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Abstract

This compilation thesis explores the merger of machine learning, quan-
tum information, and computing. Inspired by the successes of neural
networks and gradient-based learning, the thesis explores how such ideas
can be adapted to tackle complex problems that arise during the modeling
and control of quantum systems, such as quantum tomography with noisy
data or optimizing quantum operations, by incorporating physics-based
constraints. We also discuss the Bayesian estimation of a quantum state
with uncertainty estimates using physically meaningful priors.

Classical machine learning could inspire new quantum-computing algo-
rithms. One such idea is presented to extend the capabilities of variational
quantum algorithms using implicit differentiation, enabling straightforward
computation of physically interesting quantities on a quantum computer as
a gradient. Implicit differentiation also leads to a novel method to generate
multipartite entangled quantum states and allows hyperparameter tuning
of quantum machine learning algorithms.

Several new experiments were possible due to the theoretical and numer-
ical techniques developed in the thesis — robust generation of a Gottesman-
Kitaev-Preskill and cubic phase state in a 3D cavity, fast process tomography
of a new family of superconducting gates with known noise, efficient process
tomography of a physical operation implementing a logical gate on a bosonic
error-correction code, and the reconstruction of a photoelectron’s quantum
state.

Keywords: Machine learning, quantum information, quantum com-
puting, quantum machine learning, quantum state tomography, quantum
process tomography, generative neural networks, optimization, Bayesian
estimation, variational quantum algorithms
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Preface

“Let there be light!”

The last question
Isaac AsiMov

In Isaac Asimov’s classic short story “The Last Question”, a super-
intelligent and self-correcting computer ponders how to save the universe
from heat death by reversing entropy. While such a super-intelligent
computer does not exist today, machine-learning algorithms, especially
using neural networks, are empowering classical computers to tackle real-

world challenges, from autonomous driving [1], computer vision [2-5], image
or text generation [6—11], to even emulating intelligence [12]. Machine
learning has also been applied to solve scientific challenges [13-16], discover
physical laws [17-19] and new algorithms [20], learning strategies [21], or

playing complex games at a superhuman level [22].

However, as classical computing hardware nears atomic scales signaling
an end to Moore’s law [23], various limitations appear where quantum effects
such as tunneling become critical. Furthermore, classical computers struggle
with problems such as in quantum chemistry which require simulating
physics at the quantum level using classical hardware [241-2(]. Therefore
new types of computers are being explored — quantum computers that
harness the power of quantum physics for information processing and
computing [27-37].

One might wonder if quantum computers can boost machine learning
by providing a computational advantage similar to specialized machine-
learning hardware [358—10], as well as whether machine learning can help
solve quantum physics problems [11, 412]. This thesis explores these two
aspects to set the stage for the results and detailed discussion in the
appended papers.






Chapter 1

Introduction

“Quantum mechanics is certainly
imposing. But an inner voice
tells me it is not yet the real
thing.”

ALBERT EINSTEIN [43]

Quantum mechanics is one of the most successful theories in physics,
describing quantum phenomena in systems such as elementary particles [14],
atoms [15], electromagnetic fields [16] (light), and even black holes [17].
Yet, its implications bewildered even its creators [13]. Its origins lie in Max
Planck’s efforts to reconcile experimental data with theory ending up in
a radical proposal — energy can only be emitted or absorbed in discrete
quanta [18]. In the late 1800s, classical physics predicted that an ideal black
body in equilibrium should emit radiation at all frequencies, with more
energy radiated as the frequency increases, thereby radiating all its energy
instantaneously. The paradox, known as the ultraviolet catastrophe, went
against experimental observations and could only be resolved by Planck’s
counter-intuitive proposal, using which he could derive an equation that
fits the data [19].

Quantum mechanics thus emerged through an attempt to fit observed
data using a new model for exploring light-matter interaction. Models and
fitting data are a central theme in this thesis, as is light. We study the
generation, characterization, and transformation of non-classical states of
light (e.g., Schrodinger cat states) with machine learning. Let us, therefore,
delve into central ideas of quantum physics through light.



2 Introduction

1.1 Quantum physics, information, and computing

Light has captivated humanity for ages — from Euclid’s optics in around 300
BC to Ibn al-Haytham’s Kitab Al Manazir (Book of Optics) introducing the
idea of light rays around 1040 AD. Galileo attempted to measure the speed
of light at the beginning of the 1600s. In the 1600s, Descartes, Newton,
and Huygens proposed conflicting particle and wave theories of light to
explain phenomena like reflection and refraction [50]. In the 1800s, Young’s
experiments supported the wave theory [51], while Faraday speculated that
light involved electric and magnetic forces [52]. Maxwell later confirmed
this with his theory of electromagnetism [53]. However, in the early 1900s,
Planck’s idea that energy is emitted and absorbed in discrete units or
quanta completely changed our understanding of light and the microscopic
world.

Einstein used Planck’s ideas to explain the photoelectric effect, suggest-
ing a particle nature of light [51]. Compton’s experiments further supported
this particle view [55]. These contrasting findings led to wave-particle dual-
ity and, eventually, the theory of quantum physics [13]. Quantum physics
has since then revolutionized our understanding of nature.

A central idea in quantum physics, beyond quanta and wave-particle
duality, is that nature at the quantum level is probabilistic. The state of a
quantum system is described by a wavefunction 1) represented by a state
vector [1) in a complex Hilbert space. Hermitian (self-adjoint) operators
‘H denote observable quantities such as energy. If |e,,) is an eigenstate of
H, we can write

Hlen) = enlen), (1.1)

where e, is an eigenvalue. The complete set of eigenvectors for such
a Hermitian operator form an orthonormal basis for the Hilbert space,
(eilej) = 0;5, such that any state can be expressed as

W}> = ch ‘en> ) (1'2)

where ¢, are complex-valued probability amplitudes. Quantum mechanics
postulates that for measurements on such a state, the probability of observ-
ing an outcome with eigenvalue e,, is |c,|?. For example, a measurement
operator, such as the photon number operator counts the number of photons
in a quantum state.

A two-level quantum system, e.g., a spin or an atom with two energy
levels, can be represented with a wave vector using two two basis states
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Figure 1.1: A classical coin flip can be modeled as a random experiment with
two outcomes (a Bernoulli trial) by specifying the probability of heads. We can
observe samples by flipping the coin to infer the probability of heads. Similarly,
an interacting quantum system, e.g., spins, can be described by a density matrix
p that defines probabilities for various measurement outcomes. The dimension
of p grows exponentially with the system size, making it difficult to tackle larger
problems using classical computers, necessitating a tunable quantum device such
as a quantum computer. However, if specific constraints exist on the physical
system, the probability distribution of outcomes could become simpler. An efficient
and flexible ansatz, such as a neural network trained on data, could learn the
underlying distribution and predict outcome probabilities or generate samples for
outcomes efficiently.

representing the ground (|0)) or excited (|1)) energy states as
1) = co[0) +ci|1). (1.3)

We can also write a quantum state as the linear combination of arbitrary
quantum states, e.g., an equal superposition of two states

1) £ [ye)
[¥) = VI (1.4)

where the probability amplitudes can add or get subtracted from each other
like amplitudes of a wave, giving rise to the phenomena of superposition
and interference. Things get more interesting when we consider multiple
such interacting quantum states, see Fig. 1.1. The number of different
possible basis states grows exponentially with the number N of such two-
level quantum systems. A full classical description of such a state requires
keeping track of the O(2") probability amplitudes in general, see Fig. 1.1.
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A state where the total wavefunction can be written as a tensor product
over different Hilbert spaces is called separable:

) =) @)y @ ... () y - (1.5)

Generally, we cannot always write a quantum state in the separable form,
e.g., the following state for two quantum systems with respective Hilbert
spaces Hi and Ho:

10), @10)y + 1), ® 1),
7 :

Such states of a composite quantum system are called entangled as it is
impossible to write the state of a subsystem independently from the state
of others, i.e., assign a pure state vector to the subsystem. It could be com-
putationally challenging (NP-hard) to even decide whether a quantum state
is separable [56, 57]. Various measures of entanglement and separability
criteria have been proposed, e.g., a geometric measure of entanglement [58,

|. In Paper IV, we show how our proposed machine-learning-inspired
algorithm can generate entangled quantum states through gradient-based
optimization of such a measure of entanglement.

) =

(1.6)

Quantum entanglement was itself a source of great puzzlement [(0],
showing that quantum systems can have non-trivial correlations that classi-

cal systems cannot [(1], as confirmed by experiments [62-61]. Separable
states, or states with some bounds on a measure of the entanglement, can
be written more efficiently, e.g., using tensor networks [(5], but general

quantum states require tracking all probability amplitudes.

Therefore, the full classical description of quantum systems quickly be-
comes intractable, and tackling quantum problems with classical computers
becomes challenging, although various clever algorithms exist to tackle
specific systems [06]. This difficulty prompted the idea of using a tunable
quantum system as a quantum computer [ - ] In recent years, various
prototypes of such quantum devices have been demonstrated [33, 67—69]
with many interesting applications [36, 37].

There are several approaches to encoding information in quantum
systems for computation. A straightforward encoding is simply interpreting
|0) and |1) as logical bits and manipulating information by applying a
transformation £ as

[¢") = E(1¢)- (1.7)
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The transformation & is linear and has certain restrictions to ensure that
the coefficients in [¢)') give valid probabilities. A classical representation
of £ can be simply a complex-valued matrix. A quantum computer thus
encodes information in the quantum state of a system and manipulates it
through linear transformations.

The promise of quantum computers is that we can encode and manipu-
late information in a superposition of quantum states represented by large
state vectors. A quantum operation on this vector can be described by
a linear transformation. A quantum computer thus makes it possible to
manipulate all the coefficients in a state vector using physical operations.

However, the trouble with quantum physics is that measuring a quantum
state only reveals a single bit of information about the state by collapsing it
into one of the basis states or their combination with a certain probability.
This probabilistic nature only allows us to gather statistics to infer the
state from measurement data. Since we are estimating an exponentially
large number of coefficients — O(d") for N quantum systems, each with
a dimension d — an exponentially increasing number of measurements is
necessary.

Therefore, we need to obtain and process an exponentially increasing
amount of data to completely characterize quantum systems and operations
in a general way such that we can predict the probability of arbitrary
measurement outcomes. We approach this problem with tools from machine
learning and connect to ideas in generative modeling in the next chapter.
But, before that, let us briefly discuss the effect of measurements on a
quantum system.

1.2 Measurements, probabilities and informational com-
pleteness

Quantum measurement links the quantum description of a state to the
macroscopic world. Measurements are performed by letting the quantum
system interact with a measuring apparatus that gives a classical outcome.
The von Neumann model [70] assumes that the measurements are stochastic,
representing the projection of the quantum state into an eigenstate. Multiple
repetitions of the measurement on identically prepared copies are necessary
to gather enough statistics to infer a quantum state.

Measurements are described using operators and the probability distri-
bution of the measurement outcomes can be computed using a so-called
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density operator p. The density operator is a matrix that describes a
statistical mixture of pure quantum states:

p= ZZ%W‘XI/H’ (1.8)

where Y p; denotes the statistical probability for each possible state, dif-
ferent from the intrinsic probability amplitudes of a pure state vector. If
we expand the state vectors using the basis {|e,)}, the density matrix is
characterized by the complex-valued coefficients p,, given by

p= men lem)en| - (1.9)

A projection operator P, = |e,)en| such as |0)0| extracts the probability
for the measurement outcome e,, as

plen) = tr[Ppp]. (1.10)

Positive-operator-valued-measures (POVMs) generalize measurements with
a set of operators {M,, = PJP,} satisfying 3, M,, = I

A general observable with eigenvalues a; and eigenvectors |a;) can
be written as O = Y, a;|a;) (a;] relying on the Hermiticity of physical
observables. The expectation value of the measurement O is given by the
so-called Born rule

(0) = Zaz‘p(ai)
= Zaitr[‘aﬁ (ail p]

= tr lz a; |a;) {a;| ,0]
= tr[Op]. (1.11)

Therefore quantum measurements provide us a way to compute expec-
tation values for measurements. In an experiment, we obtain outcomes
distributed according to the Born rule. The task of estimating a classical
description of the state, i.e., determining the full density matrix p, is called
quantum state tomography.

Quantum state tomography is difficult due to the large number of mea-
surements that must be carried out experimentally. However, there is also
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a computational difficulty where data processing could take hours or even
weeks [71, 72]. The problem is even more pronounced in quantum process
tomography, where we wish to estimate how quantum states transform [73].
We tackle such problems in Papers I, II, VI, VII, VIII, and X, exploring
efficient reconstruction algorithms for quantum tomography. However, to
understand the source of difficulty in estimating quantum systems, we need
to discuss the so-called informational completeness of measurements.

Informational completeness (IC) for a set of measurements means that
we can uniquely and unambiguously determine a quantum state using this
set. Since repeating measurements require several copies of the state, we
can think about the sample complexity for tomography in terms of the
number of copies of a quantum state necessary for estimation. However,
choosing the measurement setting is essential and not trivial and it could
depend on many factors, e.g., the assumption of low rank [74-77]. Machine
learning has been applied to tackle challenges in certifying IC from raw
data [78].

If we ignore the task of determining the measurements that guarantee IC
and only focus on the number of copies of p, we can do a resource estimation
for quantum state tomography. The upper bound for the number of copies
required for the tomography of a d—dimensional mixed quantum state p
was known to be O(d*) [79, 80]. Ref. [31] improved it to O(d?), but only in
Ref. [32] was it shown that the optimal number of copies for full quantum
state tomography was O(d/¢) for the estimate p’ to be within an error €
in the Frobenius norm ||p’ — p||%. In the trace distance, O(rank(p)d/e?)
copies are required to obtain an e-accurate estimate.

IC measurements given by a POVM {O;} allow the computation of the
expectation value of any arbitrary observable by completely specifying p.
Such an IC-POVM consists of at least d operators {O;} that span the full
Hilbert space of dimension d [$3, 84]. For example, working in the Fock
basis to write the quantum state of light, we often set a cutoff IV, on the
Hilbert-space dimension. A POVM measurement can reveal the occupation
probability for different Fock basis elements |n), thereby fixing the O(NN?2)
real values needed for reconstructing p. Even for moderate cutoffs, such
problems can become challenging, requiring many measurements for 1C.

The design of IC POVMs is also not straightforward for arbitrary quan-
tum states and higher dimensions. The class of symmetric, informationally
complete POVMs (SIC-POVMs) denotes the optimal IC-POVMs with ex-
actly d? elements [35]. There are exactly determined SIC-POVMs found by
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hand and computer algebra systems using supercomputers for dimensions
as high as d = 844 [30]. For the case of optical quantum states, Ref. [83]
describes a numerical procedure to determine the optimal measurement set-
tings. A geometric interpretation is presented that can guide the choice of
the measurement setting for a Schrodinger-cat state. Nevertheless, it is not
straightforward to determine the best possible SIC-POVMs to reconstruct
a quantum state completely, and often we might use informationally over-
complete measurements [37]. Informationally over-complete measurements
are ICs that could have more than d? outcomes, e.g., measuring a set of
qubits locally in all combinations of Pauli operators (I 4 0,,,.)/6.

It is possible that certain quantum states allow efficient descriptions
where it is unnecessary to keep track of all the coefficients, e.g., separable
quantum states, or coherent states of light which can be described by only
specifying the mean photon number or superpositions of coherent states
called Schrodinger cat states. Similarly, many other states with rotational
symmetry [38, 89] admit an efficient description with a few parameters, see
Fig. 1.2.

Further assumptions such as having a low rank of the density matrix, i.e.,
the density matrix is a mixture of only a small number of pure states, could
simplify estimation by reducing the number of independent parameters.
Machine-learning methods could therefore be effective in solving learning
problems in quantum physics by exploiting patterns in the data [12].

1.3 Machine learning meets quantum physics

Machine-learning algorithms are designed such that they can automatically
learn and improve their performance on a task with experience. This
is usually achieved by training the algorithm with data, allowing it to
recognize and exploit patterns in the data. With the availability of more
data, new machine-learning algorithms running on improved hardware
such as graphics processing units (GPUs) are solving problems that posed
significant issues for computers before.

Face recognition, automated driving, and natural language processing
are challenging to solve using hand-crafted algorithms. However, machine-
learning algorithms can tackle such tasks [1, 91-93], even achieving super-
human performance [94, 95], and showing some level of creativity [12, 96,

|

The backbone of many such machine-learning algorithms today are
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Figure 1.2: Machine learning can help solve problems such as the classification of
quantum phases [90], where patterns in the data can be learned by a model, e.g.,
sampled spin configurations. The model could be a neural network with tunable
parameters 6 trained to predict a class for a given spin configuration. In the
case of non-classical states of light, similar patterns exist in the Wigner function
that can be measured experimentally, e.g., pure single-photon Fock states have
Wigner functions with rotational symmetry consisting of rings. The density matrix
for such a Fock state will have only one non-zero element. A machine-learning
algorithm can therefore learn to predict the probability measurement outcomes by
approximating or estimating the density matrix.

neural networks that are loosely inspired by the structure of human brains
and seemingly emulate intelligence [12]. Beyond solving tasks that could
be easy for humans, such as driving a car, neural-network-based algorithms
have also been applied to defeat or match humans at various types of
games [94, 98]. Self-learning algorithms can even discover the rules of
games by themselves [95]. More recently, machine-learning techniques have
also been applied successfully to solve grand scientific challenges such as the
protein-folding problem, outperforming other human-developed methods
and models [99].

Therefore, combining quantum physics and machine learning can lead
to interesting new ideas and applications. From a quantum description of
light and its characterization, we can now discuss how machine learning can
benefit quantum physics. Recent studies have demonstrated the promising
potential of machine-learning-inspired techniques for addressing challenges
in quantum information processing [12]. These techniques have shown
success in tasks such as faster automated calibration and control [100],
quantum experiment design [101], and reducing error rates in the readout
of information from quantum computers [102, 103].
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Machine learning’s recent successes revolved around supervised classifica-
tion such as the ImageNet challenge [3, | and, more recently, generative
modeling with transformers [10] and diffusion models that are inspired
by ideas from non-equilibrium thermodynamics [105]. A straightforward
application of supervised classification to quantum physics was explored by
Juan Carrasquilla and Roger Melko when they trained a neural network to
recognize phases of matter from data [90]. Identifying phase transitions is a
fundamentally difficult task, often tackled by tracking an order parameter
such as specific heat. In situations where such an order parameter is not
apparent, it is not easy to identify and classify phases of matter. Yet using
neural networks, it was possible to train an algorithm to classify phases of
matter simply from data.

Since quantum states are described by vectors in an exponential Hilbert
space, it may appear somewhat surprising that a neural network could
easily classify such states without requiring a large number of parameters.
However, quantum states are already a subset of the total possible states
in the Hilbert space, e.g., density matrices form a convex set [106]. Under
more physical constraints, a quantum system may only occupy a small
fraction of the total Hilbert space, therefore simplifying their classification
or approximation, see Fig. 1.2.

Neural-network quantum states proposed by Carleo and Troyer achieve
this feat [11]. Quantum states approximated with different types of neural
networks show great promise in tackling the dimensionality problem that
a general quantum state description faces [107—110]. The intuition and
hope is that automatically learning an efficient representation that captures
the essential features of a quantum state can simplify its estimation from
data with fewer measurements. Further, it was possible to study the
dynamics of a quantum system more efficiently with the approximation of
a neural-network ansatz [111].

In the appended Papers I and II in this thesis, we show how the most
straightforward approach of representing a quantum state as the output
of a neural network can be used for tomography. The goal is to learn
the underlying distribution of measurement outcomes on the state from
observed data. This problem relates closely to generative modeling in
machine learning, e.g., a neural-network-based approach can learn the
underlying distribution of pixels that create a human face or generate
a scenery from text input [I12-114]. In a broad sense, this is also an
inverse problem, where we want to estimate the parameters of a model that



1.4 Quantum computers for machine learning 11

uses a density matrix from observed measurement data. In the quantum
tomography task, additional constraints coming from physics complicate
the problem and have to be enforced. Beyond characterizing quantum
states in a quantum computer, we want to solve problems with it.

A quantum computer is used to solve problems by encoding and ma-
nipulating information with quantum systems, i.e., running a quantum
algorithm. Quantum algorithms are implemented as operations on quantum
states. The operations are designed to increase the probability of solution
states to a problem. Consider the task of finding the prime factors of a
number. It is a computationally difficult problem for classical computers.
Shor’s quantum algorithm showed one can find prime factors by encoding
the problem in a quantum computer using a polynomial number of quantum
operations [115]. The quantum algorithm is exponentially faster than the
best-known classical approach. Other algorithms implemented in a similar
way by using a tunable physical system such as a quantum computer could
solve many difficult problems [116].

In order to implement such operations, we need to optimize the control
parameters of a quantum device. Such optimization is often posed as an
optimal control problem [117]. This is another avenue where machine
learning can help [118, ]. We discuss, in Papers IIT and VIII, how simple
gradient-based optimization with constraints allows us to find parameters
that implement a target quantum operation, e.g., unitary operations that
generate non-classical states of light or implement logical operations on
encoded quantum states. In a quantum device, such an operation is
implemented by modulating pulses that affect the controllable part of the
Hamiltonian. Pulse-level simulations and modeling are discussed in Paper
V. Although we do not go into the optimization of pulses in this thesis and
use the black-box tool [120] for optimization, the software developed in
Paper V could enable future research into optimizing pulses and low-level
simulation of quantum algorithms incorporating various type of noise.

1.4 Quantum computers for machine learning

Another aspect of combining quantum physics with machine learning is using
a quantum computer itself for machine learning. A quantum computer can
be used as a learnable model, or to compute interesting physical quantities
such as generalized susceptibility or nuclear forces with methods inspired
by machine learning. We present one such idea in Paper IV with multiple
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applications.

Recent demonstrations of the capabilities of quantum computers show
other promising applications beyond Shor’s factoring algorithm [121], with
many of them being heuristics [122]. Variational quantum algorithms
(VQESs) represent one such approach [39], where a parameterized set of
operations £(f) implemented on a quantum computer finds the solution
to a problem by optimizing the parameters 6 using a classical computer.
The quantum computer is used to compute measurement statistics after
applying operations and the classical computer uses the results of these
measurements for optimization.

A simple example is finding the minimum of a function that gives the
ground-state energy of a quantum system defined by some Hamiltonian.
A related problem is finding how the ground state changes as we change
the Hamiltonian itself, i.e., computing ground-state gradients as a function
of the Hamiltonian parameters. Such gradients also connect to many
physical quantities of interest, e.g., susceptibilities and nuclear forces in
quantum chemistry. By borrowing an idea from machine learning, we
show in Paper IV how such gradients can be computed automatically on a
quantum computer using implicit differentiation, thus extending the power
of variational quantum algorithms.

Therefore, in this thesis, we will discuss the intersection of machine
learning (ML) and (Q)uantum physics, noting that combining ML and Q
can lead to very different outcomes which do not commute:

IML, Q] # 0. (1.12)

1.5 Outline of the thesis

This thesis is a compilation of the appended papers discussing various
aspects of the merger between quantum physics and machine learning.
We will present several machine-learning-inspired approaches to tackle
tomography and learning in quantum systems. A crucial difficulty in such
approaches is enforcing quantum-mechanical constraints, which we tackle
in various ways — from implementing differentiable physics-based models
to modifying gradient-based optimization using the idea of optimization on
a manifold. We also discuss how Bayesian estimation techniques can help
estimate quantum states with noisy data incorporating priors. Lastly, we
show how quantum computers used as variational models can be enhanced
using an idea from machine learning.



1.5 Outline of the thesis 13

The thesis partly builds upon the licentiate thesis of the author on quan-
tum state characterization with deep neural networks. The introduction
sets the context for the work by relating some problems in quantum physics
that can be formulated as learning problems. The potential benefits of com-
bining machine learning and quantum physics are outlined with examples of
recent successes in applying machine learning to quantum physics problems.
A brief discussion of the numerical and experimental difficulty of solving
learning problems in quantum physics motivates applying machine-learning
methods to quantum physics problems. The rest of the chapters introduce
the various theoretical tools used in the appended papers.

Chapter 2 provides an overview of machine learning, focussing on mod-
eling and inverse problems. Machine-learning tasks can often be formulated
using generative or discriminative models. Neural networks find extensive
use in such modeling, and the chapter discusses how generative and dis-
criminative models can be formulated as neural networks. This discussion
is relevant for Papers I, I, VI, and IX, where neural networks find use for
tomography and the discrimination of quantum states. The connection
to Bayesian approaches for modeling is also discussed to highlight some
benefits of a Bayesian viewpoint over using neural-network-based models,
relevant to the results obtained in Paper X.

The next step after modeling is the estimation of parameters, which can
be performed in various ways using optimization algorithms. Chapter 3,
therefore, discusses some of the optimization techniques used in the papers
with comments on how to include constraints in the optimization. Regu-
larization and constraints play an important role in machine learning and
inverse problems and can be implemented in various ways. Regularization
also reduces the need for data and proves helpful in handling noise in
estimation tasks. The exact implementation of various constraints during
optimization is essential to satisfy quantum-mechanical constraints. The
results in Papers I, III, VI, VIII, and X require implementing such con-
straints and regularization. We discuss gradient-based optimization, Monte
Carlo methods, and convex optimization in the rest of the chapter as these
methods are used in all the Papers from I to X except in Paper V.

Chapter 4 then discusses how the concepts developed so far apply to
learning in quantum systems. Quantum state and process tomography are
discussed with their challenges and how machine-learning-inspired methods
have tackled some of them. Tomography with neural networks is one such
approach discussed in this chapter and Papers I, II, VI, and VIII. The use
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of non-neural-network approaches that closely follow the recipe used in
machine learning, albeit using physics-inspired ansatzes, is also presented in
this chapter. Beyond tomography, the optimization of quantum operations
within a unitary ansatz is discussed next, which enabled the experimental
results in Papers III and VIII. Implementing quantum operations, e.g., a
unitary corresponds to physically driving a quantum system with control
pulses that act through a controllable Hamiltonian. Pulse-level simulation
of quantum systems is implemented in Paper V with a software package.
Optimization of pulses and the simulation of quantum dynamics at the
pulse level are essential to correctly incorporate realistic sources of noise and
find ways to tackle them. Finally, this chapter presents a simple Bayesian
approach to model a quantum state used in the experimental Paper X. The
Bayesian approach has several benefits over just estimating parameters by
simple gradient-descent, which are highlighted.

Chapter 5 delves into the field of quantum machine learning, discussing
topics such as variational quantum algorithms and using parametric quan-
tum circuits as machine-learning models. Gradient computation on a
quantum device has its complications, and this chapter discusses ideas such
as the parameter-shift rule that allow computing gradients on a quantum
computer. Then, we present implicit differentiation, the topic of Paper IV
that extends the capabilities of variational quantum algorithms and allows
the calculation of interesting physical quantities on a quantum computer,
hyperparameter optimization of quantum machine learning algorithms, and
a new way of creating entangled quantum states.

Chapter 6 summarizes the results from the appended papers, and
Chapter 7 concludes the thesis with an overview of the work and possible
directions for future research.



Chapter 2

Machine learning

“truth ... is much too
complicated to allow anything
but approximations.”

JOHN VON NEUMANN [123]

Digital computers, inspired by ideas from Alan Turing [124] and John
von Neumann [125], have become indispensable tools today. Computers exe-
cute a fixed set of precise instructions, an algorithm, that solves well-defined
problems [126]. However, digital computers struggle with loosely-defined,
complex real-world problems that involve interacting with the environment,
processing noisy unstructured data, or adapting to new situations. A per-
fect model of the real world is far too complex to handle. Solving many
real-world problems necessitates something more than traditional computer
programs.

In a task like driving a car, traditional programming is insufficient
due to the many possible scenarios and heavy data processing involved.
The program must dynamically assess changing road conditions, process
noisy sensor data across different modalities, adapt to weather conditions,
and make split-second decisions. Furthermore, pre-programming for new
scenarios, e.g., driving a new car for which the computer was not pro-
grammed, would be challenging. In contrast, humans can learn driving
from experience, employing approximations, and adapt to new situations
easily.

The idea of making computers “learn” in a way similar to humans
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Figure 2.1: Neural-network-based machine-learning applications and their suc-
cesses. (a) Image classification [127]. (b) Object detection [2, 1]. (¢) Generating
textual descriptions of images, showcasing a better way than a simple assignment
of labels [128]. (d) Generative models can create images from input descriptions [6,
8]. (e) Image-to-image translation highlights how such generative models can
create images conditioned on specific inputs [7]. (f) Neural networks also showed
superiority in tackling complex scientific problems, e.g., protein-structure predic-
tion [99]. (g) In reinforcement learning, neural networks could lead to computers
learning to play games at superhuman levels or solve control problems such as
driving [1, 22]. (h) Neural networks have also demonstrated advantages in solving
quantum physics tasks, inspiring exploration in this domain [42, 90, 109].

Games

was being explored even before modern computers existed. Alan Turing
introduced machine learning as an alternative paradigm for programming
computers to emulate human learning, even envisioning the possibility of
machines with physical bodies to explore and interact with the world [129].
Despite early skepticism, machine learning and artificial intelligence now
excel in problem-solving [130].

Neural networks, specifically deep learning, empowers many modern
machine-learning and artificial-intelligence techniques [131]. The success
of neural-network-based models over traditional algorithms for pattern
recognition and machine learning [132, 133] is speculated to have roots
in physical concepts such as symmetry or locality possessed by real-world
data [134]. Since 2012, neural networks have revolutionized tasks like text
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generation, image processing, conversation, and scientific challenges [131],
see Fig. 2.1. These networks model input-output relationships with pa-
rameterized functions to solve problems and find extensive applications to
model probabilities in machine learning [135] as we discuss in this chapter.

In the 1990s, neural networks were already proposed to solve scientific
problems [136]. Initially, they were met with criticism [137] due to the
unreliable black-box nature; neural networks seemed excessive against hand-
crafted methods and models. However, more recently, neural networks
have demonstrated success in scientific problems that are difficult to tackle
with existing approaches, e.g., fluid-flow predictions using physics-inspired

neural networks [138], graph neural networks for material science [139],
drug discovery [140], and even tackling grand challenges such as protein
folding [13].

In scientific problems, constraints and symmetries play a significant
role in simplifying problems, reducing the need for data, tackling noise,
and providing interpretability of physically feasible results. We employ
several techniques to implement constraints in various applications through
Papers I-X, and discuss the main concepts in the next chapter. Ideas
around scientific machine learning with neural networks have also lead
to emerging new fields such as geometric deep learning [141] and physics-
informed neural networks [1412, |. Neural networks, however, are just
parameterized functions that require training resembling solving so-called
inverse problems that are often ill-posed [144, 115]. Neural-network training
can also be ill-posed [116] and even computationally difficult (NP-hard) [117,

]. Nevertheless, neural networks have been proposed to solve ill-posed
inverse problems by approximating the forward model [119, | and work
well in practice [1341]. Ill-posedness can be tackled through regularization,
priors, and constraints on the model or parameters, see Fig. 2.2. Such
constraints and regularization are pivotal in the success of neural networks,
e.g., convolutions ensure translational invariance in image processing.

In this chapter, we explore the links between modeling, neural networks,
and parameter estimation to discuss how quantum physics problems can
be tackled with ideas from machine learning.

2.1 Generative and discriminative models

A model simplifies a system, abstracting it to capture core aspects for
analysis and predictions. It expresses relationships between variables,
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Figure 2.2: Many problems in the scientific domain can be framed as inverse prob-
lems. (a) Inverse problems involve parameter estimation from data using a forward
model which is often ill-posed due to noisy or insufficient data. Regularization,
constraints, and prior knowledge mitigate ill-posedness and the need for large
amounts of data. (b) Machine learning offers an alternative to parameter estima-
tion by predicting quantities of interest directly from data with an approximate
model. (c¢) Neural networks can be used for such modeling, e.g., in quantum state
tomography, where they can predict or approximate properties of quantum states
from measurement data.

learned through functions that allow us to make predictions about physical
phenomena. Newton’s model of gravitation predicts the speed of falling
objects and the orbits of planets. Quantum physics models can predict the
behavior of quantum systems, e.g., Bohr’s model predicted the emission
spectra of atoms.

Models rely on approximations and are often constructed from intuition
and observations where a human often proposes the model’s functional form,
e.g., Kepler’s laws resulted from fitting Tycho Brahe’s data on planetary
motion; Max Planck introduced the idea of the quanta to reconcile theoret-
ical predictions to the data observed in black-body experiments. Machine
learning aims to emulate the model-discovery process in a data-driven way.
In order to understand data-driven modeling, let us discuss two approaches
for modeling in machine learning — generative and discriminative modeling
using probability distributions.

Let us consider some input data x, such as the current configuration of
a system or an image, and say that we want to predict a property y for the
input. We can consider two key distributions: the conditional probability
p(y|x) and the joint probability p(x,y). Discriminative models focus on
p(y|x), that label data, e.g., p(y = cat|x). On the other hand, generative
models learn the joint distribution p(x,y) that can be used to create new
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Figure 2.3: (a) Generative modeling of an underlying distribution using samples
of data. The probability distribution specifying whether a pixel should be black or
white to construct a human face can be complex and intractable. (b) A neural
network approximates and learns the underlying probability distribution from
samples of data, e.g., human faces. Once the distribution is approximated, new
samples can be drawn that resemble human faces. All faces in the above figure are
computer-generated; these human faces never existed [151, 152]. (c) In quantum
physics, we want to model complex quantum systems to predict probabilities for
measurement outcomes or other properties. The density matrix p allows us to
predict probabilities using the Born rule. Neural-network-based models can be
used to learn an efficient approximation for the underlying density matrix (or
exactly, as in Papers I and II).

data through sampling, e.g., x ~ p(x,y = cat). Alternatively, we can
consider that generative models learn the conditional distribution p(x|y)
while discriminative models approximate p(y|x).

In most real-world problems, how to model these probability distri-
butions is unclear. Let us consider an image represented as pixel values
arranged in a square grid. A combination of values for the pixels could
represent an image of a human face. If we consider all possible human
faces, there is a particular underlying probability distribution of pixels that
can be sampled to generate different human faces, see Fig. 2.3. Writing a
mathematical function for this underlying probability density is challenging.

However, machine learning with neural networks can approximate and
learn such complex data distributions via training from samples. Human
faces have distinct patterns, like an oval shape, a proportional placement of
eyes, and other features. Generative models can approximate the underlying
distribution, capturing patterns and features to generate new faces that
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never existed [151, 152].

In quantum physics problems, the data x could represent spin con-
figurations or measured parity corresponding to a Wigner function. The
target could include classifying the phase or type of quantum state. As
we discussed previously, such classification tasks could be challenging due
to a lack of strict order parameter for the phase transition or noisy data.
However, a neural-network approach could tackle such problems following
the discriminative modeling idea, as we show in Papers IT and IX.

Similarly, generative models can learn an approximation for the density
matrix of a quantum from noisy measurement data, such as Wigner-function
values. After training the model using a small set of samples, outcome
statistics for any other measurement can be generated through the approxi-
mation of the density matrix, e.g., expectation values of the parity function
that gives us the full underlying Wigner function, or the full density matrix,
as we discuss in Paper X.

At the heart of most such generative and discriminative modeling
approaches lie neural networks that are used to model complex relations
between data and approximate their distribution.

2.2 Neural networks and universal function approxima-
tion

Neural networks consist of interconnected artificial neurons that apply
linear and nonlinear transformations to transform inputs x € X to outputs
y € ) using a parameterized function f : X — ). The inputs and outputs
form the data, D. X and ) could be anything from vectors to matrices or
arbitrary tensors representing encoding of images, text, video, or measured
signals.

If we consider a single neuron with the parameters 6, we can write its
output as

f(x;0) = ("), (2.1)

where x = [z9, 1, ..., 2] i an input vector and 6 is a vector of weights.
The term o(-) denotes a nonlinear function called the activation function,
which is applied element-wise. The inputs are usually augmented to include
a bias term setting x¢g = 1. Several such neurons form an output vector
Yy = [Yo,Y1s---,ym|. A compact way to write this input-output relationship
would be to use a matrix of parameters that takes (N + 1)-dimensional
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Figure 2.4: (a) A feed-forward, densely connected neural network applies linear and
nonlinear transformations to create a learnable function. (b) Convolutional neural
networks mimic the human visual cortex by extracting features through spatial
filters and use these features, and a feed-forward network in the end, to predict
labels. (c) Recurrent neural networks work with sequential data and emulate
memory effects through self-connections. (d) Variational autoencoders learn data
distributions via an encoder-decoder setup and generate new data resembling the
input dataset. An easy-to-sample distribution generates random vectors that are
then converted to data by the decoder. (e) Generative adversarial neural networks
use competing networks to learn data distributions. The generator produces data
from noise vectors and is trained by using a discriminator for assessment.

inputs (including a bias term) and transforms them to M-dimensional

outputs as
f(x:6) = o(6-x), (22)

where 6 is now a matrix.

Neurons can be organized into layers, forming a feed-forward neural
network, see Fig. 2.4. A basic neural network with one hidden layer (I = 1)
connects inputs (I = 0) to output y=2) as

v = 0[9(1) o (9<0> : X(O))}, (2.3)

where we assume that the weight matrices are of the right dimensions and
account for the bias terms.

Neural networks with a single hidden layer can model any function [153].
This forms the basis for using neural networks to model arbitrary functions
and probability distributions. While Ref. [153] used a continuous sigmoid
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activation for universal approximation, other activations, like trigonometric
ones, can also work via the Stone-Weierstrass theorem [154]. This theorem
assures that a polynomial p(z) exists, so that for any x within the interval
[a, b], a continuous, bounded, and real function f can be arbitrarily close
to p(x), as | f(x) — p(z)| < € with any error e.

In Ref. [155], the Stone-Weirstrass theorem was used to show that
any bounded non-constant activation (even if discontinuous) works for
the approximation. In a later work, Ref. [156] showed that standard
multi-layer feed-forward neural networks with locally bounded piecewise-
continuous activation could approximate any continuous function to any
degree of accuracy provided that the activation function is not a polynomial.
Extending to multidimensional functions follows naturally.

Universal approximation theorems only guarantee that shallow, single-
hidden-layer neural networks can approximate any function, but, in practice,
deeper networks with many hidden layers work better [134, ]. Deeper
networks express some functions more efficiently [158, |, especially in
convolutional networks [160]. In some examples, a single-hidden-layer
neural network was shown to be unable to realize a three-hidden-layer
network [161]. Similarly, a deep convolutional network could not be realized
with a shallow network unless the number of nodes in the hidden layer grew
exponentially [162]. In Ref. [134], it was shown with a simple demonstration
that multiplying n variables required 2" neurons using a single hidden layer,
but 4n neurons with a deeper network using log, n layers.

Besides mathematical arguments, physics could also explain why deep
learning works well in practice. The data-generation process and the forward
model that links parameters to complex data could be seen as a sequence
of simple hierarchical steps. The structure of deep neural networks might
be more suited to reverse these steps, with each layer distilling information
necessary only for the final output [134].

The feed-forward neural network is just one architecture to construct
neural-network models. Other formulations of artificial neurons, such
as spiking neurons, are also actively researched and pursued [163]. The
success of various neural-network architectures can be attributed to specific
ways where the model adapts to the nature of data or the problem, see
Fig. 2.4. As an example, the transformer architecture, with its attention
mechanism that focuses on specific parts of the input, has revolutionized
language-related applications [10, 12].

The arguments for function approximation do not discuss the train-
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ing and optimization of neural networks. Deep neural networks today
have billions of parameters that require optimization [93]. In 1986, the
backpropagation algorithm, driven by the chain rule, emerged as a way of
computing gradients in a neural network [161] that could then be used for
gradient-based optimization. We will cover gradient-based optimization in
the next chapter. Before that, let us first explore how neural networks can
be used for modeling.

In Papers I and II, we used neural networks to model a quantum system
following ideas from generative modeling.

2.3 Modeling with neural networks

In classification tasks, neural networks serve as discriminative models by
approximating the conditional probability p(y|x). We consider samples
of labeled data (x,y), where the target labels are represented as one-hot-
encoded vectors. The one-hot-encoding allows a probabilistic interpretation,
where elements of y = [yo, ..., ym] represent class probabilities, e.g., (y =
[1,0,0,...] says that the probability for the data instance x to belong to
the first class is one, while all other probabilities are zero.

A neural network with parameters 6 takes an input x and predicts a
probability vector v = [vp, ..., vy on which a so-called softmax activation
is applied as

v = f(x;0),
softmax(v), = 5: (2.4)

The softmax activation ensures that the output v represents probabilities
that sum up to one. The neural network represents a map between data
and labels that will output random probabilities at initialization and needs
to be trained using data.

An objective function is defined such that the network’s output proba-
bilities match the data after training, i.e., we want to minimize a measure of
discrepancy between the true (unknown) probability density p(y|x) and our
approximation of it, f(x;6). We can maximize the so-called log-likelihood
function by minimizing

Z y! -log(v Z y© - log[softmax|f (x; 0)]], (2.5)
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where the sum is over all points in our dataset. It is easy to see that
if the target and the predicted probabilities are the same, £(f) reaches
a minimium. The optimization can be performed using batches of data,
usually by gradient descent, as we discuss in Chapter 3. The likelihood
function is one possible choice of a loss function that converts neural-network
training into a parameter-estimation problem. We discuss more details on
this topic in Sec. 2.4.

The use of neural networks for generative modeling is more complicated,
and we present some of the approaches below.

2.3.1 Restricted Boltzmann machines

Restricted Boltzmann machines (RBMs) are an early type of generative mod-
els, distinct from standard feed-forward neural networks [165]. RBMs have
been used for quantum state tomography via the neural-network-quantum-
states ansatz [11] and are interesting for modeling quantum systems. An
RBM has visible and hidden units (v = {vi,v2,...,v;},h = {h1, ho, ..., hj})
that give stochastic binary outputs (v;, h; € {0,1}). Stochasticity comes
from defining the following rule to update the state of a neuron: h; = 1 if
the probability

p(hj =1lv) = 9(903' + Z 9ijvi> (2.6)

exceeds a random value sampled from a uniform distribution U(0, 1), where
g is the activation function. Visible units update similarly based on hidden
units, and the model converges to a Boltzmann distribution at equilibrium:

p(v;0) = 70) S e By (2.7)

h

using an energy function

E(V, h; 9) = — Z Qoivi — Z Hojhj — Z'Uihjeij, (2.8)
1,J

icvisible jehidden

where Z(0) = 3", 1, e—E(v,h;0)

to the softmax activation.

RBMs approximate the underlying probability distribution of data p(x)
by modeling it as a parameterized Boltzmann distribution p(v = x;6). The
training proceeds by optimizing a measure of statistical divergence (e.g.,
KL divergence) between samples generated by the RBM and actual data.

is the partition function playing a similar role
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During training, we search for parameters 6 that give a high probability
for the visible units when set to the data v = x. However, training RBMs
is not easy since, e.g., with gradient-based optimization, the probability’s
log-likelihood is intractable because of the partition function. Techniques
like contrastive divergence [1065, 166] enable the training of RBMs but are
complicated.

Once trained, new data is generated by some sampling technique, e.g.,
Gibbs sampling [165]. We can start from a random state vy and iteratively
update the RBM state until equilibrium, see Fig. 2.5. However, here again,
RBMs face difficulty in sampling since the time to reach equilibrium could
become large and impractical for larger problems. To handle continuous data
with RBMs, we need conversion to a binary encoding or modifications such

as Gaussian-Bernoulli RBMs [167]. In contrast to RBMs, approaches like
variational autoencoders (VAEs) [108] and generative adversarial networks
(GANS) [169] simplify neural-network-based generative modeling by using

a latent (noise) variable.

Note that we have not used the label y in the data generation. Therefore,
the simple RBM only unconditionally samples x. However, as we see later, it
is easy to extend generative models for conditional outputs, e.g., conditional
generative adversarial networks (CGANSs) [170]. We use CGANSs in Papers
I and II to generate measurement statistics for quantum measurements in
the tomographical reconstruction of quantum states.

We briefly discuss the main ideas here, although only VAEs and GANs
are relevant for the results in Papers I and II. Other approaches that
use latent variables are normalizing flows [171], score-based [172], and
diffusion models [105]. All such models use parameterized neural networks to
approximate the underlying data distribution, can be trained with gradient-
based optimization, and deal with stochasticity more straightforwardly
than RBMs. However, they have significant differences; see Fig. 2.5. Such
techniques have not been applied to quantum problems so far, but could have
great potential to tackle complex problems in quantum physics, extending
the work reported in this thesis.

2.3.2 Variational autoencoders

Variational autoencoders approximate data distributions using latent (noise)
vectors z ~ p.(z). The latent vectors introduce stochasticity by map-
ping random elements from an easy-to-sample distribution p,(z), e.g., a
multi-dimensional Gaussian, to the unknown, possibly complicated, target
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Figure 2.5: (a) Generative modeling with neural networks approximates a data
distribution or sample from it using latent (noise) vectors. (b) VAEs maximize
the ELBO with an encoder-decoder framework. (c) GANs directly generate
samples using a neural network to assess their quality against a dataset. (d)
Flow-based models learn invertible transformations of the data to noise that makes
the likelihood tractable. (e) Score-based models approximate score function, i.e.,
the gradient of the log-likelihood that eliminates the intractable partition function.
Langevin dynamics generate new data from the approximated score function. (f)
Diffusion models reverse a diffusion process that gradually corrupts data by adding
noise. The reverse process allows the generation of new data from noise after
training.
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distribution p(x).

If we consider the joint distribution for data and noise p(x,z), the prob-
ability density for the data distribution can be obtained by marginalization
as

px) = [ p(x.2)dz = [ pxia)p(a)dz. (2.9)

where VAEs assume that the conditional dependence p(x|z) is given by a
so-called decoder neural network [168, 173]

po(x|z) = f(z;0). (2.10)

Therefore the underlying data distribution is parameterized as

pol) = [ palxia)p(z)dz. (211)

This integral, also called the evidence, is generally intractable due to the
geometry of higher dimensions [174, |. Intuitively, it would require
exploring all possible noise vectors or knowing the high-density regions for
z that contribute to the integral to integrate it efficiently.

We want to use data samples x to tune # such that the probability of
data in the approximation py(x) is high. However, since the integral is
intractable, we do not have a way to optimize for 6 directly. VAEs solve
this issue by introducing a so-called encoder function that approximates
the posterior

p(x.2) _ p(x|z)p(z)
p(x) p(x)
This posterior is also §-dependent, i.e., pg(z|x) but is intractable due to
the evidence term. In VAESs, the posterior is also modeled by a so-called
encoder neural network

p(zlx) = (2.12)

po(z|x) = qy(z]x) = g(x; ¢). (2.13)

Now, we have two approximations that take elements from the data space
to the latent space and back

fix—2z9:2—x (2.14)

It can be shown that the integral in Eq. (2.9) can be lower bounded using
the so-called Jensen’s inequality (or, alternatively, using an identity for
logarithms logz < x — 1). Jensen’s inequality says that the expectation
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value of a convex function, h, is always lower than or equal to that function
evaluated at the expectation value of the argument:

E[h(X)] < h(E[X]). (2.15)

We can rewrite the integral Eq. (2.9) as an expectation value as

/p(x, z)dz = /p(z)p(x’z)dz =Epz) {p(x, Z)],

p(z) p(z)
and use Jensen’s inequality to write the evidence lower bound (ELBO).

The ELBO defines a loss function that can be used to train the encoder
and decoder [173]

L(0,¢) = po— Dxrlge(z[x),pe(x|2)] < po, (2.16)

where Dki, represents the Kullback—Leibler (KL) divergence. Simply speak-
ing, KL divergence measures how two probability distributions differ from
each other. To train the encoder and decoder networks, the KL divergence
is minimized using samples of data x, which in turn makes the posterior
approximation g¢4(z|x) better, as well as maximizes the ELBO. This opti-
mization, therefore, makes the marginal probability py(x) get closer to the
true data distribution.

However, gradient-based optimization for VAEs is not possible directly
due to sampling of the latent noise vectors z that breaks automatic dif-
ferentiation. This issue was solved by the so-called reparameterization
trick, making backpropagation-based training work on VAEs [16&]. The
reparameterization trick expresses the random variable z as the output of a
parameterized function z = h(z, €; ¢) with an independent random variable
€, thereby allowing auto-differentiation to work.

In image-generation tasks, VAEs are susceptible to generating samples
that might be blurry and not very sharp, with varying opinions as to why
this happens. The use of the KL-divergence loss, simple Gaussian priors,
or small latent space dimension are some possible reasons that may lead
to VAEs not being able to capture the data distribution well [176]. In this
regard, generative adversarial networks perform better and produce sharper
outputs in image-generation tasks [177, 178].

2.3.3 Generative adversarial networks

Generative adversarial networks (GANs) [169] take a different approach
to learning the map between the latent space and data. Here, a generator
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network, G = f(z;0) (similar to the decoder in VAESs), is trained by letting a
second neural network, the discriminator D = g(x’; ¢), evaluate its outputs.
The discriminator output is interpreted as the probability for its input x’
to belong to the true data distribution p(x).

The generator and discriminator network can now be trained in an
alternating sequence until the generator learns to produce data similar
to the actual data distribution such that the discriminator can no longer
distinguish generated data from the true data. The parameters 6 and ¢ of
the two neural networks are optimized alternatingly; first the discriminator
parameters ¢ are updated to maximize the expectation

Excnp) | 081D (% @)] + By, ()G (23 0)]] (2.17)

where x ~ p(x) are data samples. Then, the parameters of the generator 6
are updated to minimize

Ep.@[l0g[l = D(G(2;0); ¢]]. (2.18)

The conditional generative adversarial network architecture further
improves upon the standard idea of adversarial learning by allowing to
model the data generation process with the mapping

frzly = x, (2.19)

where y is a conditioning variable such as a label. Therefore, conditional
generative adversarial networks can model complex conditional maps be-
tween different data. The use of the discriminator network to evaluate the
generator performance allows possible learning of a non-trivial loss metric.
However, since generative adversarial networks do not explicitly model the
data distribution and rather learn it implicitly, there are doubts about
whether they are truly representative of the data distribution [179].

We have seen that VAEs and GANs do not explicitly learn the probability
density for the data distribution p(x) and use a latent noise space only
to generate data samples. Variational autoencoders approximate the data
distribution, and GANs only generate samples. Several other generative
modeling approaches estimate the full probability density function p(x) of
data in a creative way to be able to sample from it, which we discuss below.

In Papers I and II, we adapted the CGAN architecture and forced it to
estimate the full probability density, i.e., the density matrix of a quantum
state. This hinders the scalability of our approach since we demand that the



30 Machine learning

CGAN learns a density matrix that will have an exponentially increasing
dimension as the size of the quantum system grows. However, removing
this restriction and directly sample new measurement statistics with such
generative models as we saw in the above discussion is possible.

2.3.4 Flow, score-based, and diffusion models

Flows, score-based models, and diffusion models are approaches to gen-
erative modeling that aim to approximate a given dataset’s underlying
probability density p(x) to sample new data. Flows directly approximate
p(x) while score-based models learn the gradient V,log(p(x)) — the so-
called score function. Diffusion models are probabilistic models that directly
sample new data points from noise by learning how to denoise data, reversing
a diffusion-like process, see Fig. 2.5.

Flows leverage the change-of-variable theorem [171] to transform an easy-
to-sample distribution into a more complex data distribution. The main
idea is to construct a series of invertible and differentiable transformations
that map samples from a simple distribution z ~ p(z) (e.g., a standard
Gaussian) to samples from the target data distribution x = f(z;6). The
generative process involves iteratively applying these transformations to
generate data points. The invertible nature of these transformations allows
for both data generation and density estimation.

The inverse operation given by z = f~!(x;6) defines the probability
density for the data as

a1

det
edx

po(x) = p(2) ; (2.20)

det 2| = pls~1(xi6)

where det denotes the determinant. Now, if we consider a series of such
invertible functions, we can sequentially convert the simple latent noise
sample z to something more complex by applying the nonlinear bijective
functions

fnofn_10...0f1:2 = X% (2.21)

It can be shown that the composition of N such bijective functions is
invertible, with the inverse

fitofytoofytix—a (2.22)

The set of invertible and differentiable functions that map an easy
distribution to a complex one makes the likelihood function for the data
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tractable. The random variable traverses a path z; = f;(z;—1;6) called the
flow. The chain of the intermediate distributions p; is called a normalizing
flow due to movement from a complicated data distribution to a more regular
or “normal” form. Different normalizing-flow models can be constructed
by choosing the functions f, which need to satisfy two conditions — easy
invertibility and computation of the Jacobian determinant [171].
Normalizing flows have the benefit that they provide us with the prob-
ability density for the data. Therefore they make it possible to sample
new data points, predict the probability for possible data, fill in missing
data, and more. They also connect to the narrative of Ref. [1341], where
deep neural networks provide an excellent tool to model the hierarchical
transformation of data using simpler steps to generate complex data.

Score-based models [150] take a different approach when approximating

a probability density function p(x) with a parameterized model such as a
neural network, f(x;@) [181]. The data distribution modeled as

ef (x30) 593

polx) = = 2.29

is learned by maximizing the likelihood maxy ZZN pe(x;) where x; represent
individual data points. The normalization (partition function in physics)
Zy here is intractable, making it difficult to carry out the maximization.
In score-based models, instead of modeling py, the score function sg(x)
is approximated with a parameterized function f(x;6) and learned. The
score function is given by V, log[p(x)], which eliminates the normalization
constant as

sg = Vg loglpe(x)] = =V« f(x;0) — VxZy = —Vx f(x;0). (2.24)

The score function is learned by minimizing the Fisher divergence between
the data and model score function:

L(0) = Ep = ||V loglp(x)] = so(x)][3- (2.25)

Since we cannot compute the score for the data Vlog[p(x)], a partial-
integration trick is used for the minimization of

N 1
L£O)="Y [tr[VXSe(Xz’)] = 5llsa(xa)ll} - (2.26)

=1



32 Machine learning

Once L(0) is optimized using data samples x;, we can generate new samples
using Langevin dynamics iteratively as

X1 = X} + €V, log(pe(x')) + V2ez;, (2.27)

with ¢ = 0,1,2,...,T and where z; ~ N(0,1) is a noise vector. In the
limit € — 0 and 7" — oo, these iterative steps converge to a sample x’ that
follows the data distribution (under some conditions) [182].

Score-based models faced issues in areas of low probability density
with few data samples while approximating the score function. These
issues were tackled by adding noise perturbations at different scales to
the data, allowing learning of the score function in low probability density
regions [172].

Diffusion models, specifically denoising diffusion probabilistic mod-
els [105], use the idea of constructing a reversible diffusion process that
takes a data input x and slowly corrupts it with noise in discrete steps
formulated as a Markov chain x, ..., x¢,X;—1,...,X1,X0 [183]. The chain
completely transforms the input into a random vector xo = z and the
transition probabilities are given as p(x¢|x;—1) = N (z¢; 2e-1v/1 — By, Bi]l)
where we used the Gaussian function N (x; u, SI) with mean p and noise
scale defined by [ for tractability. A series of positive noise scales define
the amount of perturbation for the data at each step: 0 < f1,..., 7.

The reverse of this noisy process is parameterized with neural networks
as pp(xi—1|ze) = N (z4—1; po(xr, 0pl)) and learned such that it matches the
time reversal of the forward Markov chain.

Many other approaches to generative modeling have also been proposed,
such as stochastic score-based models that use a stochastic differential
equation to approximate the forward and reverse steps [172]. Differential
equations have also been used to tackle generative modeling using neural
differential equations [184]. The structure of normalizing flows resembles
a reversible quantum circuit. Similarly, diffusion models can be imagined
as the evolution of a quantum system interacting with its environment
that gradually injects noise. Therefore, there are interesting connections to
explore between quantum physics and generative models in the future.

In the discussion so far, we have only tackled the modeling aspect
of machine learning with some indication of how the parameters of such
models can be obtained by minimizing a loss function. In the following
sections, we dive deeper into the parameter estimation task, the relation to
inverse problems, ill-posedness, and how to tackle it with regularization.
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2.4 Parameter estimation and inverse problems

Parameter-estimation problems exist in all fields of physical sciences involv-
ing various techniques to obtain parameters of interest defining a model
f(x;0) over some space with parameters # using data (x,y). The parameter
and data spaces are typically Banach or Hilbert spaces, where a distance
measure can be defined using the norm.

The term inverse problem encompasses parameter estimation tasks
where we have a model for the forward problem relating inputs to outputs.
The forward problem is computing the output y given inputs x using a
model with parameters #. The inverse problem is finding the solution to
estimating model parameters 6 such that the model predictions match the
expected output y ~ f(x;6). A central question in such problems is the
concept of ill-posedness of the problem. Three key elements of this question
are (i) the existence of a solution, (ii) the uniqueness of the solution, and
(iii) the continuous dependence of the solution on data. These criteria
ensure a consistent mathematical model and a reliable description of the
physical process connecting the model parameters to data. Problems failing
to meet these criteria are known as “ill-posed” problems.

A simple example of the ill-posedness of an inverse problem can be
discussed using a linear model given by

F(X:0)=X-0 (2.28)

for an input matrix X of dimension m x n, with a n—dimensional parameter
vector #. The inverse problem is computing § = X!y given some data
vector y of dimension m. The linear system of equations will always have
a unique solution if X is not rank deficient, i.e., m = n where the rank
of X is min(m,n). However, if the determinant of X is zero, we have an
ill-posed inverse problem [185].

In addition to ill-posedness, problems can be conditionally ill-posed,
where small perturbations in the data lead to large errors in the estimated
parameters. In some problems, even if we fulfil the conditions for well-
posedness, additive noise given by y + dy will lead to a significant error
in the model parameters since the relative error depends on the condition
number of the matrix X as

00 _ oy
NOBIT =1y ol (2.20)

1 Iyl

Therefore even in the simplest parameter estimation or inverse problem for-
mulation involving linear systems, there are several difficulties. Ill-posedness
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and ill-conditioned solutions can arise due to noise, imperfect measurements,
or insufficient data. It can also occur when the chosen measures generating
the data or model are inadequate for accurately capturing the relationship
between the data and the model. Various strategies can be employed to
tackle such problems, including modifying the model, collecting additional
data, or incorporating prior knowledge as parameter constraints.

Machine learning also aims to learn a relationship f that can predict
outputs for new inputs after training on a dataset of samples (x;,y;).
However, the model function is often considered a generic class of learnable
functions, e.g., a neural network, in contrast to parameter-estimation
tasks in the sciences, where the model is known. Recently, using neural
networks to map input-output relationships for scientific data has been
quite successful even though they represent ill-posed problems [143, ,

].

Parameter estimation, inverse problems, or machine learning follow a
similar strategy to obtain a model function f using an expected risk. The
expected risk measures how well the model predicts the outputs using a
positive loss function and minimizing its expectation given by

Rl = [ 1oss(/(x), y)dp(x,y). (2.30)

Minimizing the expected risk becomes challenging since we only have
access to a finite set of examples (x;,y;) and do not know the data distribu-
tion. Further, a reasonable choice of the loss function is essential, one that
can be tractable and optimized, e.g., a convex function. A least-squares
minimization approach [187] is often used where a hypothesis space such as
a Reproducing Kernel Hilbert Space (RKHS) H [188] is constructed, and
functions that minimize the following expression are desired:

1T & 2
min [ Z(f(xi) —yi) |-

fer|n =

(2.31)

The choice of an RKHS ensures that functions f and g that are close in
their norm |[|f — g¢|| are also pointwise close || f(x;) — g(x;)||, giving us a
sense of distance.

Minimizing the expected risk is one approach to estimating the param-
eters of a model expressing a relationship between data. Alternatively,
consider the task of learning a probability distribution p(x) from samples
of x that give an empirical value for the probability y ~ p(x). In such
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problems, we would like to obtain an approximation for the underlying
probability distribution of the data through maximum likelihood estimation.

Thus, learning from examples in machine learning can be seen as solving
ill-posed inverse problems, where the model is learned from the data rather
than being explicitly designed.

2.4.1 Bayesian estimation

Bayesian estimation is a powerful approach that offers a way to include
prior knowledge about the parameters of a statistical model and provides
uncertainty estimates for parameters. Bayes’ theorem provides the frame-
work for updating beliefs about model parameters € based on observed
data y as

Pposterior (9|X) _ Dlikelihood (X‘ ) Pprior ( ) ’ (232)
Pevidence (I’)

with Pevidence(X) the marginal likelihood of the data, given by the integral

/ Plikelihood (X]0)Pprior (6)d6. (2.33)

The goal is to infer the posterior probability distribution of the pa-
rameters given the observed data representing our knowledge about the
parameters and considering the priors. We obtain the full posterior dis-
tribution for the parameters instead of a point estimate and therefore
can compute uncertainties and make probabilistic predictions. The set of
parameters 6* that has the highest posterior probability [maximum a pos-
teriori estimate (MAP)] can be reported. The MAP matches the maximum
likelihood estimate when we assume a uniform prior for the parameters,
limiting them to some range, e.g., § € [a,b].

The uniform prior is sometimes referred to as non-informative (al-
though it does contain some information) following a recommendation by
Bayes/Laplace. It is not invariant under a reparameterization [189] — if
we have no information about a parameter 8, then we should also have no
information about any reparameterization such as ¢ = 62. However, for a
one-to-one function ¢ = g(0), the change of probability theorem gives the
probability for ¢ as p(¢) = \d% g~ (¢)|, which is not uniform.

A systematic way of constructing non-informative priors that are also
invariant to reparameterization was devised by Jeffreys using the Fisher
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information defined as the variance of the score function

I1(0)=E [(8])“1‘6“15"?(’('9))2] ) (2.34)

The Jeffreys prior is given by p(f) « /I(f) and is invariant under
reparameterization. The Fisher information represents the amount of
knowledge the data provides about a parameter 6, representing the curvature
of the likelihood. If the Fisher information is high, the likelihood function
is sharply peaked, and therefore the parameters have a high probability; on
the other hand, for a flat curvature, we are more uncertain and hence have
a low prior probability for the parameters #. The influence of the prior is
therefore minimized if we have more information about it via the Fisher
information.

Bayesian estimation is, therefore, a powerful approach for solving param-
eter estimation and inverse problems in scientific contexts [190]. Computing
the posterior distribution can be challenging due to the intractable evi-
dence term. However, Markov Chain Monte Carlo (MCMC) methods like
Metropolis-Hastings or Gibbs sampling can sample from the unnormalized
posterior distribution, providing parameter samples directly. We will dis-
cuss MCMC methods in the next chapter. Bayesian estimation can also
help develop adaptive measurement schemes to guide data collection during
estimation.

We use Bayesian estimation in quantum tomography for the results in
Paper X to leverage prior knowledge and assumptions. The priors signifi-
cantly reduced the need for data and could handle noise more effectively.
Bayesian estimation was crucial to obtain the results since experimental
limitations prohibited collecting a lot of data, and the data had significant
noise. In such a scenario, the Bayesian approach was superior to a black-
box technique, such as using a neural network or point estimates given by
maximum likelihood estimation.

2.4.2 Maximum likelihood estimation

Maximum likelihood estimation (MLE) provides a principled approach to
estimating the parameters of a statistical model based on observed data.
Many mathematicians, including Lagrange, Bernoulli, Laplace, Gauss, and
Fisher, have studied MLE and it has an interesting history marred with at-
tacks, inconsistencies, and triumphs [191]. MLE aims to find the parameter
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values that maximize the likelihood function, which measures the probabil-
ity density of data under an assumed statistical model parameterized by 6
as

£(0) = [T pixilo). (2.35)
=1

Instead of directly maximizing the likelihood, it is often more convenient
to maximize the log-likelihood function as it simplifies calculations and does
not affect the location of the maximum point. The log-likelihood function
also converts the problem into a sum over all data points as

00) = ilogp(xﬂ@). (2.36)

=1

To estimate the parameters that maximize the likelihood, we solve the
optimization problem
g = arg max 0(0). (2.37)

The MLE approach has a connection to the least-squares minimization first
discussed by Gauss [192]. It can be shown that maximizing the likelihood
of data assuming independent and identically distributed errors is the same
as minimizing the least-square error.

MLE, similar to least-square minimization, only provides a point es-
timate of the parameters that fit the data. However, it is important to
note that the MLE approach does not directly provide any measure of
uncertainty associated with the estimated parameters. Other limitations
such as sensitivity to outliers and biases can become an issue. In cases
where prior knowledge or additional information is available, Bayesian pa-
rameter estimation methods can provide a more comprehensive framework
for parameter estimation incorporating prior knowledge and quantifying
uncertainties.






Chapter 3

Optimization with constraints

“Nature is thrifty in all its
actions.”

PIERRE-LUIS MAUPERTIUS

The principle of least action is one of the most fundamental laws of
nature that is applicable in different scenarios — from deriving Newton’s
equations to path integrals in quantum physics. It states that the evolution
of a system follows paths of least resistance, minimizing the action. Pierre-
Luis Maupertius famously stated, "Nature is thrifty”, but does nature really
work by optimizing over all possibilities before evolving a system? This
paradoxical principle also raises questions about predetermination [193].

At the heart of it all is optimization, a crucial technique used across
disciplines — from scientific modeling and engineering to machine learning.
In many optimization problems, we are only interested in a feasible subset
of possible solutions, which leads to constrained optimization. In physical
systems, such constraints are enforced naturally, e.g., a spin can only have
two possible values. However, while modeling such physical systems and
optimizing these models, constraints have to be enforced mathematically.

Parameterizations that naturally enforce constraints are the most straight-
forward, where techniques such as Bayesian estimation can define a prior
parameter distribution that restricts which parameters are considered dur-
ing optimization. Regularization is another approach that implements soft
constraints by penalizing solutions that violate them. Projecting solutions
onto a feasible set is yet another approach towards constrained optimization
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Figure 3.1: (a) Optimization could involve finding the lowest-energy configuration
for a spin system. (b) Model fitting by minimizing a loss function using data. (c)
Constraints can be handled in various ways, e.g., if the feasible set of parameters
lies on a sphere, we could add penalty terms that add a cost to violating the
constraint. Projections find the nearest feasible solution after an unconstrained
optimization. A reparameterization could transform the constrained optimization
into an unconstrained problem. Finally, some techniques only search the space of
feasible solutions by cleverly traversing from one feasible point to another.

while some techniques are designed to only explore feasible solutions. All
such methods have their advantages and disadvantages, e.g., it might not
always be easy to find good parameterizations, or they lead to a more
difficult optimization problem. Projections might be costly while only
searching the feasible sets could lead to various overheads. In Fig. 3.1, we
give a visual explanation of these approaches.

In addition, constraints play a crucial role by restricting the optimiza-
tion and therefore decreasing the requirement of data in some problems.
Regularization and priors can simplify problems to exploit structure, also
making the optimization robust. We use different constrained optimiza-
tion and regularization techniques in Papers I-X (except V) that enforce
quantum-mechanical constraints while making optimization robust and
data-efficient.

This chapter discusses several such constraints and optimization algo-
rithms. We heavily rely on gradient-based optimization and its modifica-
tions. It was humorously quoted that gradient descent can write better
code than humans [194], and it remains almost the only available method to
optimize models with millions to billions of parameters [195, |. However,
as ubiquitous as it is, recent research has also explored its limitations [197].

Differentiable programming broadens the scope of gradient descent and
neural-network-based problem-solving. We show that not all problems
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require neural networks, but still can benefit from the ideas of differentiable
programming, regularization, and gradient-based optimization in Papers
VI and VIII. In Paper X, we utilize Bayesian parameter estimation with a
Monte Carlo method to navigate complex search spaces and obtain samples
of parameters that allow uncertainty quantification. The Hamiltonian
Monte Carlo method used in Paper X is discussed along with convex
optimization since we benchmark our proposed method against compressed-
sensing techniques that use convex optimization in Paper VI.

Therefore, this chapter continues the discussion from modeling to finding
the parameters of models via optimization under constraints.

3.1 Regularization, constraints, and priors

Parameter estimation optimizes some loss function, £(6), to fit a model to
data, see Fig. 3.1. In many problems, the data could be noisy or insufficient,
leading to an ill-posed problem. However, if we assume that the model
should have sparse parameters, i.e., we want simpler models, regularization
can be applied by using the least absolute shrinkage and selection operator

(LASSO) [105]:

0" = arg min ||£(x; 6) - yl3 + Aol - (3.1)

Here, A > 0 is a so-called hyperparameter that defines the regularization
strength and || ||z, is the L; norm. LASSO effectively selects sparse models.
It is especially useful for ill-posed optimization problems, mitigating noise
effects. The right choice of A is crucial to balance the so-called bias-variance
tradeoff, as we see in Paper VIII. High bias with strong regularization
overlooks features in the data, while low regularization leads to overfitting
noise. However, LASSO has limitations that require consideration [199],
e.g., a strong regularization might not recover the true model.

Alternative norms like the k-norm (Lj) are possible penalties:

1
E

(3.2)

101l ,, = (Z |0i|k>

The Ly norm defines the so-called ridge regression (Tikhonov regulariza-
tion [200]) and promotes small but possibly non-zero parameters. The
loss gradient is proportional to the current value of the parameter and
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therefore with smaller parameters, the regularization effects are weaker. In
contrast, LASSO quickly pushes parameters towards zero as the gradient
of the regularization term is independent of the current parameter value.

In the Bayesian view, LASSO uses a Laplace prior on the parameters
that is sharply peaked at 0:

p(0) = e, (3.3)

where A = % matches LASSO’s regularization strength. Similarly, the Lo
penalty can be shown to be equivalent to setting a Gaussian prior on the
parameters with the regularization strength determining the width of the
Gaussian.

In parameter estimation, L; regularization (LASSO) is particularly
useful when dealing with high-dimensional data, where the number of
parameters is large compared to the number of available samples. L1
regularization encourages sparse solutions, effectively performing feature
selection and identifying the most relevant variables. This sparsity-inducing
property can help identify key predictors or reduce the problem’s dimen-
sionality, leading to more interpretable and efficient models.

On the other hand, Lo regularization (ridge regression) is beneficial
when dealing with correlated or collinear predictors. By penalizing large
parameter values, Lo regularization encourages parameter shrinkage and
reduces the impact of individual predictors. This can improve the model’s
stability and generalization performance by reducing sensitivity to noise or
small perturbations in the data [201].

We already saw two ways to incorporate prior knowledge and con-
straints: regularization and setting Bayesian priors. While regularization
only represents a soft way to bias solutions, Bayesian priors strongly enforce
constraints by defining the parameter distribution. In Paper X, we use a
Bayesian approach to reconstruct a density matrix. The priors in the estima-
tion are guided by experimental knowledge and physics-based constraints.
Priors represent our beliefs or knowledge about the parameters before
observing any data. By choosing appropriate prior distributions, we can
encode our understanding of the parameter values and their relationships
based on physical laws or empirical evidence.

Another way to strongly enforce constraints is by constructing a pa-
rameterized model to enforce physical constraints directly. We will discuss
some of the methods to strongly enforce physics-based constraints in the
next section.
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3.2 Physics-based constraints

In many real-world problems, physical constraints can help guide the
parameter estimation process. These constraints are often derived from
fundamental principles, empirical observations, or expert knowledge in
the field and incorporated into the modeling. We discuss some ideas to
implement physics-based constraints below and how they can be combined
with data-driven techniques.

3.2.1 Hermiticity

Hermiticity or self-adjointness is a fundamental constraint in quantum
physics. One of the basic postulates of quantum mechanics is that a
quantum state is described by a complex vector in a Hilbert space acted
on by Hermitian operators H. The observable quantities for the state, e.g.,
energy, are given by the (real) eigenvalues of the operator and any quantum
states can be written using the eigenbasis of such an operator.

We can parameterize H as the output of a function, H(x;60) = f(x;6),
such as a neural network. The input x can be set to a constant value. Then
the Hermitian matrix only depends on the parameters 6. While it is not
clear how to restrict # such that the neural network outputs Hermitian
matrices, we only need to ensure HT = H. We can do that by transforming
the output as

H+ HT
=2t (3.4)
2
Another way to enforce the Hermitian constraint is to consider the so-called
Cholesky decomposition [202] of a matrix given by
H' =TT, (3.5)

where T is a lower-triangular complex-valued matrix with real entries
on the diagonal. Instead of parameterizing H, we can now parameterize
T(x;0) = f(x;0) as the output of a neural network. Such a decomposition
has been used in several quantum-tomography formulations since Ref. [203].
Since all the steps in these constraint implementations are differentiable,
gradient-based optimization works in such problems that have Hermitian
constraints. We use this construction in Papers I and II for quantum state
tomography with neural networks.
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3.2.2 Positive semidefiniteness

The Cholesky decomposition enforces another important physical constraint
in quantum mechanics - positive semidefiniteness. Positive semidefinite
matrices P obey the constraint (¢| P |¢)) > 0 for any |t). Positive semidefi-
niteness is an important property of quantum states represented as density
matrices. Note that the complex coefficients defining the pure state vectors
do not play a role here since taking the conjugate gives |c,|?, which is
always positive.

Therefore, for any state vector 1;, the density matrix should obey
(i] p[tbi) > 0, i.e., it is positive semidefinite.

3.2.3 Unitarity

A complex square matrix is unitary if its inverse is given by the conjugate
transpose, i.e., U~' = UT such that UTU = I. Unitary matrices are used
to represent transformations of quantum state vectors that are linear and
preserve the norm. The transformation [¢)') = U |¢)) makes sure that for
a state |¢), its coefficients can still be interpreted to give probabilities
Si|ch|? = 1. Transformations of quantum states are therefore represented
as unitaries, which also can act on mixed quantum states as

P =UpUT. (3.6)

If we parameterize unitaries with learnable parameters 6 (we ignore the
data x) that could, for instance, be the output of a neural network, how can
we ensure that they remain unitary? In machine learning, such matrices
have been used to propose deep neural networks that retain stability against
vanishing or exploding gradients since they have an eigenvalue of 1 [204].
We use similar ideas in Paper III for the optimization of quantum gates.
Unitary matrices are also the main ingredient for quantum algorithms,
variational quantum circuits, and quantum machine learning.

There are several ways to create parameterized unitaries and implement
the unitary constraint. In Ref. [204], the authors propose using a set of rota-
tion matrices {R;;} and a diagonal matrix D to write U = D[], H;;ll R;;,
where R;; are identity matrices with the following elements replaced by
parameterized functions:

Ry Rij\ _ i cos0;; —e'i sin 0 (3.7)
Rji Rjj sin Hij COS (91']‘ ' '
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Other parameterizations are possible, e.g., by using quantum gates. In
Paper 111, we use the so-called selective number-dependent arbitrary phase
(SNAP) gate [205] given by a diagonal matrix and displacement operations
to construct arbitrary unitary transformations. Learning unitaries through
gradient descent was explored in Ref. [206]. Another approach to imple-
menting the unitary constraint was proposed in Ref. [207], where, starting
from a unitary matrix, gradient-based updates project the outcomes to
a unitary manifold. The projective approach more generally falls under
Riemannian optimization techniques, which were used in Paper VIII and
will be discussed in the next chapter.

3.24 Complete positivity

Quantum operations are represented by linear transformations of density
matrices @ : C"*"™ — C™*™ that can be generally written as

D(p)ij = ngji,lkpkl- (3.8)
Kl

The tensor @; ;. is a particular representation for the map; several other
such representations exist [208]. For the result of the transformations to be
a valid density matrix, @ must be completely positive. Complete positivity
means that the map transforms positive matrices into positive outputs.
Choi’s theorem on completely positive maps offers one way to ensure this
with Kraus operators { K} [209] that act as

B(p) = > KipK]. (3.9)
k

The Kraus operators can be parameterized in any way, e.g., as the output
of a parameterized neural network f(x;6), or simply as matrices. How-
ever, the Kraus representation only implements complete positivity. The
density matrices should also have unit trace. Therefore, in addition to
positive semidefiniteness, quantum dynamics should be trace-preserving.
The trace-preserving condition is not easy to implement with any parame-
terization [210] or as a linear constraint. We discuss in the next section how
Riemennian optimization can implement the trace-preserving condition.

3.2.5 Differential equations

Differential equations describe the dynamics of variables with complex
relationships. They are used for expressing laws of nature and find appli-
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cations in various fields, from biology to finance. A classic example is the
ordinary differential equation (ODE) describing population dynamics — the
Lotka—Volterra model that can be augmented by parameterized functions
such as a neural network [211].

Neural ordinary differential equations are written as

PO fxt) :6). (3.10)
where f(x(t),t;60) is a neural network. In such differential equations, choos-
ing the structure of the right side allows us to incorporate physics-based
models from theory but also extend them to fill a gap between theory and
data, especially noisy real-world data. The training of such models is more
involved, requiring advanced techniques that provide gradient information
through the adjoint method or implicit differentiation [211].

3.3 Optimization with gradients

Gradient-based optimization is one of the most popular and successful
optimization algorithms. It is the workhorse of modern deep learning and
various other scientific disciplines. Gradient descent aims to optimize the
parameters 6 of a function £() using gradients iteratively, with n > 0

being the step size:
oL

/

0 —9—77%. (3.11)
The vanilla gradient-descent algorithm can be adapted to various situations.
If the function L(0) is data-dependent, e.g., the least-squares loss function
L) = SN||f(xs;0) — yi||3, a single gradient update requires calculating
gradients for the entire dataset. Stochastic gradient descent (SGD) performs
updates for each (x;,y;), while mini-batch gradient descent makes updates
for batches of data with n examples. It has been seen that stochastic gradient
descent converges to the minima of convex and non-convex functions with a
slowly decreasing step size. However, the simplest approach could get stuck
in local minima, have slow convergence, strongly depend on the learning
rate, and face a range of other issues, e.g., sparse gradients.

Several improvements to the SGD algorithm have been proposed to
solve various issues. Momentum accelerates SGD by dampening oscillations
around local minima and pushing it towards updates in previous steps using
the vector

oL
v = YUi_1 + n@, (3.12)
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with the fraction ~ usually set to 0.9. The SGD update rule is modified to
9I =60 — Vt. (313)

In Ref. [212], a number of such modifications to gradient descent are
presented. The adaptive gradient method (AdaGrad) considers the structure
of the data to adapt the learning rate for different parameters based on
the past gradient information. Larger updates are made when gradient
information for a variable is sparse and smaller updates otherwise. In
AdaGrad, learning rates could diminish rapidly, so the RMSProp method
normalizes the learning rate with a term that depends on an exponentially
moving average of gradients. We use the Adaptive Moment Estimation
(Adam) optimizer [213] for the results presented in several of the appended
papers. Therefore we will briefly explain the algorithm below.

The Adam algorithm uses the two first moments of the gradients by
maintaining an exponentially moving average of the gradient m; and the
squared gradient v; given by

my = Bimy—1+ (1 — B1)g,
v = Povgr + (1 — /Bl)tha (3.14)

where g: = Vg, L(0;) represents the gradient at step ¢ and g1, 52 are positive
coefficients. The exponentially moving average term comes from the idea
of exponential smoothing of noisy time-series data x;, where the next best
estimate s; is considered to be s; = By + (1 — 3)si—1. The initial values
are often set to 0 for m; and v; which leads to a bias. In Adam, the bias is
corrected as

m, =
' 1—(B1)"
/ Ut
vy = ———, 3.15
t 1— (ﬂQ)t ( )
(3.16)
such that the update rule is

n ’
0 =0— ——mj, 3.17
m+ Emt ( )

where € is a term for numerical stability usually set to 1078, The default
values for 51 and By are set to 0.9 and 0.999 but can be optimized with
hyperparameter optimization.
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In order for gradient-based optimization to work, we require the gradi-
ents VyL(0) for very complicated functions and computer programs. The
backpropagation algorithm [164] allowed gradient computation for neural
networks and recently automatic differentiation tools have made it easier
to write computer programs that calculate gradients easily.

3.3.1 Backpropagation

Backpropagation works by propagating the errors from the output layer
of a neural network to the input layer in a reverse direction. It can be
understood through four fundamental equations that are derived using the
chain rule [2141].

@

Let us define the error term ¢ jl as the gradient of the loss function with
respect to the intermediate output zé of a feed-forward neural network :

6(1) B oL

J T 9.0
8zj

(3.18)

For a mean-squared loss, the error term in the final output layer can be
computed as
6jL x (0(z1) —y) ®o'(z1), (3.19)

where o represents the activation function, ® denotes element-wise mul-
tiplication, and L denotes the final output layer. To compute the error
terms 55» in each layer, we can use the error terms in the next layer 6?1

and apply the chain rule:

! 32/@“ I+1
8=y o 5, (3.20)
k J

dz I+1 171 . I+1

where = 0}, ;o (z]) represents the gradient term and 6 ;~ represents
j

the weights. Once we have the error terms for each layer, we can compute

the gradients with respect to the parameters as

oL -1yl
— =)ol (3.21)
0., koo

Backpropagation computes the gradients for a single training instance,
but for a loss function that can be averaged over multiple training examples,
the gradient computation is straightforward.
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3.3.2 Automatic differentiation

The backpropagation algorithm, along with gradient-based optimization,
has been a key factor in the success of neural networks in various tasks,
including parameter estimation. However, it is important to note that
backpropagation is not limited to neural networks and can be applied to any
computational graph where the gradients need to be computed efficiently.
The concept of automatic differentiation extends beyond backpropagation
and plays a crucial role in differential programming. It is a technique
that allows the computation of exact gradients in a constant time, unlike
symbolic differentiation or numerical computation using finite difference
methods [215, 216].

Phil Wolfe made an observation regarding how difficult it is to compute
the gradient of a scalar function with respect to n terms and the cost of
computing the function itself [215]:

“If care is taken in handling quantities which are common to
the function and derivatives, the ratio [between cost of gradient
evaluations and evaluating the function] is usually 1.5, not n+1.”

Andreas Griewank [215] showed that this observation is a theorem with the
upper bound on the ratio as 5. Therefore automatic differentiation makes
it possible to compute gradients of a complicated function with the same
effort as evaluating the function.

Two modes exist for automatic differentiation — forward and reverse
mode (backpropagation). The key is to break down the computation of a
complicated function into a sequence of simpler elementary operations such
that the chain rule can be exploited for calculating gradients. Forward-mode
differentiation works as follows for a series of transformations that take
data and parameters to an output for a loss function (x;60) — f(x;0) —
g(f) — L(g) by evaluating the expressions

f(x:0),Vof = g(f), Vg — L(g)Vy, L. (3.22)

The total gradient is then computed by taking a product of the intermediate
terms. The forward-mode computation, therefore, has to store all the
intermediate gradients. If the number of terms in the output is large,
forward mode requires large memory. It is, however, fast, as it requires
only one forward pass.

Reverse-mode differentiation has an advantage for functions with fewer
outputs as it does not store the gradients. It only requires keeping track of
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the intermediate outputs and recording how different intermediate terms are
connected in a computational graph describing the function and therefore is
more efficient [216]. In practice, a combination of forward- and reverse-mode
differentiation can be used for arbitrary learning problems, depending on
the specific requirements.

3.3.3 Optimization on manifolds

In this section, we present some details about extending gradient descent to
manifolds where the parameters have certain restrictions, e.g., they lie on
the surface of a sphere. A pedagogical discussion of manifold optimization
can be found in Refs. [217, |. Here we review the core concepts in a
concise way following the discussion in the Supplementary section of Paper
VIII. In Fig. 3.2, we present an illustration to explain the core ideas.

The simple gradient-descent algorithm solves the unconstrained mini-
mization

argmin £(6) (3.23)
OcR™

using a loss function L : R™ — R. The search space for the parameters
is implicitly assumed to be a Euclidean (flat) space. The optimization
is unconstrained because the parameters can take any value in R™. A
Euclidean space is a vector (linear) space that has a norm defined using the
inner product. The norm induces a notion of distance between the elements
0 and the inner product can be used to generalize the concept of a gradient.

A manifold M is a set that has a notion of closeness between elements.
We can generalize points on Euclidean space to any other set, e.g., the set
of orthonormal matrices. A coordinate chart ¢ maps the abstract elements
of M to real numbers ¢ : M — R”. Smooth manifolds are those that can
be locally mapped to a Euclidean space, i.e., around some point § € M,
we can define a composition using a smooth function g : R — R™ to map
elements of the manifold to real numbers as

pog: M —R" - R™ (3.24)

We can now define curves on the manifold ¢(t) that give smooth maps
from open subsets of the real line to elements on the manifold ¢: R — M:

poc: M —R—R" (3.25)

Gradient descent can be regarded as moving along such curves to
minimize a cost function. The idea of a directional derivative for arbitrary
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0 Retraction

Figure 3.2: Gradient descent on a manifold M starts by initializing # € M and
calculating the cost gradient Vg£(6). Unlike the usual update 8’ = 6 — nVyL(0),
here, a descent direction v € Tpy is determined in the manifold’s tangent space.
The parameter update follows a curve on the manifold using a technique called
retraction. The retraction ensures that the update respects the descent direction
while keeping parameters on the manifold.

manifolds can be defined using the differentiability of a curve. The derivative
d(t) = % can be regarded as a velocity given by

¢(t) = Jim EFEM = ®

2
h—0 h (3.26)

such that the limit exists. The idea of a curve defines a directional derivative
for a function £ : M — R on the manifold as

DLEOW] = 1L 0B, (3.27)
where ¢(0) = 6, ¢(0) = v, and the chain rule applies. Curves and their
derivatives allow us to define a linear space — the so-called tangent space
given by TgM at any point 8 € M. The tangent vectors in this space can
be defined intrinsically without depending on the specific curve ¢ or the
choice of the the chart ¢ using the notion of an equivalence set Cy of smooth
curves passing through 6 such that for every curve we have ¢(0) = 6.

In order to formally define gradients that allow us to find directions in
the tangent space along which some function increases the most, we have
to first consider an inner product on the tangent space. An inner product
is a bilinear, symmetric, positive definite function that maps elements from
the tangent space to real numbers

() e s ToM x ToM — R. (3.28)

A choice of the inner product that smoothly varies for each point is called
a Riemannian metric. By smooth variation we mean that for any (v, w) €
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ToM x Tg M, the following map is smooth:
0 — (v,w)g: M —R. (3.29)

The metric enables us to define the so-called Riemannian gradient
VoemL(0) for a function £ on a manifold M uniquely. To find the Rie-
mannian gradient for a specific manifold and choice of metric, we connect it
to the Euclidean gradient of a smooth extension of £ around 6. A smooth
extension £ on the manifold is given by a map that defines a smooth
neighborhood around 6 for an embedding of M as a submanifold of the
Euclidean space. The Riemannian gradient can then be evaluated from the
definition

Df(@)[v] = (v, VoemL(0))s = (v, Vo L(0)) (3.30)

where VgL(0) is the Euclidean gradient. It is therefore possible to find the
Riemannian gradients Ve p£(6) from Euclidean gradients using the idea
of a smooth extension and the inner product.

Once we find the Riemannian gradient, we can iteratively update our
parameters along the curve on the manifold that decreases the loss function.
Once a descent direction is found, line-search methods find the best step size
by satisfying the so-called Armijo-Wolfe conditions for a sufficient decrease
of the objective function £ and sufficient increase in the gradient [219].

In Euclidean space, moving along the tangent is straightforward —
taking a step along a tangent direction v with stepsize t results in the
update ¢’ = 6 + tv. This notion of taking a step along the tangent is
formalized by a retraction on arbitrary manifolds. An exponential map is
one example of such a retraction that finds a geodesic ¢(t) following the
tangent vector v € Ty M such that ¢(0) = 6 and ¢/(0) = v where § € M
represents a point on the manifold and v € T'M represents the tangent.

A retraction can be seen as a continuous wrapping of the tangent space
to the manifold. The exponential map in the case of matrix manifolds
corresponds to the matrix exponential in some cases. It could become inef-
ficient to compute such exponentials for problems such as those considered
in Paper VIII. Therefore we find a retraction using the so-called Cayley
curve approximating the exponential map. The manifold that we optimize
over is the so-called Stiefel manifold representing a set of orthonormal
matrices. The orthonormality ensures that at each step, for the matrix Ky
the following condition is satisfied:

KKy = 1. (3.31)
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This is precisely the condition on a set of stacked Kraus operators to
represent trace-preserving quantum maps. We use this for our quantum-
process-tomography technique in Paper VIII.

We have so far focused on using gradient information for optimization
which might not be always possible, e.g., for non-smooth functions, when
gradient calculation is expensive and noisy, or when the optimization
includes probabilities or expectation values that are intractable. In such
cases, gradient-free optimization can be useful. One such approach is
Markov-Chain Monte Carlo (MCMC) [175], which is used in Paper X to
learn the parameters of a Bayesian model for a photoelectron’s density
matrix. We specifically use Hamiltonian Monte Carlo, which, however, uses
gradients again in a clever way.

3.4 Monte Carlo methods

Random search is a simple technique that explores the parameter space and
finds a minimum for the cost function simply through sampling. Simulated
annealing is another such approach that probabilistically explores the
parameter space making jumps depending on some criteria to solve global
optimization problems. Monte Carlo methods [220] are often used for such
optimization involving sampling. These methods generate random samples
of the parameter space, evaluate the objective function, and then use the
information to improve the result or for better sampling.

Recall that Bayesian parameter estimation aims to find the posterior
probability density of parameters p(6|x) modeling a data-generating process
given by Eq. (2.32). Analytically evaluating the posterior is often impossible
since we cannot evaluate the evidence term in the denominator. However,
Monte Carlo methods such as MCMC [175] allow an approximate sampling
of the posterior. If we can obtain samples around the mode of the posterior,
or the expected value, we find parameters that lead to a high posterior
probability fitting the data.

In higher dimensions, computing an expectation value by sampling
could become costly [175]. If we were to be efficient, we should only explore
relevant parts of the sample space that contributes significantly to the
probability density. The high-density regions define parameters that are
most likely. In MCMC methods, sampling in high-dimensional spaces
happens by constructing a Markov chain of parameters 6y, 61, ... such that
the stationary or equilibrium distribution of the chain corresponds to the
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target posterior p(f|x). The idea is to construct a chain that gives a high
probability to states proportional to the posterior such that sampling from
the Markov chain will give us samples from the posterior.

The transition probability T'(6;/6;—1) can be made proportional to the
ratio pf’e(fj)l (where the conditional dependence on data is implied) such
that the intractable evidence term in the denominator cancels out. The
random-walk Metropolis algorithm considers such a transition probability
where new states are proposed as a random perturbation of the current
parameters 0; = 6;_1 + €, with a Gaussian noise term. A transition is

accepted with the probability

min [1 p(6:) ] . (3.32)

’ p(0i—1)

In this way, we accept new samples that increase the probability or stay at
the same parameter setting. The randomness associated with sometimes
not making a transition gives the search a stochastic nature. There is a
warm-up phase where the initial samples are discarded. As we run more
steps in the chain, we enter a region of high density of the posterior.

The simple random walk faces challenges in high-dimensional spaces,
where we could end up in regions of low density. There is an exponen-
tially large number of directions to propose for new parameters in an
n-dimensional parameter space. Consider making unit steps for each di-
mension in two directions {+1, —1}. The number of ways to propose a new
vector is 2" while the density in the parameter space might be concentrated
only in a narrow volume [175]. We, therefore, need an effective strategy
to make large jumps in the parameter space and explore it. Hamiltonian
Monte Carlo is one such strategy that uses informed jumps for MCMC
exploiting the structure of the underlying distribution.

3.4.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC), also known as Hybrid Monte Carlo [175,
] is a method that uses Hamiltonian dynamics for MCMC. A momentum
variable, v, is introduced to define the joint probability density

p(0,v) = p(0)p(vl0), (3.33)

where the momentum density is generally assumed to be independent of 6,
i.e., p(v|f) = p(v). The momentum term allows us to move in the parameter
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space in a more effective way. If we associate the variable § with position
and define a Hamiltonian H (6, v), the canonical distribution over position
and momentum is given by

e—ﬁH(G,v)

p(0,v) = 7 (3.34)

where § is an inverse-temperature term and Z is a normalizing constant.
The joint distribution p(,v) therefore defines the probability to find some
system with energy H(6,v) in state (0, v).

We are interested in sampling from the parameter distribution and
therefore set the Hamiltonian as H(6,v) = U(0) + K(v), where K (v) is an
analogue to kinetic energy and the potential energy U () is set to

U(0) = —logp(bx) = —log[p(z|0)p(0)], (3.35)

where we have now ignored the constant term given by the log of the
evidence.

The HMC algorithm works by running Hamiltonian dynamics using
some method such as Euler or leap-frog [175] and accepting or rejecting a
new sample based on the energy term. The equations give the Hamiltonian
dynamics

w _ o
. ov’
dv oOH
E —_— _%. (3-36)

In contrast to the random Metropolis algorithm, HMC can explore the
parameter space more efficiently by using gradient information of the log
probability, similar to score-based generative models. These gradients can
be obtained by automatic differentiation since they only depend on the
likelihood and not the evidence term in Eq. (2.32).

If the kinetic energy term is set to K(v) = 3 >, vZ/m;, where m; is a
mass for the i™ parameter, we can see that its contribution to the joint
density is given by

p(v) e 2 v/ mi o N(0,0m), (3.37)

where oy, is a diagonal matrix of masses that could be set to identity and
N (i, 0) is the multivariate Gaussian distribution. Now, we can write the
steps for HMC to generate MCMC samples as
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e sample a momentum vector v ~ N (0, oy,)

e run Hamiltonian dynamics with H (6, v) for L steps with some step
size 1 to generate new (6’,v) that is accepted or rejected with the
probability

min {1, eH(G’”)_H(GI’U/)] . (3.38)

Independently sampling the momentum allows to escape bad directions
in the parameter space since if at some point the momentum points towards
a bad direction, subsequent resampling of the momentum will cancel its
effect. Since the equations are deterministic, i.e., starting from the same
position and momentum, we will always reach a fixed final state, the random
sampling of the momentum term is crucial. The momentum direction is
informed by the gradient of the log-likelihood since

v __OH _ dlos(p(6)) 539
dt 00 00

Therefore we move towards parameter configurations with higher posterior
probability using HMC.

It can be shown that the above construction of MCMC leaves the
joint distribution invariant so that the equilibrium statistics represent the
posterior probability density that we want to sample from. This condition
can be shown by ensuring that the so-called detailed balance equation is
satisfied for the probability density under HMC [175].

It is important to note that the hyperparameters L and ¢ must be chosen
carefully in HMC. A small number of steps L could lead to random-walk
behavior while large L becomes computationally expensive. To address this
issue, the No-U-Turn Sampler (NUTS) method [222] was proposed as an
extension to HMC that we use in Paper X. The complete NUTS algorithm
contains several insights and constructions that improve HMC, but we will
only describe the key ideas here.

The crucial step is that NUTS sets the condition to terminate the
Hamiltonian dynamics when the distance between new parameters 6; and
the current MCMC sample 0;_1 no longer increases. The change in the
distance vector %(Gt —6;-1)/2 can be shown to be the dot product between
the distance and momentum:

%(Qt — Ht,l)/2 = (9t - Gt,l) . %(gt - Gt,l) == (9,5 - Gt,l) - U. (340)
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Therefore, when the above dot product starts becoming negative, we are
moving back toward the initial state. However, we are not exactly retracing
the steps in the dynamics, so time reversibility is not guaranteed [175].
Recall that we also need a transition that obeys a detailed-balance condition
such that the target distribution remains unchanged and is truly the
posterior. The NUTS proposal solves this with a recursive approach that
builds a balanced binary tree of position and momentum values, integrating
in the forward and backward direction in time. A termination criterion
to stop building this tree is when the momentum vector at the end of the
forward and backward trajectory points inwards along the line connecting
the position vectors. A more extensive set of such criteria for HMC are
discussed and motivated in Ref. [175].

3.5 Convex optimization

Convex (concave) functions are those functions that satisfy the following
informal property: the curve of the function lies below (above) the chord
connecting any two points on the function. We can frame tomography
problems in quantum physics, e.g., reconstructing a quantum process matrix,
as the minimization of a linear problem over the set of positive-semidefinite
matrices, which is a convex set.

In some problems, we might be interested in minimizing a measure
of complexity in addition to fitting data; e.g., in compressed sensing, the
sparsity or rank of a signal is minimized. In quantum problems, the
rank of a matrix such as the density matrix could represent the purity
of the state. Similarly for quantum processes, nearly unitary processes
are low-rank. The rank of a matrix is however a non-convex function.
Nevertheless, a heuristic that works very well to minimize the rank of a
symmetric positive-semidefinite matrix is to minimize the trace, which is
a convex function [223]. The compressed-sensing formulation of quantum
tomography uses this heuristic to minimize the rank of a density or process
matrix while respecting inequality and other constraints, as we discuss in
the next chapter.

Let us discuss some basic ideas and algorithms for convex optimiza-
tion [224] to understand why compressed-sensing formulations that use
convex optimization might become computationally expensive for quantum
problems, as we see in Paper VI.

Mathematically, convexity is defined for a function f : R™ — R as the
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property that, for any (6, \) € R™ and t € (0, 1), the following equation is
always satisfied:

F(0) + (1 — ) () > F(t0 + (1 — D)A). (3.41)

Convex functions have several properties that make optimization easier
if the parameters also form convex sets. A convex set from the subset of
points in Euclidean space s: s € R" is where a line segment joining any
two points in the set lies inside the set. The points of a line and interior
points of a circle, sphere, square, or cube are examples of convex sets.
However, points on the edge of a circle do not form a convex set since a
chord connecting two points on a circle is not part of the circle.

Convex optimization solves the following optimization for a convex set
S and a convex function f: S — R:

Inein f); 6es. (3.42)

We can show that any local minimum in convex optimization is a global
minimum, along with rigorous guarantees on convergence [225]. Also, linear
and other convex constraints are easy to implement. If the set of feasible
parameters satisfies inequality constraints specified by convex functions g;,
the problem remains convex. Such problems can be formulated as

m@inf(ﬁ); gi(0) <0, i=1,...m. (3.43)

Assuming that both f and g; are differentiable, a solution #* can be shown
to be the global optimum if the so-called Karush-Kuhn-Tucker (KKT)
conditions are satisfied [225].

Convex optimization finds widespread use in quantum physics problems.
However, as we see in our benchmarks in Paper VI and other works [73], it
is not very useful for some quantum problems as the time for optimization
grows drastically as the system sizes increase. Ref. [73] reports that going
from a two-qubit to a three-qubit problem led to an increased memory
requirement of two orders of magnitude and several hours of processing
time.

First-order gradient-based methods developed in Paper VI use non-
convex formulations of the same problem and are able to scale better.
Nevertheless, a discussion of the core principles of convex optimization
is essential to understand their limitations. Convex optimization comes
with theoretical guarantees and therefore there were attempts to formulate
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many machine-learning techniques as convex problems, e.g., convex neural
networks [226]. In general practice, however, first-order gradient methods
work sufficiently well for non-convex optimization, such as training large
neural networks leading to their myriad applications.

Let us look at some basic ideas from convex optimization to understand
how they work and the possible difficulties faced.

3.5.1 The simplex method

The simplex method [227] finds the optimal solution to a convex optimiza-
tion problem by iteratively moving along the edges of the feasible region.
It represents a constrained optimization technique where we never leave
the feasible set. We do not use the simplex method in any of the appended
papers but will go through the basic concept to understand how such a
method works to solve constrained optimization.

The simplex method solves the following optimization to which any
other linear optimization task can be converted easily:

maximize o
such that A0 =10b;0 >0, (3.44)

where 6 > 0 means that for each element we have 6; > 0. We have m
constraints and n parameters. Therefore, the matrix A is m X n.

The set of feasible solutions satisfying the equality constraint is convex
and defines a so-called convex polytope — an extension of the concept of a
polyhedron to higher dimensions. A vertex of this polytope is an extreme
point that intuitively represents a corner or boundary, e.g., the endpoints of
a line segment. A point 6 is an extreme point if we cannot find two points
01 # 65 such that 6 = M0 + (1 — A\)fs for any 0 < A < 1, i.e., the extreme
point does not lie between two points in the set.

It can be shown that a maximum in the feasible region is given by an
extreme point [224, |. If the extreme point is not a maximum, moving
away from this extreme point along an edge strictly increases the value
of the objective function. The simplex algorithm uses this idea to move
along the edges of the polytope to find extreme points with higher objective
function values.

The algorithm starts from a so-called basic-feasible solution (BFS) that
satisfies the constraints and then updates it iteratively. A new solution is
found by updating the elements in the BFS. The so-called entering variable
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will be a column index with a positive coefficient in the objective function.
Increasing the value of the entering variable from a non-zero value will
require changing the values of the current solution to maintain feasibility.
A corresponding leaving variable can be selected that keeps the solution
feasible. In the revised simplex method, care is taken to make the algorithm
memory-efficient compared to the simplex method [227, 228]

Although the worst-case time complexity of the simplex method is
exponential in the size of the parameter vector 6, many real-world problems
can be solved in polynomial time [229]. However, determining the number
of iterations to reach the optimal solution is itself an NP-hard problem,
and it is unknown if polynomial-time algorithms exist to solve such linear
problems.

In the case of quantum problems, an important constraint is positive-
semidefiniteness, e.g., while reconstructing density or process matrices.
Such problems are solved using semidefinite programming [230] with meth-
ods such as interior point [231, ], conic solvers, and operator splitting
methods [233]. However, as we see in the next chapter, for quantum prob-
lems, it is very easy to hit the boundaries of convex optimization problems
even for modest-sized quantum systems, e.g., a 5-qubit quantum process
tomography task. In such problems, exploiting additional constraints and
structure, e.g., a low-rank assumption, can lead to improvements as we
show in Paper VI. Similar new ideas have emerged for large-scale convex
optimization using manifold optimization [15].

3.5.2 Semidefinite programming

A semidefinite program (SDP) is formulated as

minimize ct

such that A0 = b X >0. (3.45)

The positive semidefiniteness (PSD) constraint § > 0 can be seen as an
infinite set of linear constraints 270z > 0,Vz.

Therefore the boundary of the feasible set is an intersection of the
smooth boundary defined by the PSD constraint and the linear constraints
of the problem. Simplex methods will not directly work with such problems.

Interior-point methods can solve such SDPs by first performing an
unconstrained optimization on an objective function that includes a so-
called logarithmic barrier function [2341]. The barrier function penalizes
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parameters that violate the equality constraints and updates are ensured
to respect the PSD constraint. Interior-point methods have a polynomial
complexity; therefore, they are useful for solving large-scale SDPs. The
memory scaling is however quadratic. [231, , ]

We use a so-called splitting operator method — the splitting conic
solver (SCS) algorithm [233] — in Paper VI, for benchmarks against com-
pressed sensing. The SCS method is a first-order method that can tackle
larger problems than interior-point methods. The crucial step of ensur-
ing positive semidefinitenes involves an eigendecomposition that is solved
efficiently using a Linear Algebra PACKage (LAPACK), specifically the
dsyevr method [233] via a projection. This projection step becomes ex-
pensive for large matrices. Therefore, even if such semidefinite programs
straightforwardly encode learning problems in quantum physics, they could
become impractical for use, taking hours for small problems [73]. Instead,
we develop a more efficient approach that is not a convex formulation but
works well in practice, using gradient-based optimization.






Chapter 4

Learning quantum systems

“The simulacrum is never that
which conceals the truth — it is
the truth which conceals that
there is none. The simulacrum is
true.”

JEAN BAUDRILLARD

The challenge posed by the simulation of quantum systems with classical
computers sparked an interest in building quantum computers, as discussed
in Chapter 1. An essential step in this endeavor is characterizing a quantum
system by constructing a useful model to analyze the level of control we
have over the quantum system. Quantum state tomography estimates
parameters defining a model for the quantum state, such as the density
matrix p. In contrast, quantum process tomography learns how a state
transforms, p’ = £(p), where & is a representation of the quantum process.
In quantum control, the objective is to determine operations that drive a
quantum system toward a target.

In all such problems, the central aim is constructing a model for a
quantum system and fitting it to (noisy) empirical data. The model can
then predict outcomes for new measurements or be used to ascertain the
quality of targeted operations. The construction and estimation of such
models must adhere to constraints, such as positive-semidefiniteness, set by
quantum mechanics. Furthermore, it is desirable to use as few measurements
as possible to reduce experimental effort.
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However, as discussed in Chapter 1, quantum states and corresponding
dynamics are generally represented classically by exponentially growing
matrices as the system size increases. Learning such classical models
becomes challenging even for moderate-size quantum systems. The challenge
is both experimental — we require enough measurements to identify the
system uniquely — and computational — the data processing must be
done efficiently. In some problems, it may take hours [73] to weeks of data
processing [71].

A combination of priors, constraints, and clever algorithms allows us
to overcome many challenges associated with the large dimensionality,
noise in data, and the computational complexity of learning problems in
quantum systems. The structure present in some problems, e.g., a low
rank of the density matrix due to it representing a nearly-pure quantum
state, can greatly reduce both computational and experimental costs during
estimation. This chapter will discuss formulating such learning tasks
as machine-learning problems solved by various constrained optimization
techniques. The chapter puts in the context the results of all the Papers in
this thesis (except Paper IV) with the discussion so far.

4.1 Quantum states and their estimation

We start with learning the parameters of a model representing a general
quantum system as the mixture of pure quantum states, the density matrix

p=> prltr) (Wil (4.1)
P

where py > 0 denote probabilities, and [¢)) are complex-valued vectors in a
Hilbert space representing pure quantum states. Recall that any state vector
can be represented generally using the orthonormal basis vectors {|ey)} of
a Hermitian operator in the Hilbert space, as discussed in Chapter 1:

W}> = Z Cn ‘€n> . (4'2)

The real eigenvalues of these operators e, represent observable quantities
like energy or photon number. At the same time, the complex-valued
coefficients ¢, give probabilities |c,|? that add up to unity for a valid
probabilistic interpretation. The density matrix satisfies the condition

(Wlplp) =0 V. (4.3)
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This condition emerges from the orthonormality of the basis vectors that
selects the absolute values of complex coefficients from state vectors |¢),
combined with the non-negativity of the probabilities pg. Further, by
rewriting the density matrix in the orthonormal operator basis {|e;) (e;|}, we
see that the diagonal elements of the density matrix represent probabilities
and so should sum up to 1. Density matrices are, therefore, unit-trace
positive-semidefinite matrices, making them Hermitian such that pf = p.

A structure emerges for the density-matrix representation that has
parameterization to satisfy both unit-trace and positive semidefinite con-
straints using the Cholesky decomposition [203]

TiT

P = i) (44

where T is a complex-valued lower-triangular matrix with real diagonal
elements. Recall from Chapter 3 that this is one of the simplest ways to
enforce constraints — by reparameterizing the problem so that we can
run unconstrained optimization over 7. In Papers I and II, we use this
idea for quantum state tomography using neural networks by letting T
be a neural network’s output. By rearranging real-valued outputs from
a neural network into a complex-valued T, we can represent a quantum
state using the parameters of a neural network while ensuring its positive
semidefiniteness, see Fig. 4.1.

In order to estimate p, similar to learning a probability density, we need
samples of measurement outcomes, as discussed in Chapter 1. Measure-
ments can give stochastic outcomes, with the probability of any outcome
determined by the Born rule. Note that for a general measurement repre-
sented by an operator O, the Born rule defines the expectation value as we
show in Chapter 1:

(O) = tr[Op). (4.5)

We are interested in learning the underlying distribution for all mea-
surement outcomes by estimating pg(O) = tr[Opy], where we have cast
the problem as a generative modeling task faced in machine learning, as
discussed in Chapter 2. The parameters 6 can be the weights of a neu-
ral network such as an RBM [90] or a conditional generative adversarial
network (CGAN), as we discuss in Papers I and II.

Quantum state tomography addresses this learning task by choosing
measurement settings labeled by x, represented by operators {Ox}, running
an experiment to find the empirical expectation values or record samples
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Figure 4.1: Generative models approximate an underlying probability distribution
and learn it from data. We develop a method for quantum state tomography with
conditional generative adversarial networks (QST-CGAN) in Papers I and II. QST-
CGAN learns a representation of an underlying quantum state using experimental
data. (a) Reconstruction of expectation values for parity measurements on the
phase space by QST-CGAN. The measurement setting is given by a point in phase
space specified by a complex number 3. (b) The data is noisy and distorted from
the ideal target state (inset), even if it contains the main features. Specifying
the distortions mathematically in a model is difficult as we might not know the
noise sources beforehand. However, a neural-network-based approach could still
identify the state to classify it, as discussed in Paper II, or use the raw data’s
relevant features to estimate the density matrix. While standard generative
adversarial networks generate unconditional samples (c), the QST-CGAN in (d)
generates samples conditioned on an input measurement setting. This allows us
to adapt such a generative model for approximating measurement probabilities
p(Ox). The black-box nature of the generator is simplified by forcing a density-
matrix representation internally that obeys quantum-mechanical constraints. The
Born rule can then predict expectation values. However, interpretability comes at
the cost of scalability as the dimension of the density-matrix representation now
restricts us to small system sizes.
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of outcomes and then using the data to estimate p, which in turn defines
p(Ox) through the Born rule.

In most cases, the measurements are given by positive operator-valued
measures (POVMs), e.g., measuring the probability of being in one of
the orthonormal basis states (ground or excited). The measurements are
repeated on copies of the quantum state to obtain a frequency of outcomes
due to the probabilistic nature of quantum mechanics. Therefore the data
in this learning problem, (x,y), is given by the measurement operators Ox
and outcomes y representing the expectation value of the measurement (or
samples of outcomes).

We can also view the quantum-tomography task as an inverse problem
where we have a forward model given by the Born rule that defines the
relationship between model parameters, p, and observed data. The forward
model is linear as it consists of matrix multiplication, Cyp,p, = > OmkPkn,
and a trace, ), Cyum. If we take a single measurement operator with matrix
elements (Ox)mr acting on a density matrix with the matrix elements p,,
the forward model relating parameters to data is given by the Born rule:

tr[(’)xp] = ZZ(Ox)mkpkm
m k

(Ox)oopoo + (Ox)o1p1o + - -
> (O] (4.6)

J

In the last step, we flattened the density matrix to collect its elements
into a vector p/ and multiplied it with the elements from the appropriately
flattened O,’:.

If we collect the flattened operators for N measurement settings in a
matrix by stacking them together as A = [04,|0L,...|0L,] and put their
corresponding outcome probabilities (or expectation) in a vector b, we can
construct a linear system of equations defining the problem:

Ap;=bh. (4.7)

The term A is sometimes called the sensing matrix [33], and the solution
to the tomography problem is given by the inversion of this linear system
of equations. However, linear inversion does not guarantee positive semidef-
initeness of the density matrix and might be complicated when there is
noise in the data. It is also dependent on the condition number of the
sensing matrix A and the existence of the inverse.
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Linear inversion is rarely used for tomography (although we use a
hybrid method for QPT in Paper VII, based on linear inversion followed
by a projection step). Least-squares estimation is an alternative to linear
inversion that works well in practice with noise assumed to be Gaussian [230].
Least-squares estimation solves the minimization

min [|Apy — b3 (48)

which can be further improved with regularization, leading to sparse solu-
tions and better handling of noise in the data, as discussed in Chapter 3.

However, we still need to project the solution to a positive-semidefinite
matrix since this property is not guaranteed by least-squares estimation.
There are several proposals to project a matrix to a positive semidefi-
nite one, e.g., by discarding negative eigenvalues or finding the nearest
positive-semidefinite density matrix to the least-squares solution. However,
such projection steps could become computationally expensive and require
solving a sub-problem, as discussed in Chapter 3.

Compressed sensing with convex optimization is another approach to
solve the tomography problem defined as the linear inversion task, that
greatly reduces the required data [237, ]. Compressed sensing is a
technique to recover large signals from very few measurements assuming
low signal complexity, such as low rank or sparsity [237]. We discuss convex
optimization techniques in Chapter 3 used for compressed sensing.

In the compressed-sensing picture, we answer the question of estimating
a d-dimensional vector py from N measurements using the sensing matrix
A. In general, as soon as the rank(A) = d, we have a system of linear
equations that can give a unique solution to the inversion. It is often the
case that py is an almost pure quantum state and therefore has a low rank.
The states may have other structures that reduce their complexity, e.g.,
low entanglement. Compressed sensing, therefore, recovers a reasonable
estimate with far fewer measurement settings than the number of unknown
parameters. In Ref. [239], it was shown that for 7-qubit tomography a mere
127 Pauli-basis measurements, each repeated only 100 times, was sufficient
for state tomography using compressed sensing.

Instead of optimizing the least-squares objective, compressed sensing
solves the convex optimization task

min ||pf &
such that Aps=b; p>0, (4.9)
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where p > 0 is the positive semidefiniteness condition and || * ||¢ represents
the trace norm.

As we discuss in Chapter 3, it can be shown that minimizing the trace
norm minimizes the rank of the matrix. In addition, the formulation
of the problem with linear constraints keeps it convex. However, as the
system sizes increase, the sensing matrix will become large, increasing the
computational cost for convex optimization. As we discuss later for quantum
process tomography, compressed sensing becomes a bottleneck even for
moderately sized problems, e.g., three-qubit process tomography [73], due
to the convex formulation.

An alternative to linear inversion, least-squares estimation, or com-
pressed sensing for quantum tomography is maximum likelihood estimation
(MLE) [203]. MLE ensures a positive semidefinite reconstruction by pa-
rameterizing the density matrix using the Cholesky decomposition. MLE
determines the state by maximizing the likelihood

L(p) = HP(OXi; )Y, (4.10)

where x; represent measurement settings and g; represents the number Qf
times an outcome was recorded. The expectation value is given by y; = £,
using which the log-likelihood can be optimized to find an estimate for p:

L(p) = >_yilogp(Ox,). (4.11)

In Ref. [210], a simple steepest-ascent method was used to maximize the
log-likelihood with an iterative algorithm. In Papers I and II, we compare
our neural-network-based estimation methods to this iterative maximum
likelihood estimation, as well as the “superfast” MLE method of Ref. [211]
that was proposed to escape the issue of slow convergence for MLE using
gradient descent on the Cholesky factorization. A gradient-based approach
with neural networks, however, learns a quantum state with fewer iterations
and data by orders of magnitude compared to the MLE techniques, as the
results of Papers I and II demonstrate.

The iterative maximum-likelihood method has a nice guarantee to
converge due to the convex nature of the log-likelihood. However, there
is no guarantee that every iterative step will increase the likelihood, as
shown in Ref. [242] with a counter-example. Therefore it might take a long
time to converge. In Ref. [212], a diluted nonlinear iterative algorithm was
proposed for faster convergence and guaranteed likelihood increase. Still,
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due to the enforcement of quantum-mechanical constraints on the density
matrix and implementing a minimization in the space of unconstrained
operators, convergence is slow [211].

In Ref. [230], it was possible to develop a fast MLE method for state
reconstruction by assuming Gaussian statistics for the measurement noise.
The likelihood function is now changed to

L(p) x H exp|—(y; — tr(Oxip))]Q, (4.12)

where we have ignored constant terms. The log-likelihood function now has
a form similar to least-squares regression, and maximizing the log-likelihood
with the Gaussian noise prior could be related to least-squares minimization,
as we also discuss in Chapter 3.

As we discussed before, further improvements to MLE came with ap-
plying the “superfast” projected-gradient-descent technique in Ref. [241].
Here, the authors use an accelerated gradient-descent algorithm with a
“momentum” that helped to achieve faster convergence. To implement
the constraint of positive semidefiniteness and unit trace, the density ma-
trix is projected to the space of valid quantum states at each step of the
gradient-based optimization. This is achieved by discarding negative eigen-
values of the estimated density matrix and reconstructing it back from the
eigenvectors of the current estimate. With this adaptation, it was possible
to perform the state reconstruction of an 8-qubit state within a minute
and just hundreds of iterative steps. Although maximum-likelihood-based
reconstruction is widely used for state reconstruction, some authors have
pointed out its limitations compared to linear regression techniques [243]
and even questioned its admissibility [244, 245].

Measurement settings must be chosen carefully to satisfy the so-called
informational completeness condition as discussed in Chapter 1 to obtain a
unique solution. In simple words, IC entails collecting sufficient information
to uniquely identify the quantum state and compute the probability for
arbitrary measurements under our assumptions. It is not easy to always de-
termine the optimal measurements, and often over-complete measurements
are used, as we discuss in Chapter 1. Prior knowledge about the quantum
system, noise in the data, and our formulation of the problem determine
the amount of information required for tomography. It is, however, not
straightforward to incorporate prior information about complicated noise
patterns or the quantum state in the learning algorithm.
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In Papers I and II, we proposed a quantum state tomography method
that uses conditional generative adversarial neural networks (QST-CGAN).
The motivation was that neural networks might be able to learn patterns
in the data automatically for a better reconstruction of quantum states, see
Fig. 4.1. Patterns that are difficult to write down mathematically and get
distorted in noisy data, e.g., Schrodinger cat states consisting of two blobs
in the phase space with a pattern between them, could still be recognized by
neural networks after training. However as we discuss later in the context
of quantum process tomography, neural networks are not always essential,
and a more principled approach to include prior information and noise is
through a Bayesian estimation.

The QST-CGAN method approximates the probability of an outcome as
the output of a generative model. A discriminator network evaluates if such
probabilities predicted by the generator match the actual experimental data,
therefore, serving as a substitute for the loss function. We evaluated the
role of different loss functions in Paper II and studied how to incorporate
noise into the model.

The density matrix is the most general parameterization for a mixed
quantum state with an exponentially growing number of parameters. Other
efficient descriptions could exist for specific classes of states to reduce the
number of parameters that require estimation. Consider the example of a
Greenberger-Horne-Zeilinger (GHZ) state of three two-level systems, given
by
|000) + |111)

7 .
If we try to reconstruct the density matrix of an unknown GHZ state, we
only need the four density-matrix elements at the corners, given by the
coeflicients of

|GHZ) = (4.13)

1000000/, |111)111],|000%111], |111%000| . (4.14)

Similarly, consider a class of quantum states such as binomial quantum
states written in the Fock basis {|n)}. These states are a superposition of
Fock states with the weights given by the binomial coefficients [$8]

1 N+1 N +1
|wbinomial> = W = ( TT+L ) ’(S + 1)m> . (415)

The states are parameterized by the integers N and S. If we have such
prior information about the state, we can use an efficient representation
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of the state and learn a reduced number of parameters that can help us
reconstruct that state.

However, forcing the representation biases our reconstruction towards
our expectations. This bias could lead to results that are not faithful to
the actual experiment and a more flexible ansatz for the state is required.
In Papers I and II, we were motivated by the universal approximation
capabilities of neural networks to propose them as an ansatz for efficient
parameterizations of quantum states.

Other efficient representations such as a matrix product state [240]
or a tensor network [109] could significantly reduce the complexity of the
problem. Recent work on using a tensor-network method to simulate
a b3-qubit experiment using a small cluster of GPUs showed significant
success [217]. We can think of these approaches as using priors in inverse
problems and regularizations to restrict the search space of parameters.
Such parameterizations are interpretable and controlled in contrast to a
neural network.

Therefore we attempted to force a density-matrix representation for
interoperability in Papers I and II, see Fig. 4.1. Even though this idea
performed significantly better than maximum-likelihood methods, the expo-
nentially growing size of the density matrix limits its scaling. It was possible
to reconstruct a density matrix with orders of magnitude fewer measure-
ments. Still, we could not ascertain what allowed the neural-network-based
approach to perform significantly better than maximum likelihood estima-
tion. It could have been possibly due to the regularization and learning of
a non-trivial loss function by a discriminator network.

With the success of Papers I and II, we sought to extend the idea
to estimate quantum processes. But we quickly realized that it was a
combination of gradient-based optimization, a structured model incorporat-
ing quantum-mechanical constraints, and regularization, which were more
important than using a complicated neural network.

4.2 Estimating quantum processes

In quantum process tomography (QPT), we want to estimate how quantum
states change, i.e., learn the dynamics of a quantum system or characterize
a quantum operation, see Fig. 4.2. We can formulate QPT as an estimation
task similar to QST by using probes p; and measurements O;. The outcome
of measurements on the transformed quantum state p, = £(p;) now depends
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Figure 4.2: Quantum process tomography (QPT) characterizes quantum operations
such as (a) transformations of a quantum state that represents some logical

information. A bosonic encoding implements computational states by encoding

them as orthogonal states of light, e.g., |2}, %. An operation such as a NOT

(X) gate is a physical operation transforming one state to another. (b) QPT
proceeds by preparing probe states, applying the target operation, and performing
various measurements on the result. State-preparation and measurement (SPAM)
errors need to be accounted for to get the true characterization of the target
process £. We incorporate estimated SPAM errors in the formulation of the QPT
reconstruction in Paper IX.

on both the input probe p; and measurement setting O;. Let us consider
the expectation value (or empirical frequencies for different outcomes) as
Yij-

The most straightforward parameterization for £ is a process tensor @
such that it defines a linear transformation of density matrices:

E(p)mn = stnm,jipij' (4.16)
j
The forward model here is y;; = tr[O;E(p;)]. Similar to the linear-inversion
formulation of state tomography, if we collect the result of measurements for
all probes and operators into a vector b, the QPT task can be formulated
as another linear inversion,

A®/ =D, (4.17)

where @/ is the flattened representation of the process tensor and A is
constructed using p;, O;.

Similar to QST, we can use linear inversion, or least-squares optimiza-
tion, to find the process £ using some representation of it ®. However, &£
has the restriction that it should be

e Completely positive (CP)

e Trace-preserving (TP).
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Complete positivity of £ ensures that positive matrices are transformed
to positive outputs. The trace-preserving condition means that the trace of
the input and output density matrices that the map acts on should be the
same. The CPTP conditions ensure the £ represents a valid conversion of
one density matrix to another.

One representation of a quantum process is the so-called Choi matrix.
The Choi matrix is a linear operator that acts on a tensor product of two
Hilbert spaces Hin ® Hout representing the input and output Hilbert spaces
for the process p’ = £(p). The action of the Choi matrix on a quantum
state is given by a partial trace operation:

E(p) = try, () © ). (4.18)

The process £ is CPTP if the Choi matrix is positive semidefinite and the
following partial-trace condition is satisfied [209, 248]:

try,,., [P] = L. (4.19)

The Choi matrix allows us to use projections [2418, 219] to obtain an estimate
that might not be physical and then find a CPTP estimate, e.g., for CP,
simply discarding negative eigenvalues of the Choi matrix works as

dcp = V max (0, D)V, (4.20)

where & = VDV represents the singular-value decomposition. In Ref. [249],
a new projection method was proposed, called the hyperplane intersection
projection, which showed promising advantages over other projection meth-
ods. However, most such approaches have to solve linear sub-problems such
as eigendecomposition that scale poorly with the size of the problem. Other
representations such as using the Pauli Transfer Matrix (PTM) encode the
CPTP constraint differently.

The Choi matrix also allows the QPT objective to be formulated as
a compressed-sensing problem that can be solved with convex optimiza-
tion [79]. In many QPT problems, we can assume a low rank for the
quantum processes, e.g., a near-unitary operation. Compressed sensing can
allow efficient reconstructions exploiting the low-rank structure by solving

min |||
such that AP/ =b; & >0, try,, [P =1 (4.21)
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The minimization of the norm indirectly minimizes the rank of the matrix
and the optimization problem can be readily solved by some convex op-
timization technique. However, the size of the problem quickly becomes
very large, e.g., for a 5-qubit tomography, the Hilbert space for the density
matrix is 32 x 32. The Choi matrix is therefore 1024 x 1024. If we flatten
the Choi matrix, the dimension of @/ becomes =~ 10°. Such large problems
cannot be easily tackled and present computational challenges.

In Ref. [73], it was noted that going from a two-qubit case to three qubits
made the computational time for convex optimization go from seconds to
several hours. In our benchmarks for Paper VI, we could only tackle
two-qubit QPT problems with compressed sensing. In Paper VII, a linear
inversion followed by a projection worked better.

The Choi matrix assumes a full-rank process. However, Choi’s theorem
on complete positivity [209] also shows that a different representation exists.
The so-called Kraus operators form an equivalent representation of quantum
processes where the rank can be fixed. Kraus operators {K;} act on a
density matrix as

E(p) = D KipkK]. (4.22)

The Kraus representation guarantees the CP condition by construction.
The TP condition is satisfied if

Y klK; =1 (4.23)
7

The maximum rank of the corresponding Choi matrix gives the number
of Kraus operators. In the worst case, for a full-rank representation, the
Kraus representation has as many parameters as the Choi matrix with the
rank being the dimension of the Choi matrix. But in many QPT problems,
we deal with near-unitary quantum operations with a low Kraus rank.
Therefore we can assume only a few Kraus operators in our parameterization
for a quantum process and estimate it from data.

The main issue with this approach comes from the TP condition, which
no longer can be guaranteed as simply as dividing by the trace in the
case of a density matrix’s trace-normalization condition. We first used a
parameterization of Kraus operators given by a generative neural network.
But it was unclear how to restrict the neural-network weights so that the
TP condition is satisfied for the Kraus operator. The solution was to modify
the optimization from simple gradient-descent to manifold optimization,
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recognizing that the set of Kraus operators respecting the TP condition
form the so-called Stiefel manifold.

We found that by using manifold optimization, we could use the Kraus
parameterization directly without using a neural network. In Paper VI, we
show how manifold optimization, discussed in Chapter 3, allows an efficient
QPT protocol, where we can control the rank of the process simply by
selecting the number of Kraus terms.

Moreover, we can also use all the tricks of stochastic optimization by
writing a loss function that only takes in batches of the data and optimizes
the loss function iteratively. In this way, we do not have to deal with large
matrices as in the straightforward convex formulation used in compressed
sensing. Adding an Lo penalty term in the loss function further allowed us
to regularize and deal with noisy data giving sparse solutions.

In Paper VIII, the GD-QPT technique was used to perform tomography
of a physical operation on a Hibert space of 32 — one of the largest we
found in the literature. It allowed insights into the full space of possible
transformations that a quantum system could undergo beyond the reduced
encoded subspace.

We can also turn the QPT idea to estimate parameters of gates that
lead to quantum states of interest, e.g., the bosonic encoded states in Paper
III. In Ref. [2006], unitary learning with gradient descent was explored. We
take inspiration from the same to optimize the so-called selective number
dependent arbitrary phase (SNAP) gates in Paper III. The SNAP operation
along with displacement allows universal control of a resonator. If we
parameterize them and write a loss function representing the fidelity of a
quantum state to some target,

E(Q) = F(g(p), ptarget)a (4.24)

we can perform numerical optimization with gradient descent to learn the
gate parameters. We obtained a very efficient series of gates using only
three blocks of SNAP and displacement operations, allowing the generation
of very interesting non-classical quantum states of light in Paper III.

The learning approaches discussed so far do not provide uncertainty
estimates for quantities computed of the state or process. Sometimes even
the estimated quantities such as fidelity depend highly on the regularization
strength. As we see in Paper VIII and discuss in Chapter 3, the choice of
the regularization strength becomes important as a strong regularization
would ignore essential features in the data. In contrast, no regularization
would overfit to noise.
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Figure 4.3: Bayesian estimation of the density matrix for a photoelectron. We focus
on reconstructing the magnitude of the density matrix |p| from a partial estimate
using prior information. (a) Raw data is converted to sub-diagonals through a
cosine fit. (b) We only have access to a few sub-diagonals and wish to reconstruct
the full matrix. (c) Bayesian estimation reconstructs the full matrix under a smooth
model using Gaussian functions. (d) The underlying density matrix is estimated
using a forward convolution in the model instead of deconvolving the result in
(c). Prior knowledge from physics, e.g., the spin-orbit coupling determining the
separation between peaks, can be enforced easily within the Bayesian model. (f)
We obtain parameter samples that allow the calculation of uncertainties in an
interpretable way.

In order to compute uncertainties, in Paper VII, we used bootstrap-
ping [250] that required repeating the reconstruction algorithm many times
on re-sampled data. A more principled way to obtain uncertainty estima-
tions and set reasonable priors is using Bayesian estimation. The Bayesian
approach allows us to incorporate both noise in the data and set reasonable
priors to obtain uncertainty estimates based on the assumptions made, e.g.,
the regularization strength.
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4.3 Bayesian quantum tomography with priors

Bayesian techniques allow the inclusion of prior information and provide not
only a parameter estimate but also uncertainty in the parameters. Bayesian
quantum tomography can allow an optimal estimation of quantum states
that include priors [2441, 251].

In Paper X, we applied Bayesian estimation to a tomography task that
was too complicated at many levels to be solved easily via linear inversion, or
maximum likelihood estimation. The problem was determining the density
matrix of a photoelectron [252]. The density matrix is now continuous,
p(€1, €2), represented in an energy eigenbasis. In an experiment, we obtain
an indirect estimate of parts of the density matrix and wish to find the
underlying complete representation of p(eq, €2), see Fig. 4.3.

The measurement data itself is a convolution of the true underlying
density matrix elements with noise. None of the traditional tomography
techniques suit such a problem where only indirect estimates through a
convolution of the data are available. We also operate in a regime where
we do not have informationally complete measurements and the solution to
the problem is not unique — any arbitrary filling of the missing elements
is possible.

However, several assumptions could be made to alleviate the issues in
this task. The absolute value of the density matrix for the system is smooth
and has Gaussian-like structures for specific situations, e.g., photoelectrons
emitted from He. In some cases, theoretical calculations suggest multiple
peaks and specific relationships between the peaks, e.g., dictated by some
physical consideration such as spin-orbit coupling [252].

In order to incorporate these assumptions into the reconstruction pro-
cess, address noise effects, and derive uncertainty estimates, we formulate
quantum tomography a Bayesian estimation task. We reconstruct the mag-
nitude of our density matrix using a mixture of two-dimensional Gaussians

per, e2)| = > AiGler, ea; fii; 1), (4.25)

where G represents a two-dimensional Gaussian with centers specified
by vectors fi; and widths along two axes given by the vector &;. The
experimental data gives us the magnitude of the density matrix for different
(e1,€2). These are therefore our measurement settings, and we have access
to an indirect value of the expectation at several (€1, €2).
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Now we have reduced the problem to parameter estimation of a set of
Gaussian functions given samples. In this particular example, experimental
considerations make it easier to sample slices of the sub-diagonal elements.
We also assume additive Gaussian noise in the measured data with a known
noise variance.

Therefore in the Bayesian model, we are able to directly include the
various known sources of errors and noise directly in the reconstruction. In
addition, the assumption of Gaussians strongly restricts our estimation to
smooth bell-shaped curves that we expect from theoretical considerations.

We perform a Markov Chain Monte Carlo (MCMC) exploration of the
parameter space to obtain posterior samples of the Gaussian parameters.
The Hamiltonian Monte Carlo (HMC) method is used, enhanced by the
No-U-Turn Sampler (NUTS) as we discussed in Chapter 3. It might be
possible in this particular example to have a tractable computation of the
posterior since we use Gaussian functions; however, there is a catch to the
simple picture.

The sampled data corresponding to |p(e1, €2)| actually represent the
convolution of the true signal with the point-spread function (PSF) of the
detector. Therefore it needs to be deconvolved first before assuming that
they are the density matrix elements. This is a complicated deconvolution
procedure that requires a careful inversion of a convolution operation be-
tween a noisy signal where the convoluted PSF itself could have uncertainty.
Instead of performing a deconvolution, we can simply include a convolution
in the forward model while defining the likelihood function.

As a result of this procedure, we are able to reconstruct the density
matrix of a photoelectron for the first time where other tomography tech-
niques would have been difficult to apply. Prior knowledge about the system
is incorporated by selecting parameter distributions carefully. We know
the range for each parameter, e.g., the centers of the Gaussians, and can
set them accordingly. In addition, it is possible to include other priors
dictated by the physics of the system. One such prior is that in the case
of photoelectrons ejected from argon, the magnitude of the density matrix
contains two peaks with one of the amplitudes being twice the other. The
centers of the two peaks are separated exactly by the so-called spin-orbit
(SO) coupling value [252]. We can include these priors by allowing one of
the centers to fall within a certain range xg € [a, b] and the other center to
be sampled from a Gaussian with its mean at xo+ Aeg.o.. Again, the width
of this Gaussian will determine our confidence in the physical assumptions
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made.

A benefit of the Bayesian procedure is that we can exactly quantify the
uncertainty in the estimate that corresponds to our belief in the parameter
space (using the priors), and the noise in our measurements (by setting
the scale of the noise in the likelihood). It is therefore greatly reducing
the need for data in a problem that would otherwise demand many more
measurements if we looked at it from the point of view of linear inversion.

Note that it is also not possible to solve this problem with the application
of neural networks that can fill in the density matrix in any way possible
without respecting the physical constraints and priors. Another possible
way of filling was using Gaussian processes; however, it also does not give
the fine-grained control that we have from an explicit model.

Even if we implemented the symmetry constraints that make sure the
matrix is Hermitian, positive semidefiniteness is not directly guaranteed.
A consequence is that off-diagonal elements might be larger than the
corresponding diagonal ones, so we can set a prior that ensures that the
off-diagonal terms are smaller than the main diagonal. This is achieved
by defining a relationship between the widths of the Gaussian along the
diagonal and the off-diagonal.

We can also model the complex phase of the density matrix. In this
case, theory tells us that the complex part is not Gaussian, but modeled
as constant planes. Once we can model the complex part, we can ensure
positive semidefiniteness by a final projective step after an estimate is
found. However, the best way would be to be able to implement the PSD
constraints in the modeling itself. This would mean defining a general
distribution of quantum states for such a problem that enforces positive
semidefiniteness [251].

We have so far discussed estimation tasks for quantum problems using
classical optimization and modeling. In all the problems, we approximate
the quantum density matrix (or process matrix) with a classical parameter-
ized function that we can tune, p = f(x;6). However, quantum computing
can allow us to tune a quantum function ¢(x;#6) and use it as a model to
solve problems. This idea leads to the emerging field of quantum machine
learning where a quantum computer is a tunable model instead of a classical
function, e.g., a quantum neural network [253].



Chapter 5

Quantum machine learning

“According to strong Al, it is
simply the algorithm that counts.
It makes no difference whether
that algorithm is being effected
by a brain, an electronic
computer ...”

The Emperor’s New Mind:
Concerning Computers, Minds,
and the Laws of Physics
ROGER PENROSE

The algorithms that have been most successful for machine learning in
recent times use neural networks and gradient-based optimization to learn.
Even if such algorithms are successfully explaining jokes, answering deep
philosophical questions, or generating art, at the heart of their successes lies
the computational advances brought by specialized hardware. Even more
interesting is the fact that most of the computation in modern machine
learning with neural networks is matrix multiplication and it is precisely the
ability of graphics processing units (GPUs) to speed up such computations
that ushered in new machine-learning and artificial-intelligence tools.

We come back to the prototypical model function f(x;6) discussed
in Chapter 2, and note that so far we have assumed that this function
is computed on a classical computer. The classical computer is simply a
physical device that can be controlled, where classical rules of discrete logic
are run. In machine learning, more than such logic, we are interested in a
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Figure 5.1: Variational quantum algorithms use a quantum computer to generate
variational quantum states and compute a function e.g., an expectation value.
These expectation values can define a parameterized function that a classical com-
puter can optimize, such as the energy of some quantum system. The optimization
objective could be to minimize the energy. Implicit differentiation allows the
computation of the gradient of the VQA solution without having to keep track of
the classical optimization saving on the memory cost associated with keeping track
of all intermediate steps in the VQA that reverse-mode automatic differentiation
would require. In quantum problems, storing such intermediate steps in classical
memory might be impossible.

continuous change of inputs to outputs. What if we replace this function
with a quantum function run on quantum hardware ¢(x;6)? We still have
inputs that can be transformed by setting parameters €, but now we have
access to the Hilbert space of quantum states to perform transformations.

Quantum machine learning (QML) aims to use quantum hardware to
process data and solve machine-learning problems. One of the promises
of quantum machine learning is to be able to enhance the capabilities of
machine-learning algorithms by exploiting the laws of quantum physics and
tackling problems that are simply too difficult for classical computers to
handle. In the rest of the chapter, we focus on a type of QML algorithm that
is similar to classical machine learning — variational quantum algorithms

(VQASs).

5.1 Variational quantum algorithms (VQAs)

A variational quantum algorithm computes a function ¢(x;#) on a quantum
computer. The function could be part of a cost function defining a certain
problem, e.g., finding the lowest energy state of a quantum system. If
a quantum system’s Hamiltonian is represented in a parameterized form
H(x), a VQA creates a parameterized state [¢)(x;6)) using a quantum
computer and measures expectation values used to construct an objective
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function, such as energy,
L(0) = q(x;0) = ((0)| H(x) [¢(0)) - (5.1)

A classical computer can optimize the variational parameters 6. The
goal is to find a set of parameters that minimizes the cost function, leading
to a solution of the problem, e.g., which configuration leads to the lowest
energy for a system with Hamiltonian H(x). The parameters can be
concretely defined as a quantum circuit or unitary U(6) that the quantum
computer implements.

Variational quantum algorithms hold promise for several different
tasks [39] such as computing ground-states, solving combinatorial opti-
mization problems, error correction, and most relevant to this thesis —
quantum machine-learning applications [38]. We can recognize that re-
placing a neural-network ansatz f(x;6) with a quantum function ¢(x;6)
allows us to plug VQAs into all the problems discussed so far — discrimi-
native modeling, generative models, or approximating unknown probability
distributions.

So far, we have been trying to learn a classical model of this function
in the form of a density matrix or a quantum process. In VQAs, we can
directly compute the expectation value of any measurement observable
on the quantum computer without requiring a model for the quantum
system. We do not require simulations as the quantum computer emulates
a quantum system.

In Paper IV, we are interested in enhancing the power of VQAs. Note
that the computed solution to a problem, §*, will change as the problem
is changed, e.g., if x represents the geometry of a molecule, changing the
geometry defines a new Hamiltonian H(x’), and therefore changes the
solution. If we assume a solution function §* = z(x), the gradient dxz(x)
tells us how a change in the problem changes the solution. Let us denote
this implicitly defined solution function as 6*(x) to simplify the notation.

It is not always easy to have an analytical solution for optimization in
a VQA. However, as we show and discuss in Paper IV, the gradient of the
implicitly defined solution function can be computed by applying implicit
differentiation. The requirement is having access to local gradients of some
function dph(6,x|g+) that defines a level-curve h(6*(x),x) = 0. However, we
must first discuss differentiation on a quantum computer before discussing
implicit differentiation.
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5.2 Computing gradients on a quantum computer

The function ¢(x;6) can be written as the expectation value of some
measurement operator Oy on a state prepared by a unitary U(f) starting
from some initial state pg. We can write the following general form for such
a function:

a(x;0) = tr|OU (0)poU ()] (5.2)

The gradient of this function with respect to the components of the pa-
rameter # can be computed by evaluating the function with two parameter
settings 6T using the so-called parameter shift rule [254, ]

o = T 10507 )] 53)

The parameter settings are 6% = 0 4 ae;, with e; = 1 for the i*® parameter
and 0 otherwise for the component 6;. The formula for the gradient is exact
and analytical. An intuition can be developed by noticing that a unitary
is parameterized by sine and cosine functions. The derivative of sin(6) is
given by sin(f + ) —sin(f — T). Since we can only compute expectation
values of the gradients, the parameter-shift rule provides an estimate that
requires repeating measurements for each measurement operator. Further,
the problem structure determines the total number of measurement settings
necessary.

We can now replace our classical model function, e.g., a neural network
f(x;0), with the quantum model and apply gradient-based training to
solve various problems. However, it was noted in Ref. [256] that random
circuits, i.e., randomly initialized unitaries U(6), suffer from the so-called
barren-plateau (vanishing gradient) problem as the size of the quantum
system increases. The barren-plateau problem refers to the fact that the
variance of the gradient vanishes exponentially for random quantum circuits
as the system size increases. Initializing a quantum circuit with a random
parameter setting will therefore trap the optimization, giving no information
on the direction of the steepest descent.

5.3 Implicit differentiation of VQAs

In 1638, René Descartes challenged the emerging mathematician Pierre de
Fermat to determine the tangent to a complex curve known as the folium
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of Descartes, given by the equation
2% 4 3 = 3axy. (5.4)

Descartes was particularly fond of a method he developed to compute
tangents. The folium of Descartes posed difficulties in finding tangents,
except at the vertex, due to its cubic nature. Fermat, however, succeeded
in finding tangents not only at the vertex but at any point on the curve.
The method used by Fermat, implicit differentiation, is now common in
calculus. Since the curve cannot be separated as a function of x only, by
taking derivatives of the equation and rearranging terms, we can obtain an
expression for the slope evaluated at any point:

dy —x%—ay

ey S—— (5.5)

The implicit nature comes from the assumption that there is a cer-

tain function f(x,y) = 0 that implicitly defines the curve y(x) satisfying

f(z,y(z)) = 0. We can differentiate f to obtain 0, f, 0, f and use them to
compute

dy  Of

Ia —ay—f zy- (5.6)

The implicit function theorem formally states the conditions that allow
the calculation of implicit gradients. We refer to Paper IV for technical
details, but present the theorem informally: if a function h(6,x) is analytic
and within a local neighborhood around (6, xg) we have h(fy,xo) = 0, then
there exists an analytic solution function 6*(x) that fulfills A(60*(x),x) = 0.
Since the solution function is analytic, its gradient 0x6*(x) exists and can
be obtained by implicit differentiation.

Implicit differentiation is playing a role in hyperparameter optimization,
training neural ordinary differential equations, and has even led to the
proposals of new architectures for machine learning such as deep equilib-
rium models [257]. Such advancements are possible due to the memory
advantage provided by implicit differentiation over reverse-mode automatic
differentiation (backpropagation) for gradient computation.

Implicit differentiation also helps in meta-optimization tasks. Consider
an implicitly defined function as the solution to some optimization task

0% (x) = arg(gnaxg(@,x). (5.7)
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The optimization could itself be carried out with gradient descent or any
other method, such as convex optimization. If we want to compute the
gradient 0x6*(x), we can use implicit differentiation to avoid keeping track
of all the intermediate steps and variables in the optimization that standard
reverse-mode automatic differentiation (backpropagation) requires (incur-
ring a huge memory cost). The optimality condition for the optimization
can be simply

h(6,x) = 0gg(0,x) = 0. (5.8)

Implicit differentiation can treat the inner optimization as a black box
and provide the gradients 0x0*(x) as long as we can find solutions for the
optimality condition, and gradients (Jph, Oxh) at the solution of the inner
optimization. In meta-optimization tasks, where there is an inner opti-
mization, e.g., hyperparameter optimization in machine learning, implicit
differentiation computes hyper-gradients. Therefore it allows optimizing
the hyperparameters guiding us towards a better choice of hyperparameters
without having to go through a grid. Implicit differentiation has been used
to optimize millions of hyperparameters in classical machine learning [253].

In most VQAs, we have an optimization objective and implicit differ-
entiation can be applied to compute relevant physical quantities such as
susceptibilities, and design algorithms that use gradients. In Ref. [259],
implicit differentiation was used for inverse design and optimal control in
open quantum systems, while Ref. [260] explored susceptibility calculations
using implicit differentiation. We add to such applications with the hy-
perparameter optimization of QML algorithms and a new application —
generation of entangled quantum states.

We now consider a variational quantum state |¢(6*)) that is gener-
ated as the solution of a VQA, e.g., after minimizing the expectation
value g(0,x) = (¥(0*)] H(x) |1(0*)) representing the energy of some pa-
rameterized Hamiltonian H(z). At the solution point, the gradient dyg
is zero, since it is a minimum (local). We can therefore define a function
f(0,x) = 0pg = 0 similar to the folium-of-Descartes problem. Applying
implicit differentiation to this function, we get the gradient

9:0 = —[0pg][029]- (5.9)

Therefore if we have access to the Hessian of the expectation value, i.e.,
07 (¥(0*)| H(x) [¢(0*)), we can compute implicit gradients that tell us how
the variational state will change as the Hamiltonian changes. The Hessian
computation can be done with parameter-shift rules similar to the gradient
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Figure 5.2: A geometric measure of entanglement defines the entanglement for
a variational state ¥y using an optimization over all possible separable states
1g. This measure of entanglement E(x), therefore, does not have an analytical
form, so it is not possible to write the gradient 9xE(x) analytically. However,
implicit differentiation can compute this gradient and can be used to optimize the
parameters x to generate entangled states variationally as we show in Paper IV.

estimation. In case of problems with multiple parameters, the inverse term
could be computationally expensive to calculate. However, using the idea of
vector Jacobian products (VJPs), the inversion is efficiently approximated
as solving a linear system of equations in an iterative manner. Paper IV
contains more details and references for alternative techniques for this
inversion, e.g., using a Neumann series expansion.

Implicit differentiation can therefore differentiate through an inner ob-
jective function, as we show in Paper IV. The gradients obtained therein
allow computation of physically meaningful quantities such as susceptibili-
ties or help in hyperparameter optimization of quantum machine-learning
algorithms. We also demonstrate a new algorithm that creates entan-
gled quantum states using gradients of a so-called geometric measure of
entanglement and numerical optimization.

Now we can discuss the novel technique in Paper IV for entanglement
generation. Our proposed technique can create entangled quantum states
without ever explicitly defining what the state is, simply by optimizing
an implicit definition of entanglement; see Fig. 5.2. The following inner
optimization finds a separable state that has the highest overlap to another
variational state y:

0" = arg max [ (ol [, (5.10)

where 1)y is the set of all possible separable quantum states. The state
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1 is a general state that can be entangled. Using the optimized 6%, we
can define a geometric measure of entanglement F(x) for the state that
depends on the variational parameters x, as we show in Fig. 5.2. The
geometric measure does not have an analytical form in general, but we
can compute the gradient OxE(x) using implicit gradients. Now, we can
optimize for maximum entanglement by tuning the variational parameters
x using the gradient. In Paper IV, we show how such an approach generates
a maximally entangled state.

We have not explored how such algorithms will perform in a quantum
device where various types of noise degrades the calculation of the expecta-
tion values and gradients. We envisage a memory advantage that quantum
hardware can provide for implicit gradient computation that could unlock
the possibility of obtaining values of susceptibilities for large spin systems
or generate large entangled states. The quantum computer can be used as
a black box that gives access to solutions of VQAs, and local gradients.



Chapter 6

Summary of papers

Here we give an overview of the ten appended papers on which this thesis is
based and connect the theoretical ideas discussed in the previous chapters
to the results in those papers.

Paper I focuses on developing a method for quantum state tomography
using conditional generative adversarial neural networks (QST-CGAN). The
adversarial learning framework involves a generator and a discriminator
neural network competing to learn an underlying probability distribution
using data samples. Our approach utilizes a generator that gives proba-
bilities for measurements on a quantum state by learning an underlying
density matrix. We introduce a custom “DensityMatrix” layer that uses the
Cholesky decomposition to ensure that the outputs from a neural network
represent a valid quantum state, as discussed in Chapter 3. Several other
generative modeling approaches are presented in Chapter 2 that could be
explored to represent quantum states and learn the probability distribution
of outcomes for measurements. While the “DensityMatrix” layer gives us an
interpretable internal representation of the quantum state, it comes at the
cost of poor scalability. However, in principle, a generative model can have
any internal representation of the state and directly provide probabilities
for measurement outcomes in a scalable way.

The “Expectation” layer in the generator implements the Born rule to
obtain measurement probabilities. We show in Chapter 4 how the quantum-
state-tomography problem is fundamentally an inversion problem that we
solve by borrowing the idea of generative modeling with neural networks.
Our approach can efficiently reconstruct an optical quantum state, requiring
much fewer data points than iterative maximum likelihood estimation or
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an accelerated projected-gradient method known as “superfast maximum
likelihood”. We also showcase the effectiveness of QST-CGAN on noisy
experimental data by reconstructing a state from the measured Wigner
function in an experiment. Finally, we show how such a technique can be
adapted for the high-fidelity reconstruction of quantum states in a single
shot after pretraining.

In Paper II, quantum state classification and reconstruction are con-
nected to generative and discriminative modeling problems in machine
learning. We demonstrate that a convolutional neural network can classify
optical quantum states accurately, even in the presence of significant noise.
The QST-CGAN approach, under different noise conditions, consistently
achieves high reconstruction fidelities compared to alternative loss functions
and iterative maximum likelihood estimation. Additionally, we investigate
the effects of Gaussian convolution noise on reconstruction and demonstrate
the successful reconstruction of mixed states with a small subset of data
points, outperforming iterative maximum likelihood estimation. These re-
sults highlight the flexibility and effectiveness of the QST-CGAN approach
for a wide range of scenarios, surpassing traditional methods.

Paper III is an experimental collaboration that created quantum states
with negative Wigner-function values in a harmonic oscillator aided by a
gradient-based optimization to estimate gate parameters. In this paper,
the significant theoretical contribution was identifying a minimal set of
gates that could be implemented to generate a wide variety of quantum
states, such as a Gottesman-Kitaev-Preskill state and the first generation
of the cubic phase state [261] in a 3D cavity. The two-step approach of
finding optimal gates and then using pulse optimization to implement the
gates was more robust than direct optimal control. The parameterization
for the quantum operations in Paper III was fixed by the gates possible in
the experiment. However, in Chapter 3, we discuss a more general way to
parameterize unitary matrices that can be optimized to implement desired
quantum operations.

In Paper IV, we draw on the knowledge about machine learning and
automatic differentiation to show how implicit differentiation can be used
in quantum physics and computing. The idea of implicit differentiation
extended to quantum computers allows computing how ground-state prop-
erties of a variationally obtained quantum state, such as the ground-state
energy, change as a function of the Hamiltonian parameters. Such ground-
state gradients represent interesting physical quantities, such as generalized
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susceptibilities in condensed matter systems, and this paper demonstrates
how they can be computed automatically on a quantum computer. We also
discuss how implicit differentiation allows the training of hyperparameters
in a variational algorithm and a novel algorithm to create multipartite
entangled quantum states enabled by gradient-based optimization of a
geometric measure of entanglement. Automatic differentiation drives the
success of current machine learning methods using neural networks. We dis-
cuss the basics of automatic differentiation and the implicit differentiation
approach in Chapter 5.

In Paper V, we present a software tool for the classical simulation of
quantum algorithms on quantum computers. Specifically, a new module
was developed in QuTiP (Quantum Toolbox in Python), an open-source
software for simulating quantum systems, enabling users to specify the
parameters of a quantum computer and simulate quantum circuits running
on that device at the pulse level.

In Paper VI, we transition from quantum state to quantum process
tomography. Initially leveraging the architecture developed in Papers I
and II, we discovered that neural networks were unnecessary for achieving
accurate results. Instead, using gradient descent restricted to physically
allowed quantum processes, combined with machine learning techniques
such as batched training and regularization, proved highly effective in
reconstructing quantum processes from measurement data. In several
benchmarks, this gradient-descent quantum process tomography (GD-QPT)
approach outperformed state-of-the-art techniques such as compressed
sensing and projected least squares in handling sparse data and large
system sizes simultaneously. A key to the success of the GD-QPT approach
was using manifold optimization, discussed in Chapter 3, that implemented
a trace-preserving condition on the Kraus operators.

Paper VII is about characterizing a new family of three-qubit quan-
tum gates. In this paper, an experiment was carried out to implement
these gates. The contribution to this work was solving the numerically
challenging problem of three-qubit process tomography. We adapted a
projected-least-squares technique augmented to include state-preparation
and measurement errors from single-qubit gate set tomography. Imple-
menting the process reconstruction algorithm using a combination of linear
inversion and projection allowed fast computing process matrices, which
made it possible to apply techniques such as bootstrap for uncertainty
estimation.
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In Paper VIII, the techniques developed in Paper VI were pivotal for the
experimental characterization of a logical quantum gate in a bosonic error
correction code. This experiment also used a gradient-based optimization
to find the unitary operations that implemented a logical operation on
an encoding. Since the GD-QPT method developed in Paper VI required
very few data points, it was possible to perform a full process tomography
experiment on a 32-dimensional Hilbert space. Previous methods for QPT
would have required impractical amounts of measurement time to collect
the necessary data for such a reconstruction. Similarly, as we discuss in
Chapter 4, techniques such as compressed sensing would not be able to
handle such a problem due to computational bottlenecks. The GD-QPT
technique developed in Paper VI enabled this experiment that performed
process tomography of a logical quantum operation with bosonic encoding
without having to restrict to the two-dimensional logical subspace. Freed
from this restriction, we could identify that the logical states were leaking
out of the logical subspace.

In Paper IX, an experiment was performed to improve the readout of
superconducting qubits using the higher energy levels of a transmon qubit.
Improving the readout of such qubits is a crucial step towards quantum
error correction. For this experiment, our contribution was developing a
neural-network approach to help in the fast and accurate classification of
the data representing different quantum states.

In Paper X, a Bayesian approach to quantum state tomography was
adapted to reconstruct the quantum state of a photoelectron from noisy and
sparse data. The photoelectron density matrix could be partially measured
in an experiment using attosecond pulses but contained noise due to several
factors, including a convolution of the signal with the response function
of the measurement apparatus. The problem was further complicated
by the limited data available for reconstructing the full density matrix.
In this task, we took a Bayesian estimation approach that could include
several priors based on physical motivations such as smoothness of the
density matrix and spin-orbit coupling. As we discuss in Chapter 4, the
Bayesian estimation made it possible to extract a meaningful representation
of the quantum state along with uncertainty estimates. We could find the
parameters describing the data using a complicated model that included
the convolution operation using the Hamiltonian Monte Carlo method, as
discussed in Chapter 3.



Chapter 7

Conclusion and outlook

In this thesis, we have discussed an interconnection between aspects of
modeling, constrained optimization, and machine learning that applies to
quantum physics problems. The pivotal contribution of this thesis lies in
formulating a mindset for someone who would like to apply machine-learning
methods to solve problems in quantum physics.

Machine learning, at its core, deals with data-driven predictive modeling.
The Bayesian picture provides a general mindset to such problems, incorpo-
rating model building as the proposal of a likelihood function. Parameter-
estimation techniques learn the model from data where constraints, priors,
and regularization help in different ways.

We discuss the relationship between learning problems in quantum
physics and machine learning. We showed that the central task of predicting
measurement outcomes for a quantum system could be posed as a generative
modeling task in machine learning since both relate to learning a model for
an underlying data-generating process. Therefore, techniques developed to
tackle challenges in generative modeling can be applied to quantum physics
problems.

Generative models require approximations regarding the data-generating
process we wish to learn to solve intractability issues. Neural networks
are often employed in such approximations due to their universal function
approximation guarantees. We can be similarly inspired in quantum learning
tasks to use neural networks to approximate quantum states and operations.
Gradient-based optimization that successfully trains neural networks can be
very effective for quantum problems. We discussed how such gradient-based
optimization applies to quantum state and process learning and estimating
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parameters for target quantum operations.

Machine-learning approaches could tackle the problem of exponentially
increasing Hilbert space dimension since they learn approximations from
data. We could use machine-learning models as a proxy for quantum states
and processes thereby finding effective models with a few parameters. Still,
it is unclear how much machine-learning models, e.g., neural networks,
approximate the true quantum system due to their black-box nature. An
interesting future direction would be to use symbolic machine learning
that finds efficient representations in an interpretable way. Also, using
machine learning to reduce the complexity and cost of measurements in
an experiment can be interesting to explore. Online learning of quantum
systems and frequency re-calibration is possible with machine learning.

However, machine learning with gradient descent and neural networks
is not the silver bullet to solve all problems in quantum physics. An
intricate combination of suitable models that incorporate constraints and
the structure of the problem is essential. Gradient descent and neural
networks have been adapted to incorporate such structure and constraints,
e.g., with manifold optimization for quantum process tomography. We can
therefore tackle many learning problems in quantum physics by adapting
gradient-based approaches with physics-informed models that effectively
include constraints.

A significant and essential discussion in all such estimation problems is
uncertainty computation. Neural-network-based models, or even a physical
model, can only make predictions. However, the uncertainty associated
with the predictions is essential in many experimental situations. Therefore
we ended the discussion of learning problems with Bayesian estimation.
However, this area is poorly explored compared to other ideas such as
maximum likelihood estimation or projection-based learning. Bayesian
estimation becomes computationally difficult for larger parameters. Ex-
ploring how to scale Bayesian estimation for quantum problems would be
interesting.

Lastly, we discussed quantum machine learning — an emerging field.
The implicit differentiation technique enhances the power of quantum
machine learning and variational algorithms. However, our proposed ideas
have only been tested in small simulations. It would be interesting to
run actual calculations on a quantum computer to demonstrate implicit
differentiation’s benefits regarding memory cost. Since we only have access
to the expectation value of quantities, it would become essential to analyze
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the scaling or feasibility of the method in noisy quantum devices. Further
studies and analysis would be required to address these questions and
determine the practical applicability of the method.

Quantum mechanics and machine learning, therefore, represent two
fascinating and non-intuitive fields with many avenues for exploration. This
thesis hopes to spark inspiration for discoveries in both fields.
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