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Abstract

Purpose — This study aims to explore and empirically test variables influencing material delivery schedule
inaccuracies?
Design/methodology/approach — A mixed-method case approach is applied. Explanatory variables are
identified from the literature and explored in a qualitative analysis at an automotive original equipment
manufacturer. Using logistic regression and random forest classification models, quantitative data (historical
schedule transactions and internal data) enables the testing of the predictive difference of variables under
various planning horizons and inaccuracy levels.
Findings — The effects on delivery schedule inaccuracies are contingent on a decoupling point, and a variable
may have a combined amplifying (complexity generating) and stabilizing (complexity absorbing) moderating
effect. Product complexity variables are significant regardless of the time horizon, and the item’s order life cycle
is a significant variable with predictive differences that vary. Decoupling management is identified as a
mechanism for generating complexity absorption capabilities contributing to delivery schedule accuracy.
Practical implications — The findings provide guidelines for exploring and finding patterns in specific
variables to improve material delivery schedule inaccuracies and input into predictive forecasting models.
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Originality/value — The findings contribute to explaining material delivery schedule variations, identifying
potential root causes and moderators, empirically testing and validating effects and conceptualizing features
that cause and moderate inaccuracies in relation to decoupling management and complexity theory literature?
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1. Introduction

Communication of material delivery schedules through electronic data interchange is a
widely established supply chain practice in the automotive industry, which is the empirical
focus of this study. However, the value of sharing schedule information depends on its
stability and accuracy (Holweg, 2005; Jonsson and Myrelid, 2016). According to a
recommendation by the German automotive association VDA (2008), anything less than
90% schedule accuracy on the item level is considered poor performance for weekly planning
buckets on a 3- to 8-week horizon — a target being far from reached in practice (Shurrab and
Jonsson, 2023) [1]. Delivery schedule inaccuracies require corresponding supplier
responsiveness and force suppliers to decouple from vehicle manufacturers’ demand
signals (Holweg, 2005), apply reactive rescheduling and reworking activities and proactively
build capacity flexibility and safety stocks. These measures lead to increased costs without
necessarily solving delivery service problems (e.g. Myrelid, 2017).

Research has examined suppliers’ strategies to mitigate schedule inaccuracies through,
for instance, excess capacity and safety stocks (e.g. Atadeniz and Sridharan, 2019; Krajewski
etal,, 2005; Liand Disney, 2017). However, limited empirical evidence exists on the root causes
generated downstream at original equipment manufacturers (OEMs) and their effects on
delivery schedule inaccuracy. Most research comprises analytical modelling using various
operating variables (parameters) and operating conditions (context) (Pujawan et al, 2014); we
refer to such variables and conditions as “features” in this study. Empirical studies that
explore or test such features are limited, with some exceptions (e.g. Pujawan et al, 2014;
Pujawan and Smart, 2012; Shurrab and Jonsson, 2023). Consequently, we have limited
knowledge about how possible “features” affect the processes in which schedules are
generated and communicated. Thus, the literature does not give managers clear guidelines
about explaining or managing schedule inaccuracies.

To address this knowledge gap, we conducted a mixed qualitative—quantitative empirical
study to explore how product and process variables constitute features statistically related to
delivery schedule inaccuracy. Drawing from decoupling management (Wikner, 2014) and
complexity (Shurrab and Jonsson, 2023) literature, we analyse the predictive difference of
features on various time horizons, conducted within a case study representing specific
settings of a global car manufacturer (called the OEM).

Section 2 presents a literature review defining delivery schedule inaccuracy, exploring the
perspectives of decoupling management and complexity literature on the problem and
identifying relevant variables that explain associated inaccuracies. We then describe our
mixed-method case study design in Section 3. Finally, the analyses’ findings are described
and discussed in Section 4, and the conclusions in Section 5.

2. Definition of delivery schedule inaccuracy and independent variables

The literature review defines delivery schedule inaccuracy (dependent variable), presents the
decoupling management and complexity theory perspectives on delivery schedule
inaccuracy and reviews the literature on independent variables (features).
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2.1 Delivery schedule and schedule inaccuracy
A delivery schedule is defined as “the required or agreed time or rate of delivery of goods and
services purchased for a future period” (Blackstone, 2013). Delivery schedules contain planned
orders and call-off information on various planning horizons. The order information can be
expressed in different planning buckets, normally varying among days, weeks and months.
Schedule inaccuracy in a material ordering process refers to the difference between a
planned and actual demand for items (Lee and Adam, 1986). The absolute percentage error, or
mean absolute percentage error (MAPE), is a common way of measuring forecast inaccuracy
(Makridakis et al., 1998), thus a relevant performance measure of schedule inaccuracy.

2.2 Theoretical perspectives on factors causing delivery schedule inaccuracies

This study addresses schedule inaccuracies in material delivery using two theoretical
perspectives to understand the various underlying elements contributing: decoupling
management and complexity theory. Both decoupling management and complexity theory
literature provide essential theoretical lenses through which we can understand, anticipate
and perhaps even mitigate the delivery schedule inaccuracies in material ordering processes.

2.2.1 Decoupling management perspective. The decoupling management perspective
presents a comprehensive view of how planning horizons, time fences and distinct decoupling
points can influence the accuracy of delivery schedules. From this standpoint, schedule
naccuracies may be tied to decoupling points and their respective hybrid zones (Wikner,
2014; Banerjee et al.,, 2012).

The customer order decoupling point (CODP) denotes a critical juncture between
speculation-based flow initiation and commitment to actual customer orders. The decoupling
point, therefore, separates two fundamentally different operational paradigms: speculation
on future orders and commitment to existing orders. Near-term plans are frozen and
primarily customer order-dependent, while long-term plans are less fixed and rely more
heavily on market forecasts. The hybrid zone before the CODP (Wikner and Rudberg, 2005)
represents a transition phase, characterized by a blend of customer orders, forecasts and
modifications of customer orders. In this context, feature effects (i.e. the influence of specific
item characteristics on schedule inaccuracy) are expected to be relatively more pronounced
when the commitment to customer orders is higher.

Similarly, the customer adaptation decoupling point (CADP) introduces another level of
complexity by addressing the standardization—-adaptation dichotomy in fulfilling customer
orders. This point separates decisions based on standardized procedures from those
necessitating unique adaptations to meet specific customer needs (Amaro et al., 1999). In the
hybrid zone before the CADP, there is a mixture of standardization and adaptation. For
delivery schedules of planned purchase orders, the CADP and its hybrid zone relate
particularly to customized and variant items. In such a scenario, feature effects might differ
significantly depending on whether schedules represent customized or variant items.

2.2.2 Complexity theory perspective. According to Turner and Baker (2019), complexity
science (or, synonymously, complexity theory) is separate from general systems theory — “the
behavior of a system in terms of that of its constituent components and the interrelationships
between those components” (Koopmans, 2017, p. 21) —and embraces other concepts, such as
complex adaptive systems and chaos theory. Evolving from the general and open systems
models, complexity in social sciences through, for instance, system dynamics, complex
adaptive systems and deterministic chaos theory contributed to establishing modern
organization theory (Roehrich and Lewis, 2014).

Complexity theory has been used in various operations and supply chain management
domains to explore a system’s non-linearity, emergence, adaptive behaviour,
interconnectedness and interdependence and self-organization (e.g. Aitken et al., 2016;



Fernandez Campos et al., 2019; Manuj and Sahin, 2011; Maylor and Turner, 2017; Shurrab
et al., 2022a, b). It can provide valuable insights into how systemic interdependencies and
non-linear dynamics can exacerbate delivery schedule inaccuracies (Shurrab and
Jonsson, 2023). Focusing on how the inherent unpredictability and emergent behaviour
in complex systems, such as material delivery processes, can lead to a high degree of
schedule inaccuracy arguably complements the perspectives provided by decoupling
management.

Viewing the causes of material delivery schedule instability as per complexity theory
necessitates an in-depth exploration of the intricate process dynamics at play. The instability
of delivery schedules can be construed as a function of the static elements or structures in a
process, the heterogeneity of these elements and the dynamism of their interactions (Holweg
et al,, 2018). Accordingly, increased external variety, such as fluctuations in the market or
changes in customer preferences, can be addressed or elucidated by a corresponding increase
in internal variety. This emergent complexity could manifest as broader product ranges to
cater to more diverse customer needs (Serdarasan, 2013).

Underlying delivery schedule variations can be viewed as complexities inherent in the
internal process itself. Two crucial aspects come to the fore: process variation and design.
Process variation refers to the fluctuations in quality, quantity and timing within the process
(Holweg et al, 2018). This variation could result from various factors, including machine
downtime, labour inefficiencies, supplier delays or demand fluctuations (Mendoza et al., 2014).
In contrast, process design encompasses elements such as buffering strategies, system
throughput and process scale and scope (Holweg et al., 2018). Buffering strategies aim to
manage variations but can lead to schedule instability if not sufficiently designed or
implemented (Atadeniz and Sridharan, 2019). System throughput can be constrained by
bottlenecks that limit the rate at which the system can deliver products. The scale of the
process, in terms of the number of demands (numerousness), and the scope, in terms of
demand variety, can add layers of complexity that affect schedule stability (Shurrab and
Jonsson, 2023).

Apart from process dynamics, complexity transfers across organizational boundaries
(Huatuco et al., 2021), where intricacies in one area can create ripples of complexities in others,
leading to delivery schedule variations. According to Shurrab and Jonsson (2023), identifying
the root causes of delivery schedule variations involves untangling the network of their
underlying effects.

Firstly, interactions that induce delivery schedule instability can manifest as the
importation of demand and supply chain complexities. These might arise from external
factors, such as the need to respond to evolving market demand or the complexity associated
with managing multiple suppliers. Both these factors can lead to frequent changes in gross
requirements, thus contributing to schedule inaccuracies.

Secondly, the exportation of product and process complexities upstream and downstream
in the supply chain can also generate inaccuracies in delivery schedules. An example is the
decision to offer customizations in products, which can considerably increase product
complexity (Chand et al, 2022). As more customization options are made available, the
process of estimating accurate delivery schedules can become more challenging due to the
more significant variability in production times, resource needs and coordination efforts
(Shurrab et al., 2022a).

Finally, the generation and absorption of complexity within the internal environment of a
supply chain member can lead to delivery schedule inaccuracies. If a firm’s internal systems
have a limited capability to handle variations, the result could be an inability to maintain
stability in delivery schedules (Shurrab and Jonsson, 2023). This limitation could be due to a
lack of robust processes to handle the dynamism stemming from product complexity,
capacity constraints or other factors.
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2.3 Causes of delivery schedule inaccuracy

The terms schedule instability and nervousness have been used to define and understand
variations in delivery schedules, leading to schedule inaccuracies. Steele (1975) uncovered the
phenomenon of schedule instability and related effects on performance. Over several decades,
researchers have suggested scheduling configurational variables or parameters that reduce or
dampen schedule instability (e.g. Atadeniz and Sridharan, 2019; Herrera et al, 2016; Ho, 1989;
Lalamiet al, 2017; Lee and Adam, 1986; Liand Disney, 2017; Zhao et al, 1995; Zhao and Lee, 1996).

Primary scheduling parameter variables include planning horizon (e.g. Lee and Adam,
1986), time fence management/frozen period (e.g. Zhao et al., 1995) and re-planning periodicity
or frequency (e.g. Ho, 1989). These parameters can moderate generated instability in delivery
schedules (Shurrab and Jonsson, 2023).

Schedule instability is also contingent on contextual planning environment variables
(Harrison, 1997; Inman and Gonsalvez, 1997; Jonsson and Mattsson, 2003). Previous studies
have considered several contextual variables potentially impacting delivery schedule
inaccuracy: external (demand- and supply-related) and internal (product- and manufacturing-
related) variables.

External demand-related variables include customer input (e.g. Pujawan, 2008), demand
pattern (e.g. Zhao et al., 1995), sales forecasting errors (e.g. Lee and Adam, 1986) and stock-out
cost (e.g. Ho and Carter, 1996). Demand patterns — featuring frequent low actual demands and
increased product life cycle uncertainty — and forecasting errors — leading to late increases in
demand — can cause schedule instability. In contrast, late changes in end-item specifications
can moderate such generated instability Shurrab and Jonsson (2023).

External supply-related variables include supply relationships and supplier profiles (e.g.
Krajewski et al., 2005). A lack of readiness for supply chain disruptions and transportation
dynamics characterizing suppliers or relationships with suppliers can cause delivery
schedule instability. Alignment among engineer-to-order’s (ETO’s) and suppliers’ operations
times, pick-up frequency, lot sizing rules, unit packaging (unit load) or any other delivery
flexibility forms can moderate schedule instability Shurrab and Jonsson (2023).

Internal product-related variables (e.g. product structure and item commonality) and
manufacturing-related variables (e.g. Ho, 1989) can also generate delivery schedule instability
(e.g. Lee and Adam, 1986) through causal and moderating effects (Shurrab and Jonsson,
2023). Manufacturingrelated causal variables could include, for example, production
disruptions and inventory stock discrepancies. Related moderators include capacity
scalability, transportation optimization, schedule miscommunication, safety stock policies
and policies penalizing suppliers for delivery quantity and timing deviations.

3. Methodology

3.1 Study design

The data analysis is based on qualitative and quantitative data collected at a European
personal car manufacturer (here, called the OEM). A single case was considered appropriate
due to the massive amount of data that needed collection. We wanted to understand the case
company’s specific operating variables and conditions, identify relevant explanatory/
predictive variables, collect variable data and analyse and interpret the findings in detail.
Therefore, a qualitative explorative study preceded a quantitative data analysis. The
qualitative study identified possible causes and specified variables with potential causal effects
on delivery schedule accuracy. We then collected quantified data corresponding to some of
these variables and built a database of variables to further analyse the predictive difference of
these variables on delivery schedule inaccuracies. As such, we apply a mixed method design to
use the findings of the first study to inform the second study and expand the insights generated
in a developmental manner (e.g. Davis ef al, 2011). The following eight data collection and



analysis phases are conducted: (1) mapping the material planning process, (2) collecting/
extracting two years of delivery schedule data from the OEM’s enterprise resource planning
system and forming delivery schedule groups, (3) measuring delivery schedule accuracy on
different horizons, (4) exploring features and proposing how OEM-specific features explain
schedule inaccuracies, (5) defining quantitative feature measures and collecting quantitative
data of identified features, (6) exploring relationships between features and inaccuracy (plotting
and correlations) and interpreting the size of predictive differences, (7) analysing feature
reduction, logistic regression and random forest and (8) interpreting data model findings.

The qualitative and quantitative studies were jointly conducted by a team of four
researchers and two practitioners. Two researchers focused on data analytics, and the other
two framed and led the data collection and analysis. One of the practitioners represented the
case company, focusing on material planning and delivery schedules. The other
practitioner is a specialist in delivery scheduling and information sharing in the
automotive industry (i.e. the case company’s industry). Both practitioners actively
participated from the beginning to the end of the study, including problem formulation,
research design and research analysis.

3.2 Delivery schedule process and delivery schedule data collection (Phases 1-2)

The OEM has 10 assembly factories globally. Most purchased components are delivered in
sequence. The material requirements planning (MRP) and delivery schedules are generated
on daily planning buckets with a 60-week horizon and are updated daily. Call-off volumes
required for the upcoming two days are frozen, and a safety lead time of two days is used for
inbound material from suppliers. The last day of (customer) order confirmation (LDOC) of a
car is 3-4 weeks before the delivery date. Four weeks of the order book is frozen every
Thursday. In other words, on Wednesday, the production schedule contains a three-week
frozen period; on Thursday, the fourth week on the horizon becomes frozen. Accordingly, the
end product demand is perfectly known during 3—4 weeks. The assembly sequence is fixed
for the next two weeks, meaning that the company knows exactly what car variants to
assemble each day during this period. Consequently, we presume the gross requirement of
purchased items to be close to fixed during 2—4 weeks.

Schedule accuracy (the dependent variable) was measured based on historical delivery
schedule data. Therefore, the first quantitative data collection phase was to collect historical
delivery schedule data from the OEM and build a two-year delivery schedule database (2017—
2019). In the empirical analysis, we aggregated the data into weekly planning buckets. The
database of delivery schedules contained 16.5 million schedule records (rows). The records
were grouped, and each group included records with identical combinations of (1) item
number, (2) ship-to-gate address (unique delivery address) and (3) demand (delivery) week.
Consequently, each group included all planned/required order volumes of the unique items
shared by the OEM with the individual suppliers over two years, specifying the unique
delivery addresses and weeks. The grouping resulted in 0.63 million unique schedule groups.
These groups were called “delivery schedule groups”.

3.3 Exploving possible root cause effects at the OEM (Phase 4)

Based on the literature review on delivery schedule inaccuracy causes — in combination with
workshops and dialogues within the OEM — we identified features with expected explanatory
effects on schedule inaccuracy. The OEM representative (i.e. the co-author mentioned earlier)
led this exploratory phase. The identified causes were discussed in a larger research project
involving two more automotive OEMs. Therefore, although the variables were generated
from one specific OEM, they were validated as generally relevant possible causal variables in
other automotive settings.
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Figure 1.

Proposed feature
categories and feature
variables explaining
schedule variation

In total, six interviews were conducted with the senior logistics planning manager
responsible for production planning and material ordering. Archival data, in the form of
detailed descriptions and maps of production and material ordering process steps,
subprocesses and systems, were also collected and analysed. Figure 1 summarizes the
identified categories of features and individual feature variables at the OEM.

The LDOC is an important decoupling point. Inside the LDOC, the order book is fixed. Its
data consist of customer orders (used as actual demand data within this period) and a mix of
customer orders and sales forecasts (used outside this point). Therefore, we can distinguish
between variables affecting the gross requirement outside (1 in Figure 1) and after (2 in
Figure 1) the LDOC. We also distinguish between variables as follows: variables affecting the
net requivement before and after the LDOC (3 in Figure 1), variables not acting as possible root
causes of schedule variations but that can potentially amplify (moderate) them (4 in Figure 1)
and variables affecting the variations by interrupting the levelled schedule (not in Figure 1).

The assembly sequence is fixed for two weeks, meaning that, combined with a 100%
accurate market demand (fixed-order book), the gross requirement within the two-week
horizon should be close to 100% accurate. A prerequisite for such accuracy is that the
production capacity is unchanged within this two-week horizon, the scrap levels do not exceed
set parameters and the daily production volumes do not deviate from planned volumes.

If the production output deviates from the plan, the OEM’s strategy is not to add extra
capacity that day to ensure that the actual daily production output does not deviate from the
planned. Instead, the required compensatory capacity is scheduled for a later date. As
the assembly sequence is frozen for two weeks, if the production volume plan is not met on the
first day, the remaining unmet volume of cars planned for assembly will be assembled at the
beginning of the next day. Production deviations entail changes in daily gross requirements
at the item level if another mix of car variants is built on the second day compared to
previously planned. However, capacity solutions such as overtime may be added later that
week, leading to changes in gross requirements since more cars will be assembled per day
than previously planned.

Other variables affecting the gross requirement on short horizons are phase-in or phase-
out decisions, as the exact date may change on short notice. The deviation between the
planned and fixed order sequencing on the assembly line (during the 3—4-week frozen period)
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also changes the short-term gross requirement, correction of scrap levels and inventory
balance records.

Outside the LDOC, market forecast accuracy (i.e. if order intake deviates from the forecast)
is expected to explain a significant proportion of the gross requirement changes. Market
forecast accuracy is also affected by overall production programme decisions at the car model
level, such as shifting volumes between models or markets. Sometimes, the production
programme requires modifications towards optimized levels in line with sales initiatives to
meet quarterly sales targets in the sales organization. As for changes in the net requirement
(inside and outside the LDOC), variables leading to changes in material ordering parameters
(e.g. safety stock, order quantities, unit loads and pick-up frequencies) come into play.

Variables with presumed moderation influence on delivery schedule variations include
suppliers’ local bank holidays, vacations and opening hours, unit loads, full truckload
optimizations, transport lead time and pickup frequency. The transport lead time is from
pickup at the supplier until the goods are received at the OEM. The inaccuracy is expected to
be higher the more extended the transport lead time since material ordering becomes more
dependent on forecasts. Larger unit loads and more infrequent pickups may increase the
lumpiness of schedules, thus increasing inaccuracies. However, they may, at the same time,
stabilize the schedules on the short horizon, as minor daily variations may be evened out
when using larger unit loads and weekly instead of daily deliveries. Opening hours at
suppliers, cross-docks and plant goods receptions may impact daily schedules but are not
expected to affect weekly schedules. Local plant shutdowns associated with bank holidays
and vacations are other potential variables that may lengthen delivery lead times and cause
multiplication effects.

Take rate is a variable not mentioned in Figure 1, but it has a presumed effect. It refers to
the proportion of assembled vehicles that contain an item. The highest take rate is achieved
for items included in all vehicle models and all model variants. The lowest take rate is for
variant items included in one or a few models. A low take rate is expected to affect gross
requirement uncertainty due to increased market forecast inaccuracy.

3.4 Dependent and independent variable definitions
3.4.1 Dependent variable definition and measurement (Phase 3). The empirical analysis
explores and empirically tests (1) which of the independent variables (features) influence
delivery schedule inaccuracies and (2) develops knowledge about how to assess the predictive
difference of these features given different time lags (horizons). For (1), we performed the
feature analysis and reduction (association/correlation analyses), as presented in Section 3.5,
in which we defined two sets of numerical performance variables of delivery schedule
inaccuracy, each measured on 2- and 8-week horizons. The first measures symmetric MAPE
(SMAPE) to overcome the asymmetry issue of MAPE, which favours under-forecasted items
(Kim and Kim, 2016). The second measure is the “log accuracy ratio” measure, which is
suggested for fitting features to prediction models (Tofallis, 2015). In the setting of
conducting variable reduction by assessing their impact on delivery schedule inaccuracies,
we use the strength of the association/correlation of the performance variables to all other
variables in order to identify the relevant variables that explain associated inaccuracies.
Similarly, for (2), with the objective of estimating the predictive difference of variables
within the data using logistic regression model analysis, we make use of binary dependent
variables associated with various percentage levels of delivery schedule inaccuracies and
perform explanatory analysis using logistic regression model fitting to achieve our objective.
We split the delivery schedule data for a given horizon based on the threshold defined on the
percentage of deviation of the absolute error with respect to a reference volume. For each
schedule, the absolute percentage difference between the scheduled volume and the reference
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volume (i.e. the actual final order volume) is calculated. When the reference volumes are zero,
the percentage error is undefined. If the reference volume is zero and the scheduled volume is
greater than zero, we set those errors as 100%.

3.4.2 Independent variable definition and measurement (Phases 5-6). ldentifying
independent variables started with qualitative mapping and analysing the material
delivery scheduling process at the OEM, as described in Section 3.3. We used data from
the delivery schedule database to quantitatively measure the independent variables. We also
collected additional quantitative data from other internal databases. Variables with expected
effects on the gross requirement outside the LDOC were omitted due to not having access to
market demand data (e.g. sales forecasts).

We collected quantified data from the OEM representing the following variables: unit
loads, pick-up frequency, transport lead time, planned and actual production volumes per
day, take rate, phase-in/out dates, vacation weeks and car model. In addition, we developed a
variable named “life cycle phase” that measures whether an item is early or late in its life
cycle. The expected item life cycle effect is mainly due to the lack of demand history early in
the life cycle, which may negatively affect forecast accuracy. Late in the life cycle, when items
are planned to be phased out, parameters such as safety stocks and unit loads may be
changed, affecting schedule fluctuations inside and outside the LDOC.

Altogether, we defined 23 measurable variables as independent variables (Table 1). These
variables represent categories 2—4 of Figure 1. Seventeen were categorical and measured on
an ordinal scale, while six were numerical on a ratio scale. For the numerical variables, the
pick-up frequency is at least weekly for all deliveries, while 64% have daily pickup
frequencies. Most suppliers are located in Europe, with transport lead times no longer than a
few days, in addition to longer inbound flows from distant suppliers (e.g. in Asia). Twelve per
cent of the transport requires lead times longer than a week, while the rest occur within a
week. The component commonality is relatively low, and/or the variant breadth is relatively
large. Exactly 57% of purchased items have a take rate lower than 5%, and 86% have take
rates lower than 20%.

Thirteen of all selected variables progressed to the regression analysis as a result of
correlation tests. Table 1 shows the predictive difference of these variables on material
delivery schedule variations according to terminology in the related literature (e.g. Shurrab
and Jonsson, 2023), including four types of relationships: independent causes and moderators
and contingent causes and moderators.

Independent causes are variables that could cause variations independently of any
preconditions, and independent moderators are variables that could moderate the effect of
variables on variations without requiring a specific cause source. On the other hand,
contingent causes are variables with particular prerequisites for variations, and contingent
moderators are cause-dependent variables that require specific conditions to moderate the
effect of possible causes on variations.

Table 1 also presents what the variables eligible for regression analysis represent as
sources of complexity, including phenomena representing issues either in the process design
(scale and scope dynamics and insufficient buffering of time) or the process context
(variations in quality and timing). Accordingly, the selected variables represent these process
phenomena that eventually generate schedule variations.

3.5 Independent variable reduction and data analysis

3.5.1 Reduction of independent variables using correlation analyses (Phases 6-7). Three sets of
correlation analyses (categorial-categorial, numerical-numerical and numerical-categorial
variables) were conducted to identify highly correlated variables and reduce the 23 variables
for the logistic regression analysis.
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Table 1.



The first correlation analysis was conducted between all possible pairs of categorical
variables using the uncertainty factor (Theil’s U), a widely used method for finding pairs of
highly correlated categorical variables (White ef al, 2004). The analysis identified the
variables “item” and “schedule delivery date”, measured as demand year and demand week,
to have a full association (coefficient = 1), with at least one other variable. Therefore, these
two variables were excluded from the subsequent analysis. Table 2 shows the correlations
between the remaining 15 categorical variables. Furthermore, transport lead time and pick-up
frequency are fully associated with the supplier variable (i.e. a specific supplier has a fixed
transport frequency and lead time). The analysis also shows full, or close to full, associations
between the phase-in/out and holiday week variables with the schedule delivery week
variable. Because of these correlations, the supplier, phase-in/out week and holiday week
variables could be excluded in the regression analysis if the supplier and schedule delivery
week variables are included.

Pearson correlation (Table 3) was used for all numerically scaled variables (six feature
variables, four performance variables and the reference volume variable). As expected, the
forecasted volumes and the reference volume are highly correlated. Thus, the subsequent
analysis could include only one of the two measures. Similarly, the item’s order life cycle and
production deviation are highly correlated.

The third correlation analysis (Table 4) was conducted between the remaining categorical
and numerical variables by calculating the correlation ratio (Kenney and Keeping, 1951).
Some relatively high correlations were identified, but none were close to zero. As a result of
the three correlation tests, 13 variables proceeded to the regression analysis step.

3.5.2 Statistical analysis using logistic regression analysis (Phase 7). The most
straightforward approach to model delivery schedule inaccuracy is to view it as a binary
classification problem, whereby a schedule is either inaccurate or not. A natural first model to
explain feature influence is a logistic regression with transparency and the possibility of
interpreting the predictive differences of varying model coefficients. Other possible options
such as count regression modelling or multi-class classification problems would have needed
potential higher-order interactions to account for differences over different time horizons or
have required restrictions and/or imputation of the data. An exploration of the target variable

Categorial values 2-15

Categorial variables 1-15 2 3 45 6 7 8 9 10 11 12 13 14 15

1. Supplier 058 0.75 1.00 1.00
2. Receiving address 0.19 0.13
3. Item group 0.25 0.22
4. Schedule demand year

5. Schedule demand week

6. Transport lead time 0.21
7. Pickup frequency

8. Phase-in/out-week

9. Holiday week

10. Car Model A 062 0.10

11. Car Model B 0.10
12. Car Model C 0.44

049 045 045 039 045 043
014 012 012 011 0.10
0.15 010 0.16 0.11

1.00 0.86
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13. Car Model D
14. Car Model E
15. Car Model F

Note(s): Correlation values < 0.10 are excluded

Correlation of
categorial-categorial
variables using the
uncertainty factor




[JOPM
44,13

46

Table 3.
Correlation of
numerical-numerical
variables using
Pearson correlation

Numerical variables 2-11
Numerical variables 1-11 2 3 4 5 6 7 8 9 10 11

1. Unit load per week

2. Production deviation -071 010

3. Order life cycle

4. Take rate 052 054 053

5. Forecasted volume (8 weeks) 094 094

6. Forecasted volume (2 weeks) 0.97

7. Reference volume

8. sMAPE (8 weeks) —-019 028 013
9. Log accuracy ratio (8 weeks) 018 0.39
10. SMAPE (2 weeks) 0.15
11. Log accuracy ratio (2 weeks)

Note(s): Correlation values < 0.10 are excluded

Table 4.

Correlation categorial—
numerical variables
using correlation ratio

Numerical variables 1-11
Categorial variables 1-15 1 2 3 4 5 6 7 8 9 10 11

1. Supplier 062 021 019 083 057 058 057 024 018 021

2. Receiving address 022 014 015 052 027 028 028 0.17 0.13

3. Item group 0.26 047 023 025 024

4. Schedule demand year 071 074

5. Schedule demand week 043 034 014 011 016 012
6. Transport lead time 0.12 024 015 013 013 0.11

7. Pick-up frequency 035 024 021 021

8. Phase-in/out-week
9. Holiday week

10. Car Model A 037 026 027 026
11. Car Model B 048 030 031 031
12. Car Model C 044 024 025 025
13. Car Model D 052 027 028 028
14. Car Model E 047 023 023 023
15. Car Model F 051 025 026 026

Note(s): Correlation values < 0.10 are excluded

related to empirical logits suggested a reasonable fit for logistic regression. Taken together,
this speaks in favour of logistic regression.

The 13 variables included: (1) the item life cycle measured on a scale from 1 to 2, where 1
indicates the first delivery date in the dataset and 2 indicates the last date, (2) take rate at the
plant level measured as a percentage expressing the proportion of finally produced unique
cars the item represents, (3) forecasted volume is for the actual planning horizon, (4) unit load
per weekly demand is the standard unit load divided by the average weekly demand, (5)
production deviation is the actual weekly production volume divided by the planned
volumes, (6) pick-up frequency, (7) transport lead time and (8)—(13) Car Models A-F are on
ordinal scales. See Table 4. Variables 4, 5 and 6 have expected multiplicative influence on
variations. The other variables are expected to have direct effects.

To test the sensitivity of the features on different levels of schedule inaccuracies, we
developed five regression models with different inaccuracies (thresholds/levels for what is
considered an error: 5%, 10%, 30%, 50% and 100%) for each of the four planning horizons
(2, 4, 8 and 12 weeks). Before including the features in the model, we tested the linear



relationship between the independent and dependent variables. Consequently, we found
that the relationship between the unit load per week variable and the dependent variable did
not show acceptable levels of linearity for the 50% and 100% models. We also identified
weak levels of linearity for several forecasted volume variables. All other variables showed
acceptable linearity patterns. The unit load per week variable was transformed into 1/
(1 + unit load per week), an approximate relationship that was judged from the data
exploration. This transformation clearly improved linearity in the empirical logits of the
target variable. Similarly, the forecasted volume variables were transformed into
log(forecasted volume + 1) to reduce the impact of some outliers with very large volume
forecasts. Because of the large volume of data, we relied on the integrated nested Laplace
approximation (INLA) methodology for fast approximate Bayesian inference (Gomez-Rubio,
2020). Logit plots in Appendix 1 show acceptable linearity for most of the transformed
variables described above.

Wefit 20 (5 X 4) logistic regression models with a binary MAPE as the dependent delivery
schedule variable (one group representing cases with MAPE values above a defined
threshold value and one group with values below) and the 11 covariate variables as
independent variables. The target binary variable was defined as a schedule error above the
corresponding threshold. These models were used to analyse the predictive difference of
independent variables on delivery schedule accuracy and to test the size of the predictive
difference on the four different horizons and for the five different schedule inaccuracy levels.
We also included calendar data (demand year and week, demand week, demand year and
holiday weeks) as control variables for systematic external variations. Consequently, a
logistic regression model for the horizon X for the log odds of binary outcome Y (error on a
5%, 10%, 30%, 50% or 100% threshold level) was specified as follows:

Forecasted volume (X) + demand year + demand week + receiving address + order item
life cycle + take rate + unit load + pickup frequency + transport lead time + production
deviation + Car Model A + Car Model B + Car Model C + Car Model D + Car Model E + Car
Model F, where forecasted volume (x) is the quantity for a given order on a horizon of x weeks
in advance.

To complement the logistic regression model findings, we developed random forest
models (Hastie et al., 2009) for the same problem. Fitting random forest models allows for
exploring what features are most useful for explaining the classification in the data with
decision trees. One advantage of random forest and decision tree models over logistic
regression is the ability to pick up non-linear patterns in the data. Therefore, we can expect
interactions with other variables to be useful in fitting non-linear models. For each random
forest model (on a given schedule horizon and threshold value), we evaluated what features
are most important with regard to whether schedule inaccuracies are correctly classified
found in a held-out evaluation test set which is a random sub-selection of the data. We varied
the random forest model hyper-parameters in terms of number of trees and other hyper-
parameters. The results of the logistic regression models were compared with the most
useful features in the random forest models. Further details are found below and in
Appendix 2.

As described earlier, the LDOC is 3—4 weeks, and the assembly sequence is frozen for two
weeks. Consequently, the CODP and CADP could be considered positioned with a 3- to 4-week
horizon, and schedule instabilities within this horizon likely originate from internal product-,
manufacturing- and supply-related operating conditions. Consequently, we defined 2- and
4-week planning horizons, within which internal variables are expected to cause schedule
inaccuracies as the market demand and gross requirement are not changed within these
horizons. Furthermore, we identified 8- and 12-week planning horizons, representing periods
where variables can be expected to have a larger influence.
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4. Findings and discussion

4.1 Identified differences related to individual features of delivery schedule inaccuracies
Table 5 presents the results of the 20 logistic regression analyses. The table lists the
significant features of the various models. Appendix 2 presents the five most important
features of random forest models as a complement.

Our regression findings (Table 5) show that the forecasted volume, item’s order life cycle,
take rate, unit load, production deviation, pick-up frequency and transport lead times are
significant variables in most models. The estimated values of the corresponding coefficients
(the influence) vary in significance and direction between models.

Order life has a significant positive influence on the longer horizon for all models. As
proposed, order life significantly causes gross requirement accuracy on longer horizons since
demand forecast accuracy is expected to be lower early in the order life cycle when there are
lower sales. On the 2-week (5, 10%), 30% and 50% models) and 4-week horizons (5%, 10% and
30% models), the order life variable significantly affects in the opposite direction.
Accordingly, the later an item is in the life cycle, the higher the probability of inaccuracy
on shorter horizons. When exploring the data, we found that items close to the phase-out
usually have inaccurate plans due to, for instance, changed safety stocks and late phase-out
rescheduling, which has also been reported in the literature (Teunter ef al, 2011; Wanstrom
and Jonsson, 2006). Consequently, the findings verify that order life cycle data can explain
schedule inaccuracies. However, the way it impacts varies over short and long horizons.

Our order life cycle measure indicates how late an item is in a life cycle. Although the
current measure does not cover phase-out planning and its influence on inaccuracy, we
expect the inaccuracy to be more significant during phase-out than during periods of
continuous demand. Perhaps the size on a 2-week horizon indicates this significance, but we
need a more accurate phase-out variable to measure the phase-out phenomenon. Alternative
life cycle measures may cover additional life cycle patterns, for example, separating phase-in,
steady-state and phase-out periods (Nepal et al, 2012).

Take rate and forecasted item volume are significant in almost all models. These are
measures of item commonality and product complexity and are expected to directly impact
the demand forecast (i.e. the gross requirement). Items with low take rates, and corresponding
low volumes, pose a significant forecasting challenge and in turn intensify schedule
inaccuracies by causing lumpiness and intermittency in the requirement. A decreased item
commonality could further destabilize the schedule, as outlined by Meixell (2005). Therefore,
the influence of such commonality on schedule inaccuracies was anticipated across both
short and long horizons. The two features are correlated, but they also differ. The forecasted
item volume is affected by planning parameters (e.g. production sequencing and batch sizing)
and the number of units of the respective item per assembled car. In addition, some of the
transformed forecasted volume variables show partially limited levels of linearity, which may
explain the lack of significance in some models (e.g. for the 100% models on 8- and 10-week
horizon — See Appendix 1).

Unit load is significant in all models, with a reverse influence for the 5% and 10% models
compared to the 30%, 50% and 100% models. The findings indicate that larger unit loads (i.e.
lower values of the transferred unit load variable) create stability in the face of larger
variations. However, these same larger unit loads can also lead to more significant
inaccuracies when faced with smaller variations, suggesting the paradoxical nature of large
unit loads. On the one hand, they confer responsiveness when there are larger fluctuations.
On the other hand, when schedule variations are considerably smaller, larger unit loads
contribute to lumpiness in demand (as suggested by Teunter ef al (2011) and Wanstrom and
Jonsson (2006)), which amplifies schedule variations. This dichotomy underscores the
delicate balance involved in managing unit loads to optimize schedule accuracy.
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Table 5.

Coefficient estimates of
features in the 20

logistic regression

models
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When there is a deviation between planned and actual production volumes, item demand
fulfilment in the imminent period is expected to be affected (Atadeniz and Sridharan, 2019).
The effect is expected to exist on all horizons but particularly on short horizons when the
assembly sequence is fixed. The findings confirm that production deviation has a short-term
influence (Pujawan and Smart, 2012) during the period of a two-week fixed assembly
sequence. Most production capacity losses at the studied OEM are solved by overtime on the
weekends during the same weeks. Therefore, a daily production deviation affects the daily
schedule accuracy but may not be visible in the weekly bucket studies. Consequently, the
short-term influence may be stronger when considering daily buckets. The impact of
production deviation may also be further conditioned by features not studied here; for
example, the safety stock policies, capacity scalability (e.g. maximum overtime and space),
suppliers’ limited flexibility (Shurrab and Jonsson, 2023) and take rate with larger expected
influence for items with low take rate.

While pick-up frequency might intuitively seem to enhance accuracy due to the potential
for a rapid response to changing material requirements (Shurrab and Jonsson, 2023), our
findings reveal a nuanced picture. Higher frequencies show a statistically significant
predictive difference in all regression models, with more considerable inaccuracies associated
with higher frequencies. The distribution of frequencies at the OEM ranges from daily to
weekly. Because smaller production deviations are normally mitigated by weekend overtime
shifts within the same week, day-to-day variations do not impact schedule accuracy as long
as the weekly requirement is consolidated into weekly pickups. The aggregation of
requirements on a weekly basis consequently provides robustness, leading to schedule
accuracy. However, the story is different regarding daily pickups: daily variations directly
impact the accuracy of these schedules.

The findings indicate that a longer transport lead time is associated with higher
inaccuracies. The feature was significant in all 50% and 100% models but not in all 5%, 10%
and 30% models. We expected a stronger and more significant predictive difference in
transport lead time. This was not identified, probably because almost all transportation lead
times are within a week and almost none is longer than two weeks.

Car models emerged as significant variables in some regression models, irrespective of the
horizon or the degree of inaccuracy. Notably, how these car model variables influence
schedule variations differs depending on the magnitude of the MAPE thresholds. Both the
significance and, in certain instances, the directionality (whether positive or negative) of their
impact on schedule variations differ. Hence, we can infer that car model variables influence
schedule accuracies differently, contingent on the severity of schedule inaccuracies. Despite
these findings, the interpretation of how and why different car models affect schedule
accuracies is multifaceted and extends beyond the scope of this study. This complex
interplay is mainly attributable to several items being utilized across multiple car models,
suggesting various potential differences and characteristics that could impact variations.
Consequently, an in-depth analysis of features specific to different car models is essential for
a more nuanced understanding of their influence on schedule accuracy.

The influence of the item’s order life cycle on delivery schedule instability becomes
increasingly notable for longer, compared to shorter, planning horizons. Similarly, the
production deviation influence is more notable on shorter horizons. This distinction contrasts
with the take rate, forecasted volume and pickup frequency, demonstrating a relatively stable
impact across all planning horizons. An inverse relationship emerges when examining the
order life cycle on shorter horizons, potentially indicating a phase-out influence.
Consequently, our analysis substantiates the claim that features contributing to delivery
schedule instability vary in their influence, depending on the planning horizon relative to the
LDOC decoupling point and the frozen production plan.



The random forest models (Appendix 2, Figure A9) identify unit load, transport lead time,
order life, take rate and production deviation as the five most influential features. This
roughly corroborate the general findings of the logistic regressions regarding what features
affect schedule accuracy. Unit load stands out as the most influential feature in random forest
models. However, it should be noted that the impact of features is not as clearly identified in
random forests as in logistic regression models. Feature importance in random forest models
reflects what variables are useful for classifying/predicting scheduling inaccuracies, but not
how these affect its likelihood (as in logistic regression). An exploration of the unit load
suggests that there are subregions in the variable range that do not follow a straightforward
linear fit. This is an interesting case for how other models (i.e. non-linear) can pick up useful
feature patterns to explain delivery-inaccuracy classifications.

4.2 Conceptualizing the influences on delivery schedule inaccuracy

Here, features of delivery schedule inaccuracies are discussed with the ambition of
conceptualizing the causality of delivery schedule inaccuracies (Figure 2). Firstly, the
findings show that features can be associated with delivery schedule inaccuracies in different
ways, depending on whether the variable affects (1) before or (2) after a decoupling point
separating forecasts and customer orders (here, defined as the LDOC), if it affects the gross or
(3) net material requirement and if it is a direct or (4) moderating cause. We also propose a
category of causes (5) related to the disruption of a levelled plan from the qualitative data
analysis, but this category is not empirically analysed quantitatively here.

The first two categories cause delivery schedule inaccuracies by directly affecting gross
material requirements. The LDOC operationalizes the CODP (Wikner, 2014). Before the
LDOC, the market demand is known, as it consists of customer orders, not forecasts.
Production capacity losses resulting in lower production output than planned and extra/
exceptional customer orders accepted before the LDOC are features identified in the
qualitative analysis. The features directly affect the gross requirement before the LDOC.
After the LDOC, the gross requirement is more uncertain, especially for variant items with
low take rates, as it is increasingly dependent on the market forecast further out in time from
the LDOC. Our quantitative analysis identified a large and significant influence of the take
rate feature on schedule inaccuracy before and after the LDOC. It also verifies the expected
impact of the production deviation before the LDOC.

Looking at the variables describing delivery schedule inaccuracies through the lens of
complexity theory reveals a network of interconnected variables. At the core of this network,
we find product complexity, a determinant that various researchers have singled out for its

2. Causing gross requirement 1. Causing gross requirement
change before LDOC change after LDOC
r : Y :
Forecast
Customer orders

L A

Y

Last day of order confirmation 3. Causing net requirement change

(LDOC) 4. Causing moderating effect on schedule inaccuracy

5. Disrupting levelled plan
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Figure 2.

Five categories of
causal effects on
delivery schedule
inaccuracies
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significant influence on delivery schedules (e.g. Kabak and Ornek, 2009; Pujawan et al, 2014;
Shurrab and Jonsson, 2023; Sivadasan ef al, 2013).

The take rate and forecasted volume features serve as tangible measures of product
complexity. As proposed by Serdarasan (2013) and Shurrab and Jonsson (2023), product
variety can lead to increased internal variety, causing fluctuations in demand and,
subsequently, delivery schedules. Incorporating the perspective of decoupling management
(Banerijee et al., 2012; Wikner, 2014), it is clear that product complexity management is critical.
As CODPs and CADPs shift, the impact of product complexity on delivery schedules can
differ. Particularly, in a non-make-to-stock environment, where the CADP plays a significant
role, the ability to manage and absorb product complexity can become a decisive factor in
maintaining accurate delivery schedules.

Looking at the complexity absorption capability of a firm, Huatuco ef al (2021) reinforce
the idea that an organization’s internal environment needs to be well-equipped to handle high
product complexity. If there is a lack of capacity, flexibility or adequate information systems,
there is a greater likelihood of schedule inaccuracies.

Echoing this, Holweg et al (2018) suggest that the design and variations of processes
within a firm can contribute to delivery schedule inaccuracies. The firm’s internal process
variations and design, such as insufficient buffering of variations and bottlenecks, can
further amplify the impact of product complexity on delivery schedule inaccuracies.
Summarizing these insights leads us to the following proposition:

P1. Product complexity, due to its multi-dimensional interactions with demand
complexity and the consequential challenges it exports to both the demand
environment and a firm’s internal environment, is a pivotal determinant of delivery
schedule inaccuracies across all time horizons. Its influence is magnified by the
dynamism of the decoupling points, the variety in product demand and the firm’s
internal capacity to absorb complexity. This complexity triggers changes in gross
requirements, thereby posing a significant challenge to maintaining accurate
delivery schedules.

Figure 2 illustrates the third category, wherein changes in the net requirement emerge from
process variations tied to alter planning parameters. The concept that modifications in
planning parameters, including safety stocks and lot sizes, can instigate net requirement
fluctuations is reinforced by studies from Atadeniz and Sridharan (2019) and Li and Disney
(2017). They proposed that these parameters could serve as moderators, buffering the effects
of variances on delivery schedules. Although we examined these impacts in our qualitative
study, the quantitative analysis did not directly address how they altered the net
requirement. Nonetheless, we indirectly deduced their influence from the order life cycle
variable results, such as decreased safety stock volumes during phase-out periods
(Wénstrom and Jonsson, 2006).

Our quantitative analysis pinpoints the order life cycle as a significant determinant of
delivery schedule inaccuracies. It exposed that these inaccuracies could either be amplified or
mitigated at different order life cycle stages due to interacting variables. For instance, items in
the later stages of the life cycle might influence the net requirement before the LDOC due to
these process variations, thereby enlarging schedule inaccuracies. As the product transitions
towards its phase-out period, items tend to become slow-moving, leading to a lumpiness in
their demand (Andersson and Jonsson, 2018).

A decoupling management perspective (Banerjee et al, 2012; Wikner, 2014) can help
elucidate further complexities. In the phase-out stage, unpredictable and declining demand
could shift the CODP or extend the hybrid zone closer to the end customer, implying a
transition from forecast-driven to actual demand-driven production and delivery. This move
minimizes surplus stock risks. Simultaneously, during the phase-out period, companies



might opt to customize the remaining units for maintaining appeal or managing dwindling
resources, moving the CADP and hybrid zone towards the end customer. This switch
escalates customization while decreasing standardization. These CODP and CADP shifts
could sway planning parameters, processes and scheduling decisions. The intensified
dependence on actual orders (due to CODP shifts) and customer-specific adaptations (due to
CADP shifts) could enlarge schedule uncertainties, potentially exacerbating inaccuracies,
primarily if not adequately managed.

In contrast, items at the early life cycle stage pose distinct challenges. Holweg (2005)
suggested that larger variation and complexity in early life cycle stages — owing to new
product introductions and ramp-ups — spur more extensive gross requirement changes, hence
inflating delivery schedule inaccuracies across the time horizon. From the complexity
perspective, Shurrab and Jonsson (2023) argued that interactions between product and
process complexities and demand and supply chain complexities at various life cycle stages
can amplify delivery schedule instability. This perspective reaffirms complexity theory’s
stance on the dynamic and non-linear attributes of the variables involved. Thus, synthesizing
our findings, we propose the following:

P2. The various stages of an item’s order life cycle significantly impact the accuracy of
delivery schedules. At each stage, it presents unique challenges: Late in the cycle,
increased process variations contribute to inaccuracies before the LDOC through net
requirement changes due to alterations in planning parameters and lumpiness in
demand. Conversely, early in the cycle, the dynamism of new product introductions
contributes to inaccuracies throughout the entire time horizon via gross requirement
changes. This multi-stage, multi-effect interaction reflects the complexity of the
item’s order life cycle in shaping delivery schedule accuracy.

The order life cycle and production deviation variables show the decoupling role, in which
variables’ influence before and after decoupling points separate forecast-driven from non-
forecast-driven requirements (Wikner, 2014) and frozen from non-frozen production plans.
Several other variables can directly (as possible causes) or indirectly (as moderators) affect
schedule inaccuracy, regardless of the time horizon (Shurrab and Jonsson, 2023). However,
features impacting production process performance may affect the gross requirements and
their fulfilment before the LDOC (i.e. before and in the hybrid decision zone of LDOC), as
referred to by Wikner (2014). In contrast, process variables generating changes in planning
parameters can change net requirements, affecting schedule accuracy before or even after the
LDOC, depending on the variable in play. Such changes could be adaptations to customer
orders but are typically internally generated and, therefore, unrelated to a CADP (Wikner,
2014). When they occur depends on internal time fences and planning policies. Previous
studies have indirectly supported the contingency effect of the CODP. For instance, although
delayed differentiation to final assembly operations (i.e. pushing back the CODP) enhances
competitiveness (Blecker and Abdelkafi, 2006), Shurrab and Jonsson (2023) and Pujawan et al.
(2014) found it also causes late changes to end-item specifications. Atadeniz and Sridharan
(2019) found a negative effect of late demand increases and short frozen periods —a challenge
also emphasized by Holweg (2005) — highlighting the criticality of decoupling point and time
fence choices for delivery schedule accuracies. Consequently, we introduce the LDOC to
represent a critical decoupling point and emphasize the importance of time fences for
parameter changes in delivery schedule accuracy. As such, we propose the following:

P3. The influence of variables impacting delivery schedule inaccuracies is contingent on
(@) the LDOC decoupling point separating forecast from non-forecast-driven
requirements and (b) the internally generated time fences for parameter revision.
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The fourth and fifth categories in Figure 2 do not directly affect gross and net requirements
but contribute to inaccuracies in other ways. The fourth type moderates the influence of
inaccuracies multiplicatively. We identified some variables in this category as process design
features, such as large unit loads, infrequent pick-up frequencies, local vacations, holidays
and opening hours. They usually amplify generated (caused) variations, aligning with
previous studies’ results (e.g. Inman and Gonsalvez, 1997; Krajewski et al, 2005). Strikingly,
we identified a significant predictive difference between these variables and that they may
stabilize schedules by reducing variations on the short horizon while amplifying on the long
horizon, or vice versa. Both the complexity and process theory perspectives motivate a
combined direct and indirect effect of features on schedule inaccuracies. Still, the combined
amplifying and stabilizing effects of the same variable have not been emphasized in the
literature. This indicates a combined complexity absorbing and generating effect for the same
variables. Consequently, we propose the following paradox:

P4. A variable may have a combined amplifying (complexity generating) and stabilizing
(complexity absorbing) moderating effect on delivery schedule accuracies.

The fifth category causes inaccuracies by disrupting the levelling of a plan. This effect is
specific to the manufacturing strategy environment of our empirical study (i.e. levelled
production in repetitive high-volume manufacturing). We did not directly study this fifth
effect in the quantitative study. Still, examples of process design features were identified in
the qualitative study: unit loads, pick-up frequencies and planned seasonality build-ups. The
disrupting influence of these features is primarily due to synchronization and compatibility
issues with the supply chain. These issues are typically attributed to process design features,
such as increasing product complexities (Bozarth ef al., 2009; Fernandez Campos et al., 2019),
constraints on capacity scalability and strict delivery terms (Shurrab and Jonsson, 2023) and
process context features, for example, limited suppliers’ flexibilities (Ponomarov and
Holcomb, 2009). Accordingly, we propose the following:

P5. Variables contributing to disrupting a levelled production plan are significant possible
causes of delivery schedule inaccuracies, regardless of the time horizon. They could
directly cause inaccuracy by generating gross requirement changes.

5. Conclusions

The study contributes by exploring variables with potential direct causal and moderating
effects, empirically testing and validating previous research outcomes on the material
delivery scheduling process and conceptualizing how features can influence and moderate
delivery schedule inaccuracies. We explored how variables are related to schedule variations
in five ways: affecting the gross requirement before or after the LDOC decoupling point,
affecting the net requirement, adding a multiplicative effect on a schedule variation and
disrupting a levelled plan. The empirical testing verified that the features relate to the
planning horizon (related to the LDOC and frozen production plans). It also identified that the
features have varying influence between low and high inaccuracies, may have reversed
predictive differences on the inaccuracy given various planning horizons and may have
combined amplifying and stabilizing influence.

The study also contributes by identifying take rate and forecasted volume (expressing
item volume/commonality), item’s order life cycle, unit load, production deviation and pickup
frequency as essential variables to explain delivery schedule inaccuracies. Higher take rates
and less frequent pickup frequencies positively relate to schedule accuracy regardless of the
planning horizon, while the order life cycle is related to schedule accuracy differently early
and late in the life cycle. Production deviation has a relatively stronger effect on the short



horizon. Larger unit loads have stabilizing effects for larger variations but may have
amplifying effects for smaller variations. However, further studies are needed to understand
more deeply how individual variables cause delivery schedule inaccuracies.

From a complexity theory perspective (e.g. Aitken et al, 2016; Holweg et al., 2018;
Huatuco et al,, 2021; Ates et al., 2022; Shurrab and Jonsson, 2023), we see how product-
related complexity has a direct negative effect on delivery schedule accuracy and thus also
on operational performance. However, as emphasized in the literature (e.g. Aitken et al,
2016; Ates et al, 2022), product complexity may have a positive effect on both innovation
and financial performance, so reducing product complexity is not a generally feasible
strategy, especially for companies and supply chains competing with design, quality and
innovation capabilities, as is the case for the automotive OEM empirically studied here. A
certain level of product complexity may be required by the firm’s business strategy. This
complexity should then be accommodated rather than reduced. Therefore, it is important to
understand how product complexity is contingent on business strategy and how
complexity absorption capabilities can be generated and adopted and have effects.
Traditionally, absorption capabilities have been related to slack resources, information
systems and relational mechanisms (Galbraith, 1974; Aitken et al., 2016). We identify such
mechanisms (e.g. capacity strategies to manage production disturbances), but we also
identify the key role of decoupling management and related planning policies and time
fences for generating process stability and absorptive capabilities contributing to delivery
schedule accuracy.

Several managerial implications can be derived from this analysis. The five categories of
possible causes of delivery schedule variations could help us understand how internal
processes, conditions and parameters generate variations. The impact of the item’s order life
cycle motivates differentiated item management according to life cycle phases. The take rate
impact suggests an effect of item complexity reduction, as it reduces variations and/or the
generation of complexity absorption capabilities to manage the implications of item-related
complexity. The stabilizing influence of large unit loads and weekly pickup frequencies is
interesting. This indicates a possible tipping point where the lumpiness generated by large
unit loads is related stronger and more negatively to schedule inaccuracy than a positive
stabilizing influence.

The general propositions are also expected to be relevant to environments other than
automotive OEMSs, but some results are affected by our case-specific environment. The
product complexity in our studied environment is high in terms of bill-of-material width and
breadth, component variant breadth (many items with very small take rates) and frequent
phase-in/out of components with high technology clock speed. The product complexity
characteristics are a result of the type of product as well as the OEM’s business strategy. The
highly significant features take rate and the item’s order life cycle relate to product
complexity. The identified predictive difference of take rate on delivery schedule accuracy is
expected to be general and exists in situations with low product complexities. The item’s
order life cycle effect, however, is less likely to be transferrable to situations with low
technology replacement rates and low levels and frequencies of phasing-in/out components in
product models. The assemble-to-order and lean manufacturing environment, characterized
by levelled production and frequent deliveries of supplied items in sequence, or small batches
with short transport lead times, may also affect the findings. In environments with lumpier
and larger proportions of intercontinental supply and long transport lead times, some
features may have stronger and more significant coefficients than in this study.

Consequently, a comparison of causal effects and/or predictive differences across various
planning environments is left for further research. Another limitation of the study design is
the weekly bucketing of schedules. This aggregation may have eliminated some of the daily
schedule variations, thereby eliminating some significant relationships to variables on a daily
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level. Using daily data would consequently be interesting. The next research step is to test the
extent to which predictive forecasting models could be developed using the variables
presented in this study to propose alternative reference volumes to what is expressed in
delivery schedules. Findings from the random forest models (Appendix 2) can serve as first
steps towards this and suggest that the data could be successfully used for out-of-sample
prediction and forecasting.

Notes

1. They reported that one-third of the schedules from three automotive OEMs have less than 90%
accuracy on a three-week horizon, and half of them have less than 90% accuracy on an 8week
horizon. The average accuracy for all schedules was 70% on a three-week horizon and 50% on an
8-week horizon.

2. James, G., Witten, D., Hastie, T., Tibshirani, R. (2021), An introduction to statistical learning: With
applications in R, Springer US.

3. Breiman, L. (2017), Classification and regression trees, CRC Press.
4. Breiman, L. (2001), “Random forests”, Maclhine Learning, Vol. 45, No. 5, pp. 5-32.
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Appendix 2
Variable importance and out of sample prediction using random forest models

Motivation

Our primary approach in the paper uses logistic regression, which provides an interpretable explanatory
fit using the estimated coefficients. This leaves out-of-sample prediction aside: For logistic regression
models, the sign and size of the estimated coefficients describe the average predictive difference per unit
of variable within the training data (Given that the linearity assumptions hold sufficiently well.). It is
reasonable, given that such simple models have high bias and low variance.

Turning to other methods in machine learning, several ways exist to assess variable/feature
importance for the scheduling inaccuracy classification task, besides estimating the size of model
coefficients. It is also conceivable that other non-linear relationships exist between one or more of our
features and the target variable. It should not be a surprise that training variables based on variable
interactions may improve the prediction of delivery schedule inaccuracies, but at the cost of making
model interpretation more complicated by including non-linearities and interactions (low bias).

As the first step to explore this direction, we fit alternative models for the classification task using
random forest classification models (boosting regression trees, lower bias/higher variance models) [2].
Random forest models fit relatively straightforward to a classification task where the aim is prediction
rather than statistical explanation. For random forests, measures of variable importance typically do not
provide a straightforward interpretation of direction. However, using random forest models also allows
some exploration of what variables are most important for predictive performance on data that the
model was trained for. Moreover, the low bias/high variance property of random forest means that the
model may change much across parts of the data set. We address this by using cross-validation.

Method: Random forest variable permutation importance

The technical setup is as follows: Using the same explanatory variables as for logistic regression, we
instead, fit separate random forest models to binary classification tasks (one binary classification task
per unique scheduling horizon/inaccuracy threshold definition). We split the data into a 75% training set
(atrandom) and a 25% test set (model testing out of sample). After a given random forest model was fit to
the training data, we evaluate variable importance by how useful the included variables are used by the
random forest models on the test set, when classifying delivery schedule inaccuracies. Precisely, we
measure the impact on classification 7ecall: The share of true delivery schedule inaccuracies that also get
classified as such by the model.

Two aspects of our data are noteworthy to take into account: Firstly, we have possibly a clearly
skewed classification task at hand (when the inaccuracy threshold in these events is rare: reflected in our
target variable). A classifier may take shortcuts using something similar to the majority rule, and other
metrics than classification accuracy become relevant. Here, we study the precision-recall trade-offs as
well as the trade-off between true positive rate (recall) and false positive rate (the share of delivery
schedule inaccuracy classifications by the model, that are in fact no inaccuracies). To handle skewness in
the target variable, when splitting the data into train and test parts, we use stratified sampling.

Secondly, we have high-cardinality variables: Some numerical features have many unique values.
This may introduce a bias against variables when directly using the mean decrease of the Gini impurity
[3], which is another frequently used approach for random forest variable importance. Moreover, it may
inflate the importance of variables (unique values) if computed on the training data. We handle these two
concerns by random permutations of variable values, the so-called permutation importance [4].

As a baseline dummy majority classifier, it observes the majority class (for most planning horizons
and inaccuracy thresholds, there is no delivery schedule inaccuracy) and classifies/predicts all cases in
the test data as the majority class.

We vary random forest hyper-parameters for each horizon/threshold scenario and 10-fold cross-
validation with stratified sampling. More specifically, we vary the number of estimator decision trees,
tree depth, number of random variables per split and minimum number of samples per tree node. As
keeping both recall high and false positive rate (and precision) low are important in this scheduling
problem, we optimized for both the Area under the ROC Curve and F1 scores. These give similar results
for variable importance (reported below).



The results presented in Figures A3—A10 show and indicate that:

(1) Skewed data: For higher inaccuracy thresholds, we have imbalanced data (target variable)
where nearly all scheduled volumes are considered correct. This is the case for at least 50 %
and 100% inaccuracy thresholds, shown in Figure A3. It is reasonable to use the majority
dummy classifier to compare the performance of the random forest models, as the data is
skewed.

(2) The largest shares of delivery inaccuracies are obtained for low inaccuracy thresholds (natural
and per definition) but also for longer horizons, which is not fully unexpected. However,
interestingly, a horizon of 8 weeks ahead is consistently more associated with inaccuracies than
12 weeks ahead. For low inaccuracy thresholds and long horizons, we have that a majority of the
scheduled volumes are inaccurate. This is shown in Figures A3 and A4.

(3) Learning and evaluation: A random forest fit to the data shows good scores for accuracy for
lower schedule inaccuracy thresholds. However, performance is quite similar to the majority
classifier for higher thresholds (Figure A4). Evaluating precision and recall (Figure A5)
suggests that it could be easier to have both high precision and recall for longer time horizons.

(4) A further evaluation of precision and recall (with the F1 score) and the trade-off between recall
and a false positive classification rate (Figure A6): This shows that delivery schedule
inaccuracies on the 8-week horizon are comparably easier to predict. A more detailed look into
decision thresholds (Figure A7), by varying the decision threshold (the share of classification
decision trees required for a positive label) also suggests a pattern. An 8-week horizon looks
more promising for finding relatively high scores for precision and recall. This is consistent with
Figure A9. For further work, we note that prediction out of sample for 8 weeks ahead seems
more promising than the other cases.

(5) Forecasting is left for further work: The capacity to predict delivery schedule inaccuracies out of
sample (with in some cases, simultaneously high precision and recall) are promising
suggestions for forecasting. However, we should note that our results are no pure forecasts
(predicting out of sample to examine variable importance, not ordered by time). A full setup for
delivery schedule inaccuracy forecasting would not permit learning from future data. Note that
in our setup, we have randomly split the data to estimate variable importance for prediction/
explanation, and not yet estimated forecasting.

(6) Variable importance: We report on the effect of permuting individual features, then estimate the
drop on the recall score (share of delivery inaccuracies in the test data, correctly labelled by the
classifier). Figure A10 shows the mean effects of variable importance. In the aggregate, the five
most important variables are Unit load, transport lead time, take rate, order life cycle, and
production deviation.

The forecasted volume is also important, but a few negative scores here suggest that learning and
generalizing from forecasted volume can in a few cases be tricky (left for further work). An exploration of
the data suggests that the forecasted volume variable contains a small share of clear outliers: Figure A10
shows that on, for example, a 12-week horizon scrambling the forecasted volume variable improves
recall for smaller inaccuracy thresholds. There are different ways to understand this, depending on
where said variable is typically used in the decision trees. In the following, we briefly consider
possibilities.

In terms of decision trees (the base estimator), this can be understood as reversing the majority
voting improves recall to permute the variable. Several explanations are possible here. If the variable
is used for splits close to tree leaves, considering how the variable is directly related to the target
variable becomes important. An inspection of the data suggests that this could have to do with
outliers: For lower inaccuracy thresholds, the relationship between the target variables for outlier
values of the variable is much more balanced. Moreover, it is also possible that there is a non-trivial
amount of scheduled orders with nearly identical predictors, but where different outcomes are related
to precisely this variable.

It is also possible that a negative score (positive effect on recall score) could reflect limits with greedy
training algorithms (that determine decision tree splits). More specifically, a variable with negative
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IJOPM variable importance may ma@nly be used often for splits higher up ip decision trees, but wi'th resulting
4413 subtrees (based on other variables) that better classify the data mainly based on other variables, after
’ greedy splits have been made for information gain.
As this is a side note, we leave studying forecasted volume and its utility for pure forecasts needs to
be investigated in further work. Especially on the 12-week horizon, the forecasted volume variable needs
to be investigated and possibly left out in a similar setup.
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Figure A7.
Precision and recall
with varying decision
threshold
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