron scintillators for the gradient detector. Chapter 3 summarizes Papers IV,
V, VI and VII and it concerns the development, training and testing of ANN models for the
identification of diversions in SNF, using two different synthetic datasets, namely a dataset of
simulated measurements of neutron flux and gamma emission rates (provided by SCK CEN) and
a dataset of simulated measurements of neutron flux and its gradient (developed in the context
of this project). Chapter 4 provides conclusions, an outlook for the continuation of the work,
and the ethical considerations related to the research.
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Chapter 2

Neutron gradient detector

The feasibility of using the neutron current or the gradient of the neutron flux for localisation
problems in nuclear reactor cores (e.g., finding the position of a static neutron source, the tip
of a partially inserted control rod, a vibrating fuel assembly, or a vibrating control rod) has
been demonstrated in [14, 15]. Methods for measuring them have also been investigated in,
e.g., [16, 17]. The neutron current and the gradient are related to each other and contain
more information compared to the scalar flux. Consequently, methods based on such angularly-
sensitive quantities have the potential for a more accurate detection of missing or replaced fuel
pins in SNF assemblies. The research presented in this thesis is focused only on the gradient
since it can be measured more easily.

A dedicated detector can be constructed with several optical fiber-based scintillators with small
neutron sensitive volumes. These types of scintillators were first developed and successfully
tested in [18, 19], and efforts have been made to further study them in [20]. Recent work has
also shown the suitability of using a cluster of these scintillators for high-resolution neutron flux
measurements and for the characterization of highly localized gradients [21].

In this chapter, preparatory work is carried out to study the proposed detector and its feasibility
for the verification of SNF. The conceptual design, which combines 4 optical fiber-based neutron
scintillators is presented in section 2.1. The performance of the detector is investigated via
Monte-Carlo simulations, first in a water tank with a neutron source, see section 2.2, and then
inside the guide tubes of a simulated SNF assembly, see section 2.3. Experiments are also
conducted to characterize the optical fiber-based neutron scintillators, see section 2.4.

2.1 Conceptual design

The scalar neutron flux represents the density or flow rate of neutrons per unit area per unit
time and it has a spatial distribution. The gradient on the other hand provides information on
how this distribution changes with respect to space. The gradient is a vector that points in the
direction of the steepest increase of the neutron flux and whose magnitude indicates the rate of
change. In a three-dimensional space, each component of the vector corresponds to the rate of
change of the neutron flux with respect to one of the spatial coordinates (x, y, z ).
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For the application at hand, the fuel pins in SNF assemblies are assumed to be either intact,
fully removed, or replaced with dummy pins (mock-up fuel pins made with appropriate surrogate
materials without any fissile content), so only their radial position in the horizontal plane is of
interest and the problem is considered two-dimensional. The gradient can then be evaluated at
some fixed axial elevation where only the x and y Cartesian components are needed.

Accordingly, a detector can be constructed from several small optical fiber-based neutron scintil-
lators to measure the scalar flux in several positions concurrently over a two-dimensional plane
and thus determine the gradient of the neutron flux. There exist several different options for
small fiber-based scintillators in terms of the neutron converter and scintillation material (LiCaF,
boron loaded plastic scintillator, etc.). We restrict the present study to the type of detectors
which we have at hands and which were also used in previous works [20], namely LiF as neutron
converter and ZnS(Ag) as the scintillation material. The scintillators are mainly sensitive to
neutrons in the thermal energy range (∼0.025 ev).

The diameter of the individual fiber-based scintillators can be as small as about 1 mm, how-
ever, the diameter of the gradient detector will be inevitably larger. By aiming at performing
measurements within a PWR fuel assembly, one can use the instrumentation guide tubes of the
assembly, which are about 1 cm in diameter.

A design of a Neutron Gradient Detector (NGD), with the mentioned size limitation, is proposed
as follows. Four optical fiber-based scintillators are mounted in a cylindrical aluminum holder,
that has a diameter of 1 cm and a height of 5 cm, according to a rectangular pattern, see Figure
2.1.1. Aluminum is chosen for the cylinder because of its easy manufacturing properties, and low
neutron absorption cross section. The fiber-based scintillators are 1 mm in diameter and their tip
(3 mm in height) is covered with a LiF/ZnS(Ag) mixture that acts as the converter/scintillation
material. The fibers are coated with a thin layer of Teflon for protection against external light.

Figure 2.1.1: Conceptual design of the Neutron Gradient Detector (NGD).
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The complete detector containing the four scintillators can be inserted into an instrumentation
guide tube and moved to a suitable axial position. Then the two detector pairs at diagonally
opposite positions, perpendicular to each other, can be used to measure the x and y components
of the flux gradient. The Cartesian components can later be used to calculate the magnitude
and direction of the gradient vector.

2.2 Quantitative analysis

Whereas it is intuitively clear that, in theory, the detector design described in subsection 2.1
is suitable to determine the flux gradient, it is useful to assess its performance by detailed
simulations. For this purpose, the code Serpent is used [22]. Serpent is a multi-purpose three-
dimensional continuous-energy Monte-Carlo particle transport code developed at VTT, the Tech-
nical Research Centre of Finland. The code is designed for traditional reactor physics applica-
tions, for multi-physics reactor calculations, and for neutron and photon transport calculations
in radiation, fusion and medical physics problems. Serpent also includes numerical capabilities
that allow parallel computing on clusters and multi-core workstations.

To assess the performance of the detector via Serpent, a hypothetical test case is considered. The
test case was chosen to be similar to that used in earlier works, i.e., a neutron source in a water
tank [17, 16]. The reason is partly that it is a simple setup, with an azimuthally symmetric flux
distribution in the horizontal plane, in which the results can be easily interpreted. And partly,
because such an experiment will be possible to replicate in the future, when the detector will
actually be fabricated. The test case consists of a cylindrical Aluminum tank 1 m in height and
1 m in diameter filled with water, with a 252Cf source, 2 cm in diameter, in the middle.

The first goal of the quantitative analysis is to investigate how the presence of the detector
affects the accuracy of the estimation of the gradient. Similarly to the case of the ordinary
neutron detectors, the presence of the detector might alter the neutron flux distribution. The
consequences of such a flux disturbance are usually not significant when measuring the scalar
flux. In the current application, the gradient is derived from the difference between the neutron
flux values that are measured by the four scintillators, which are placed relatively close to each
other. The potential distortion introduced with the four scintillators might have a bigger impact
on the determination of the flux gradient than on the scalar flux. In addition, a systematic
underestimation of the gradient might arise from a self-shielding effect, i.e., the scintillators at
the higher flux position might shield against the neutron current pointing to the scintillators at
the lower flux position.

The strategy to quantify these effects relies on two sets of simulations. The first simulation does
not include the detector and the ”unperturbed” thermal neutron flux is calculated in hypothet-
ical measurement positions where the gradient detector can be inserted. In the second step,
simulations are made for the case that the detector occupies the positions previously selected,
one at a time, and the reaction rates in the scintillators are calculated. The gradient obtained
from the difference of the reaction rates of the diagonally opposite scintillator pairs is then com-
pared with the gradient of the neutron flux obtained without the detector.

The comparison between the gradient from the unperturbed flux and the gradient from the
reaction rates is not completely trivial. At any single measurement point, the magnitude of the
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Figure 2.2.1: The spatial dependence of the radial component of the gradient with and without the
presence of the detector.

gradient will be quantitatively different for the flux and the reaction rate, since they correspond
to physically different quantities. Nevertheless, the two are proportional to a scaling factor
which can be considered as a constant for a given energy distribution. The scaling factor does
not depend on the actual value of the gradient, and hence on the measurement position. If the
space dependence of the two gradients is proportional to a constant scaling factor, then it is
a demonstration of the equivalence between the two gradients and the negligible effect of the
presence of the detector.

The magnitude of the neutron flux gradient without the detector and that obtained from the
reaction rates estimated in the scintillators of the detector are compared at different distances
from the neutron source, see Figure 2.2.1. The constant scaling factor between the two curves
was obtained by the least squares method and used for scaling the gradient from the unperturbed
flux. The space dependence of the two gradients are very close, indicating that the distortion
effect of the proposed detector design is negligible.

The suitability of the detector to estimate the direction of the gradient vector is also investigated.
A general case with non-zero components of the gradient is considered, i.e., the detector is
positioned such that none of the two scintillator pairs lie on a radial line from the neutron
source. Several simulations were performed with the detector at different positions along the x
axis. The results from the calculated reaction rates show that the direction angle of the gradient
is estimated correctly, see Figure 2.2.2 together with Figure 2.2.1. One advantage of the direction
of the gradient is that it does not require any normalisation, i.e., it can be directly compared to
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Figure 2.2.2: Estimated direction of the gradient vector at different locations along the x -axis.

the expected (true) value of the direction.

In the simulations so far, it was assumed that all four scintillators are equal and thus have the
same efficiency. A quantitative analysis of the effect of different sensitivities of the scintillators,
and the methods for correcting them, are also of interest.

For this application, the absolute efficiencies of the four scintillators are not needed, only the
efficiencies relative to each other, and a method to compensate for them. As mentioned earlier,
the flux gradient is determined to a constant scaling factor, whose value is not of interest.
However, since scintillators with different efficiencies do not measure the same neutron flux
values at a specific position, changes in the orientation of the scintillators might affect the
scaling factor. The purpose of the correction is thus to make sure that a constant scaling is
preserved, irrespective of the orientation of the detector. The correction method used in the
current study amounts to an in-situ calibration of the relative efficiencies, which can be even
performed in a field measurement, and has to be executed only once.

In the case of a detector with four scintillators of varying efficiencies, the correction method is
based on rotating the detector by 90◦, 180◦ and 270◦ from its original orientation. Accordingly,
each scintillator will occupy each of the four angular positions once. The average value of the
four reaction rates at each measurement position is then calculated, and the two components
of the gradient are determined by taking the difference of the average reaction rates in the
diagonally opposing positions. Such a correction method will lead to an unbiased estimate of
the gradient and to the relative efficiencies of the four scintillators. The relative efficiencies can
be used to correct the measurements in other points, without the need for additional rotations
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Figure 2.2.3: Estimated flux gradient with imperfect efficiencies, positions and rotations during the
calibration

of the detector.

An illustrative example of these results is shown in Figure 2.2.3. The detector is placed at 3
cm from the neutron source and the reconstruction of the direction of the gradient is compared
between three scenarios. In the first scenario (represented by the blue arrow) the four scintillators
have the exact same material composition and the detector is placed accurately at 30◦ as its initial
orientation. In the second scenario (red arrow) the four scintillators have the same material
composition but an error is assigned to the ideal orientation angle, i.e., the detector is placed at
27◦. In the third scenario (yellow arrow) the four scintillators have different efficiencies (different
atomic fractions of 6Li) and non-perfect rotations were performed during the calibration process.
Both the magnitude and the direction of the gradient vector can be reconstructed despite the
varying efficiencies of the scintillators and the uncertainty in the initial positioning of the detector
or in the rotation angles during the calibration process.

The results from the quantitative analysis of the gradient detector via Monte-Carlo simulations
are discussed in more details in Paper I in the appendix.
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2.3 Evaluation in SNF assemblies

The next step in assessing the performance of the NGD is to study the response of the detector
when placed inside SNF assemblies. The objective here is to evaluate the changes in the simu-
lated measurements of the gradient because of possible diversions as compared to an intact fuel
assembly, and thus to have a better understanding on how these changes can be used to localise
the diversions.

For this reason a model of a 17x17 PWR SNF assembly is developed using the Monte-Carlo code
Serpent. The assembly consists of 264 fuel pins, with Zircaloy cladding and an initial enrichment
of 3.5 w%, and 25 empty guide tubes where the NGD can be placed, see Figure 2.3.1.

Figure 2.3.1: Serpent model of a PWR SNF assembly with the NGD placed inside the guide tubes.

The Serpent simulations were performed in two-steps. The first step is a burn-up simulation of
the declared fresh fuel assembly, which consists of an irradiation cycle that continues until a final
burn-up value of 40 MWd/kgU is achieved, followed by a decay cycle that replicates a cooling
time of 5 years in the spent nuclear fuel pool. The second step is a fixed-source simulation that
is performed with the fuel composition obtained from the burn-up simulation, which is then
distributed consistently with the diversion patterns of interest, in order to estimate the thermal
neutron flux and its gradient in the guide tubes of the assembly. The fixed-source simulation is
performed using 5×109 neutron histories to balance the achieved statistical uncertainty and the
computational time. The statistical error of the Monte-Carlo calculation of the thermal neutron
flux is 0.1% on average.

The spatial distribution of the thermal flux and the gradient calculated in the guide tubes of
an intact fuel assembly with no diversion are plotted in Figure 2.3.2. The values of the flux
and the gradient are independently scaled by dividing by the maximum value. The gradient
is constructed using the simulated neutron flux from the scintillators of the detectors in the
guide tubes. The two pairs of scintillators at diagonally opposite positions, perpendicular to
each other, are used to estimate the two Cartesian components of the gradient, respectively. For
practical reasons, instead of the two Cartesian components, the magnitude (absolute value) and
the direction of the gradient vector are plotted because they are physical concepts that are easier
to interpret. For an intact assembly, the largest absolute values of the gradient are found at the
guide tubes close to the four corners of the assembly and the lowest value (close to zero) is in
the central guide tube. The direction of the gradient vector points from lower to higher values
of the thermal neutron flux inside the guide tubes.
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Figure 2.3.2: Intact fuel assembly; the scaled thermal flux distribution (left) and the scaled gradi-
ent measurements in the guide tubes (right).

It is then expected that a diversion of fuel pins (partial defects) affects the radial distribution
of the thermal neutron flux in the assembly and therefore the magnitude and direction of the
gradient of the neutron flux. To illustrate such an effect, an example of a diversion scenario is
created by replacing two complete columns of fuel pins (34 in total) with stainless-steel dummy
pins at the left-most side of the system, see Figure 2.3.3. The scaled spatial distribution of the
thermal flux and the scaled gradient calculated in the guide tubes of the diverted fuel assembly
are shown in Figure 2.3.4. The thermal flux has a significant decrease in the region of diversion
because the removal of the fuel pins reduces the neutron emission in that region. Consequently,
significant variations can be observed both in magnitude and direction of the gradient, especially
in the guide tubes closest to the diversion.

Figure 2.3.3: Example of a diversion scenario where a number of fuel pins are replaced with
stainless-steel dummy pins.
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Figure 2.3.4: Diverted fuel assembly; the scaled thermal flux distribution (left) and the scaled gra-
dient measurements in the guide tubes (right).

The gradient of the neutron flux, which provides the direction in which the neutron flux changes
and the rate of such a change, has richer information than the scalar neutron flux. Based on
the deviations in the gradient measurements between the intact case (used as reference) and a
diversion case, relevant details can be retrieved to help identify and localize missing fuel pins
in SNF assemblies. The results regarding the evaluation of the NGD in SNF assemblies via
Monte-Carlo are discussed in more details in Paper II in the appendix.

2.4 Experimental testing

Two optical fiber-based neutron scintillators, on which the concept of the NGD is based, were
available during the course of this PhD project, courtesy of Kyoto University Institute for Inte-
grated Radiation and Nuclear Science (KURNS), Japan. The experimental testing and charac-
terization of these scintillators is a first step towards the future construction of the NGD.

Each of the two scintillators consists of a ∼2 m long and ∼1 mm thin plastic optical fiber whose
tip is covered with a LiF-ZnS(Ag) material as shown in Figure 2.4.1. The tip of the fiber acts
as the neutron sensitive part, where LiF is the neutron converter according to the reaction

6Li + n −−→ 4He + 3H+ 4.78MeV (2.4.1)

and ZnS(Ag) is the scintillation material. The two products of the reaction in Eq. (2.4.1), an
α particle and a tritium atom, interact with the ZnS inorganic scintillator grains mixed into
the same matrix, and a scintillation light (photons) is produced. The scintillation light is the
result of the de-excitation of the luminescence centers in the ZnS molecules [23]. The generated
photons travel through the single optical fiber which is coupled to a Photo-Multiplier (PM) tube
where the photons are converted into electrons. The neutron detection system including the
scintillator, optical fiber and PM tube, is then connected to a Data Acquisition System (DAS).
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Figure 2.4.1: A LiF-ZnS(Ag) fiber-based scintillator.

2.4.1 Experiment at the hot-cell laboratory

The first set of experiments were performed in the hot-cell laboratory at the Department of
Physics, Chalmers University of Technology. The sensitive parts of the scintillators were placed
one at a time near an Americium-Beryllium (Am-Be) neutron source surrounded by polyethylene
plates, see Figure 2.4.2. The Am-Be source has an activity of 5 curie and an emission rate of
1.1× 107 n/s and is stored in a small steel canister (3 cm in radius and 6 cm in height) for safe
handling. The neutron source was surrounded by polyethylene plates from all sides to act as a
moderator for slowing down the neutrons emitted from the source. The thermalisation of the
neutrons emitted from the source is needed since the detectors are mainly sensitive to neutrons
in the thermal energy range.

Figure 2.4.2: Set-up of the experiment in the hot-cell laboratory at Chalmers.
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Ten measurements were performed with each scintillator, with a measurement time of 10 s each.
The neutron counts were recorded after each measurement, and the mean value and the standard
deviation of the neutron count rates for the two scintillators (denoted as A and B, respectively)
are reported in Table 2.4.1. Scintillator A tends to provide a slightly higher neutron count rate
compared to scintillator B. These kind of deviations are expected, since the neutron-sensitive tips
and the coupling between the optical fibers and the PM tubes were made by hand. Nevertheless,
the two scintillators are proven to provide relatively close count rates for thermal neutrons.

Table 2.4.1: Mean value and standard deviation of the neutron count rates from the scintillators.

Scintillator
Count rate (/10 s)

Mean value Standard deviation
A 808.5 18.5
B 791.3 16.8

2.4.2 Experiment at the BR1 research reactor

Further characterization of the two scintillators was carried out in the BR1 research reactor at
the Belgian Nuclear Research Centre SCK CEN [1] in order to determine their sensitivity to
thermal neutrons, their calibration factors and their relative efficiencies.

At the top of the BR1, a spherical cavity with a radius of 50 cm is available for irradiation
experiments and calibration of detection instruments under a well-defined Maxwellian thermal
neutron flux, see Figure 2.4.3. The neutron flux at the center of the cavity is constantly monitored
using a calibrated fission chamber. The two scintillators were inserted into the cavity one at a
time using customized aluminum rods as the one shown in Figure 2.4.4. The fibers were taped
to the inside of the aluminum rods with their tips at the bottom of the rod. The rods were
then inserted into the cavity from the top. When the rod is fully inserted, its bottom is located
exactly at the centre of the cavity.

Figure 2.4.3: Schematic of the BR1 research reactor [1].
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Figure 2.4.4: Aluminum rods used to insert the scintillators in the reactor cavity.

At first, background measurements were performed with both scintillators while inserted in the
cavity with the reactor being turned-off. The background count rate was negligible for both
scintillators. The reactor was then turned-on and the neutron count rate was recorded for each
scintillator, at the centre of the cavity, at different reactor power levels. The measurements were
performed after the reactor reached criticality at each power level and the measurement time
was chosen to be 10 minutes each. Figure 2.4.5 shows how the neutron count rate from each
scintillator increases with increasing the power level of the reactor. As already observed in the
experiments in the hot-cell laboratory at Chalmers University of Technology, scintillator A tends
to provide higher neutron count rates compared to scintillator B.

The conventional thermal neutron flux in the center of the cavity can be obtained by multiplying
the corrected count rate of the monitor fission chamber with a calibration factor (CF), i.e.:

CF =
ϕTh

NFC

= (2.60± 0.03)104 (cm−2) (2.4.2)

where, ϕTh is the thermal neutron flux in (cm−2s−1) and NFC is the count rate from the monitor
fission chamber in (s−1).
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Figure 2.4.5: Neutron count rates from scintillators A and B with respect to the reactor power.

The count rates from the fission chamber and the correction factor were provided by the reactor
operators and the values of the thermal neutron flux at each power level are listed in Table 2.4.2.
The ratio between the count rate from the neutron scintillators and the conventional thermal
flux at the center of the cavity represents the sensitivity of the scintillators (Si) in (cm2):

Si =
Ni

ϕTh

, i = A or B (2.4.3)

where, Ni is the count rate in (s−1) for scintillators A or B.

Ideally this ratio should be the same at all power levels. Table 2.4.3 shows that the sensitivity
values for each scintillator are close to each other with an average level of uncertainty of 1-2%.
The sensitivities given in Table 2.4.3 can serve as a calibration factor, similar to the one from
the calibrated fission chamber, so that for each power level the thermal neutron flux at one point
can be obtained from the neutron count rate of the scintillators at the same point.

Table 2.4.2: Thermal neutron flux at the center of the cavity, at different power levels.

Power (kW) ϕTh (105cm−2s−1)
0.1 1.04(2)
0.3 2.86(5)
0.7 6.76(9)
1 9.62(13)
3 29.12(39)
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Table 2.4.3: Sensitivities and relative efficiencies of scintillators A and B, at different power levels.

Power (kW) SA (10−3 cm2) SB (10−3cm2) Er (%)
0.1 1.15(2) 1.08(2) 94(2)
0.3 1.30(2) 1.19(2) 91(2)
0.7 1.25(2) 1.19(2) 95(2)
1 1.24(2) 1.16(2) 94(2)
3 1.23(2) 1.14(1) 92(2)

The relative efficiency (Er) in (cm2) of scintillator B compared to that of scintillator A is calcu-
lated as:

Er =
SB

SA

=
NB

NA

(2.4.4)

where, SB and SA are the sensitivities in (cm2) of scintillators B and A, respectively.

The values of the relative efficiency in percentage at different power levels are included in Table
2.4.3 and are very close to each other. Consistently with the results in the experiment carried
out at Chalmers University of Technology and with the count rates of Figure 2.4.5, scintillator
A shows a higher efficiency.

2.4.3 Experiment at the LNK facility

Detectors used within spent nuclear fuel assemblies are exposed to both a neutron flux and a
gamma dose rate. Therefore, it is important to test the sensitivity of the scintillators, optical
fibers and PM tubes to gamma rays as well. If the whole detection system is not properly
shielded, gamma rays may cause undesired contributions in terms of photons and thus an inac-
curate estimation of the neutron flux. If the sensitivity to gamma rays is correctly identified, the
detector could be calibrated accordingly by setting a proper discrimination threshold to discard
the contribution of the gamma rays in the recorded count rate. To investigate this aspect, a
third set of experiments was performed in the Laboratory for Nuclear Calibrations (LNK) at
SCK CEN.

In these experiments, the two scintillators were exposed to gamma sources, namely 137Cs and
60Co, with different dose rates that varied in a range between 5 mGy/h and 192 Gy/h. The
scintillators did not show any response to gamma rays for dose rates below ∼70 Gy/h. A
sensitivity to gamma-rays was measured at a dose rate of 77.2 Gy/h and 192 Gy/h. The results
when using different channel thresholds are reported in Table 2.4.4.

Again, scintillator A provides slightly higher results in comparison with scintillator B. The results
show that the sensitivity can be reduced by increasing the threshold. At a threshold of 100, no
sensitivity to gamma-rays was measured.

This experiment proves that the neutron scintillators do have a sensitivity to gamma radiation.
In a spent fuel assembly the gamma dose rate can be up to 1000 Gy/h [24] which is much higher
than 192 Gy/h, so further testing is required to study the behavior of the scintillators under
gamma radiation.
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The results from the experimental testing of the two scintillators and their sensitivities to thermal
neutrons and gamma rays are discussed in Paper III.

Table 2.4.4: Gamma-ray sensitivity at different thresholds for the two scintillators.

Dose rate
(Gy/h)

Scintillator
Sensitivity in c/s per 100 Gy/h

Threshold 10 Threshold 20 Threshold 100
77.2 A 1.8(1) 0.3(≤ 1) —
192 A 1.3(1) 0.4(≤ 1) —
77.2 B 0.4(1) 0.1(≤ 1) —
192 B 0.8(1) 0.2(≤ 1) —
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Chapter 3

ANNs for the identification of diverted
SNF

The general strategy for the verification of the integrity of SNF assemblies is to acquire measure-
ments of observable quantities, such as the neutron flux or gamma emission rates, and determine
whether the outcome of the measurements is consistent with the declared configuration of the
assemblies or not. An underlying assumption is that there is a one-to-one correspondence be-
tween the spatial distribution of the observables and the actual pin pattern of the fuel assembly,
whether intact or not. The identification of defects in the unknown system (the SNF assembly
under inspection) via the observable quantities that originated from the system configuration
itself is a so-called “inverse task”. In the current PhD research, machine learning models based
on Artificial Neural Network (ANNs) are investigated for solving the inverse task and thus for
the identification of partial defects from NDA measurements.

The suitability of ANNs in solving inverse tasks in nuclear engineering problems was pointed
out some time ago [25]. In addition, recent research efforts have shown the potential of machine
learning to enhance the processing of measured data in nuclear systems and extract more details
of their configuration. For example, machine learning algorithms were used to quantify the
percentage of replaced fuel pins in SNF assemblies [26, 27], to predict characteristic parameters
of SNF such as Burn-Up (BU), Initial Enrichment (IE) and Cooling Time (CT) [28], to detect and
localize missing radioactive sources within a small grid [29], to detect anomalies in the actinide
inventories for a SNF reprocessing facility [30], and to identify and localize perturbations in
nuclear reactor cores from neutron flux measurements [31, 32, 33].

In this chapter, ANNs are introduced in section 3.1. A first synthetic dataset is described in
section 3.2. The dataset includes the detector responses of the Partial Defect Tester (PDET)
and it was used to investigate two tasks. The first was to develop ANNs that can classify SNF
assemblies into different categories based on the percentage of diverted fuel pins, see section
3.3. The second was to study the potential of ANNs in identifying the presence/absence of
the individual fuel pins in SNF assemblies and hence reconstruct possible diversion patterns,
see section 3.4. A second dataset was created using the simulated measurements of the scalar
neutron flux and its gradient and it was used to investigate the effects of using the gradient of
the neutron flux for the characterization of diversion patterns, see section 3.5.
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3.1 Artificial Neural Network (ANNs)

Artificial Neural Networks (ANNs) are an advanced approach for machine learning and deep
learning tasks. They can model non-linear relationships and thus learn to identify patterns in
complex and large sets of data. Examples of their application can be found in systems for image,
voice and text recognition [34]. ANNs are attractive for the investigation of partial defects in
SNF assemblies because they may enable a more detailed evaluation of the system configuration
which is needed, e.g., for a precise localization of the possible missing fuel pins.

Different architectures and strategies can be used to construct ANNs. In the current context,
a feed-forward ANN [35] has been chosen. Typically, this consists of interconnected neurons,
arranged in an input layer, one or more hidden layers, and an output layer, see Figure 3.1.1.

Figure 3.1.1: Schematic of a feed-forward artificial neural network [35].

To provide correct and usable predictions, a neural network needs to be trained, i.e., it requires
a proper tuning with the problem under study. Then, sets of true cases of interest with their
respective inputs and outputs are used to make the neural network learn the relationship between
inputs and outputs.

The network receives a set of inputs (xi, i=1...n) via the input layer. The input quantities are
combined according to the connections between the neurons and moved progressively through the
hidden layers until they reach the output layer where the final result is delivered. Each connection
between the nodes in different layers has an associated weight that determines the strength of
the connection and influences the output of the neurons. These weights are parameters that the
neural network learns during the training process. The network is optimized for the given task
through hyper-parameters such as, the number of neurons and the number of hidden layers, the
activation functions, the loss function and the optimization algorithm (optimizer).

The neurons are usually selected so that their number in the input layer is equal to the number of
input features and thus corresponds to the dimensionality of the input. The number of neurons
in the output layer is associated with the size of the output and the nature of the task, i.e.,
classification, regression, etc. The number of hidden layers and the number of neurons in each
of them needs to be tuned in order to optimize the performance of the algorithm.
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Each neuron in the hidden layer(s) and in the output layer has an activation function which takes
the weighted sum of inputs coming into the neuron and produces an output that is passed into the
next layer, the produced output in the output layer being the final result. Activation functions
are non-linear mathematical functions, by introducing non-linearity to the model they allow it
to learn more complicated patterns. Different activation functions can be chosen, depending on
the problem to process. Some popular activation functions [36] are: the Sigmoid, the Hyperbolic
Tangent (Tan-h), the Rectified Linear Unit (ReLU) and the Softmax.

When the final output is produced, the network compares its predictions to the actual target
values using a loss function, e.g, the Logarithmic Loss (Cross-Entropy) and the Categorical Cross-
Entropy [37]. The goal during the training process is to minimize this loss. This is done by the
network through a process called backpropagation which calculates the gradient of the loss with
respect to the initial weights and updates them using an optimization algorithm. The optimizer
iteratively adjusts the weights and biases to guide the network towards finding the optimal set
of parameters that result in the most accurate predictions. Some popular optimizers [38] are:
the Gradient Descent, the Stochastic Gradient Descent, the Nestrov Accelerated Gradient, the
Adaptive Gradient (AdaGrad) and the Adaptive Moment Estimation (AdaM).

For a proper training of the ANN, the batch-size and the number of epochs are other key-
parameters that needs to be carefully selected. The batch-size represents the number of training
samples that the ANN needs to process before updating its internal parameters. The number of
epochs determines the number of complete passes the network makes through the entire dataset.
These parameters have no default/preferable values, therefore they have to be optimized with
respect to the problem at-hand in order to avoid over- or under-fitting of data.

The accuracy of an ANN model can be estimated via a N-fold cross-validation process. Accord-
ingly, the whole dataset is shuffled and divided into N random batches. N-1 of these batches
are used for the training, while the remaining one is used as a testing dataset. The process is
repeated N times so that each of the N batches can serve as testing dataset. The final estimate
of the model accuracy is taken as the average of the accuracy on the testing datasets respectively
calculated in the N repetitions. The result will then be less biased and the prediction capability
of the model can be evaluated in a fairer manner when compared with other types of models.
However, the cross-validation is computationally expensive since it requires the development of
a separate model for each repetition.

3.2 Dataset with PDET signatures

A first investigation of the capabilities of ANNs for solving the inverse task of detecting partial
defects in SNF assemblies relied on a synthetic dataset which was previously developed at SCK
CEN [26, 27]. The dataset includes the responses from the detectors of the Partial Defect Tester
(PDET) simulated via the Monte-Carlo N-Particle (MCNP) code [39] in intact 17x17 PWR
spent fuel assemblies and a variety of hypothetical diversion scenarios. The simulated assemblies
consist of 264 fuel pins and 25 empty guide tube positions.

The PDET is a non-destructive safeguards inspection tool which includes a set of neutron fission
chambers and gamma-ray ionization chambers that can be inserted in the guide tubes of SNF
assemblies of PWRs and measure the passive emission of neutrons and gamma-rays from the
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spent fuel [40, 41]. The first prototype of the instrument was developed by Lawrence Livermore
National Laboratory (LLNL) [42] and then further developed by SCK CEN [27].

The dataset contains 196 intact fuel assemblies. Each of them is unique in terms of its Initial
Enrichment (IE), Cooling Time (CT) and Burn-Up (BU). There are 107 modelled diversion
patterns, both symmetrical and asymmetrical, and have a minimum of 4 up to a maximum of
180 fuel pins replaced by stainless steel dummy pins, see Figure 3.2.1. Each of the 107 diversion
scenarios is repeated 9 times, but with different conditions of IE, CT and BU, so the overall
number of fuel assemblies with missing fuel pins is 963. The values of IE, CT and BU, which are
used for the intact and diverted cases in all the possible combinations, are summarized in Table
3.2.1.

Theoretically, the one-to-one correspondence between the neutron or gamma-ray flux and the
defect configuration exists only for fuel assemblies of the same IE, BU and CT values. Accord-
ingly, it would be a more straightforward procedure if the training dataset contained intact cases
and diversion scenarios for assemblies with the same IE, BU and CT. However, in reality SNF
assemblies subjected to safeguards inspections can have many different combinations of those
three parameters and thus creating a separate dataset based on each set of possible values would
be a laborious task. Using the PDET dataset, which includes different values of IE, CT and BU
for the training can therefore showcase the ability of ANN models to process mixed data. The
study provides some indications of the significance of the IE, CT and BU, as it is discussed later
in section 3.3.

Figure 3.2.1: Examples of diversion scenarios included in the dataset.
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Table 3.2.1: Values of BU, IE and CT included in the PDET dataset.

Intact fuel assemblies Diversion scenarios
Burn-Up

(MWd/kgU)
5, 10, 15, 20, 30, 40, 60 10, 30, 60

Initial Enrichment
(w%)

2, 2.5, 3, 3.5, 4, 4.5, 5 2, 3.5, 5

Cooling Time
(years)

1, 5, 10, 50 5

3.3 Percentage of diverted fuel using PDET signatures

The first task approached was to develop an ANN that can categorize SNF assemblies with
respect to a set of classes based on the percentage of diverted fuel pins. Seven classes are
prescribed and are reported in Table 3.3.1. The class label 0 is for intact fuel assemblies and
the class labels 1 to 6 indicate fuel assemblies with progressively higher numbers of replaced fuel
pins. The simulated responses from the PDET are the input features to the network, and the
class label based on the percentage of replaced fuel pins represents the response (output). This
type of problem corresponds to a supervised, multi-class classification problem.

Table 3.3.1: Percentage of diverted fuel pins and prescribed class labels.

Percentage of replaced pins (x) Class label
x = 0 0

0 < x ≤ 10% 1
10% < x ≤ 20% 2
20% < x ≤ 30% 3
30% < x ≤ 40% 4
40% < x ≤ 50% 5

x > 50% 6

Accordingly, a feed-forward network with 1 hidden layer was built using the TensorFlow [43] and
the Keras [44] open-source software libraries. The neurons that belong to the input and hidden
layers are activated with the ReLU function due to its simplicity, effectiveness and efficient
convergence rates. The neurons in the output layer are activated with the SoftMax function
which can provide, in a multi-class problem, the probability of an input to belong to each of the
specified output classes.

The weights and the learning rate of the network are optimized using the AdaM optimizer and
the evaluation of the error (loss) of the algorithm during the optimization process is obtained
from the Categorical Cross-Entropy loss function, which can handle multiple classes.

3.3.1 Comparison of machine learning algorithms

First, an ANN model was trained and tested using only the neutron flux responses available from
the PDET dataset and the capabilities of the ANN model were compared with two different non-
parametric supervised learning methods, namely the Decision Trees (DTs) [45] and the k-Nearest
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Neighbors (kNNs) [46]. The DT and kNN models used for this comparison were developed at
SCK CEN [26].

The training and testing of the ANN model was performed via a 5-fold cross-validation process.
The number of neurons in the input layer was set to 25 corresponding to the number of input
features (the neutron flux responses from the 25 guide tube positions). The number of neurons
in the output layer was set to 7 corresponding to the number of output class labels. Parameters
such as the number of epochs, batch size and number of neurons in the hidden layer were
manually tuned-in to achieve best performance. Similarly, the DT and kNN models were trained
and tested via a 5-fold cross-validation process using the same set of data as the ANN model.
Parameters such as the tree depth for the DT, and the number of k-neighbors for the kNN were
also manually optimized. The tuning process of the three models is described in more details in
paper IV.

Results show that for an optimal choice of the parameters, the ANN (with 96 neurons in the
hidden layer) and the DT (with tree depth equal to 10) have a similar classification accuracy
(90.8% for the ANN and 86.5% for the DT), while the kNN (with a number of k-neighbors of 5)
has a worse performance, the classification accuracy being equal to 69.2%. More insights can be
obtained from the confusion matrix of each algorithm, see Figure 3.3.1. The confusion matrix
provides a summary of the number of correct and incorrect predictions of one algorithm, for
each class included in the database. The results shown in the confusion matrices are based on
the testing of the last batch (out of the 5 batches used for the cross-validation process). The
ANNs showed the best classification results among the three algorithms with the DTs providing
a comparable performance.

Figure 3.3.1: Confusion matrices based on the comparison between the ANN, DT and kNN models.
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3.3.2 Optimized ANN model

Given the good performance in comparison with other machine learning algorithms, a second,
further optimized model was developed for the task of categorizing SNF assemblies based on the
percentage of diverted fuel pins. Using the same network settings, the new model was trained
and tested using both the neutron and the gamma signatures from the PDET dataset, therefore
showcasing the ability of the model to process combinations of different detector responses at the
same time. Min-max normalization was separately performed on the set of neutron emissions
and the set of gamma-ray emissions so that they are on the same scale and their processing is
more consistent.

The ANN is trained and tested according to a 5-fold cross-validation process. The number of
neurons in the input layer was set to 50, corresponding to the neutron flux and gamma emission
rates obtained from each of the 25 guide tube positions. The number of neurons in the output
layer was set to 7. A grid search optimization was performed to determine a number of epochs
equal to 2000, a batch size equal to 10, and a number of neurons for the hidden layer equal to
50.

The ANN now reaches a classification accuracy of 96.5%. More insights are provided by the
confusion matrix that summarizes the correct and incorrect predictions for each class, see Figure
3.3.2. The predictions presented in the confusion matrix are the aggregated testing results of
the 5 batches from the the cross-validation process.

Figure 3.3.2: Confusion matrix of the optimized ANN model.

The confusion matrix shows that the misclassified fuel assemblies fall into one or two class higher
or lower than their true class. The ANN estimates the probability that a fuel assembly belongs
to any of the prescribed classes and assigns the fuel assembly to the class with the highest
probability. In the current misclassifications, the correct class has always the second highest
probability, and the relative differences between the probabilities of the true and predicted labels
are below 5% in most cases, see Figure 3.3.3.

The majority of the misclassifications are in classes 0 and 1. This bias might be expected since
the number of intact fuel assemblies in the dataset is bigger than the number of fuel assemblies

29



Chapter 3: ANNs for the identification of diverted SNF Al-Dbissi M.

Figure 3.3.3: Relative differences between probabilities associated with true and wrongly predicted
class labels.

with a specific diversion pattern and since the class with true label 1 (maximum partial defect of
10%) is the closest to the class of intact fuel assemblies with true label 0. On one hand, the cases
with partial defects belonging to class 1 but identified as intact cases (false negatives), are of
severe concern because diverted material goes undetected. Examples of these misclassified fuel
assemblies are shown in Figure 3.3.4 and they share common characteristics, i.e., the removal is
symmetric, in a checkered-like pattern, and more focused on the outer edges (in positions that
are further from the guide tubes where the observables are measured). On the other hand, intact
cases predicted in class 1 (false positives/false alarms) are a less sensitive issue, even though they
would require additional resources and time for clarification during an inspection.

The analysis also indicates that higher numbers of misclassified diversions are found at BU of 10
MWd/kgU and IE of 2 w%, BU of 10 MWd/kgU and IE of 5 w%, and BU of 30 MWd/kgU and
IE of 2 w%, see Figure 3.3.5. The tendency could be related to the nature of the dataset used to
train the model. As described in section 3.2, the dataset covers more variations in BU, IE and
CT for the intact cases than for the diversion scenarios. In addition, the intact fuel assemblies
with low BU (between 5 and 30 MWd/kgU) are larger in number than the ones with high BU
(between 30 and 60 MWd/kgU), while their values of IE are evenly distributed between 2 and
5 w%. Further investigations are needed to understand the effects of these parameters on the
performance of the ANN and to identify possible sources of bias.
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Figure 3.3.4: Diversion patterns predicted as intact by the ANN model (false negatives).

Figure 3.3.5: Number of misclassifications with respect to BU and IE.

3.4 Identification of diversion patterns using PDET sig-

natures

To obtain more detailed characterizations of partial defects in SNF assemblies, a second, more
complex task was tackled. Here, ANNs were applied to determine the exact configuration of
fuel pins within the assembly under inspection. Each individual fuel pin is considered and its
probability of being replaced is predicted by processing the neutron and gamma signatures from
the PDET data. If the probability of a fuel pin to be identified is between 0.5 and 1, the fuel
pin is labelled as missing, while, if the probability is less than 0.5, the fuel pin is labelled as
present. This type of problem can be considered a multi-label binary classification. Similarly to
the model described in subsection 3.3.2, the set of neutron and gamma emissions are separately
normalized using min-max scaling.
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Accordingly, a feed-forward network with 1 hidden layer was built using the same open-source
software libraries mentioned in section 3.3, i.e., TensorFlow and Keras. The neurons that belong
to the input and hidden layers are activated with the ReLU function and the neurons in the
output layer are activated with the Sigmoid function. The latter is a typical choice for outputs
that are non-mutually exclusive such as in the current application, where each pin is treated
independently and can be either present or replaced. The weights and the learning rate of the
network are optimized with the AdaM optimizer and the error (loss) of the algorithm in the
optimization process can be adequately evaluated with the Binary Cross-Entropy loss function.

The number of neurons in the input layer was set to 50 corresponding to the neutron flux
and gamma emission rates from the 25 guide tube positions. The number of neurons in the
output layer was set to 264 corresponding to the number of outputs (one for each fuel pin in the
assembly). A grid search optimization was performed and resulted in a number of epochs equal
to 1000, a batch size equal to 25, and a number of neurons for the hidden layer equal to 300.

Given a 5-fold cross validation process, the ANN model was able to reconstruct the exact ar-
rangement of the fuel pins in 667 out of the 1159 fuel assemblies available in the PDET dataset,
which corresponds to a fraction of 57.5%. The predictions are correct for 97.4% of the intact fuel
assemblies (191 out of 196) and 49.4% of the diversion scenarios (476 out of 963). As expected,
the performance is better with the cases without partial defects because in the training the in-
tact configurations are more numerous than any of the specific diverted configurations. Yet, the
algorithm can detect 94.8% of all the incomplete fuel assemblies as diversion scenarios despite
the incorrect number/location of the replaced fuel pins.

As mentioned earlier, the model estimates the probability of a fuel pin to be replaced within the
fuel assembly. If the probability is higher than the threshold value of 0.5, the fuel pin is labelled
as missing, otherwise as present. The analysis of the distribution of the probabilities for the
fuel pins that are correctly and wrongly predicted can provide insights into the behavior of the
model.

The distribution of the probabilities for all the correctly predicted fuel pins is shown in Figure
3.4.1. Two large peaks are found close to the probability values of 0 and 1, and reflect the high
confidence in the correct results of the model.

The probability distribution of the wrongly predicted fuel pins is shown in Figure 3.4.2. A
bigger portion of the misclassifications (64.5%) has probability less than 0.5 and thus consists of
replaced fuel pins predicted as intact, i.e., false negatives. The distribution has two peaks near the
probabilities of 0.5 and 0. The misclassifications with probabilities around 0.5 are characterized
by a low level of confidence because the difference in probability with the other label (which is
the true label) is small. The misclassifications with probabilities close to 0 (thus, far from the
threshold) have a higher level of confidence. The tendency to make more misclassifications in
favor of false negatives and with higher levels of confidence may depend on the training dataset,
where the fraction of the intact fuel pins is large (78.4%). The construction of a more balanced
dataset to avoid this type of bias is not straightforward. Adding more diversion scenarios does
not necessarily increase the weight of the replaced pins since fuel assemblies with realistic partial
defects still have a significant number of intact fuel pins.
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Figure 3.4.1: Probability distribution of the correctly classified fuel pins.

Figure 3.4.2: Probability distribution of the misclassified fuel pins.
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The misclassified fuel assemblies are 492 in total, and the associated errors may involve one
or more fuel pins, see Table 3.4.1. The majority of these fuel assemblies have a relatively low
number of incorrect fuel pins (between 1 and 20) and are therefore reconstructed correctly to
a significant extent. Figure 3.4.3 shows examples of predicted diversion patterns with different
numbers of misclassified fuel pins. Although the predictions are not entirely accurate, they can
provide a useful indication of the main region of the real diversion, with the exception of the last
case with 67 misclassified fuel pins.

Table 3.4.1: Number of fuel assemblies with x incorrect fuel pins.

Number of misclassified pins (x) Number of cases Fraction of the dataset (%)
x = 0 667 57.5

1 ≤ x ≤ 10 238 20.5
10 < x ≤ 20 160 13.8
20 < x ≤ 30 46 4.0
30 < x ≤ 40 19 1.6
40 < x ≤ 50 8 0.7
50 < x ≤ 60 6 0.5

x > 60 15 1.3
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Figure 3.4.3: Examples of misclassified diversion scenarios with low number of incorrect fuel pins.
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3.5 Identification of diversion patterns using NGD signa-

tures

Based on the positive performance of ANNs for the task of reconstructing the configuration of
the fuel pins in SNF assemblies using the detector responses from the PDET, a novel aspect
was explored, i.e., the use of the neutron flux gradient as an input feature for training the ANN
model and solving the inverse task. This physical quantity is not considered in regular SNF
verification, but it has richer information than the scalar neutron flux and thus is expected to
enhance the identification of anomalies in SNF assemblies. Its measurement can be obtained
from a detector such as the NGD described in chapter 2.

3.5.1 Dataset with the neutron flux gradient

A new synthetic dataset was created in this PhD project and it contains the simulated measure-
ments of the scalar neutron flux and its gradient in the empty guide tubes of a 17x17 PWR SNF
assemblies. The simulations were performed using the Serpent code in two steps, i.e, a burn-up
simulation followed by a fixed-source simulation, see section 2.3.

The dataset contains one case of an intact fuel assembly (without defects) and 107 cases with
diversion patterns, which are symmetrical or asymmetrical and have a minimum of 4 up to a
maximum of 180 fuel pins replaced by stainless steel pins. The choice of the diversion patterns
is consistent with the ones used in the PDET dataset (see Figure 3.2.1 for examples).

As discussed in section 3.2, SNF assemblies subjected to safeguards inspections can have different
values of IE, BU and CT and therefore it would be more practical to have one dataset with
different combinations of these parameters (similar to the case of the PDET dataset). However,
in order to avoid any potential biases related to these parameters (see section 3.3) and to focus
on the effects of the gradient, the fuel assemblies in this new dataset were simulated with only
one set of values, i.e, an IE of 3.5 w%, a BU of 40 MWd/kgU, and a CT of 5 years.

Since only one version of each diversion pattern is considered, the ANN model is always tested
over scenarios that are not seen in the training phase. Therefore, the ability of the network to
make predictions with respect to unknown data can be better assessed. This aspect is relevant
because a training dataset with all the possible diversion patterns would require unfeasible
computational resources.

Considering the 25 empty guide tube positions in the simulated assemblies, the calculated system
responses for each configuration in the dataset are 75, i.e., 25 values of thermal neutron flux,
25 values of the magnitude of the gradient (absolute value), and 25 values of the angle of the
gradient vector (direction). An alternative version of the dataset was also created, in which the
two Cartesian components (x and y) of the gradient vector are used instead of the magnitude
and the direction. In both versions of the dataset, min-max normalization was performed on
each set of input features separately so that they are on the same scale.
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3.5.2 The gradient as input feature

An ANN capable of processing the neutron flux and the gradient information from the new
dataset was developed with the same settings and functionality as the one described in section
3.4, i.e., predicting the presence or absence of individual fuel pins in SNF assemblies.

To highlight the effects of the gradient of the neutron flux on the identification of replaced fuel
pins, a set of models were trained using different combinations of the available input features,
that is:

• The magnitude and direction of the thermal neutron flux gradient (Gm+Gd)

• The magnitude of the gradient (Gm)

• The direction of the gradient (Gd)

• The thermal neutron flux (N)

• The neutron flux and the magnitude and direction of its gradient (N+Gm+Gd)

• The neutron flux and the magnitude of its gradient (N+Gm)

• The neutron flux and the direction of its gradient (N+Gd)

The number of neurons in the input layer was equal to the number of input features used in each
model. The number of neurons in the output layer was set to 264 corresponding to the number
of outputs. A grid search optimization was performed to determine the number of neurons in
the hidden layer, the number of epochs and the batch size for each model independently.

The models were trained using a 6-fold cross-validation process and the results were scored based
on the number of fuel pins that have been identified correctly in all the fuel assemblies available
from the dataset. The predictions by each model are then characterized into 4 categories: The
’True Negatives’ are all the correctly predicted intact fuel pins, the ’True Positives’ are all the
correctly predicted missing fuel pins, the ’False Positives’ are the intact fuel pins that are wrongly
predicted as missing and the ’False Negatives’ are the missing fuel pins wrongly predicted as
intact, see Figure 3.5.1.

Figure 3.5.1: General form of the confusion matrix used to characterize the predictions of the ANN.

The performance of the ANN models is quantified with 4 metrics, i.e., the pin-accuracy, the
precision, the recall and the F1 score. The pin-accuracy corresponds to the percentage of the
correctly predicted fuel pins (the sum of the true positives and true negatives) out of the total
number of fuel pins, considering all the fuel assemblies in the dataset. The precision is defined
as the fraction of correctly predicted missing pins (the true positives) over all the pins predicted
as missing (the sum of true and false positives). The recall is equal to the fraction of correctly

37



Chapter 3: ANNs for the identification of diverted SNF Al-Dbissi M.

predicted missing pins (true positives) over the total number of missing pins in the dataset
(equivalent to the sum of true positives and false negatives). The F1 score is the harmonic mean
of the precision and recall values.

Table 3.5.1 shows the comparison between the different ANN models. The model that uses the
neutron flux and the magnitude of its gradient (N+Gm) has the best performance in all four
metrics. The model that uses only the direction of the gradient vector (Gd) has the lowest
performance in terms of pin-accuracy and precision. The model that relies only on the thermal
neutrons (N) has the lowest performance in terms of recall.

The precision reflects the general ability of the model to avoid false predictions of both the
intact and replaced fuel pins. The use of both the thermal neutron flux and the magnitude of
its gradient (either separate or combined) result in better precision values. The direction of the
gradient vector as an input feature always has a negative effect on the precision of the ANN.

The recall value depends on the number of false negatives and thus is an indication of the ability
of the model to correctly predict replaced fuel pins in the assembly. The models that use the
gradient (either in magnitude, direction or both) have greater recall values and hence can better
detect replaced fuel pins, while the model based only on the thermal neutron flux has the lowest
recall value.

Table 3.5.1: Performance metrics with respect to the different combinations of input features.

Metric
Gradient Detector Responses

N + Gm N + Gm + Gd Gm + Gd Gm N N + Gd Gd

Pin-accuracy 0.82 0.81 0.80 0.80 0.79 0.77 0.76
Precision 0.66 0.63 0.62 0.64 0.64 0.56 0.55
Recall 0.60 0.59 0.59 0.52 0.43 0.44 0.44
F1 0.63 0.61 0.60 0.57 0.51 0.49 0.49

None of the models can fully reproduce any of the diversions. This is expected because the size
of the dataset is relatively small. As an example, Figures 3.5.2 and 3.5.3 show two configurations
with partial defects and their reconstruction via the models that use the neutron flux and the
magnitude of its gradient (N+Gm), the neutron flux along with the magnitude and direction of
its gradient (N+Gm+Gd), and the neutron flux (N), respectively.

Figure 3.5.2 shows an example where the results of the models reflect the global trends reported
in Table 3.5.1. The N+Gm model provides the closest prediction to the real pattern as indicated
by the values of the evaluation metrics for the specific case. The N model and the N+Gm+Gd

model both have values of precision, recall and F1 score equal to zero because they do not identify
any of the missing pins correctly (i.e., no true positives). In addition, the N model gives less false
positives in comparison to the N+Gm+Gd model, which is consistent with the general finding
that the N model tends to have slightly higher precision value than the N+Gm+Gd model.

A case that does not follow the global trend is also included, see Figure 3.5.3. The N model
provides the best reconstruction of the diversion in terms of all the evaluation metrics. Such
result might be related to different factors, e.g., the specific characteristics of the diversion
pattern combined with the knowledge learned by the algorithm from similar scenarios in the
training process.
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Figure 3.5.2: Example of a diversion scenario for which the results of the models are consistent
with the global trends of Table 3.4.
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Figure 3.5.3: Example of a diversion scenario for which the results of the models deviate from the
global trends of Table 3.4.
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3.5.3 Refinement of the analysis

Considering the findings from the previous subsection, the training process of the ANN was
further optimized. A 10-fold cross-validation process was adopted. A larger number of folds
has the advantage of increasing the number of observations in the training phase, which can
lead to a better performance. In order to make a 10-fold cross-validation process viable, two
new diversion patterns were added to the dataset so that the total number of cases is 110 and
10 equal batches can be created. In addition, the entire cross-validation process is repeated 5
times with a different initial shuffling of the dataset in order to reduce any potential bias that
can result from a specific distribution of the diversion patterns between the training and testing
phases.

Accordingly, two of the models described in subsection 3.5.2 were trained again, i.e, the model
that relies only the thermal neutron flux (model N) and the model that relies on the the neu-
tron flux and the magnitude and direction of the gradient (model N+Gm+Gd). The choice for
retraining these two models in particular was to gain more insights about using the information
from the gradient as additional input features for training the ANN compared to relying on
the scalar neutron flux solely. The model that processes only the gradient of the neutron flux
(Gm+Gd) was not considered since it has a similar performance to model N+Gm+Gd. Since the
scalar neutron flux is needed to derive the gradient it is available to be used as input to the
algorithm at no additional cost.

One observation from the previous subsection was the negative effect on the precision from the
direction of the gradient. In order to try to overcome this, a new model was considered (model
N+Gx+Gy). The model was trained using the alternative version of the gradient dataset which
relies on the neutron flux and the two Cartesian components of the gradient instead of the
magnitude and direction.

After the training process was completed, the three models were scored based on the number of
fuel pins that have been identified correctly in all the fuel assemblies available from the dataset.
The results of each ANN model are summarized in the confusion matrices shown in Figure 3.5.4
and the performances are quantified using the same 4 metrics used in the previous analysis, i.e.,
the pin-accuracy, the precision, the recall and the F1 score, see Table 3.5.2. The results shown in
the confusion matrices are taken from the cross-validation process with the best performance out
of the five repetitions while the values of the performance metrics reported in 3.5.2 are averaged
over the five repetitions. The relatively low standard deviations on the performance metrics
reflect that the initial random shuffling of the dataset prior to the cross-validation has a minor
effect on the performance of the network.

Table 3.5.2: Optimized performance metrics for the three ANN models: N, N+Gm+Gd, and
N+Gx+Gy.

Metric
N N+Gm+Gd N+Gx+Gy

Mean value Std. (±) Mean value Std. (±) Mean value Std. (±)
Pin accuracy 0.80 0.01 0.80 0.01 0.85 0.01
Precision 0.66 0.01 0.63 0.02 0.72 0.02
Recall 0.43 0.01 0.55 0.02 0.70 0.01
F1 0.52 0.01 0.58 0.02 0.70 0.01
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Figure 3.5.4: Confusion matrix of the model N (a), confusion matrix of the model N+Gm+Gd (b),
and the confusion matrix of the model N+Gx+Gy (c).

The results show that model N (only the thermal neutron flux) and model N+Gm+Gd (thermal
neutron flux together with the magnitude and direction of its gradient) have similar values in
terms of pin-accuracy. The first model is better to predict the intact pins, see Figure 3.3.1a. The
second model is better with missing pins, see Figure 3.3.1b. Model N+Gx+Gy (thermal neutron
flux together with the x and y components of the gradient) has a higher pin accuracy since it
predict correctly a larger number of missing fuel pins (true positives), see Figure 3.3.1c.

Model N has a slightly higher precision value than model N+Gm+Gd. Model N predicts less
missing fuel pins correctly (less true positives), but it gives less errors in terms of intact pins (less
false positives). The second model provides a higher number of correct missing pins (more true
positives), but it over-predicts pins as missing (more false positives). According to the precision
metric, model N+Gx+Gy performs better since it identifies a higher fraction of true positives
(correct missing fuel pins) over false positives (misclassified intact fuel pins).

In terms of recall, the models that use the gradient (either in magnitude and direction or the
two components) have larger recall values and hence can better detect replaced fuel pins in
comparison to the model based only on the thermal neutron flux. An under-estimation of
replaced fuel pins in SNF assemblies (higher number of false negatives) such as the case of the
model that relies only on the thermal neutron flux is undesirable from a safeguards perspective
since it can lead to diverted nuclear material being undetected.

The F1 score (the harmonic mean of the precision and recall values) confirms that the use of
the neutron flux gradient is advantageous and that model N+Gx+Gy performs better than the
other considered models. Despite the magnitude and direction of the gradient having a more
immediate physical interpretation, the x and y components are proven to be more beneficial to
the ANN for the reconstruction of the diversion patterns. The two Cartesian components are
a more primary representation of the gradient and they contain independent information from
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each other, meanwhile the magnitude and direction are both derived from the two components
and thus may be more correlated with each other.

Again, the three ANN models cannot fully reconstruct any of the diversion patterns. However,
the majority of the predictions, especially from model N+Gx+Gy, are close to the real diversion
patterns.

An example referred to as A is shown in Figure 3.5.5. The diversion pattern has three fuel pins
replaced by dummy pins at each corner of the fuel assembly. Such a scenario is challenging
to detect because the amount of replaced nuclear material is small, the affected locations are
relatively far from the guide tubes (where detectors could be placed), and the pattern is sym-
metrical. The two models trained with the gradient of the neutron flux can detect the lack of
fuel pins at the correct positions. The diversion pattern is better retrieved from the thermal
neutron flux and the two Cartesian components of the gradient than from the thermal neutron
flux and the magnitude and direction of the gradient. The use of only the thermal neutron flux
fails to detect any of the replaced fuel pins and the assembly is predicted as intact.

Figure 3.5.5: Example A of a diversion case from the dataset and how it was reconstructed by the
three ANN models.

A comparison between the simulated signatures of an intact fuel assembly and example A is
shown in Figure 3.5.6. In the two cases, the thermal neutron flux in the guide tubes is affected
only negligibly by the diversion, while the gradient has significant deviations, which are stronger
in the guide tubes closest to the locations of the missing pins. Therefore, the use of the gradient
leads to an improved performance of the machine learning algorithm.

On the other hand, there exist a few cases in which the predictions did not resemble the real
diversion pattern at all. Example B shown in Figure 3.5.7, is representative of these cases. In
the assembly, two rows of fuel pins replaced by dummy pins next to the upper edge cause a
significant disruption in the distribution of the thermal neutron flux and its gradient within
the system, which can be easily seen in the simulated measurements inside the guide tubes, see
Figure 3.5.8. However, model N+Gx+Gy (which processes the thermal neutron flux together
with the two components of the gradient and provides the best predictions) fails to reconstruct
the pattern correctly. The reason for these anomalies is that example B (as well as the other
few cases with the same issue) have no common features with the other configurations available
in the dataset, therefore the network is not sufficiently trained to characterize them well.

43



Chapter 3: ANNs for the identification of diverted SNF Al-Dbissi M.

Figure 3.5.6: Simulated responses of the thermal neutron flux and the gradient of the neutron flux
from an intact fuel assembly and the diversion pattern from example A.

Figure 3.5.7: Example B of a diversion case (left) and its reconstruction via model N+Gx+Gy

(right).
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Figure 3.5.8: Simulated responses of the thermal neutron flux and the gradient of the neutron flux
from example B.

To investigate this issue, the dataset is expanded by adding two new diversion scenarios that
resemble example B, see Figure 3.5.9. Then, model N+Gx+Gy is trained with the updated
dataset and tested on example B again, see Figure 3.5.10. The predictions are significantly
improved since the model has learned from two similar cases.

Figure 3.5.9: Additional diversion patterns for the updated dataset.

Figure 3.5.10: Example B (left) and its reconstruction via updated model N+Gx+Gy (right).
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Conclusions

A summary of the research and recommendations for future work are given in sections 4.1 and
4.2, respectively. Ethical reflections on the research carried out in this PhD project are presented
in section 4.3.

4.1 Summary of the research

The work presented in this thesis investigates a non-intrusive methodology that can enhance
safeguards inspections and the detection of partial defects in Spent Nuclear Fuel (SNF) assemblies
from Pressurized Water Reactors (PWRs). The methodology relies on the algorithmic processing
of SNF characteristic signatures via Artificial Neural Networks (ANNs) to detect whether or not
nuclear materials have been diverted from the assembly under inspection and provide information
regarding the extent and exact location of the diversion (if any). A novel aspect of the study is
related to the possibility of using the gradient of the thermal neutron flux, a physical quantity
that has not been used in safeguards inspections before, as a characteristic signature that could
improve the detection and localisation of diverted fuel pins.

To enable the measurements of the thermal neutron flux and its gradient within a SNF assembly,
the design of a miniaturized detector, referred to as the Neutron Gradient Detector (NGD), was
proposed in this thesis and its performance was evaluated using the Serpent Monte-Carlo code.
The detector is based on four thin LiF/ZnS(Ag) optical fiber-mounted neutron scintillators
arranged in an aluminium matrix according to a rectangular pattern. The detector can be used
to estimate the two components of the gradient of the scalar neutron flux, from the difference
between the measurements provided by the diagonally-opposite pairs of scintillators, and thus
provide an estimation of the magnitude and direction of the gradient vector in the measurement
position. (Section 2.1 and Paper I)

The detector was first modelled and its performance simulated in a hypothetical setup with a
252Cf neutron source in a water tank. A quantitative analysis showed that determination of
the gradient vector was feasible with the proposed design and that the presence of the detector
and associated shielding effects do not introduce a significant distortion of the flux. It was also
demonstrated that a calibration process can be performed in order to provide a correct estimation
of the gradient despite having scintillators with different sensitivities to thermal neutrons. In
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addition, results showed that the presence of minor uncertainties in the placement of the detector
and its orientation during the calibration process have minor influence on the calculated gradient.
(Section 2.2 and Paper I)

Monte-Carlo calculations were performed with the gradient detector being placed in the 25 empty
guide tube positions of a 17x17 PWR SNF assembly model. The gradient was calculated for
an intact version of the assembly with all the fuel pins present and for diverted cases with a
number of the fuel pins being replaced by stainless steel dummy pins. The comparisons between
the intact case (used as reference) and the diversion scenarios showed that relevant information
can be retrieved from the gradient which can help to localize the region of diversion. (Section
2.3 and Paper II)

Two LiF-ZnS(Ag) optical fiber-based neutron scintillators, on which the concept of the NGD
is based, were experimentally charecterized. Their sensitivity to thermal neutrons and their
relative efficiencies were estimated with a neutron source in the hot-cell laboratory at Chalmers
University of Technology and in the BR1 research reactor at the Belgian Nuclear Research
Centre (SCK CEN). The sensitivity of these type of scintillators to gamma radiation was also
investigated at the LNK facility at SCK CEN using 137Cs and 60Co sources with different dose
rates (up to 192 Gy/h). Results showed that the scintillators can be sensitive to gamma rays
starting from a dose rate of ∼ 70 Gy/h. The contribution from gamma rays can be however
discarded by setting a proper discrimination threshold. (Section 2.4 and Paper III)

For solving the inverse-task of identifying partial defects in SNF assemblies from measurements
of characteristic signatures, the application of machine learning models based on Artificial Neural
Networks (ANNs) were studied. Two tasks were approached with the purpose of identifying, at
different levels of detail, whether fuel pins has been removed or replaced by dummy pins or not.
As a first step, the ANN models were trained and tested using a dataset of simulated responses
of the Partial Defect Tester (PDET) for both intact fuel assemblies and diversion scenarios with
different values of Burn-Up (BU), Initial Enrichment (IE) and Cooling Time (CT). (Section 3.2)

For the first task, SNF assemblies are categorized into different classes defined by the percentage
of replaced fuel pins. For this purpose, the ANN processes the PDET information for one fuel
assembly, estimates the probability of the fuel assembly to be in each of the prescribed classes,
and assigns the fuel assembly to the class with the highest probability. The ANN was initially
trained using only the neutron flux responses from the PDET dataset and its performance
was compared with other machine learning algorithms, i.e, Decision Tress (DTs) and k-Nearest
Neighbors (kNNs). The ANN model showed the best classification accuracy (90.8%) compared
to the other models. (Subsection 3.3.1 and Paper IV)

The ANN was then further optimized to process both the neutron flux and gamma emission
rates from the PDET and it was able to reach a classification accuracy of 96.6%. For the
misclassifications, the relative differences between the probabilities of the predicted and the true
class is below 5% with few exceptions. In addition, the majority of the misclassifications occur
between the class of intact fuel assemblies and the class with the smallest partial defects (i.e.,
less than 10% of replaced fuel pins). (Subsection 3.3.2 and Paper V)

The second task was to identify the presence or absence of each individual fuel pin inside an
assembly and thus to retrieve the exact arrangement of the fuel pins from the analysis of the
PDET responses. An ANN model was developed in which it estimates the probability of the
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fuel pins to be replaced and labels the fuel pins with probability higher than the threshold value
of 0.5 as missing, otherwise as present. The model was able to fully reconstructs 57.5% of the
fuel assemblies and with a high level of confidence. A substantial majority of the misclassified
fuel pins consists of false negatives, i.e., replaced fuel is diagnosed as present. The estimated
probability of these fuel pins is below 0.5 and the distribution has a large peak close to zero.
The aspect of many diverted fuel pins misclassified with probabilities close to zero is important
because a high level of confidence is associated with the error and thus it becomes difficult to
assess how trustworthy the results are. This bias can be related to the existing imbalance of
labels in the datset used for the training process (the intact fuel pins are 78.4% of the total).
In addition, a large fraction of the misclassified fuel pins has probabilities around the threshold
value of 0.5, so the wrong labelling of the fuel pins is assigned with a lower confidence. (Section
3.4 and Paper V)

In order to investigate whether or not the gradient of the neutron flux can be advantageous
for identifying and localising diverted fuel pins in SNF assemblies, a new dataset was generated
using Monte-Carlo simulations. The dataset includes values of the neutron flux and its gradient
in the guide tubes of an intact assembly and 107 assemblies with different patterns of replaced
fuel pins. (Subsection 3.5.1)

An ANN capable of processing the neutron flux and the gradient from the new dataset was
developed with the same functionality as in the second task, i.e, identifying the presence or
absence of each fuel pin inside an assembly. First, a set of models were trained using all possible
combinations of the available input features, i.e., the neutron flux (N), the magnitude of the
gradient (Gm), the direction of the gradient vector (Gd). The performance of each model was
quantified in terms of the pin-accuracy, the precision, the recall and the F1 score. The model
based on the neutron flux and the magnitude of its gradient (N+Gm) was found to have the
best performance in all four metrics. Any model that used information related to the gradient
(magnitude, direction, or both) leads to an improvement in the recall value which reflects a
better identification of replaced fuel pins. However, results also showed that using the direction
of the gradient vector as an input feature had a negative effect on the precision of the ANN.
(Subsection 3.5.2 and Paper VI)

A second version of the gradient dataset was created in which the two Cartesian components of
the gradient are used instead of the magnitude and direction. The training process was further
optimized and a comparison was performed between three different models, i.e., a model for the
analysis of only neutron flux measurements, a model which combines the neutron flux and the
magnitude and direction of its gradient, and a model for the neutron flux together with the
two Cartesian components of its gradient. The results again confirmed that the information
about the neutron flux gradient is advantageous for the detection of patterns of replaced fuel
pins within the assembly. In addition, the two Cartesian components of the gradient were more
effective in training the ANN than the magnitude and direction of the gradient and led to better
predictions. (Subsection 3.5.3 and Paper VII)

The models trained using the new dataset with the gradient measurements were not able to fully
reconstruct any of the diversion patterns. This is expected due to the small size of the dataset.
Nevertheless, models that were trained using either the magnitude of the gradient or the two
Cartesian components in addition to the scalar neutron flux were able to provide results that are
close to the real assembly configurations and thus can generalize to some extent the mapping
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from the measured signatures to the patterns of replaced fuel pins. It was also observed that
some diversion patterns cannot be reconstructed at all because they have no common features
with the rest of the dataset. In order to overcome these issues, the dataset needs to be expanded
and the diversion patterns included in it need to be more systematically selected, see section 4.2.

4.2 Future work

Future work may be recommended in three main areas as follows.

4.2.1 Neutron gradient detector

A prototype of the gradient detector is currently under construction at Chalmers University of
Technology. The conceptual design of the detector described in section 2.1 and shown in Figure
2.1.1, is slightly modified. The main difference is in the scintillators. The optical fiber-based
scintillators considered in the conceptual design and experimentally tested (section 2.4), were
hand-made at KURNS and consist of a small volume of a mixture of a neutron converter (LiF)
and scintillation material (ZnS(Ag)), glued on top of a thin light guiding fiber (about 1 mm in
diameter). For the prototype, boron loaded plastic scintillators are chosen instead. Additional
differences in the prototype is that each of the four scintillators will be coupled with four light
guiding fibers instead of one and a silicon PM-array is used for the readout of light from the
detector instead of individual PM-tubes. The use of boron loaded plastic scintillators as well as
using a silicon PM-array was recommended to us by Prof. John Mattingly of North Carolina
State University.

The reason for the change of the scintillators is that the LiF/ZnS(Ag) material is not transparent
and the scintillation light can only escape from close to the surface, hence its efficiency cannot
be improved by increasing its volume. Boron loaded plastic scintillators on the other hand are
transparent, which allows their efficiency to be proportional to their size. Although the radial
dimensions are limited by the measurement space accessible inside the nuclear fuel assembly (the
guide tubes are about 1 cm in diameter), the volume can be increased via the axial length to a
certain extent where the axial variation of the neutron flux still remains negligible. The boron
loaded scintillators are also commercially available so that a regular supply of them is viable.

The reason for using four fibers per scintillator instead of one is to maximize the light output
from the scintillators. The increased number of light guiding fibers (16 in total) makes it more
practical to use a PM-array as a photo-multiplication device instead of a separate PM-tube for
each fiber.

Once the construction of the prototype of the detector is finalized, its performance will have
to be assessed both experimentally and via Monte-Carlo simulations. In the simulations, the
generation and propagation of scintillation light might also be considered.

4.2.2 Artificial Neural Networks (ANNs)

ANNs are complex mathematical models that are usually referred to as ”black boxes”. The
interpretation of the results and understanding the reasons of the specific output obtained from
the network is not an easy task. In this PhD project, studies were performed to gain insights
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into how the models work. However, future research can investigate techniques such as feature
importance analysis, activation visualization, integrated gradients, and partial dependence plots
in order to increase the explainability of the ANN models and to study the complex connections
between inputs and outputs. For example, these techniques can help to clarify aspects such as
the negative effect of the direction of the gradient vector on the precision of the network and the
effect of having fuel assemblies with different values of BU, IE and CT in the dataset.

The explainability and transparency of the ANN models are crucial for building trust, ensuring
accountability, and addressing ethical concerns associated with their deployment in nuclear safe-
gaurds applications.

4.2.3 Training dataset

The size and design of the dataset used to train and test any machine learning model are crucial.
As observed in section 3.5, the ANN models using the neutron flux gradient were not able to
fully reconstruct any of the diversion patterns because of the small size of the training dataset.
Future work can be carried out to expand the dataset by including additional configurations of
diverted fuel assemblies. A dataset that includes all possible scenarios, is however not feasible
because of the limitation of computational resources. Then, sampling techniques that allow for
better representations of the space of diversion scenarios may be beneficial.

The two synthetic datasets that were used to train and test the ANN models relied on Monte-
Carlo simulations, see section 3.2 and subsection 3.5.1. Monte-Carlo simulations are computa-
tionally expensive. Future work could explore the use of lower-order simulation methods for the
generation of training data.

4.3 Ethical considerations

While Artificial Intelligence (AI) offers numerous benefits and potential applications in the nu-
clear field, it is always essential to address the ethical aspects associated with such a technology.
In the current context, the use of Artificial Neural Networks (ANNs) in the area of nuclear
safeguards introduces several ethical considerations that need to be highlighted at an early stage
such as data privacy, latent biases, explainability, proliferation risks, and the role of human
oversight.

4.3.1 Data privacy

The collection and utilization of sensitive data, i.e., information related to nuclear facilities and
materials, raise ethical concerns regarding privacy and security. Certain protocols, including data
anonymization, encryption, and robust cybersecurity measures, might be essential to protect such
confidential information. Ensuring data privacy can help to prevent any unauthorized access or
misuse of the data, as well as to protect the individuals or organizations providing the data.

4.3.2 Latent bias

ANNs are susceptible to biases from the training data which can be difficult to identify. Such
hidden biases may have unintended consequences, for example, as discussed in this thesis, ANNs
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may inadvertently have false positive results (intact fuel pins being detected as missing) or
false negative results (missing fuel pins being detected as intact), which could have undesired
consequences for nuclear non-proliferation efforts. Rigorous testing for bias, diversification of
training data, and ongoing monitoring are important to rectify biases and ensure fairness.

4.3.3 Explainability

The complexity of ANNs and their black-box nature poses challenges in understanding and
interpreting their predictions, which might raise questions regarding their accountability. Incor-
porating explainability features, such as interpretable model architectures, visualizations, and
transparent reporting mechanisms, is thus important to ensure accountability and trust.

4.3.4 Proliferation risks

ANN models for nuclear safeguards may be counter-trained for proliferation purposes. For exam-
ple, the algorithms can be used to recognize diversion patterns that are not easily detectable by
inspectors and thus facilitates the illicit removal of sensitive nuclear material. Robust cybersecu-
rity measures to safeguard against unauthorized access, coupled with international collaboration
and adherence to non-proliferation agreements, are essential to mitigate these risks.

4.3.5 Human oversight

Over-reliance on ANN models without human oversight raises concerns about excluding human
judgment. An approach, where human experts play a central role in decision-making, validation,
and oversight, is thus crucial for balancing the capabilities of ANNs with human expertise. As
mentioned in the objectives (section 1.3), the ANN models developed in this thesis aim to
facilitate the job of the safeguard inspectors and not to replace it.
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