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Sliding Touch-based Exploration
for Modeling Unknown Object Shape with Multi-finger Hands

Yiting Chen1, Ahmet Ercan Tekden1, Marc Peter Deisenroth2, Yasemin Bekiroglu1,2

Abstract— Efficient and accurate 3D object shape reconstruc-
tion contributes significantly to the success of a robot’s physical
interaction with its environment. Acquiring accurate shape
information about unknown objects is challenging, especially
in unstructured environments, e.g. the vision sensors may
only be able to provide a partial view. To address this issue,
tactile sensors could be employed to extract local surface
information for more robust unknown object shape estimation.
In this paper, we propose a novel approach for efficient
unknown 3D object shape exploration and reconstruction using
a multi-finger hand equipped with tactile sensors and a depth
camera only providing a partial view. We present a multi-
finger sliding touch strategy for efficient shape exploration
using a Bayesian Optimization approach and a single-leader-
multi-follower strategy for multi-finger smooth local surface
perception. We evaluate our proposed method by estimating
the 3D shape of objects from the YCB and OCRTOC datasets
based on simulation and real robot experiments. The proposed
approach yields successful reconstruction results relying on
only a few continuous sliding touches. Experimental results
demonstrate that our method is able to model unknown objects
in an efficient and accurate way.

I. INTRODUCTION

Robotic physical interaction tasks, such as assembly,
grasping and dexterous manipulation, benefit from knowing
the 3D shape of the object. Though visual-only (RGB
and depth) 3D object perception methods have been well
studied during past years, robotic visual perception accuracy
is reduced in presence of noisy, incomplete, or occluded
data. Approaches rely on sufficient prior knowledge from
pre-trained neural network models, which often fail due to
uncertainties regarding unknown objects and unstructured
environments [1].

Humans make use of both visual and tactile information
for unknown objects’ perception and modeling [2]. Even
when visual perception is heavily confined, humans can
still explore target objects’ size, shape, and texture using
fingertips tactile sensing. Thanks to the advances in robotic
tactile sensors, nowadays robots are enabled to have human-
like tactile perception [3]–[5]. Optical tactile sensors [6]–[10]
are popular given their high-frequency, high resolution, and
ability to capture fine details about the local contact. The de-
velopment of tactile simulators [11]–[15] has also contributed
greatly to include tactile sensing in robotic applications.
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Fig. 1. We propose a visuo-tactile perception approach based on multi-
finger sliding touch for unknown object modeling. A few sliding touches
are illustrated in the upper left corner, using a multi-finger hand visualized
in gray for the first touch and black for the final touch. The hand is
continuously moved in between these touches following the surface normal,
reducing the uncertainty and increasing the accuracy of the initial object
model that is fit based on visual data only. The initial incomplete point
cloud obtained from the vision sensor, the final complete reconstructed
object model (where blue color corresponds to low uncertainty), and the
ground truth model respectively are seen in the upper right corner.

However, how to efficiently fuse both tactile and visual
information for reconstructing an unknown object’s shape
sufficiently well for subsequent manipulation planning still
remains an open problem. Tactile perception has been com-
plementary to visual perception in most multi-modal settings.
Existing methods represent tactile feedback as discrete points
or a few pixels [16]–[20] during manipulation tasks. [21],
[22] propose to use tactile images to predict local shape
information, which further contributes to global shape re-
construction. However, all of the above methods require
frequent re-planning of the robotic arm motion and are time-
consuming in the exploration process because the robot needs
to constantly re-establish new contact with objects.

Compared with discretely sampled interactions, tactile
servoing aims at continuously applying a certain pressure on
target objects to perform interaction tasks [23], which allows
robots to extract the geometric features smoothly. Tactile
servoing includes important tasks, such as sliding a fingertip
across an object’s surface [24], which brings inspiration to
robotic surface exploration. Previous works [25]–[28] have
demonstrated that the robot can robustly follow the target
object surface with one tactile sensor and further provides
shape information such as the object’s contour. Though
tactile servoing with multi-finger hand has been studied in
robotic grasping [29], the aforementioned tactile servoing
methods for objects’ surface exploration are only using one
single tactile sensor.



Fig. 2. Robot setup, composed of a KUKA IIWA arm, Allegro Hand
equipped with Digit tactile sensors, and an Azure Kinect scene camera.
Frame 1 is rigidly attached to the hand palm to represent the palm pose and
Frame 2 shows how local frames are rigidly attached to each fingertip.

One of the key challenges still remaining is how to fully
exploit the potential of robotic multi-finger hands for human-
like tactile perception. Moreover, under the condition that
the coverage of the tactile sensor is limited by its size, how
to make full use of the dexterity of each robotic fingertip to
sense the target object will contribute to perception efficiency
significantly. To tackle the above issues, we propose a single-
leader-multi-follower sliding touch strategy for multi-finger
hands, which takes every fingertip into account for surface
exploration.

This paper presents a novel framework for reconstructing
the 3D shape of unknown objects through visuo-tactile per-
ception using a multi-finger robotic hand. First, we leverage
the power of domain randomization from the tactile sensor
simulator to learn a direct mapping between the tactile
images from the DIGIT tactile sensors to the corresponding
height maps. Then we propose a single-leader–multi-follower
strategy for efficient tactile perception based on tactile servo-
ing. The “leader” fingertip is responsible for providing tactile
features to lead the robotic hand sliding servoing movement
while the “follower” fingertips are responsible for enlarging
the contact field. A fingertip adaptation strategy is adopted
for “follower” fingers, aiming at obtaining a larger sensing
area during contact. We model the target object using a prob-
abilistic representation, Gaussian process implicit surfaces
(GPIS) [30], which can be further combined with query point
guidance from Bayesian optimization (BOpt) [20], [28], [31]
for sliding touch exploration. We show that combined visual
perception and multi-finger tactile sensing can be performed
efficiently (shown in Fig. 1), which significantly reduces the
robotic arm motions.

To the best of our knowledge, this is the first study that
considers the continuous motion of a multi-finger hand in
visuo-tactile perception for the purpose of unknown object
modeling through exploration. We present both simulated
and real experiments, validating our proposed method of
modeling unknown objects’ global shapes with continuous
robotic arm motion minimizing the required actions to re-
construct object models similar to the ground truth data.

Our main contributions can be summarized as follows:
i) We propose an efficient visuo-tactile perception approach
based on continuous sliding touches with multi-finger hands.
Our approach provides an efficient way for surface ex-
ploration and significantly reduces the robotic arm motion
and the required execution time. ii) We present a hand-
agnostic single-leader-multi-follower hand control strategy
to combine tactile servoing and fingertip adaptation for
smooth tactile sensing. This strategy fully exploits multi-
finger hand dexterity for maximizing the local contact area
being perceived. iii) We demonstrate that the visuo-tactile
perception for unknown object modeling can be performed
with limited arm motion in a smooth manner without re-
establishing contact.

II. SYSTEM SETUP AND PROBLEM FORMULATION

A. System Setup

Fig. 2 shows the multi-finger hand used in our experiments
to evaluate the proposed sliding touch approach. Each of
the index, middle, and ring fingertips of the Allegro hand is
equipped with DIGIT tactile sensor. We define the middle
fingertip as the “leader” and the index and ring fingertip as
the “follower”, a detailed strategy will be introduced in Sec-
tion IV. The thumb fingertip is not in use for tactile sensing
because we do not construct any force-closure configurations
during exploration and only explore from the side of the
object that is not visible to the scene camera. An impedance
controller [32] is deployed for finger control, which provides
passive position-force adjustment during the interaction. Fin-
gers are independent during contact and do not affect each
other. The contact from fingertips cannot affect the hand
palm’s pose. The initial hand finger configuration is shown in
Fig. 3, a small joint position offset is set to the second joint
of each finger. After getting in contact with the target object,
the hand finger will passively move near the zero position
which causes an additional force to press on the target object.

Fig. 3. The initial hand configuration provides passive joint space for
additional contact force between fingertips and the target object. During the
sliding process, the hand configuration is remained around zero-position to
apply a constant contact force.



B. Problem Formulation

We address the problem of how to use a partial view of
the depth camera and the sequential robotic tactile sliding
touches to model the shape of a given unknown object. We
consider that the underlying true shape can be represented
using an implicit “black-box” scalar function f , which de-
fines a manifold

S := {x ∈ R3|f(x) = 0}. (1)

We cannot evaluate the derivatives of f , but only observe
f(x) from visual and tactile perception. As for the visual
perception, we use the depth image D ∈ RH1×W1 from the
partial view of the target object and the camera intrinsic and
extrinsic matrix, by transferring D into point cloud Pw

d =
{xd

1, x
d
2, ..., x

d
k} ∈ R3, k ≤ H1 · W1 w.r.t the world frame

after filtering with object segmentation mask, f(x) can be
observed as

f(xd
i ) = 0, xd

i ∈ Pw
d . (2)

The unseen part of the object is perceived based on touch
sensing. Given the tactile image I ∈ RH2×W2×3 from the
tactile sensor, we can estimate the height map of local contact
I → M ∈ RH2×W2 . Based on robotic forward kinematics
and sensor intrinsic matrix, the height map is transferred
from the fingertip’s image frame to the tactile point cloud
M → {xw

1 , x
w
2 , ..., x

w
n }, n ≤ H2 ·W2 w.r.t the world frame

after filtering with the binary contact area. We represent the
motion of one sliding touch T = {I1, I2, I3, ..., Im} →
{M1,M2,M3, ...,Mm} as a series of consecutive touch
frames. The tactile point cloud Pw

t from one complete
sliding touch is obtained as

Pw
t = {xt

1, x
t
2, ..., x

t
k} ∈ R3, k ≤ m ·H2 ·W2. (3)

The value of f(x) is given by

f(xt
j) = 0, xt

j ∈ Pw
t . (4)

Based on the observations f(x), we use Gaussian Pro-
cess Regression (GPR) to build an implicit surface (GPIS)
representation to estimate our target function f . The GPIS
also provides a probabilistic description to further combine
with BOpt to guide our robotic fingertip tactile perception.
The sliding touch strategy will output sequential tactile point
clouds Pw

t after each BOpt iteration for continuous f(x)
observation and leads to GPIS with lower uncertainty and
more thorough modeling.

The rest of the paper is organized as follows: Section III
presents the fingertip perception method for contact shape es-
timation and tactile feature extraction. Section IV introduces
the sliding touch strategy for efficient and smooth visuo-
tactile perception. Section V presents experiments using
sliding touches with simulation and a real robot, followed
by conclusions in Section VI.

III. FINGERTIP TACTILE PERCEPTION

A. Local Shape Estimation from Tactile Image

The vision-based tactile sensor mainly consists of an
embedded camera, an inner light source, and its surface

gel [6], [10]. The output tactile images reflect the surface
deformation of the gel pad under special light conditions. We
consider the task of recovering the height map M ∈ RH2×W2

from the gel image I ∈ RH2×W2×3 as a similar problem of
monocular depth prediction.

Fig. 4. Four rendered tactile image-height map pairs with different
calibrated backgrounds from real-world DIGIT sensors. We randomly select
surface normal as our reference direction and sample the contact surface
with angle noise and randomized depth. In total, we generate 75,000 pairs
of labeled data from 25 different objects for depth estimator training.

Data Collection in Simulation: We learn the depth
estimator in a supervised fashion with paired tactile images
and their corresponding height maps. Since it is difficult
to collect ground truth height maps in the real world,
we collect the training data with TACTO [11], a flexible
tactile sensor simulator with background calibration. We
first calibrate the tactile simulator with different sensor
backgrounds and uniformly sample tactile images across
the object’s surface. To simulate the real tactile perception
situation, we sample the contact with different depth values
X ∼ U [−0.2mm,−1.2mm] along surface normals with an
orientation noise angle θ ∼ N (0, 30◦). Rendered tactile
images with different calibrated sensor backgrounds and
corresponding height maps are shown in Fig. 4. We sample
4000 labeled tactile images on each of 25 objects’ mesh from
the YCB dataset.

Network Evaluation: We adapted a modified fully convo-
lutional residual network (FCRN) [33] as our depth estima-
tor, which uses a ResNet-50 as the backbone network and up-
sampling blocks as the regression head. The depth estimator
is responsible for I → M translation. After 15 epochs of
training with a learning rate of 2e−5, the prediction result in
the real world and the network structure is shown in Fig. 5.

B. Tactile Feature Representation and Extraction

We extract the tactile feature tf from the estimated height
map. Consider a height map M ∈ Rh×w as demonstrated
in Fig. 6, we aim at extracting the center of intensity and
the size of contact area as our tactile feature. The center of
tactile intensity (x, y) is related to the contact pressure and
the shape of the contact area which can be obtained as

(x, y) =

∑h
i=1

∑w
j=1(xi, yj)mi,j∑h

i=1

∑w
j=1 mi,j

(5)

in which x and y denote the pixel index for columns and
rows. The size of the contact area c is computed by the
total number of pixels with a value larger than 10−4. Finally,
the tactile feature vector is concatenated in 3 dimensions as



Fig. 5. A fully convolutional residual network is adopted as our depth
estimator. The upper line image pairs show the height map prediction results
on real-world tactile images from different DIGIT sensors, and the bottom
line image pairs show prediction results from simulated tactile images.

follows:

tf =

xy
c

 =

X center of contact intensity
Y center of contact intensity

contact area

 (6)

The tactile features extracted from fingers with different roles
will be used to perform different tasks as follows:

• From the “leader” fingertip: Tactile feature will be
used for hand palm twists and sliding direction calcu-
lation.

• From the “follower” fingertips: Tactile feature will
be used for adapting the fingertips’ pose for a larger
contact field for tactile sensing.

The detailed mapping will be introduced in Section IV-B.

Fig. 6. After estimating the height map from the tactile image, we extract
the center of tactile intensity and contact area as our tactile feature for
further servoing. The corresponding height map is resized into 32 × 24
for better visualization. The red cross in the left image from the dotted box
denotes the extracted center of intensity and the right image from the dotted
box demonstrates the binary contact area.

IV. SLIDING TOUCH FOR SHAPE RECONSTRUCTION

The pipeline of our proposed framework is illus-
trated in Fig. 7. By fusing Pw

ti with observed Pw =
{Pw

d , Pw
t1 , P

w
t2 , ..., P

w
t(i−1)} after each sliding touch, we are

able to observe the target object’s implicit function as
introduced in Section II and update our GPIS. The com-
plete exploration process consists of several sliding touches
{T1, T2, ..., Tk}, and one sliding touch consists of dozens of
touch frames as previously defined in (3).

Fig. 7. The online perception pipeline of our multi-finger hand sliding
touch strategy. Given the query point from each constrained BOpt iteration,
first, the hand palm will twist based on the tactile feature from the “leader”
fingertip, and the “follower” fingertips will adapt their pose given the current
hand pose for a larger sensing area. After the visuo-tactile point cloud is
updated, the hand will slide under the direction of obtained query point with
a pre-defined step size.

A. GPIS Shape Representation

Based on the values Y observed from points X = Pw, our
goal is to reconstruct an implicit surface approximation of the
object’s shape while also providing uncertainty information
for exploration guidance. The value of our GPIS gIS(x) is
defined as follows:

gIS(x)


< 0 if x is below the surface
= 0 if x is on the surface
> 0 if x is above the surface

(7)

which represents a mapping from point cloud to a scalar
value R3 → R. We adopt the RBF1 (squared-exponential)
kernel kRBF(x1,x2) = exp

(
− 1

2 (x1 − x2)
⊤Θ−2(x1 − x2)

)
to approximate the target implicit function f , which leads to
good reconstruction results for the experiment objects. Given
a query point x∗ ∈ R3, the gIS computes its posterior mean
and variance as:

Σ = (kRBF(X,X) + σ2I)−1 (8)

g(x∗) = kRBF(X,x∗)
TΣY (9)

V(x∗) = kRBF(x∗, x)
TΣkRBF(x∗, x)

T (10)

B. Tactile Servoing and Perception using Multi-finger Hand

Our one-leader-multi-follower multi-finger tactile sensing
strategy mainly consists of two parts: (1) Hand Palm twist for
tactile servoing, which is based on the tactile feature provided
by the “leader” fingertip, and (2) “follower” fingertips adapt
their poses for larger sensing area based on their tactile
features.

Palm Twist for Tactile Servoing: Based on the tactile
feature tf = [x, y, c]T extracted from the “leader” fin-
gertip, the goal of this phase is to minimize the distance
∆tf = [∆x,∆y,∆c]T between current tf and reference
tfr = [h2 ,

w
2 , cr]

T only by hand twisting. The joints of
each finger will remain unchanged. The hand twist motion

1For rectangular objects the kernel can be replaced by the thin-plate
kernel.



Fig. 8. The shape exploration and reconstruction process of 6 objects in the simulation. From left to right respectively: (I) the final combined visuo-
tactile point cloud, where grey colored points represent the visual point cloud, and tactile point cloud generated by each sliding touch are colored with
corresponding color map, (II) how the uncertainty map evolves during the sliding process (III) the final reconstructions and (IV) the ground truth models.

Vpalm = [θ̇y, θ̇z, ḋx]
T is mapped from ∆tf by a task-

dependent tactile Jacobian Js and task-dependent selection
matrix P as introduced by [24]. In which Ry and Rz denote
hand palm rotation angle along the Y axis and Z axis
respectively and translation distance along the X axis w.r.t.
the “leader” fingertip frame.

Jpalm
s =


∂x
∂θz

0 0

0 ∂y
∂θy

0

0 0 ∂c
∂dx

 P =

i 0 0
0 i 0
0 0 j

 (11)

We set i = 0, j = 1 for translation mapping and i = 1, j = 0
for rotation mapping. The core mapping is formulated as

Vpalm = PJ†
s∆tf (12)

where † denotes the pseudo inverse. A PID controller is
adopted for decreasing the ∆tf .

Fingertip Adaptation for Tactile Perception: Based on
the tactile feature extracted from the “follower” fingertips,

the goal of this phase is to sense a larger contact area by
adjusting the “follower” fingertips’ pose only by moving the
corresponding finger joint position. The hand palm’s pose
will remain fixed at this moment. Different from the above
tactile servoing phase, due to the joint control accuracy and
manipulability of the Allegro hand, this fingertip adaptation
motion will directly change the fingertips’ pose without
feedback control and only be triggered if the fingertip is
in contact. A similar task-dependent Jacobian and selection
matrix as (11) is pre-defined for fingertip pose adaptation.

C. Constrained Bayesian Optimization for Sliding Touch

Bayesian Optimization (BOpt) is used to optimize black-
box functions that are expensive to evaluate. In the context
of this paper, the target (black-box) function is based on
the implicit function that represents the object surface. BOpt
builds a (probabilistic) surrogate model, GPIS, of the target
function and uses an acquisition function to determine where



to evaluate next. We approximate the target function by
optimizing our GPIS through sequential tactile perception.

Surrogate Model: The surrogate model is a statistical
model to describe the target function based on observations,
and also provides predictive uncertainty. In our case, the
GPIS is the surrogate model for the target function approx-
imation and description. Given a query point xq from the
world frame, our surrogate model provides a mean estimate
ḡ(xq) and the corresponding variance V(xq). The mean value
defines whether or not the given query point is on the object’s
surface based on (7) and the variance value denotes the
prediction uncertainty.

Acquisition Function: An acquisition function is designed
for balancing the exploration of new parameters vs the
exploitation of current knowledge based on previous ex-
periments. We choose Expected-Improvement (EI) as our
acquisition function:

EI(x) = E(max(y − gbest, 0)), y ∼ g(x), (13)

where gbest is the best-seen value of the black-box function.
The next query point is computed by

xn+1 = argmax
x

EIn(x) (14)

EI calculates how much its function value can be expected
to improve over our current optimum for every point from
our constrained search space. Then we will choose the point
with maximal improvement as our query point for the next
sliding touch guidance.

Constrained Search Space: To improve the efficiency
of sampling query points and well integrate with the hand
sliding motion, the search space is updated with the GPIS
for each iteration. The search space Sx for each sampling is
constrained by the implicit surface

Sx
n+1 = {x | arg gIS

n (x) = 0 ∧ ∥x− xob
n ∥ > d} (15)

where d = 0.005 denotes the minimized length between
points from search space and observed points.

D. Surface Exploration and Exploitation

Fig. 9. Two different examples of how stopping criterion is triggered.

BOpt is designed to output a query point xBO ∈ R3

with respect to the world frame in each iteration. Combined
with the current “leader” fingertip’s tactile feature, the output
xBO will guide the robotic hand’s sliding servoing direction

to explore the target object’s surface. Given the estimated
coordinate of the center of intensity xc = [i, j, v]T ∈ R3and
its corresponding surface normal n ∈ R3 from the “leader”
fingertip w.r.t. the world frame, the sliding direction tBO is
the projection of xBO−xc on the estimated surface (defined
by normal n), which is calculated as

tBO = (xBO − xc)−
(xBO − xc)× n

n× n
n. (16)

The translation for the next frame is computed as

xnext = xc +
tBO

∥tBO∥
∆step, (17)

where the ∆step = 0.005 is the step size between each
sliding frame and needs to be set small enough to keep the
“leader” fingertip in contact with the target object.

Sliding Exploration for each BOpt iteration: One slid-
ing touch consists of sequential touch frames as introduced
in (II-B). Each frame is obtained from every single step,
and the total number of frames for the ongoing sliding
touch is determined by (1) the distance between the current
center of contact intensity from the “leader” fingertip and the
query point smaller than the minimal value Dmin = 0.01,
(2) the number of frames reached the maximal boundary
Nmax = 15. If one of the two conditions is met, the ongoing
sliding touch will terminate and enter the next BOpt iteration
as shown in Fig. 9.

Stopping Criterion for Surface Exploration: The goal
of surface exploration is to estimate the target object’s shape
with relatively low global uncertainty. This judgment is based
on the uncertainty distance reduction ratio (UDRR) of our
GPIS model. Since the GPIS yields low uncertainty in the
areas with the visual point cloud, the global estimation is
evaluated based on the uncertainty distance compared with
areas with a partial view. Given the initial GPIS learned from
only the visual point cloud, the initial uncertainty distance
is calculated as:

distmax = max(Vinit(xm)− Vinit(xn)), xm, xn ∈ Pw
d

(18)
After the sliding touch of each BOpt iteration is over, the
outcome UDRR is calculated as follows

UDRR =
max(V(xm)− V(xn))

distmax
, xm, xn ∈ Pw (19)

If UDRR < 30%, we consider the target object has been
explored sufficiently and the sliding perception is over.

V. EXPERIMENTAL VALIDATIONS

We evaluate our proposed sliding strategy in simulation
(Section V-A) and the whole pipeline in the real world
(Section V-B). We set up our robotic platform with a Kuka
iiwa 7 with Allegro Hand as shown in Fig. 2. An Azure
Kinect DK depth camera is used as a scene camera for visual
perception. All test objects are from the YCB [34] and the
OCRTOC benchmark datasets [35]. The shape estimation
performance is quantified using a shape similarity metric,
the Chamfer distance (CD) [36].



Implementation: The whole pipeline is executed on an
Intel Core i7-11800H CPU, 16 RAM with an NVIDIA
GeForce RTX 3070 GPU. To balance the point cloud density
from visual and tactile perception, the tactile point cloud is
randomly down-sampled with a ratio of 0.02. The input point
cloud is finally down-sampled to 4500 points. During the
GPIS evaluation phase, we set the grid size with a value of
10 for surface reconstruction.

Fig. 10. The figure illustrates shape estimation accuracy (a) and the UDRR
(b) of 6 objects in simulation with respect to the number of sliding touches.

A. Sliding Simulation

We tested our sliding touch strategy in simulation with 6
different objects, which are of varying shapes, curvature, and
sizes to verify the generalization of the proposed method.
The performance of our method is evaluated by (1) the
accuracy of estimated meshes and (2) the efficiency of object
exploration. The sliding touch exploration is visualized in
Fig. 8, which shows the tactile point cloud obtained from
every single sliding touch colored differently for clarity in
the first column. The evolution of the global uncertainty and
estimated mesh during the perception process can be seen in
the middle columns. For objects with non-symmetric shapes,
we tested our method under two different camera views (the
rotation angle between view A and view B is larger than
60◦) for a comprehensive evaluation. Our method output
the estimated shape with considerably reduced uncertainty,
with respect to the initial model built based on only visual
data, only using a few continuous touches. The change in
the uncertainty map clearly demonstrates that each sliding
touch increases the information gain and helps to efficiently
capture the surface’s underlying geometry. The accuracy of
the estimated shape calculated using CD is demonstrated in
Fig. 10 (a) and the evolution of UDRR is shown in Fig. 10
(b). As the number of sliding touches increases, CD w.r.t

TABLE I
PERFORMANCE COMPARISON BETWEEN BOPT AND RANDOM POLICY

Objects Avg., Std. Times1 Avg., Std. CD2

BOpt (Ours) Random∗ BOpt (Ours) Random∗

Shampoob 3.3, 0.48 4.4, 1.43 4.33, 0.11 4.29, 0.14
Chips Cana 4.5, 0.67 6.2, 1.54 7.52, 0.23 7.57, 0.21
Bleach Cleansera 4.7, 0.64 5.7, 1.10 8.25, 0.31 8.21, 0.24
Conditionerb 3.2, 0.40 5.3, 1.50 4.45, 0.17 4.34, 0.20
Blue Moonb 5.0, 0.45 7.2, 0.98 6.03, 0.34 5.98, 0.27
Mustard Bottlea 4.8, 0.75 6.7, 0.90 4.72, 0.45 4.77, 0.51
1 Sliding touch times to achieve UDRR < 30% from 10 experiments.
2 Output shape’s Chamfer Distance (mm) w.r.t GT from 10 experiments.
a and b respectively denotes from the YCB and OCRTOC benchmark.
∗ The constrained random policy shares the same constrained search space.

the ground truth model decreases for each object. For those
objects with irregular or non-symmetric shapes in particular,
e.g. mustard bottle and bleach cleanser, in which GPIS has
a relatively bad initial estimation due to partial and vision-
only observation points, it is seen from a large amount of
decrease in CD that our proposed method can efficiently
explore the areas (not visible to the camera) and provides
sufficient estimated shape correction.

We compare the efficiency of our method with the con-
strained random policy. To fairly evaluate both policies, the
search space for the constrained random policy is set the
same as our BOpt. The exploration is ended by the same
stopping criterion with a value of UDRR lower than 30%.
And the comparison result is listed in Table I. Even though
both policies under the constrained search space can perform
full exploration on the target object’s region, our proposed
BOpt approach achieves similar accuracy with a significantly
reduced required number of sliding touches. The smaller
standard deviation of BOpt iteration times also demonstrates
that our method is more stable compared to the baseline.

B. Real-world Experiment

We tested our proposed method with real-world objects
from the YCB dataset. We selected three objects with
different materials, including symmetric and non-symmetric
shapes with different sizes. The initial approach position
is set on the left side of the target object w.r.t camera
frame, and the example of one complete sliding sensing
is shown in Fig. 11 (a). Fig. 11 (b) shows the qualitative
result of the shape reconstruction on three objects. Due to
safety concerns for avoiding collision with the table, the
coordinate of the query point will be limited with a Z value
between 0.05 and 0.15 w.r.t the world frame. The proposed
method yields reconstructed shapes for unknown objects with
low uncertainty and detailed curvature, capturing the main
geometric details in explored areas. However, there are still
some areas that are not well explored due to arm reachability,
which are left with relatively high uncertainty.

VI. CONCLUSIONS

We present a novel approach for unknown object modeling
based on multi-finger hand sliding touches. To efficiently
address this problem, an essential aspect is to fully exploit
the local shape sensing ability of each fingertip and integrate



Fig. 11. Figures from the top line show the sliding motion of one
complete experiment on Master Chef Can. Figures from the bottom line
show the visual-only point cloud with the initially estimated shape, the
final estimation result with an uncertainty map, and the corresponding real-
world object separately for each object. For objects from left to right, the
exploration process takes respectively 5, 4, and 4 sliding touches for the
output mesh.

them in a continuous and smooth manner. Our method yields
successful reconstruction results capturing the underlying
shape in visually unseen areas with only a few continu-
ous sliding touches. However, our work relies on several
assumptions due to the limitation of the real setup. First,
the objects are fixed on the table to be able to apply a larger
contact force to generate sufficient deformation on the gel of
tactile sensors. Second, the explored region on the object’s
surface is considered low curvature to meet the limited
reachability of the robotic arm. In future works, we will
combine the proposed approach with a mobile manipulator
which provides a larger workspace and sensors with higher
sensitivity and precision to address the above issues.
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