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A B S T R A C T   

This paper analyzes the load profiles and electricity consumption patterns of different customer types electrified 
by off-grid solar photovoltaic (PV) mini-grids in two remote towns in Ethiopia using metered data collected over 
a 20-month period and a survey of 238 customers. Findings show that the load profiles of mini-grid customers 
differ significantly across locations, sectors, and time. The load curves at site one (Omorate) are interrupted and 
completely shed off for 13 h every day due to the demand consistently exceeding the generation. By contrast, the 
mini-grid at site two (Tum) generates enough electricity to meet the demand continuously. The average daily 
electricity consumption at Omorate, 1065 kW h, is more than 1.5 times the consumption at Tum, 640 kW h; 
despite the fact that the mini-grid at Omorate has a significantly lower installed capacity than the one at Tum. At 
both sites, the monthly consumption of productive users is more than three times that of households. At both 
sites, demand for electricity has significantly increased over time, but at varying rates. Regression analyses 
showed significant differences in the factors influencing electricity consumption between the two towns. Key 
policy implications of the study are discussed for informed planning of rural electrification through mini-grids.   

1. Introduction 

Providing electricity access to rural communities in sub-Saharan 
Africa (SSA) is challenging, particularly in remote areas where na-
tional power grid extension is economically unfeasible (IEA, 2021; 
Sharma et al., 2020). An increasingly relevant part of the solution for 
rural electrification in off-grid areas of SSA are distributed renewable 
energy systems such as photovoltaic (PV) mini-grids (MGs). Studies and 
reports (Wassie and Ahlgren, 2023; UNDP, 2022) indicate that the use of 
PV MGs with storage batteries and backup diesel generators (DG) is 
growing in many SSA countries including Angola, Ethiopia, Kenya, 
Senegal, Sierra Leone and Tanzania. Given the global efforts to realize 
the seventh Sustainable Development Goal (SDG-7) of the United Na-
tions, renewable off-grid MG solutions are expected to play an important 
role in achieving clean and affordable universal electricity access by 
2030 (UNDP, 2022). 

Nevertheless, emerging evidence suggest that progress in renewable 
MGs development has largely been patchy between and within coun-
tries, across rural areas, and between communities (Katre et al., 2019; 
Okoko et al., 2022). Among the major obstacles to scaling up distributed 
renewable MGs in SSA are high upfront costs, demand uncertainty and 

poor financial viability (Okoko et al., 2022). The latter two challenges, 
in particular, stem from lack of reliable data and thorough under-
standing of the load profiles, and energy consumption patterns of rural 
communities and businesses to be electrified using these MGs (Lorenzoni 
et al., 2020). This is because understanding consumer loads and energy 
consumption patterns is vital for optimal designing and sizing of 
techno-economically viable MGs (Lorenzoni et al., 2020; Mandelli et al., 
2016a; Pedersen, 2016). Furthermore, understanding the dynamics of 
electricity demand of MG customers is instrumental for identifying 
suitable demand management strategies. As Peters et al. (2019) pointed 
out; electricity demand is a major concern to consider when investing in 
rural electrification projects through MGs. This is due to the fact that 
insufficient demand negatively affects the commercial viability of MGs, 
while excess demand may seriously jeopardize the reliability and quality 
of power supply (Wassie and Ahlgren, 2023; Peters et al., 2019). In both 
scenarios, there are severe repercussions for the power company, the 
consumers and the rural electrification projects. 

However, little research has been done to analyze the load profiles 
and electricity consumption patterns of rural households (HHs) and 
small and medium enterprises (SMEs) electrified by off-grid renewable 
MGs based on actual data. Previous studies have mainly focused on is-
sues such as the technoeconomic feasibility of MGs, and demand 
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forecasting (Hartvigsson and Ahlgren, 2018; Lombardi et al., 2019; Scott 
and Coley, 2021; Hartvigsson et al., 2021; Mandelli et al., 2016b). 
Furthermore, the majority of the studies that have been conducted on 
rural electricity consumption in developing countries were typically 
based on national level aggregated survey data from consumers elec-
trified by conventional power grids (Ye et al., 2018; Zou and Luo, 2019; 
Agrawal et al., 2020). Few studies have examined rural electricity 
consumption using disaggregated data, albeit from conventional power 
grids. For instance, using a survey data, Nsangou (2022) analyzed rural 
household electricity consumption in southern Cameroon and showed 
that factors related to appliance ownership and income have significant 
influence on electricity consumption. A study in rural China (Li et al., 
2016) showed that electricity consumption varies significantly across 
villages. Similarly, using a micro-level data from grid-connected rural 
HHs in Nigeria, Isihak (Isihak et al., 2020) found that the daily elec-
tricity consumption per HH ranged from 0.38 to 20.56 kW h. 

Notwithstanding, rural communities in remote isolated areas may 
have different energy demand characteristics and drivers than do cus-
tomers connected to conventional power grids. Distributed renewable 
MGs are also different from conventional power grids in terms of their 
energy sources, operations and energy storage systems. To the best of the 
authors’ knowledge, only a handful of studies (Scott and Coley, 2021; 
Hartvigsson et al., 2021) have been conducted hitherto to characterize 
the load profiles of MG-electrified rural households and SMEs in SSA. 
Even these studies were focused either on comparison of static load 
profiles across sites (Scott and Coley, 2021) or dimensioning of MGs 
based on actual load profiles (Hartvigsson et al., 2021). As a result, 
electricity 1demand of off-grid MG customers, demand dynamics over 
time and the factors driving the demand remain poorly understood. In 
light of these knowledge gaps, this study aims to analyze the load (de-
mand) profiles, electricity consumption patterns, and drivers of energy 

demand of rural households and SMEs powered by off-grid PV MGs in 
two remote small towns in Ethiopia using micro-level disaggregated 
metered data. 

Specifically, the paper addresses the following research questions.  

⁃ How do the load profiles and electricity demand patterns of the two 
towns compare and change over time?  

⁃ How do the daily and monthly electricity consumptions of different 
consumer types (sectors) compare and change over time?  

⁃ What drives the variation in energy consumption among consumers 
and between locations?  

⁃ What does the data imply for policy making and optimal sizing of off- 
grid PV mini-grids? 

This study is novel in many ways. First, it primarily relies on dis-
aggregated metered load data, and therefore provides more accurate 
information and evidence-based explanations on the electricity demand 
characteristics of off-grid rural communities. This enables policy-makers 
and mini-grid developers to construct policies and MG solutions that are 
grounded on real-world experience and actual electricity demand in the 
rural settings. Second, for developing nations like Ethiopia where a 
significant proportion of their population lives in rural inaccessible 
areas, this study provides valuable insights and analyses into under-
standing the potentials and pitfalls of rural electrification through 
renewable MGs. Third, the study adds to the emerging body of knowl-
edge and literature on the dynamics and drivers of electricity demand in 
the context of off-grid communities in SSA. Moreover, findings and 
lessons from the study may assist PV MG operators and managers 
identify appropriate operational and energy management strategies. 

2. Methodology 

2.1. Research design 

A data-driven case study approach combining quantitative and 
qualitative research methods was used to conduct this study. A data- 
driven approach is a strategic decision-making process based on anal-
ysis and interpretation of hard data and facts, rather than on observation 
or intuition. This makes the data-driven approach best suited for 
analyzing measured data and gaining practical understanding of the 
load profiles and consumption patterns of different consumer types as 
well as their dynamics over time. The case study method, on the other 
hand, allows us to undertake in-depth analyses of the relationships 

Abbreviations 

AC Alternating Current 
DG Diesel Generator 
DSM Demand Side Management 
EEU Ethiopian Electric Utility (Electricity supplier) 
EMCS Energy Management and Control System of the Mini- 

grid 
ETB Ethiopian Birr (Ethiopian Currency) 
HHs Households 
LED Light-emitting Diode 
m.a.s.l. Meters above sea level 
MG Mini-grid 
MLR Multiple Linear Regression 
MoWE Ministry of Water and Energy of Ethiopia 
NEP National Electrification Plan of the Federal Democratic 

Republic of Ethiopia 
PV Photovoltaic 
PVG Photovoltaic Generator 
SDG United Nations Sustainable Development Goals 
SMEs Small and Medium Enterprises 
SSA Sub-Saharan Africa 
UEAP Universal Electricity Access Program 
UN United Nations  

Fig. 1. Flow chart of the processes and steps followed when conducting 
the study. 

1 In this paper demand or ‘load’ refers to the amount of electrical power (kW) 
required at a given point in time to satisfy the needs of all connected appliances 
and systems; while consumption stands for the total amount of energy(kWh) 
used by the consumer per day, per month or per year. Demand is thus the 
immediate rate of consumption. 
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between electricity consumption and the various driving factors within a 
defined real-life situation, based on data collected from various sources. 
The study follows six iterative processes adapted from Yin (2014) and 
Crowe et al. (2011). The flow chart in Fig. 1 depicts these processes and 
steps. 

2.2. Description of the case study sites 

According to the national electrification plan (NEP 2.0) of the gov-
ernment of Ethiopia, the country aims to achieve universal electricity 
access by 2025 through generating 65% of its power demand from na-
tional grids and 35% using distributed renewable energy technologies, 
particularly stand-alone PV systems and off-grid PV MGs (MoWE, 2019). 
Given that 80% of Ethiopia’s 120 million people lives in rural areas, 
realizing the universal electricity access goal hence depends on the 
deployment of off-grid PV MGs and stand-alone PV systems. In view of 
that, the Ministry of Water and Energy (MoWE) of Ethiopia and the 
Ethiopian Electric Utility (2EEU) identified 250 off-grid rural towns that 
are disconnected from the national grid and need to be electrified 
through PV-Diesel hybrid mini-grids under the country’s Universal 

Electricity Access Program (UEAP). By 2021, twelve PV-battery MGs 
with rated capacity ranging from 75 kWp to 550 kWp were built out of 
the 250 planned. The Omorate and Tum towns, where the present study 
was carried out, were thus among these twelve first-batch off-grid towns 
to be electrified through PV MGs. In February 2021, the EEU signed a 
contract with SinoSoar (a Chinese renewable energy company) for the 
construction of additional 25 (second-batch) PV-battery MGs with ca-
pacity ranging from 75 kWp to 2000 kWp. In January 2023, the EEU 
signed yet another agreement with Masdar (a United Arab Emirates’ 
renewable energy company) for the joint development of a solar project 
with a capacity of 500 MW. These agreements and initiatives signify that 
the future potential for solar power systems in Ethiopia’s energy sector is 
promising. However, the total installed generation capacity of solar PV 
systems including MGs and stand-alone PV systems, which are primarily 
used for telecom towers (network towers), in the country thus far is only 
approx. 14 MW (Mulatu et al., 2023). And therefore, photovoltaic gen-
eration currently covers only 0.3% of Ethiopia’s 4500 MW total installed 
generation capacity. 

As indicated earlier this study was conducted in two remote small 
towns, named Omorate (site 1) and Tum (site 2), in rural southern 
Ethiopia (Fig. 2). Both towns are powered by decentralized PV MGs. The 
two towns were chosen for the comparable age of their MGs, expected 
similarities in electricity demand, and the availability of metered data as 
well as the fact that they were among the first 12 off-grid towns to be 
electrified using PV MGs in Ethiopia. Omorate is located between 

Fig. 2. Location map of Omorate and Tum towns in Southern Ethiopia along with other 10 towns where solar PV mini-grids have been installed for rural electri-
fication (Source: EEU (EEU, 2022)). 

2 Ethiopian Electric Utility (EEU) is a state-owned utility company that 
manages power distribution and sales from all power plants in Ethiopia 
including mini-grids. 
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4◦80′16″N Latitude and 36◦3′29″ E Longitude with an average elevation 
of 368 m. a.s.l. Tum is situated between 6◦15′16″N Latitude and 
35◦31′18″ E Longitude with an average elevation of 1439 m. a.s.l. The 
mean annual temperature at Omorate is 29.2 ◦C whereas at Tum it is 
21.6 ◦C. In 2021, Omorate had a total population of 3, 852 with approx. 
770 HHs, while Tum had a population of 4856 with approx. 950 HHs. 
The MG at Omorate has a total installed capacity of 375 kWp and is 
equipped with a 600 kW h storage battery. The MG at Tum, in contrast, 
has a total installed capacity of 550 kWp and is equipped with a 750 kW 
h battery. Both MGs began producing electricity around May 1, 2021. By 
December 2021, the number of MG customers in Omorate had risen to 
443; of which 301 (68%) were 3ordinary HHs, 112 (25%) were 4SMEs - 
typically HH-based businesses, and 30 (7%) were state/public in-
stitutions. Over the same period, the number of MG consumers at Tum 
had grown to 450, with 384 (85%) households, 40 (9%) SMEs, and 26 
(6%) institutions. 

2.3. Data sources 

2.3.1. Hourly power generation and load data at the two MG sites 
This study is based on four datasets: 1) hourly load and power data 

from the MGs, 2) hourly load measurements of sample customers using 
smart meters, 3) monthly electricity consumption data obtained from 
the EEU, and 4) data generated through customer surveys and in-depth 
interviews. The hourly load and power generation data at MG level were 
retrieved directly from the energy management and control system 
(EMCS) of each MG in the form of daily reports. The daily load report, 
for example, provides detailed information on the hourly electrical load 
P (kW) in each feeder, the peak load, distribution of loads etc. Similarly, 
the daily power report provides detailed information on the hourly 
electricity generation by the PV, electricity generated by the DGs, hourly 
battery charging and discharging power etc. Appendix A presents an 
example of a daily load report retrieved from the EMCS of the MG at 
Tum. 

2.3.2. Monthly metered electricity consumption data 
The monthly metered energy consumption data for all MG customers 

at each site were obtained directly from the EEU district offices. The data 
contains detailed information on the customer’s name and address, the 
type of customer (domestic, SMEs, or institution), billing month, 
monthly electricity consumption quantity, consumption charge, tariff 
category, and monthly fixed service charge. Since both MGs began 
operating around May 1, 2021, metered consumption data were only 
available for the first 20 months at the time of the field data collection 
(December 2022). 

2.3.3. Door-to-door customer surveys and key informant interviews 
Door-to-door surveys were conducted at both sites using purposive 

random sampling. At first, all customers listed in the EEU billing list 
were identified and grouped into three separate categories (HHs, SMEs, 
and Institutions) as per the EEU’s customer classification. A random 
sampling of roughly 20–40% was then used to select sample HHs, SMEs 
and Institutions in each town. The purpose of conducting the surveys 
was to collect relevant socioeconomic and appliance use data from the 
customers, and thereby to conduct a regression analysis and validate the 
results of the metered data analysis with those of the survey. The survey 
data consists of demographic data, dwelling type and number of rooms, 
monthly income, appliances ownership and use, monthly consumption 
energy quantities and charges, type of electricity service (productive or 
domestic), frequency and duration of power interruptions per week etc. 
All electrical appliances of survey customers were identified and sorted 
into two categories 5:HH appliances and 6 other appliances. The surveys 
were conducted through face-to-face interviews from 1 to December 31, 
2022 using semi-structured questionnaires that were designed, pre- 
tested and revised following pilot studies and Yin’s (Yin, 2014) guide-
lines. The final sample sizes at each site are presented in Table 1. During 
the same period, frequent field visits to both MG sites and in-depth in-
terviews with MG operators and more than 15 key informants were 
conducted at each site including regional and local EEU staff, local po-
litical administrators and community leaders. 

2.3.4. Hourly electrical load measurement for different consumer types 
using smart meters 

Since the load data retrieved from the MGs in section 2.3.1 is town 
level aggregated data, high resolution hourly electrical load data by 
consumer type was measured to examine the variations in the daily load 
profiles among the different sectors. Accordingly, we measured the 
hourly electrical loads of 20 randomly selected households, 20 SMEs and 
5 institutions at each site, using smart electric meters, as representative 
samples. The electrical load measurements were made in both towns for 
14 consecutive days covering 24 h from 15 to December 28, 2022. Ap-
pendix B presents a summary of a 14-day hourly load measurement for a 
hotel owner at Omorate, as an example. Based on the measured load 
data, the average daily energy consumptions of the three consumer 
types or sectors were calculated for each town. 

2.4. Data analysis 

This study is mainly data-driven and descriptive. As such, it mostly 
utilizes descriptive statics, load duration curves, and graphs to charac-
terize, illustrate and comparatively analyze electrical load profiles and 
consumption patterns across the different customer types and the two 

Table 1 
Distribution of sampled households, SMEs and institutions at each site.  

Consumer type Omorate Tum Total samples 

Total number (N) Sample size (n) Total number (N) Sample size (n) 

Households 301 68 384 60 128 
SMEs 112 50 40 40 90 
Institutions 30 10 26 10 20 
Total 443 128 450 110 238  

3 In this paper, ordinary households stands for those households that use 
electricity primarily for household purposes while SMEs refers to those 
households that use electricity primarily for productive purposes. Institutions 
on the other hand, refer to government offices, public schools, health centers, 
churches and mosques etc.  

4 Since almost all SMEs were household-based businesses, SMEs are treated in 
this analysis as ‘households that use electricity for income-generating/ 
productive purposes’ rather than a separate class of observations. Doing so 
enables us to better understand the influence of productive use (SMEs) on 
household electricity demand. 

5 Household appliances refer to all domestic uses including electric bulbs, 
boilers, cooking stoves, juice makers, coffee makers, irons, cooling fans, re-
frigerators, freezers, rechargeable LEDs, radios, TVs, speakers etc.  

6 Other appliances and equipment in this study refers to all power- 
intensive appliances (≥1 kW) typically used for productive purposes by SMEs 
including welding machines, air compressors, electric drills, large dough 
mixers, hair dryers, coffee machines for commercial use, and other high- 
wattage electric machines. 

Y.T. Wassie and E.O. Ahlgren                                                                                                                                                                                                                



Energy Policy 185 (2024) 113969

5

towns. The average hourly power generated by each MG, and energy 
consumed by all loads at each site were calculated over the 20-month 
period (610 days) of the MGs’ operation. The dynamics of monthly 
electricity consumption among the different customer types over the 
same period was analyzed based on EEU’s metered dataset and classi-
fication of customers. 

In order to determine the effect of the load-shedding on the demand 
at Omorate, we applied the 7Multiple Imputation (MI) method of pre-
dicting missing data using predictive-mean matching (PMM) technique 
(Seaman et al., 2012). Data imputation using MI derives imputations 
from observed values by building a model based up on the distribution of 
the incomplete data and real values from other observations. The main 
justification for using the PMM method is that it delivers more accurate 
estimates of multiple missing data when the variable is not normally 
distributed (Seaman et al., 2012). As will be seen in the results section 
3.1.1, the daily loads in Omorate are not normally distributed. The MI 
method is embedded in many software packages such as STATA, R, and 
SAS in the form of ‘Multiple Imputations by Chained Equations (MICE)’. 
The multiple imputations in this study were performed by using STATA 
version 16. 

Following the works of Laicane (Laicane et al., 2015) and Kim 
(2020), Multiple Linear Regression (MLR) analyses were performed to 
investigate the factors affecting the electricity consumption of HHs and 
SMEs in each town. However, the factors influencing the electricity 
consumption of institutions were not analyzed. This is because the ma-
jority of the institutions in both towns are either government sector 
offices or public/state institutions whose electricity consumption is 
relatively less impacted by the local socio-economic and appliance fac-
tors. Also, as Table 3 will show, there is little difference in the average 
daily electricity usage of institutions between the two sites. Accordingly, 
two separate MLR analyses, one for HHs and one for SMEs, were carried 
out for each of the two towns. The dependent variable, log (kWh per 
month), in all of the four regression equations is the natural logarithm of 
the mean monthly electricity consumption per customer, while the in-
dependent or predictor variables (shown in Table 2) were chosen based 
on our recent work (Wassie and Ahlgren, 2023) and review of relevant 
earlier studies (Ye et al., 2018; Zou and Luo, 2019; Agrawal et al., 2020; 
Li et al., 2016). Equation (1) presents the general MLR model that was 
used to analyze the association between the predictors and electricity 
consumption of HHs and SMEs in each town.  

log(Yij) = β0 + β1X1 + β2X2 + … …. + βnXn + ε                              (1) 

Where: log (Yij) is the dependent variable, i.e., the log-transformed 
average monthly consumption of customer i (HH, SME) in town j, X1 
through Xn are the independent or explanatory variables, β0 is the 
intercept (the value of log (Yij) when all of the independent variables (X1 
to Xn) are equal to zero), β1 through βn are the parameter estimates 
(regression coefficients), and ε is the error term. 

3. Results and discussion 

3.1. Load profiles and demand analysis of the two towns 

3.1.1. Hourly load and power generation at the two sites 
Using the hourly load and AC power data retrieved from the EMCS of 

each MG, the monthly average daily load and power generation curves 
for each location were established as shown in Figs. 3–6. Fig. 3 illustrates 
that except for the first three months of the MG’s operation (May 
through July 2021), the daily load curves at Omorate are consistently 
interrupted and near zero kW for a significant portion of the day. This is 
because following the rapid surge both in the number of customers and 
demand per customer, the MG at Omorate was no longer able to fully 
meet the load requirement. As a result, a complete load-shedding of 
8–13 h each day has been in effect in two time slots; from 17:00/18:00 to 
19:00 and again from 21:00/22:00 to 08:00 since August 2021. The 
load-shedding is used by MG operators as a demand side management 
(DSM) strategy to save power during ‘low demand’ hours and supply it 
during peak evening hours. As of December 2022, the load at Omorate 
was being shed off for 13 h a day. 

Fig. 3 also depicts that the load curves at Omorate follow roughly 
similar distribution patterns (shape) with the peak loads (maximum 
demands) occurring in the evening; and a stable and high demand 
(loads) through much of the day-time until the load is shed off at 17:00/ 
18:00. 

On the other hand, the power generation curves at Omorate, Fig. 4, 
illustrate that both the hourly generation patterns and magnitudes of the 
power produced by the MG vary between months. This is atypical of a 
PV generator (PVG) in an equatorial climate where the daily solar 
irradiance usually follows a similar distribution pattern throughout the 
year. 

Unlike the load curves observed at Omorate, the load curves at Tum 
(Fig. 5) are unbroken throughout the day, and customers receive 24 h of 
electricity service since the MG produces sufficient electricity to meet 
the demand. Compared to the somewhat stacked, or clustered, load 
curves seen at Omorate, the size of the loads at Tum grows noticeably 
over time. As a result, the average amount of energy consumed at hour h 
in Tum in December 2022 is almost twice the energy consumed at hour h 
in May 2021. Furthermore, the load curves at Tum exhibit a more or less 

Table 2 
Definition of the independent variables.  

Variable Variable definition/description 
aGender Dummy: 1 = if the HH head or SME owner is Female, 0 = if Male 
Age Age of the HH head or SME owner in years 
Educational level Total number of years of schooling of the HH head or SME owner 
Household size Total number of family members in the household 
aDwelling type Dummy: 1 = if the house is made of brick/concrete, 0 = if the house is traditional, made of mud or wood. 
Number of rooms Total number of rooms in the building/house 
log (monthly per capita income of the HH) The log-transformed average gross monthly per capita income of the HH in Ethiopian Birr (ETB) from all income sources 
log (net monthly income of the SME owner) The log-transformed average net monthly income of the SME owner household from all business activities in ETB 
No of refrigerators Total number of refrigerators the customer owns and uses 
No of electric cooking stoves Total number of electric cookstoves the customer owns and uses 
No of space cooling fans Total number of space cooling fans the customer owns and uses 
No of other (high-wattage) appliances and 

equipment 
Total number of other (≥1 kW) electrical appliances and equipment the customer owns and uses 

aPrivate PV ownership Dummy: 1 = if the customer owns private PV system, 0 = if the customer does not own private PV systems 
aProductive use of power Dummy: 1 = if the customer uses MG electricity for productive purposes, 0 = if the customer does not use MG electricity for productive 

or income-generating purposes  

a All categories in the categorical variables with a value of zero are reference categories. 

7 A detailed description of the MI method using predictive-mean matching 
can be found in Seaman et al. (2012). 
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consistent distribution pattern, with the peak demand typically occur-
ring late in the evening (around 20:00) and two smaller peaks occurring 
in the morning (08:00) and midday (12–13:00). 

A comparative quantitative analysis of the average hourly electricity 
generation from each MG, and the electricity delivered to all loads in 
each town over the 610 days is given in Fig. 7. The figure affirms that the 
load profiles of the two towns exhibit significantly differing character-
istics and distribution patterns. At Omorate, the load spikes to 90 kW 
within an hour of connecting to the power feeder, and stays above 90 

kW h for most of the day. The load is shed off at 17:00 and reconnected 
around 19:00. Fig. 7 further displays that the power generated by the 
PVG at Omorate is below the instantaneous load demand even when the 
irradiance is still plentiful, between 15:00 and 18:00. As a result, there is 
not much energy left in the battery to service the high evening demand 
for more than 2 h. In contrast, the PVG at Tum produces sufficient power 
(beyond meeting the instantaneous load) throughout the daytime; and 
the load is stable and remains around 30 kW for most of the daytime. 

At both sites, the peak load occurs in the late evening hours. The 

Table 3 
Summary statistics of average daily electricity consumption of the three sectors.  

Sector Location No of days Min (kWh) Median (kWh) Mean (kWh) Max (kWh) St. Dev. (kWh) 

HHs Omorate 14 0.14 1.31 1.49 7.33 0.81  
Tum 14 0.09 0.50 0.80 2.37 0.53 

SMEs Omorate 14 0.54 4.03 5.01 29.0 6.21  
Tum 14 0.19 2.03 3.23 17.13 2.13 

Institutions Omorate 14 0.49 2.75 3.01 16.08 2.81  
Tum 14 0.37 2.54 2.85 14.75 2.90  

Fig. 3. Monthly average daily load profiles at Omorate over the 20 month-period.  

Fig. 4. Monthly average daily PV power generation at Omorate over the 20 month-period.  

Y.T. Wassie and E.O. Ahlgren                                                                                                                                                                                                                



Energy Policy 185 (2024) 113969

7

reason is that at this time of the day most lighting units are turned on and 
most of the 8businesses are open. Another contributing factor for the 
timing of the peak load at Omorate could be that the load-shedding at 
around 21:00 is dictating the shape of the load curve, such that the 
highest demand occurs right before the load is shed off. Despite the 
parallelism in the timing of the peak loads, the peak load at Omorate 
(128 kW) is almost three times that of the peak load at Tum (48 kW), and 
the midday minor peak at Omorate, 110 kW, is three times the morning 
minor peak at Tum, 33 kW. 

The substantial difference in load profiles between the two towns can 
be attributed to three main factors. The first is differences in key demand 
variables between the two towns. As can be seen in Table 1, the pro-
portion of SMEs in the total number of customers at Omorate, 25%, is 
almost three times that of SMEs at Tum, 9%. From our field visits and on- 
site load measurements, it was evident that productive users were 
mostly responsible for the peak loads at both sites through the day and at 
the evening. Hence, a higher number of productive users at Omorate 
means higher consumption. The average stock of electrical appliances 
per customer at Omorate is 4.2 while at Tum it is 2.8. The mean monthly 

income per customer in Omorate is calculated to be ETB 11,000 while it 
is ETB 9300 at Tum. Studies indicate that households with more appli-
ances and higher incomes use more electricity than those with fewer 
appliances (Ye et al., 2018; Nsangou, 2022). 

The second important element that contributed to the significant 
difference might be the prior exposure to and experience with the use of 
electricity by customers in Omorate. According to the town adminis-
tration officials and elderlies we interviewed as well as our on-site 
verification, the Omorate town used to be powered by large diesel 
generator set for more than a decade up until 2016. But, due to technical 
malfunctions and the significant expense needed for maintenance, the 
DG has stopped operating since 2016. This indicates that the MG cus-
tomers in Omorate already had a considerable amount of prior knowl-
edge and experience about the use of electricity and its socioeconomic, 
health and other benefits. Moreover, many of these former DG con-
sumers may have kept their electrical equipment while awaiting the 
arrival of the PV MG. Evidently, 44% of the MG customers surveyed in 
Omorate stated they tried to utilize the MG electricity for cooking, 
whereas only 11% of the respondents in Tum, mostly SMEs, reported of 
cooking with electricity. The cumulative effect of all of these may have 
led to the surge in energy demand at Omorate within three months of 
operationalization of the MG, thus overwhelming the MG’s capacity. In 
contrast, MG customers in Tum had little to no prior experience with 
electricity, relying solely on traditional kerosene lamps and dry-cell 

Fig. 5. Monthly average daily load profiles at Tum over the 20 month-period.  

Fig. 6. Monthly average daily PV power generation at Tum over the 20 month-period.  

8 Because of the hot equatorial climate that prevails throughout the Omo 
Valley, locals typically begin to stroll around, mingle, and drink beer in the late 
afternoon and into the evening. 
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powered hand torches, and this may have contributed to the relatively 
low demand and sluggish demand growth. 

The third factor for the disparity in load profiles between the two 
towns may stem from location-specific variables including access to 
appliance markets, local climatic conditions, and economic and business 
activities of the locals. Although both towns are located in remote areas, 
Omorate has better road access that connects it to a nearby big town 
(Jinka) situated within 150 km distance. More importantly, the road 
between Omorate and Jinka is relatively safe and there is good access to 
public transportation. As a result, appliances are comparatively cheaper 
in Omorate than in Tum, although much more expensive than in 
mainland urban areas. Conversely, Tum has poor access to appliance 
markets, and one has to travel more than 178 km on an unsecure and 
dangerous route to purchase appliances at Mizan-Aman, the nearest big 
town. Moreover, in Omorate where the mean annual maximum tem-
perature reaches up to 42◦C, many HHs, businesses and institutions use 
refrigerators and cooling fans. In contrast, only a few customers use 
refrigerators and cooling fans in Tum, where the mean annual maximum 
temperature does not exceed 30 ◦C. 

3.1.2. Dynamics in load (demand) profiles of the two towns over time 
The load curves of the two towns discussed in section 3.1.1 have shown 

significant differences in the daily demand profiles both in terms of size 
and hourly distribution patterns. Therefore, it may be useful to compare 
the average daily load curves of each site in the early days of the MGs’ 
operation (May 2021) with the present (December 2022) to gain insights 
into how the demand at each site has evolved over time. The results, 
Figs. 8 and 9, show that the demand at Omorate has completely changed 
from an uninterrupted, stable, and relatively low load (on average 45 
kW/h) in May 2021 to a high and unquenchable load demand (on 
average 98 kW/h) that is routinely interrupted and suppressed by daily 
load-shedding in December 2022. 

When the uninterrupted (unsuppressed) load curve in December 
2022, shown by the broken line in Fig. 8, was constructed using the MI 
method described in section 2.4, the result shows that the total daily 
unsuppressed energy requirement at Omorate in December 2022 was 
1808 kW h but the actual average consumption per day in December 
2022 was only 1100 kW h. This means that 708 kW h (close to 40%) of 
the daily critical load is unmet due to the load-shedding. This is the sum 
of the area between the interrupted load curve and the uninterrupted 
load curve, which amounts to an average unmet load of 54 kW for each 
hour of load-shedding. In fact, it is possible that part of the consumption 
during the uninterrupted hours would have been consumed during the 
interrupted hours if all hours were uninterrupted. As such, one might 

argue that the MI constructed curve may have inflated the unmet load. 
However, given the significant latent demand particularly from pro-
ductive users (i.e., electricity demand that would exist if there were no 
generation capacity shortages and power interruptions), it is highly 
unlikely that the calculated unmet load of 54 kW h per hour of load- 
shedding and consumption of 1808 kW h/day are overestimated. 

Fig. 9 shows that the daily load at Tum, too, has changed sizably. The 
evening peak load has nearly doubled from 27 kW in May 2021 to 48 kW 
in December 2022. The morning minor peak has risen from 23 kW in 
May 2021 to 40 kW in December 2022. Yet, when compared to the load 
curve at Omorate, the shape of the load curve at Tum has remained 
largely consistent over time. 

3.1.3. Daily electricity consumption and its dynamics at the two sites 
Based on the daily load data retrieved from the EMCS of each MG, the 

average daily electricity consumption over the 20-month period was 
calculated to be 1065 kW h at Omorate and 640 kW h at Tum. This 
shows that the mean daily consumption at Omorate is more than one 
and half times the consumption at Tum, despite the fact that the MG at 
Omorate has a total installed capacity of 375 kWp and that at Tum has 
550 kWp; and that both MGs have a similar number of customers. 
However, the average daily consumption varies significantly from a 
minimum of 441 kW h to a maximum of 1575 kW h at Omorate, and 
from a minimum of 340 kW h to a maximum of 858 kW h at Tum. Prior 
studies analyzing the electricity demand of rural towns in SSA are 
generally scarce. However, Mwakitalima and King’ondu (Mwakitalima 
and King’ondu, 2015) assessed the electricity demand of Kikwe, a 
remote off-grid small town in Tanzania with a total population of 2500 
in 2015. According to their findings the average total daily electricity 
demand of the town was 757 kW h. This implies that, relative to its 
population size, Kikwe has a larger daily electricity demand than 
Omorate and Tum. 

Analysis of the temporal dynamics of the total daily energy con-
sumption based on the same dataset over the same time period (Fig. 10) 
illustrates that the average daily consumption at Tum has climbed 
steadily from around 420 kW h in May 2021 to 800 kW h in December 
2022. The results indicate that the daily electricity usage at Tum has 
risen by 90% over the 20-month period, while it has apparently stagnated 
or slightly declined in Omorate from around 1100 kW h per day in May 
2021 to 1008 kW h per day in December 2022. However, as demon-
strated by the reconstructed load curve in section 3.1.2., the demand in 
Omorate has in fact increased, albeit the supply was unable to satisfy the 
demand. According to our results, when the daily uninterrupted load 
curve at Omorate is reconstructed (Fig. 8), the total average daily 

Fig. 7. Hourly mean power generation and hourly mean load at each site (based on data retrieved from the EMCS of the MGs over the 610 days).  
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electricity consumption increases from 1100 kW h in May 2021 to 1808 
kW h in December 2022. This shows that the mean daily electricity 
consumption in Omorate has increased by 64% over the 20-month 
period. The MI, however, only estimates missing critical load values 
during the load-shedding hours. Therefore, the true value of unsup-
pressed electricity consumption and its growth rate, had there not been 
load-shedding, are unknown. In reality, the total daily power con-
sumption is probably much higher than the predicted 1808 kW h/day. 
The finding substantiates our recent study on the same MG (Wassie and 
Ahlgren, 2023) which showed that rather than a saturation of cus-
tomers’ demand for electricity, the stagnation in daily consumption is 
associated with the PV generation and battery capacity constraints 
relative to the demand. 

The gradually rising consumption trends at Tum and the ever- 
increasing load-shedding hours (from 8 h in early August 2021 to 13 h 
in December 2022) at Omorate demonstrate that demand for electricity 
has expanded significantly at both sites over time. Notwithstanding, the 
data in Fig. 10 shows little seasonal variation in electricity consumption 
at town (aggregate) level. However, as will be discussed in Section 3.4., 

the consumption of productive users at Omorate during the dry months 
is relatively higher than the consumption during the rainy months. It 
was also found that the weekend loads at Omorate are higher than the 
weekday loads (Appendix B). 

The primary reason for the higher weekend loads in Omorate 
compared to weekday loads could be that the town serves as a local 
market and trade hub, drawing in locals from up to 30 km away on the 
weekends for shopping, dining, socializing, meetings and beer-drinking. 
Consequently, this raises the energy usage of SMEs, which are respon-
sible for more than 50% of the town’s electricity consumption. Given 
that a significant number of the SMEs in Omorate are in the service 
sector, the higher consumption on weekend days is most likely the result 
of increased business activity. By contrast, the variations between 
weekday and weekend loads at Tum are only marginal. This could be, in 
part, the result of decreased weekend demand of institutions offsetting 
the increased weekend consumption by HHs and SMEs. These results 
have direct implications for MG sizing in rural areas. The frequent 
fluctuations in daily loads at Omorate are likely caused by in-
consistencies in power generation, weather conditions, load-shedding 

Fig. 8. The average daily load profiles at Omorate in May 2021 and December 2022.  

Fig. 9. The average load profiles at Tum in May 2021 and December 2022.  
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hours, or technical and operational issues rather than fluctuations in 
demand per se. Our findings corroborate prior research by Hartvigsson 
et al. (2021), but they disagree with Katre et al. (2019), who found 
insignificant temporal dynamics in the electricity consumption of 
MG-electrified HHs in rural India. The causes for the disparity can be 
attributed to differences in socio-cultural settings, availability of alter-
native energy resources, and important demand determinant variables 
between the research areas. 

3.2. Load profiles and daily energy consumptions by sector 

In this section, the load profiles and energy consumption patterns of 
the three sectors (HHs, SMEs, and institutions) powered by the MGs in 
the two towns are discussed. As indicated in section 2.3.4, the daily 
electrical load data for the sampled customers representing each sector 
were gathered through direct measurement using smart meters. Using 
this measured data; the 14-day average daily load curves were created 
and analyzed by customer type for each town. The results, presented in 
Figs. 11 and 12, display that the load profiles and distribution patterns 
between the three customer types within each site as well as between the 

two sites are markedly different. At both towns, the average week-day 
peak load, both for HHs and SMEs; occur in the late evening hours. 
However, the average week-day peak load per HH at Omorate 0.16 kW is 
nearly twice that of the peak load per HH at Tum 0.09 kW. Likewise, the 
week-day peak load per SME at Omorate (0.6 kW) is twice that of the 
peak load per SME at Tum (0.31 kW). The figures also illustrate that the 
load curves of HHs and SMEs at each site appear to follow similar dis-
tribution patterns, despite having significantly different sizes. Our 
findings run counter to earlier studies (Hartvigsson and Ahlgren, 2018; 
Scott and Coley, 2021) that showed distinct load curve shapes for HHs 
and SMEs in rural SSA. Figs. 11 and 12 further depict that the peak load 
of institutions at Omorate occurs at around 15:00 while at Tum it occurs 
at 11:00. 

One possible explanation for the similarities in the load distribution 
between the HHs and SMEs at Omorate could be that the extended daily 
load-shedding has compelled HHs and SMEs to adopt similar patterns of 
electricity use throughout the day. 

On the other hand, the fact that most of the SMEs at Tum are in the 
service sector may account for the similarities in the shape of the load 
curves of HHs and SMEs. The SMEs in Tum were typically busier in the 

Fig. 10. Dynamics of the average daily total energy consumption from all customers in each site over the 20-month period.  

Fig. 11. Average week-day load profiles of HHs, SMEs and institutions at Omorate in December 2022 (based on the 14-day measured load data using smart meters).  
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morning, midday, and evening hours, when HHs are actively using 
electricity. The effect of the high temperatures in Omorate and the 
resulting increased power consumption for air conditioning, especially 
among government sector workplaces, could be one possible cause for 
the differences in the timing of the peak load of institutions between the 
two sites. 

Based on the same 14-day measured load data, the average daily 
energy consumption of the three customer types in each town was 
calculated as presented in Table 3. According to the results, HHs at 
Omorate consume on average 1.49 kW h per day. In contrast, HHs at Tum 
consume on average 0.8 kW h per day. Similarly, the average daily electricity 
consumption of productive use customers at Omorate 5.01 kW h is almost 
twice the daily mean consumption of productive users at Tum 3.23 kW h. The 
results reveal that, in both towns, productive users consume more than three 
times the daily consumption of HHs. Hartvigsson et al. (Hartvigsson and 
Ahlgren, 2018) and Scott and Coley (2021) also found significantly 
higher consumption by productive users from distributed MGs installed 
in Tanzania. On another note, the mean daily energy consumption of 
institutions did not differ much between the two sites. The fact that the 
median values in Table 3 are below the mean for all three sectors il-
lustrates that the distribution of the load data is skewed to the right, i.e., 
the daily consumption of the majority of the consumers in each group 
are clustered around the left tail of the distributions. 

The findings in Table 3 point out that the daily power consumptions 
of the three customer types are significantly different both within and 
between the two towns. While the daily consumptions of SMEs and HHs 
at Omorate are severely impacted by the load-shedding, the consump-
tions of HHs and SMEs at Tum exhibit those of typical domestic and 
productive users in rural SSA (Hartvigsson et al., 2021; Mandelli et al., 
2016b). Moreover, as can be seen from the sample measured data in 
Appendix B, productive users generally consume more energy during the 
weekend days than during the weekdays. Likewise, significant differ-
ences were observed between weekend and weekday consumptions of 
HHs at Omorate, but not at Tum. The higher electricity consumption of 
SMEs is essentially related to the fact that SMEs are primarily engaged in 
income generating activities that involve substantial power use, such as 
garages, hotels/restaurants, local breweries, bakeries, and beauty sa-
lons. According to the survey data, 46% of the total sampled SMEs (in 
Omorate and Tum) were established after the launch of the MG services. 
This suggests that the introduction of the MG service may have served as 
the impetus for the creation of new businesses and enterprises. Appendix 
C presents a summary of the main electricity use types by sector in the 
study areas. 

3.3. Monthly electricity consumption patterns and dynamics by sector 

In this section, the mean monthly electricity consumption of the 
different consumer types and its dynamics over the 20-month period is 
analyzed using the EEU’s metered dataset and customers’ classification. 
The summary statistics of the average monthly electricity consumption 
by sector, shown in Table 4, generally substantiates the daily average 
energy consumptions calculated from the 14-day load measurements of 
representative samples (Table 3). The data in Table 4 shows that HHs 
typically consume 45 kW h per month in Omorate and 22 kW h per 
month at Tum, indicating that the mean monthly consumption of HHs at 
Omorate is more than twice that of their counterparts at Tum. Similarly, 
SMEs at Omorate consume more electricity each month (on average 159 
kW h) than SMEs at Tum (on average 90 kW h). However, the mean 
monthly consumption of institutions at Omorate is only marginally 
higher than that of the institutions at Tum. 

A further analysis of the EEU dataset shows that SMEs at Omorate 
consume over half of the total energy supplied by the MG (on average 
51%) each month, while representing only 25% of the total number of 
customers. In Tum, SMEs account for 28% of the total monthly con-
sumption despite making up only 9% of the total customers. It is also 
found that about 50% of the HHs at Omorate consume less than 50 kW h 
per month, while 70% of HHs at Tum use less than 20 kW h per month. 
By contrast, SMEs at Omorate consume up to 800 kW h per month. 

These results once again highlight the significant differences in 
electricity consumption across the two towns and between the three 
sectors discussed in sections 3.1 and 3.2, respectively. Our results have 
significant policy implications which underline the importance of un-
derstanding the energy demands and lad profiles of SMEs in determining 
rural electricity demand especially in off-grid areas. In line with our 
findings, Agrawal et al. (2020) reported that rural HHs in India 
consumed on average 39 kW h per month. Comparable results were also 
found by Sharma et al. (2020). 

Analysis of the dynamics of monthly energy consumption over the 
20-month period, shown in Figs. 13 and 14, reveals differing patterns 
between the two towns and across the three sectors. The average 
monthly consumption per HH at Omorate has dropped from 175 kW h in 
May 2021 to 36 kW h in December 2022 (79% decline); while at Tum it 
has grown from 25 kW h in May 2021 to 37 kW h in December 2022 
(48% increase). Similarly, the average monthly consumption per SME at 
Omorate has plunged from about 665 kW h in May 2021 to 200 kW h in 
December 2022 (70% decline); whereas it has steadily climbed up at 
Tum from 89 kW h in May 2021 to 124 kW h in December 2022 (39% 

Fig. 12. Average week-day load profiles of HHs, SMEs and institutions at Tum in December 2022 (based on the 14-day measured load data using smart meters).  
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increase). By contrast, the monthly consumption per institution at Tum 
has marginally increased over time, while it has marginally decreased at 
Omorate. 

Figs. 13 and 14 also show that the number of MG customers grew 
sharply at both sites but the energy supplied by the MG at Omorate has 
remained essentially unchanged (see Fig. 10). As a result, the monthly 
consumptions of HHs and SMEs, in particular, have dropped 

significantly. The flat line of in the number of MG customers as of 
December 2021 indicates that the EEU has ceased providing connections 
to new customers at both sites since then. In terms of seasonal variation 
in energy consumption, the mean monthly consumption of SMEs at 
Omorate during the dry months (July through March) was found to be 
132 kW h/month compared to 108 kW h/month during the rainy 
months (April through June), indicating a 22% increase in mean 

Table 4 
Summary statistics of monthly electricity consumption by sector in the two towns.  

Sector Location Min (kWh) Median (kWh) Mean (kWh) Max (kWh) St. Dev. (kWh) % Demand 

Households Omorate 3.14 41.4 45.4 200.5 22.8 40.0 
Tum 2.5 13.6 22.2 61.5 14.9 56.3 

Productive users/SMEs Omorate 12.0 110.9 158.5 800.1 170.8 50.7 
Tum 5.3 55.86 89.9 192.5 55.7 28.1 

State/public institutions Omorate 7.7 85.0 98.1 434.1 100.8 9.2 
Tum 6.2 76.6 90.4 398.3 80.1 15.6  

Fig. 13. Mean monthly electricity consumption per customer for the different customer types over the 20-month period at Omorate (based on EEU’s metered data 
and customer classification). 

Fig. 14. Mean monthly electricity consumption per customer for the different customer types over the 20-month period at Tum (based on EEU’s metered data and 
customer classification). 
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monthly consumption of SMEs during the dry months. Similarly, the 
monthly consumption of HHs at Omorate was found to be marginally 
higher in dry months than in wet months. The variation in energy 
consumption of SMEs and HHs between the dry and rainy seasons at 
Omorate could be related to two factors. The first is that energy con-
sumption is higher during the dry months since many HHs, and SMEs use 
air conditioning and refrigeration. In contrast, during the rainy season, 
consumption is relatively low because the weather is cooler, which 
means less power is needed for space cooling. Although both towns have 
an equatorial climate, it is worth noting that Omorate is situated at the 

heart of the Omo Valley where the annual average maximum tempera-
ture ranges from 35 to 42.8 ◦C, while at Tum it ranges from 24 to 30 ◦C. 
Second, during the rainy season the amount of incoming solar energy 
can be lower, resulting in less electricity being produced by the PVG. 

The increase in consumption over time at Tum was expected as 
electricity usage increases with increase in access to electricity, aware-
ness, appliance ownership and the use of electricity for various purposes. 
On the other hand, the stalling of monthly consumption per SMEs and 
per HHs at Omorate is due to the generation capacity shortage relative to 
the demand as discussed earlier in this paper and also reported in our 

Table 5 
Multiple Linear Regression (MLR) results for HHs in Omorate.  

Regression Statistics 

Multiple R 0.864 St. Error 0.563 
R Square 0.746 Observations 68 
Adjusted R Square 0.708    

ANOVA  

df SS MS F Significance F 

Regression 13 50.34 3.87 12.21 0.000 
Residual 54 17.13 0.32   
Total 67 67.47      

Coeff. St. Error t Stat P-value Lower 95% Upper 95% 

Gender 0.07 0.19 0.37 0.714 − 0.30 0.44 
Age 0.01 0.01 1.25 0.218 0.00 0.02 
Education level 0.03 0.02 1.59 0.117 − 0.01 0.08 
HH size 0.05 0.06 0.99 0.326 − 0.06 0.17 
Dwelling type 0.16** 0.22 2.12 0.039 − 0.27 0.59 
No of rooms 0.11** 0.07 2.08 0.041 − 0.02 0.24 
log (monthly per capita income) 0.08* 0.12 1.72 0.092 − 0.24 0.24 
No of refrigerators 0.27*** 0.23 3.57 0.000 − 0.17 0.72 
No of cooking stoves 0.21 0.31 1.01 0.317 − 0.39 0.81 
No of cooling fans 0.20** 0.18 2.42 0.018 − 0.15 0.55 
No of other appliances 0.04 0.24 0.85 0.401 − 0.43 0.51 
Private PV ownership − 0.13 0.19 − 1.05 0.286 − 0.50 0.23 
Productive use of power 0.02 0.24 0.07 0.948 − 0.45 0.49 
Constant (intercept) 2.72** 1.69 2.60 0.011 − 0.60 6.03 

*p < 0.1; **p < 0.05; ***p < 0.01 significance levels. 

Table 6 
Multiple Linear Regression results for HHs in Tum.  

Regression Statistics 

Multiple R 0.926 St. Error 0.353 
R Square 0.857 Observations 60 
Adjusted R Square 0.817    

ANOVA  

df SS MS F Significance F 

Regression 13 34.42 2.65 21.23 0.000 
Residual 46 5.74 0.12   
Total 59 40.16      

Coeff. St. Error t Stat P-value Lower 95% Upper 95% 

Gender 0.14 0.11 1.21 0.233 − 0.09 0.37 
Age 0.00 0.00 − 0.36 0.722 − 0.01 0.01 
Education level 0.04** 0.01 2.63 0.011 0.01 0.07 
HH size 0.10*** 0.03 3.04 0.004 0.03 0.16 
Dwelling type 0.35** 0.17 2.11 0.040 0.02 0.68 
No of rooms 0.15** 0.04 2.31 0.024 0.07 0.24 
log (monthly per capita income) 0.12** 0.11 2.10 0.041 − 0.20 0.29 
No of refrigerators 0.05 0.16 0.31 0.758 − 0.27 0.37 
No of cooking stoves 0.23 0.17 1.04 0.151 − 0.10 0.56 
No of cooling fans 0.00 0.01 0.16 0.873 − 0.02 0.02 
No of other appliances 0.42 0.32 1.32 0.191 − 0.22 1.07 
Private PV ownership − 0.01 0.25 − 0.02 0.984 − 0.51 0.50 
Productive use of power 0.22 0.27 0.82 0.417 − 0.31 0.75 
Constant (intercept) 0.02 0.87 0.02 0.984 − 1.73 1.77 

*p < 0.1; **p < 0.05; ***p < 0.01 significance levels. 
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recent study (Wassie and Ahlgren, 2023). In congruence with our re-
sults, a study in Tanzania (Hartvigsson et al., 2021) found that over a 
period of 30 months, the electricity consumption of HHs and SMEs 
electrified by an off-grid MG grew by 56% and 37%, respectively. 

4. Drivers of electricity consumption 

4.1. Factors affecting electricity consumption of HHs 

The results of the regression analyses for the factors determining the 
electricity consumption of ordinary HHs in Omorate and Tum are pre-
sented in Tables 5 and 6, respectively. Both regression models have 
satisfactory goodness-of-fit (Adj. R2 = 0.708 and Adj. R2 = 0.817) 
indicating that the predictor variables included in each equation suffi-
ciently explain the variation in electricity usage among HHs in each 
town. The parameter estimates (regression coefficients) in Table 5 reveal 
that HH electricity consumption in Omorate is significantly influenced 
by appliance ownership (total number of refrigerators and cooling fans 
the HH owns) and dwelling factors (whether the HH lives in ‘modern’ 
brick/concrete house or traditional house, and the total number of 
rooms). According to the model estimates, a one unit increase in the 
number of refrigerators (standard 250 L) that the HH owns may increase 
the average monthly electricity consumption of the HH by 27% (p <
0.01), keeping other variables in the model constant. Similarly, 
compared with HHs living in traditional mud or wooden houses (the 
reference category), HHs living in ‘modern’ brick or concrete houses 
consume 16% (p < 0.05) more electricity per month. These results 
reinforce findings of previous studies (Ye et al., 2018; Nsangou, 2022) 
which reported that appliance ownership and dwelling factors are 
among the major predictors of rural HH electricity consumption in 
developing countries. 

The coefficient for per capita income indicates that a 1% increase in 
the monthly per capita income of the HH may increase the HH’s monthly 
electricity usage by 8% (p < 0.1), holding other variables constant. 
While the coefficient for per capita income appears to be sizable, it is 
statistically weakly significant (p < 0.1). In contrast to our finding, Ye 
et al. (2018) and Rahut et al. (2016) reported that rural HH electricity 
consumption is significantly and strongly influenced by per capita 

income. There are two possible explanations for the weak effect of per 
capita income in Omorate. The first is that per capita income perhaps 
influences HH electricity consumption indirectly by affecting the HH’s 
ability to purchase and utilize appliances. The second is that electricity 
demand in Omorate may have become income-inelastic (i.e., is not 
sensitive to changes in income). Earlier studies in South Africa (Ye et al., 
2018) and India (Basumatary et al., 2021) have also shown that rural HH 
electricity demand is income inelastic. 

Table 5 further elucidates that, despite the positive relationship, 
sociodemographic factors such as the gender, age, and education level of 
the HH head as well as family size have no significant influence on 
electricity consumption. This might be due to two reasons. The first is 
that most HHs in Omorate are well aware of the benefits of access to 
electricity since Omorate used to be powered by a large diesel genset up 
until 2016. The second may be that other determinants such as the HH’s 
appliances ownership and disposable income have stronger effects. 

In contrast to the HHs in Omorate, the regression coefficients in 
Table 6 show that HH electricity consumption in Tum is significantly 
influenced by family size (p < 0.01), education level of the HH head (p 
< 0.05), dwelling type and number of rooms (p < 0.05), and monthly 
per capita income (p < 0.05). As can be seen from the results in Table 6, 
some of the variables affecting the electricity consumption of HHs in 
Tum are distinct from those affecting HHs in Omorate. Whereas the 
effect of HH size was insignificant in Omorate, in Tum, the average 
monthly electricity consumption of a HH statistically significantly in-
creases by 10% for every one person added to the family size (p < 0.01), 
keeping other variables constant. It is also worth noting that monthly 
per capita income of the HH has stronger and more significant (P < 0.05) 
effect on HH electricity consumption in Tum than in Omorate. These 
findings clearly demonstrate that, while income and dwelling factors 
affect the electricity consumption of HHs in both towns, appliance 
ownership and access to appliances exert a more significant positive 
effect in Omorate than in Tum. In contrast, the education level of the HH 
head and HH size play a major role in determining the electricity con-
sumption of HHs in Tum. The latter results are in agreement with pre-
vious research (Ye et al., 2018; Aziz and Chowdhury, 2021), which 
reported that HHs with larger family size and higher educational 
attainment consume more electricity. 

Table 7 
Multiple Linear Regression results for SMEs in Omorate.  

Regression Statistics   

Multiple R 0.884 St. Error 0.595 
R Square 0.765 Observations 50 
Adjusted R Square 0.663    

ANOVA       

df SS MS F Significance F 

Regression 13 22.30 1.72 2.71 0.009 
Residual 36 22.76 0.63   
Total 49 45.06      

Coeff. St. Error t Stat P-value Lower 95% Upper 95% 

Gender − 0.46 0.28 − 1.63 0.111 − 1.03 0.11 
Age − 0.03 0.02 − 1.65 0.107 − 0.06 0.01 
Education level 0.00 0.04 − 0.11 0.912 − 0.08 0.07 
HH size 0.10** 0.04 2.12 0.041 0.00 0.19 
Dwelling type 0.31 0.52 0.59 0.561 − 0.71 1.33 
No of rooms 0.28 0.37 0.77 0.222 − 0.44 1.01 
log (net monthly income) 0.16** 0.10 2.39 0.010 − 0.03 0.36 
No of refrigerators/freezers 0.38** 0.23 1.93 0.029 − 0.07 0.83 
No of cooking stoves 0.42 0.47 0.56 0.577 − 0.50 1.34 
No of cooling fans 0.15* 0.26 1.75 0.089 − 0.39 0.68 
No of other appliances 0.97*** 0.36 3.04 0.004 0.25 1.67 
Private PV ownership − 0.37 0.31 − 1.18 0.247 − 1.00 0.27 
Productive use of power 1.21*** 0.42 2.92 0.006 0.37 2.05 
Constant (intercept) 4.44** 2.17 2.05 0.048 0.05 8.84 

*p < 0.1; **p < 0.05; ***p < 0.01 significance levels. 
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It is evident from the results in Tables 5 and 6 that the drivers of HH 
electricity consumption in the two towns differ considerably. As dis-
cussed earlier in Section 3.1.1., the notable differences in the factors 
influencing HH consumption between the two towns are attributable to 
appliances ownership, HHs’ income, and location-dependent variables 
such as access to electrical appliances and cost of appliances, local 
livelihoods as well as prior awareness. Noticeably, HHs in Omorate who 
generally own a higher number of refrigerators, space cooling fans, and 
‘other high wattage appliances’ consume more electricity than HHs in 
Tum who own fewer number of appliances. Geographic location is 
another key variable since it affects the local climate, and HHs’ liveli-
hoods and access to appliance markets. Our findings from the EEU data 
analysis have demonstrated that customers in Omorate - where the 
climate is hot and there is lengthy daily load-shedding - consume 
significantly more electricity than their counterparts at Tum, where 
there is no load-shedding, and the climate is modest. Also, HHs in 
Omorate had previously used electricity or were familiar with it while 
HHs in Tum had no prior acquaintance with electricity. In accord with 
our results, a study conducted in four SSA countries (Rahut et al., 2017) 
found that accessibility of appliance markets and the level of remoteness 
of the village/town greatly influence HH electricity consumption. Gaunt 
et al. (Gaunt, 2005) also identified access to and cost of appliances 
among the major determinants of electricity demand in rural South 
Africa. The significant effect of local climate and extreme temperatures 
on energy demand has been documented by some previous studies (Li 
et al., 2018; Ali et al., 2013). 

4.2. Factors affecting electricity consumption of SMEs 

Tabless 7 and 8 report results of the MLR analyses for factors 
affecting the electricity consumption of SMEs in Omorate and Tum, 
respectively. In both models, the adj. R2 value is higher than 0.65, which 
indicates that both models explain at least 65% of the variation in 
electricity consumption among SMEs within each town. The coefficients 
in Table 7 reveal that the electricity consumption of SMEs in Omorate is 
significantly influenced by productive use of electricity, number of other 
(power intensive) appliances, number of refrigerators/freezers, number 
of space cooling fans, the net monthly income of the SMEs and HH size. 

The large and significant coefficient for productive use clearly shows 
that the electricity consumption of SMEs in Omorate highly depends on 
whether the SME utilizes power for productive purposes or not. 
Evidently, compared to SMEs that do not primarily use electricity for 
productive purposes (such as small retail shops and grocery stores), 
productive user SMEs (such as beauty salons, restaurants, wood work-
shops) consume 121% more electricity per month (p < 0.01). The strong 
effect of productive use on electricity demand of SMEs in Omorate is 
further evidenced by the significant coefficients for the number of re-
frigerators and freezers (p < 0.05) and the number of ‘other (power 
intensive) appliances/equipment’ (p < 0.01). According to the results in 
Table 7, a one unit increase in the number of high-wattage electrical 
appliances (such as welding machines, air compressors, drills, or hair 
dryers) that the SME owns is associated with a 97% increase in monthly 
power consumption, keeping other variables constant. 

Whereas the influence of per capita income on the electricity con-
sumption of HHs in Omorate was modest (see Table 5), a 1% rise in the 
SME’s net monthly income is associated with a 16% increase in monthly 
electricity consumption. This finding illustrates how a gain in net in-
come can increase the electricity demand of rural SMEs since it provides 
them with more cash to expand and intensify their commercial opera-
tions. It is also found that an increase in HH size significantly increases 
the electricity consumption of SMEs in Omorate (p < 0.05). This might 
be because as family size increases, so does the productive workforce 
available for operating SMEs, which in turn enhances the income- 
generating activities and ultimately increases power consumption. 

In alignment with the results for SMEs in Omorate, the coefficients in 
Table 8 illustrate that the electricity consumption of SMEs in Tum is 
significantly influenced by productive use of power (p < 0.01), number 
of other (power intensive) appliances, number of electric coking stoves, 
and the net monthly income of the SME. The results establish that pro-
ductive use of electricity is a major driver of electricity consumption. 
The reasons as to why productive users consume more electricity are 
explained in section 3.2. However, the weight of influence of productive 
use and number of high-wattage appliances on electricity consumption 
of SMEs in Tum is less than that in Omorate. This may be due to the 
limited access to appliances in Tum along with the largely farming- 
related economic activity in the town. The age of the SME owner is 

Table 8 
Multiple Linear Regression results for SMEs in Tum.  

Regression Statistics 

Multiple R 0.867 St. Error 0.718 
R Square 0.751 Observations 40 
Adjusted R Square 0.652    

ANOVA  

df SS MS F Significance F 

Regression 13 31.43 2.42 4.70 0.000 
Residual 26 13.39 0.51   
Total 39 44.81      

Coeff. St. Error t Stat P-value Lower 95% Upper 95% 

Gender − 0.18 0.32 − 0.57 0.574 − 0.85 0.48 
Age − 0.02** 0.01 − 2.14 0.042 − 0.04 0.00 
Education level 0.00 0.03 0.09 0.927 − 0.06 0.07 
HH size 0.03 0.07 0.42 0.678 − 0.11 0.16 
Dwelling type 0.19 0.16 0.79 0.439 − 0.12 0.50 
No of rooms − 0.07 0.05 − 0.86 0.398 − 0.17 0.04 
log (net monthly income) 0.15** 0.16 2.10 0.046 − 0.17 0.47 
No of refrigerators 0.40 0.32 1.24 0.226 − 0.26 1.06 
No of cooking stoves 0.25*** 0.62 3.05 0.002 − 0.96 1.47 
No of cooling fans 0.01 0.02 0.17 0.432 − 0.03 0.05 
No of other appliances 0.55** 0.28 1.97 0.027 − 0.02 1.13 
Private PV ownership − 0.23 0.11 − 1.05 0.305 − 0.45 − 0.02 
Productive use of power 1.09*** 0.25 4.28 0.000 0.56 1.61 
Constant (intercept) 0.60 2.74 0.22 0.828 − 5.03 6.24 

*p < 0.1; **p < 0.05; ***p < 0.01 significance levels. 
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negatively and significantly associated with electricity consumption (p 
< 0.05). One possible explanation for this might be that the younger 
generations have better access to education and knowledge on how to 
take advantage of electricity access for income-generating activities. 
Interestingly, the number of refrigerators and cooling fans have no sig-
nificant influence on the electricity consumption of both HHs and SMEs 
in Tum. This is in stark contrast to the findings in Omorate where both 
variables have significant influence on the energy consumption of HHs 
and SMEs. There are several reasons for this. First, the climate in Tum is 
relatively cooler than in Omorate, therefore only a few SMEs use re-
frigerators and cooling fans. Second, compared to Omorate, SMEs in 
Tum have less access to electrical appliances. Third, the purchasing 
power of SMEs in Tum is lower than that of SMEs in Omorate. 

Overall, findings of the MLR analyses highlight that a spectrum of 
factors influence the electricity consumption of MG customers in the 
study areas. These factors can be summarized into five major categories: 
the customer’s appliances stock and access to appliances, sociodemo-
graphic factors, income level, location and the type of customers served 
(ordinary HHs, non-productive user small businesses, productive user 
enterprises). However, these factors differ markedly between sectors 
(HHs vs SMEs) and across the two towns. Additionally, the MLR results 
demonstrate how location and context-specific variables including prior 
awareness on electricity use influence the electricity consumption of 
HHs and SMEs due to their confounding effects. As such, the regression 
analyses consolidate our earlier findings and conclusions drawn from 
the EEU metered data and the 14-day measured data. The implication is 
that rural electrification planners and policy makers should take into 
account the influence of context-specific demand variables, in addition 
to the more traditional determinants such as income and appliances use, 
when sizing and deploying off-grid PV MGs. 

4.2.1. Generalizability of our findings 
In contrast to most studies on energy consumption, which mainly 

rely on data from sample surveys, this research has made use of high 
quality, measured data from both the supply and demand sides. These 
datasets have been thoroughly analyzed in the paper across sites, sec-
tors, and time periods. As a result, many of the findings – including the 
variations in electricity consumption across towns, between HHs and 
SMEs and over time – as well as the significant effects of appliances 
ownership, productive use of electricity and the local climate are 
generalizable and applicable to comparable situations in rural areas of 
east Africa and the wider SSA. However, some of the study’s findings, 
including the load-shedding and its effect may have more to do with the 
particular circumstances in Omorate, and the limited installed capacity 
of the mini-grid. 

5. Conclusions and policy implications 

A data-driven analysis of the electrical load profiles, consumption 
patterns and demand drivers of different consumer types electrified 
through off-grid photovoltaic (PV) mini-grids in two remote small towns 
(namely Omorate and Tum) in Ethiopia was conducted using metered 
data spanning 20 months and a survey of 238 customers. Findings 
indicate that the load profiles and electricity consumption patterns of 
mini-grid customers differ significantly between the two sites, across 
customer types (households, productive users, and institutions), and 
over time. The load curves at Omorate are consistently interrupted and 
close to zero kW for a significant portion of the day (13 h each day) due 
to load-shedding as a result of demand exceeding generation capacity. 
By contrast, the load curves at Tum are continuous throughout the day, 
and the mini-grid produces enough power to meet the demand. How-
ever, reconstructing the uninterrupted (unsuppressed) daily load curve 
at Omorate revealed that the demand has in fact grown at least by 64% 
during the 20-month period. Over the same period, the daily energy 
consumption at Tum has increased by 90%. Although the mini-grid at 
Omorate has a significantly lower installed capacity than the one at 

Tum, and that both mini-grids have comparable number of customers, 
the average daily energy consumption at Omorate, 1065 kW h, was 
found to be more than 1.5 times the daily consumption at Tum, 640 kW 
h. At both sites, the mean monthly electricity consumption of productive 
users (SMEs) is more than three times that of ordinary households. Multiple 
regression analyses of the drivers of electricity consumption revealed 
that the factors determining electricity consumption, especially among 
households, differ considerably across the two towns. Furthermore, the 
analyses showed that, in addition to traditional economic factors such as 
the customer’s income level, access to and ownership of appliances, 
prior knowledge of the customer about electricity usage, and local cli-
matic conditions significantly influence electricity consumption. 

A number of important policy implications can be drawn from this 
study. First, the study highlights that rural energy policy makers in east 
Africa, to a much greater extent, should take into account the local 
context, (including accessibility of electrical appliances, type and in-
tensity of business activities, climatic conditions, and income level and 
lifestyle of customers), when planning off-grid electrification through 
PV mini-grids. Second, the excess demand at Omorate and, conversely, 
the comparatively lower demand at Tum, indicate that PV mini-grid 
capacity dimensioning should be based on accurate demand fore-
casting and load profile calibration, as well as an understanding of 
current and prospective energy consumption patterns and dynamics 
across villages. Third, the high share of productive users in the total 
energy consumption at both sites, particularly at Omorate despite the 
protracted load-shedding, demonstrates the crucial role that productive 
use of power plays in determining rural electricity demand. This sug-
gests that mini-grid developers must also make sure that the systems 
satisfy the energy needs of rural enterprises, in addition to fulfilling the 
needs of ordinary households, to maximize the mini-grids’ financial 
profitability and development impact. Fourth, despite some studies 
suggesting that off-grid mini-grids might not be economically viable in 
rural SSA due to insufficient demand for electricity (Peters et al., 2019), 
the high consumption levels and unmet load at Omorate imply other-
wise. It follows that with proper dimensioning, operation, pricing 
strategy and policy support, renewable mini-grids may in fact be 
attractive investments for electricity providers as well as consumers. 
Fifth, the regression analyses showed that installing the mini-grids does 
not necessarily result in energy consumption. It is therefore imperative 
that energy ministries and electricity providers in low-income nations 
facilitate access to affordable electrical appliances and raise awareness 
in order to create sustainable electricity demand. 
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Appendix A. A sample daily load report retrieved from the MG at Tum  

Site TUM Date: 2022-12-16 

Load 1 Load 2 

Time: Ia(A) Ib(A) Ic(A) P(KW) Q (kvar) COS Ia(A) Ib(A) Ic(A) P(KW) Q (kvar) COS 

00:00 25 27 29 17 7 0.93 0 0 0 0 0 0.00 
01:00 25 27 29 17 7 0.92 0 0 0 0 0 0.00 
02:00 0 0 0 0 0 0.00 0 0 0 0 0 0.00 
03:00 0 0 0 0 0 0.00 0 0 0 0 0 0.00 
04:00 0 0 0 0 0 0.00 0 0 0 0 0 0.00 
05:00 0 0 0 0 0 0.00 0 0 0 0 0 0.00 
06:00 0 0 0 0 0 0.00 0 0 0 0 0 0.00 
07:00 0 0 0 0 0 0.00 0 0 0 0 0 0.00 
08:00 44 57 51 34 9 0.98 0 0 0 0 0 0.00 
09:00 44 49 46 31 7 0.96 0 0 0 0 0 0.00 
10:00 50 49 49 33 8 0.97 0 0 0 0 0 0.00 
11:00 49 56 65 38 8 0.98 0 0 0 0 0 0.00 
12:00 51 47 63 36 8 0.98 0 0 0 0 0 0.00 
13:00 62 65 56 41 9 0.98 0 0 0 0 0 0.00 
14:00 44 55 48 33 8 0.97 0 0 0 0 0 0.00 
15:00 37 44 45 27 8 0.96 0 0 0 0 0 0.00 
16:00 45 51 50 32 8 0.97 0 0 0 0 0 0.00 
17:00 35 58 50 31 10 0.95 0 0 0 0 0 0.00 
18:00 52 73 56 40 7 0.99 0 0 0 0 0 0.00 
19:00 87 103 97 66 6 1.00 0 0 0 0 0 0.00 
20:00 84 97 87 61 5 1.00 0 0 0 0 0 0.00 
21:00 57 62 66 41 6 0.99 0 0 0 0 0 0.00 
22:00 39 47 45 29 6 0.98 0 0 0 0 0 0.00 
23:00 32 35 37 22 6 0.96 0 0 0 0 0 0.00 
24:00 26 26 30 18 6 0.94 0 0 0 0 0 0.00  

Appendix B. Summary of a 14-day hourly electrical load of a typical hotel owner at Omorate, from 15 to December 28, 2022, as an 
example. (Source: own measurement using a smart-meter)  

Time Measured total energy consumption per day (kWh) 

Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed 

00:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
01:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
02:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
03:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
04:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
05:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
06:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
07:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
08:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
09:00 0.50 0.34 0.00 0.00 0.43 0.53 0.27 0.58 0.31 0.00 0.74 0.37 0.68 0.35 
10:00 0.52 0.35 1.00 0.80 0.45 0.54 0.28 0.61 0.32 1.02 0.74 0.39 0.69 0.36 
11:00 0.57 0.39 1.08 0.90 0.49 0.59 0.31 0.66 0.36 1.11 0.83 0.42 0.75 0.40 
12:00 0.58 0.44 1.11 0.90 0.50 0.61 0.28 0.73 0.41 1.04 0.93 0.43 0.83 0.41 
13:00 0.63 0.40 1.09 1.00 0.50 0.66 0.32 0.67 0.37 1.13 0.83 0.48 0.77 0.46 
14:00 0.58 0.39 1.19 0.90 0.55 0.60 0.32 0.62 0.36 1.22 0.83 0.43 0.76 0.41 
15:00 0.53 0.36 1.01 0.80 0.45 0.55 0.36 0.67 0.33 1.13 0.74 0.39 0.70 0.36 
16:00 0.19 0.30 0.45 0.30 0.15 0.20 0.06 0.24 0.09 0.52 0.27 0.12 0.28 0.10 
17:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
18:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.48 
19:00 0.00 0.69 0.61 0.00 0.73 0.93 0.40 0.81 0.46 1.05 0.93 0.00 0.92 0.50 
20:00 0.70 0.97 0.58 1.00 0.70 0.90 0.58 0.77 0.00 1.40 1.02 0.70 0.88 0.00 
21:00 0.67 0.00 0.00 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.00 
22:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
23:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
24:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Total 5.47 4.63 8.12 7.70 4.95 6.11 3.18 6.36 3.45 9.62 7.86 4.46 7.26 3.83 

*All Wednesdays and Fridays are fasting days among Orthodox Christian adherents in Ethiopia.  
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Appendix C. The main electricity services/uses of the different customer groups  

No Customer type (sector) Main electricity services Frequency 

Omorate (n = 68) Tum (n = 60) 

1 Households (domestic use) Home lighting 68 60   
Mobile phone charging 58 49   
TV and/Radio service 55 22   
Refrigeration/cooling 51 7   
Space cooling/fans 45 0   
Cooking and heating/stoves 30 11   
Coffee maker/boilers 6 3 

2 Small and medium enterprises (SMEs)  (n = 50) (n = 40)  
Retail goods and cold drinks stores Lighting, refrigerators, cooling fans 18 6  
Fast foods, beverages and traditional coffee shops Lighting, refrigeration cooking stoves, boilers 5 7  
Bars, restaurants, and traditional ‘beer-like’ beverage 
makers 

Refrigeration, deep freezers, cooking, lighting 5 6  

Women’s and Men’s beauty salons Hair styling machines 5 5  
Hotels and pensions Deep freezers, refrigerators, lighting and cooking 4 3  
Mobile phone charging and electronic shops Lighting, maintenance and phone-charging 1 4  
Garage, wood and metal workshops Welding, compressors, low-power sawing, air pumping, 2 1  
Motorcycle and bicycle repair service Light-welding and pumping 2 1  
Juice makers and sport/game zones Juice machine operating 2 1  
Bakeries Dough mixing 1 2  
Photo studios Background lighting 2 1  
Photocopy, computer and printing services Photocopying, printing, laminating, typing 1 1  
Tailor and ironing Tailoring and ironing 1 1  
Private clinic/pharmacy Lighting, cooling 1 1 

3 Institutions  (n = 10) (n = 10)  
Government sector offices and administrations Computer use, documentation, 3 2  
Churches/Mosques Lighting, speakers 1 1  
Bank (ATM service) Banking, networking 1 1  
Health centers, clinics and pharmacies Laboratory, deep-freezing of vaccines and storage of medicine, space 

cooling, 
1 1  

Schools and colleagues Lighting, TV-education laboratory, workshop 2 2  
Police stations and prisons Lighting, space cooling 1 1  
Military/refugee camps Lighting, space cooling 1 1  
State/district prisons Lighting, space cooling 0 1 

4 Streetlights Lighting 14 0 

*n = sample size. 
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