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ABSTRACT: Cardiovascular disease (CVD) development may be
linked to persistent organic pollutants (POPs), including organo-
chlorine compounds (OCs) and perfluoroalkyl and polyfluoroalkyl
substances (PFAS). To explore underlying mechanisms, we
investigated metabolites, proteins, and genes linking POPs with
CVD risk. We used data from a nested case-control study on
myocardial infarction (MI) and stroke from the Swedish
Mammography Cohort − Clinical (n = 657 subjects). OCs,
PFAS, and multiomics (9511 liquid chromatography-mass
spectrometry (LC-MS) metabolite features; 248 proteins; 8110
gene variants) were measured in baseline plasma. POP-related
omics features were selected using random forest followed by
Spearman correlation adjusted for confounders. From these, CVD-related omics features were selected using conditional logistic
regression. Finally, 29 (for OCs) and 12 (for PFAS) unique features associated with POPs and CVD. One omics subpattern, driven
by lipids and inflammatory proteins, associated with MI (OR = 2.03; 95% CI = 1.47; 2.79), OCs, age, and BMI, and correlated
negatively with PFAS. Another subpattern, driven by carnitines, associated with stroke (OR = 1.55; 95% CI = 1.16; 2.09), OCs, and
age, but not with PFAS. This may imply that OCs and PFAS associate with different omics patterns with opposite effects on CVD
risk, but more research is needed to disentangle potential modifications by other factors.
KEYWORDS: persistent organic pollutants, cardiovascular disease, multiomics, metabolomics, proteomics, genetics,
nested case-control study

1. INTRODUCTION
Cardiovascular disease (CVD) is the main cause of mortality
and morbidity worldwide with large societal and economic
impact and is increasingly recognized as a chronic disease with
complex etiology.1,2 Apart from important genetic and
behavioral risk factors�including dietary habits, physical
inactivity, and smoking�environmental pollutants may
contribute to CVD development.3 Persistent organic pollutants
(POPs) are particularly relevant to investigate as they are
resistant to environmental degradation and extremely wide-
spread and thus have the potential for long-lasting global
impact on human health. POPs include several large groups of
organic compounds, such as lipid-soluble organochlorine
compounds (OCs)�pesticides, dioxins, and polychlorinated
biphenyls (PCBs)�as well as nonlipid soluble per- and
polyfluoroalkyl substances (PFAS).4−6

Both OCs and PFAS have been linked with cardiometabolic
disturbances,7 but studies on overt CVD end points are still
scarce. Findings for OCs indicate mainly associations with

dyslipidemia, obesity, diabetes,8,9 atherosclerosis,10,11 and
hypertension12−14 and increased risk of CVD.7 For PFAS, so
far there is only consistent evidence for associations with
elevated cholesterol,15,16 and although there are studies
showing associations with atherosclerosis,7 studies on CVD
have not been able to demonstrate associations with increased
risk.17 Our previous studies based on the same study
population showed associations of OCs with increased CVD
risk,18 and while PFAS associated with elevated cholesterol,
they also inversely associated with triglycerides and there was a
tendency for inverse associations with CVD risk.19 Although
knowledge of molecular mechanisms is imperative for
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establishing causality, the exact mechanisms remain unknown.
PFAS have been suggested to disturb lipid metabolism via
interference with peroxisome proliferator-activated receptor α
(PPAR-α),7 while OCs may induce inflammation and oxidative
stress via activation of the aryl hydrocarbon receptor
pathway.20 Additional suggestions are via other nuclear
receptors such as constitutive androstane receptor and
pregnane X receptor, endocrine disruption, disturbances in
the cell membrane, calcium homeostasis and mitochondria,
and endothelial and platelet dysfunction.7,17

These underlying mechanisms may be clarified by inclusion
of omics data in epidemiological studies to identify biological
features (e.g., metabolites, proteins, and genes) likely reflecting
biological mechanisms that link exposures to health-related
outcomes using meet-in-the-middle methodology.21 Several
single-omics studies have aimed to address this for either OCs
or PFAS.22−24 In a different study population, we have
previously found metabolite features linking PFAS to
triglyceride but not blood cholesterol levels.25 However,
using several layers of biological data (multiomics) investigat-
ing both OC and PFAS exposures as well as health outcomes
simultaneously is, to our knowledge, practically unexplored and
could provide deeper insight into molecular pathways as well
as into potential differences between compound groups. Thus,
to gain insight into the underlying molecular pathways
connecting long-term POP exposures to CVD risk, we
employed multiomics data (i.e., metabolomics, proteomics,
and genetics) in women from the Swedish Mammography
Cohort-Clinical (SMC-C) using a nested case-control design
on MI and stroke to find omics features simultaneously
associated with (1) POP plasma levels (expressing long-term
POP exposures) and (2) CVD risk.

2. MATERIALS AND METHODS
2.1. Study Population. The study used data from the

SMC-C, which is part of the Swedish Infrastructure for
Medical Population-Based Life-Course and Environmental
Research (SIMPLER; https://www.simpler4health.se/).26

The SMC was established between 1987 and 1990 inviting
women born during 1914−1948 residing in Central Sweden
(74% response rate, n = 61,433). The SMC-C constitutes a
subgroup of the SMC, i.e., women <85 years of age living in
Uppsala town and surrounding areas who participated in a
health examination (i.e., donating blood samples and
completing a questionnaire) between 2003−2009 (baseline
in this study; 61% response rate, n = 5,022). Written informed
consent was obtained from all participants and the study was
approved by the regional ethical review board in Stockholm
(DNR: 03-643 and 2006/1490-31/1).

2.2. Nested Case-Control Study Design and Outcome
Ascertainment. We ascertained 135 cases of first incident MI
and 173 cases of ischemic stroke via linkage of the cohort to
the National Inpatient Register [International Classification of
Diseases (ICD), 10th Revision (WHO 2016): I21 and I63,
respectively] from baseline blood sampling through 2017.
Based on age (±1 year) and sample date (±90 days), controls
were randomly matched to each case (1:2 for MI and 1:1 for
stroke) if they were alive and free from the case diagnosis at
the time the case experienced the event (risk-set sampling). A
few plasma samples were missing; thus, the final study
population consisted of 134 cases-264 controls (4 cases were
matched 1:1) for MI and 172 case-control pairs for ischemic
stroke.19

Questionnaire information included age, sex, attained
education, body mass index (BMI), comorbidities (i.e.,
diabetes and hypertension), family history of CVD (i.e.,
heart attack in a relative before 60 years of age), smoking
habits, physical activity (i.e., active when reported walking/
biking was ≥40 min/days and exercise ≥1 h/week), and food
consumption (a healthy diet score was created from a
semiquantitative 124-item food frequency questionnaire
based on low to high adherence to the modified Mediterranean
diet eight-point score, which was collapsed into three
categories and reflected fruits and vegetables, fermented
dairy and whole grain/fiber-rich foods, legumes and nuts,
fish, olive/rapeseed oil, alcohol in moderation, and red or
processed meat as the negative component).27 Furthermore,
lipids (i.e., total cholesterol, low-density lipoprotein (LDL),
high-density lipoprotein (HDL), and triglycerides) were
measured in plasma after overnight fasting using standard
methods.

2.3. Baseline POP Measurements. POPs were measured
in plasma samples collected after an 8 h overnight fasting and
were immediately centrifuged, separated, and stored at
−80 °C. OCs were measured at the National Institute for
Health and Welfare in Finland by gas chromatography-triple
quadrupole mass spectrometry (GC-MS/MS).28 Twenty-five
compounds were measured: 13 PCBs (congeners 28, 52, 74,
99, 101, 118, 138, 153, 156, 170, 180, 183, and 187); 9
organochlorine pesticides or their metabolites: dichloro-
diphenyltrichloroethane (p,p′-DDT), dichlorodiphenyl-
dichloroethylene (p,p′-DDE), α-hexachlorocyclohexane (α-
HCH), β-HCH, γ-HCH, pentachlorobenzene (PeCB),
hexachlorobenzene (HCB), transnonachlor, and oxychlordane;
and 3 polybrominated diphenyl ethers (PBDEs 47, 99, 153).
PFAS were measured at Lund University in Sweden by
targeted liquid chromatography-triple quadrupole mass spec-
trometry (LC-MS/MS).29 Eight compounds were measured:
perfluorohexanesulfonate (PFHxS), perfluoroheptanoic acid
(PFHpA), perfluorooctanesulfonic acid (PFOS), perfluoro-
octanoic acid (PFOA), perfluorononanoic acid (PFNA),
perfluorodecanoic acid (PFDA), perfluoroundecanoic acid
(PFUnDA), and perfluorododecanoic acid (PFDoDA). More
detailed information regarding POP measurements and quality
control is indicated in the Supporting Information (Supporting
Text 1−2 and Supporting Table 1).
Nine POP compounds were removed prior to analysis due

to more than 50% of values being below the limit of detection
(LOD) (i.e., PFDoA, PeCB, α-HCH, γ-HCH, PBDE 47,
PBDE 99, and PBDE 153) or due to contaminated samples
(i.e., PFOA and PFHpA). Thus, we finally included 19 OCs
(i.e., 6 organochlorine pesticides: HCB, β-HCH, oxychlordane,
transnonachlor, p,p′-DDT, p,p′-DDE and 13 PCBs: PCB 28,
PCB 52, PCB 74, PCB 99, PCB 101, PCB 118, PCB 138, PCB
153, PCB 156, PCB 170, PCB 180, PCB 183, and PCB 187)
and 5 PFAS (i.e., PFNA, PFDA, PFUnDA, PFHxS, and
PFOS). Concentrations below LOD were replaced by the
LOD/√2. To reduce the number of analyses required for each
exposure individually, we performed a varimax rotated
principal component analysis (PCA) on square root trans-
formed POPs to obtain two components representing groups
of different exposures (n = 2, eigenvalue >2, variance = 57%)
using the full study population of n = 742. The first component
reflected primarily OCs (referred to as the OC component),
while the second component reflected primarily PFAS
(referred to as the PFAS component).
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Normalizing the concentrations of lipophilic chemicals such
as OCs for total blood lipids has been a common approach in
epidemiological research. However, since OCs can alter lipids
levels, adjusting lipid-soluble compounds for lipids might result
in biased estimates.30 This is particularly important in the case
of health outcomes, such as CVD, as changes in lipids could be
within the causal pathway between the exposure and the
disease. Thus, for the above reason and because blood samples
were taken fasting, we did not standardize OCs concentrations
by lipid levels. For further reasoning, see Donat-Vargas et al.,
section: “Methodological Issues: Dealing with Lipids”.13

2.4. Multiomics Measurements and Preprocessing.
Omics measurements were performed in the same fasting
blood samples as used for the POP measurements.
2.4.1. Proteomics. In total, 276 proteins were measured

using three high-throughput multiplex immunoassays: Olink
Proseek Multiplex CVDII, CVDIII, and Metabolism (Olink
Bioscience, Uppsala, Sweden). Each assay measured 92 CVD
or metabolism-related proteins and provided normalized
protein expression values on a log2 scale standardized per
analysis plate (performed at SciLifeLab, Uppsala University,
Sweden).31 Interplate variability was adjusted for by intensity
normalization with the plate median as the normalization
factor. The PEA assays have mean intra-assay and inter-assay
coefficients of variation around 8% and 12%, respectively.
Proteins with more than 25% of values below LOD were
removed prior to data analysis. Missing values (<10%) were
imputed using an in-house partial least-squares-based algo-
rithm (in-house R package “StatTools”: https://gitlab.com/
YingxiaoYan/StatTools). This resulted in 246 proteins in the
total study population of n = 742.
2.4.2. Metabolomics. Instrumental and data-preprocessing

methods for mass spectrometry (MS)-based metabolomics
have been described in detail previously.32 Samples were
aliquoted (30 μL) and added together with 200 μL of cold
acetonitrile to a 96-deep well microplate (Captiva, Agilent

Technologies). Quality control samples consisted of pooled
equal amounts of plasma from each sample and were prepared
according to the same procedures as those for the actual
samples. Quality control samples were injected at the
beginning, at the end, and evenly between actual samples
throughout the batch sequence. Long-term quality control
plasma samples from an independent population were used as
part of the platform quality control system to monitor the
performance of the instrument and to provide a reference for
within- and between-batch data normalization. Samples were
analyzed on an Agilent UHPLC-qTOF-MS system consisting
of a 1290 Infinity series UHPLC system with a Waters Acquity
UPLC HSS T3 column and a 6550 UHD iFunnel accurate-
mass qTOF spectrometer. The mobile phase consisted of
water and methanol, both containing 0.04% (v/v) formic acid.
MS data acquisition was performed in positive and negative
electrospray ionization (ESI) modes. Iterative MS/MS data
acquisition was performed on quality control samples in
positive and negative modes with 10, 20, and 40 eV collision
energies and with the same chromatographic conditions as for
the MS analysis.
Raw data files were converted into mzML format, and

reversed-phase positive (RP) and negative (RN) modes were
processed separately using the R package “XCMS” and key
parameters were optimized using the R package “IPO”. Missing
values were imputed using an in-house Random Forest (RF)-
based algorithm (in-house R package “StatTools”: https://
gitlab.com/YingxiaoYan/StatTools). Systematic intensity drift
of features within- and between-batch were adjusted based on
modeling the feature intensities in the repeated quality control
samples using the batchCorr procedure (R package “batch-
Corr”).33 After normalization, features [i.e., a mass spectral
peak with a unique mass-to-charge ratio (m/z) and retention
time (RT)] that had coefficient of variation (CV) ≤ 30%
among quality control samples were retained. Subsequently,
features presumably derived from a single metabolite were

Figure 1. Flowchart of the analytical approach and the number of samples available in each step. Abbreviations: CVD, cardiovascular disease; MI,
myocardial infarction; OC, organochlorine compounds; PCA, principal component analysis; PFAS, perfluoroalkyl and polyfluoroalkyl substances.
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grouped (R package “RAMClustR” using manually optimized
parameters). Three features with high associations with PFAS
levels (high ranking in random forest models and correlation
>0.8) were removed prior to analysis as they were likely to be
PFAS themselves. Untargeted LC-MS metabolomics resulted
in a total of 9511 features in the total study population of n =
735 (seven participants were removed due to missing
metabolomics data).
2.4.3. Genetics. Genotyping in the SMC-C was performed

using the Illumina GSAMD-24v1-0_20011747_A1 BeadChip,
and single nucleotide polymorphisms (SNPs) were imputed up
to Haplotype Reference Consortium (HRC) v1.1 and 1000
Genomes project phase 3. The results were then analyzed
using the software GenomeStudio 2.0.3 from Illumina. The
sample success rate was ≥98%. To prefilter the genetics data to
reduce the data input in the random forest analysis, we selected
SNPs associated with either the OC component or PFAS
component scores in a linear model with additive effects at an
arbitrary cutoff of p < 0.000005 using the Plink 2.0 software.
This resulted in 8,110 gene variants in the total study
population of n = 657 (78 participants were additionally
removed due to missing genetics data).

2.5. Statistical Analysis. For the statistical analyses, we
used a data set with 657 observations with available total omics
data [267 cases (114 MI, 153 stroke), 390 controls (237 for
MI, 153 for stroke)]. A flowchart of the study population,
available data, and statistical analyses is presented in Figure 1.
Step (1) To select omics features associated cross-sectionally

with POP exposures, we entered the omics data as predictor
data and processed them using a random forest model within a
repeated double-cross validation framework incorporated with
unbiased variable selection (R package MUVR)34 using the
OC component or PFAS component scores as target variables
(from Section 2.3). We assessed modeling performance with
permutation analysis (n = 50, p < 0.001).34,35 Prior to the
second step (below), metabolite features were log transformed,
omics features were standardized, and missing values in
covariates were imputed using a random forest method (in-
house R package “StatTools”, https://gitlab.com/
YingxiaoYan/StatTools).
Step (2) To only select the POP-related omics features from

step 1 that were not a result of confounding, we performed
partial Spearman correlation between selected omics features
and the OC component or PFAS component scores while
adjusting for the following potential confounding factors: age,
sample year, education (≤12 vs >12 years), and healthy diet
score (3 categories). As OCs are lipid-soluble but not PFAS,
we considered BMI a potential confounder only for OCs, and
consequently, we only adjusted for BMI in the analysis for the
OC component. We then kept the POP-related omics features
with a p-value < 0.05 from the partial correlation.
Step (3) To assess prospective associations between POP-

related omics features and CVD risk (MI, stroke or composite
CVD outcome), we performed conditional logistic regressions
with selected omics features from step 2 as the independent
variables. We then selected the POP-related omics features also
associated with CVD risk based on a p-value < 0.05. Models
were adjusted for matching factors (age and sample year),
education (≤12 vs >12 years), family history of CVD (yes/
no), smoking habits (never/former/current), physical activity
(active/inactive), and healthy diet score (3 categories) in
model 1. As a sensitivity analysis (model 2), we additionally

adjusted for BMI, HDL, LDL, triglycerides, and hypertension,
since these factors could be mediators as well as confounders.
Step (4) The selected POP- and CVD-related omics features

were visualized using several graphical approaches:

(A) A heatmap was used to present individual feature
correlations with POP exposure components, while a
forest plot was used to present individual feature
associations with CVD outcomes.

(B) Networks of Spearman partial correlations between the
OC or PFAS omics features were visualized using a
Gaussian Graphical Model (GGM) of their respective
Pairwise Markov Random Field (PMRF) models. In this
network, the nodes represent variables connected by
undirected edges that can be interpreted as partial
correlation coefficients, shrunken by the Least Absolute
Shrinkage and Selection Operator (LASSO) using the
Extended Bayesian Information Criterion (EBIC) (R
package bootnet and qgraph).36 To detect communities
of omics features within the network, we used the
Spinglass algorithm, which focuses on minimizing
outside-community connections while promoting with-
in-community connections (R package igraph).37,38

(C) To visualize intercorrelations between the 41 omics
features selected to reflect POP exposures and their
associations with exposures and health outcomes in one
figure, we first reduced the omics features by a varimax
rotated PCA and then extracted the omics components
(henceforth referred to as patterns to avoid confusion
with the POP components). We obtained the first two
patterns (n = 2, eigenvalue >6, 35% explained variance)
and for a more detailed inspection also the first four
patterns (n = 4, eigenvalue >2, 50% explained variance).
Cross-sectional unadjusted Spearman correlations of the
two omics pattern scores with age, BMI and the OC
component and the PFAS component were analyzed.
Additionally, the multivariable-adjusted partial Spearman
correlations for the OC and PFAS components were
added to the figure, as was the prospective associations
between omics pattern scores and CVD risk (multi-
variable-adjusted conditional logistic regression). Thus,
all the associations (omics patterns with POP exposure
components and with CVD risk) were then displayed in
a triplot (R package Triplot).39 Additionally, to shed
light on a potential role of lipids underlying the
associations between POPs and CVD, we assessed the
cross-sectional multivariable-adjusted linear regressions
between the omics pattern scores and blood lipids
(HDL, LDL, and triglycerides). This was performed
among the controls who were nonusers of lipid-lowering
medication (n = 301).

R (ver. 3.6.1 and 4.0.0) was used for all statistical analyses.
2.6. Metabolite Annotation. Metabolite annotation is

reported in Supporting Table 2, following the Metabolomics
Standards Initiative (MSI) reporting criteria for the confidence
level.40 MS/MS data could be obtained for several of the
selected metabolite feature peaks, and some of these could be
matched to the literature based on the accurate mass and
product ion spectrum (level 2). Other metabolite features were
putatively annotated for the compound class based on m/z
(mass tolerance <10 ppm) and retention time using matching
against online databases (level 3). Unknown compounds were
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presented as “analytical mode _ m/z @ retention time” (level
4).

3. RESULTS
3.1. Study Population Characteristics and POP

Exposures. Study population characteristics by the case-
control status for each outcome as well as for the total study
population are summarized in Table 1. More detailed
information regarding study population characteristics or
exposures to individual POP compounds has already been
described.18,19 The loadings of each of the two POP
components (obtained from a PCA as mentioned above)
referred to as the OC and PFAS components, respectively, are
described in Supporting Table 3; prominent exposures
(loading >0.8) included oxychlordane, transnonachlor, PCB
153, PCB 156, PCB 170, PCB 180, PCB 183, and PCB 187 in
the OC component and PFDA, PFNA, and PFUnDA in the
PFAS component.

3.2. POP-Related Omics Variables. We found 204 omics
variables (8 genes, 28 proteins, and 168 metabolite features)
related to the OC component and 104 omics variables (9
genes, 2 proteins, and 93 metabolite features) related to the
PFAS component in the random forest models (Q2 = 0.251
and 0.473, respectively, permutation analysis p < 0.001). After
confounder adjustment, 133 omics variables (4 genes, 14

proteins, and 115 metabolite features) correlated with the OC
component (0.08 ≤ |r|≤ 0.27, p-value < 0.05) and 84 omics
variables (2 genes, 2 proteins, and 80 metabolite features)
correlated with the PFAS component (0.08 ≤ | r |≤ 0.52, p-
value < 0.05). Among them, only 4 metabolite features were
found associated with both the OC component and the PFAS
component.

3.3. POP- and CVD-Related Omics Variables. Among
the 133 OC-related omics variables, 29 features (7 proteins
and 22 metabolites) associated with either MI, stroke, or
composite CVD outcome after adjustment. Similarly, among
the 84 PFAS-associated omics variables, 12 metabolite features
associated with either MI, stroke, or composite CVD outcome
as indicated in Figure 2. Among the sum of 41 POP- and
CVD-related omics variables, none were present at both the
OC component and the PFAS component models, and none
were genetic polymorphisms. Network models performed on
the 29 OC-related features and the 12 PFAS-related features
showed communities of proteins, metabolite features from
lipid classes, metabolites related to food consumption, and
exogenous chemicals (Figure 3).
After performing a PCA (n = 2) on these 41 omics variables

(Supporting Table 4 for loadings), we found that one omics
subpattern associated with MI (henceforth referred to as
OMICs_MI; OR = 2.03; 95% CI = 1.47; 2.79) while the other

Table 1. Baseline Characteristics of the Total Study Population (n = 657) from the SMC-C (2003−2009)a

MI cases (n = 114) MI controls (n = 237) Stroke cases (n = 153) Stroke controls (n = 153) total population (n = 657)

characteristics
sex [% (n)]

female 100 (114) 100 (237) 100 (153) 100 (153) 100 (657)
male 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

age (years) 72 (7.3) 72 (7.4) 72 (7.2) 72 (7.1) 72 (7.3)
sample year, mean 2006 2006 2006 2006 2006
education (years) [% (n)]

<12 68 (77) 68 (161) 68 (104) 66 (101) 67 (443)
≥12 32 (37) 32 (76) 32 (49) 34 (52) 32 (214)

BMI (kg/m2) 27 (4.6) 26 (4.3) 27 (4.6) 26 (4.3) 26 (4.4)
history of diabetes [% (n)] 7 (8) 3 (8) 3 (5) 2 (4) 3.8 (25)
history of hypertension [% (n)] 50 (57) 39 (93) 50 (76) 44 (67) 45 (293)
family history of CVD [% (n)] 41 (47) 38 (90) 36 (55) 35 (53) 37 (245)
smoking status [% (n)]

never smoker 45 (51) 57 (135) 53 (81) 60 (92) 55 (359)
former smoker 35 (40) 34 (80) 35 (53) 31 (48) 34 (221)
current smoker 20 (23) 9 (22) 12 (19) 8 (13) 12 (77)

physical activity [% (n)]
active 25 (28) 28 (67) 27 (42) 26 (40) 27 (177)
inactive 75 (86) 72 (170) 73 (111) 74 (113) 73 (480)

diet [% (n)]
unhealthy 23 (27) 15 (35) 16 (25) 10 (15) 16 (102)
moderately healthy 61 (69) 61 (144) 63 (97) 67 (102) 63 (412)
healthy 16 (18) 24 (58) 20 (31) 24 (36) 22 (143)

total cholesterol (mmol/L) 5.9 (0.9) 5.8 (1.0) 5.9 (1.2) 5.8 (1.1) 5.8 (1.1)
LDL (mmol/L) 3.6 (0.9) 3.5 (1.0) 3.5 (1.0) 3.5 (1.0) 3.5 (1.0)
HDL (mmol/L) 1.5 (0.4) 1.6 (0.4) 1.6 (0.4) 1.6 (0.4) 1.5 (0.4)
triglyceride (mmol/L) 1.5 (0.7) 1.3 (0.6) 1.4 (0.7) 1.3 (0.6) 1.4 (0.6)
OC_C −0.01 (1.0) −0.02 (1.0) 0.10 (1.0) 0.02 (1.1) 0.02 (1.0)
PFAS_C −0.23 (0.8) 0.05 (1.1) 0.08 (1.1) 0.12 (1.0) 0.02 (1.0)
aContinuous variables are given as mean (standard deviation), and categorical variables are given as percentage (number). OC and PFAS are
rotated principal component scores representing 19 OCs and 5 PFAS. Abbreviations: BMI, body mass index; HDL, high-density lipoprotein; LDL,
low-density lipoprotein; MI, myocardial infarction; OC_C, organochlorine compound component; PFAS_C, per- and polyfluoroalkyl substance
component.
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Figure 2. POP- and CVD-related proteins and metabolite features and their associations with composite CVD, MI, and stroke and their
correlations with exposure component scores (OC_C and PFAS_C). Associations are presented as log odds ratio and 95% confidence intervals
derived from model 1 (matching factors age and sample year, education, family history of CVD, smoking habits, physical activity, and healthy diet
score) and sensitivity model 2 (additionally adjusted for BMI, HDL, LDL, triglycerides, and hypertension). Correlations are adjusted for age,
sample year, education, healthy diet score, and additionally for BMI for the OC components. Ordered by communities (from Figure 3).
Abbreviations: CVD, cardiovascular disease; Cer, ceramide; DG, diacylglycerol; DHA, docosahexaenoic acid; FGF-21, fibroblast growth factor 21;
GDF-15, growth differentiation factor 15; GPL, glycerophospholipid; IL-6, interleukin 6; LDL-receptor, low-density lipoprotein receptor; MI,
myocardial infarction; OC-C, organochlorine compound component; OPG, osteoprotegerin; PFAS-C, per- and polyfluoroalkyl substance
component; TG, triglyceride; tPA, tissue plasminogen activator; uPAR, urokinase-type plasminogen activator receptor.

Figure 3. Estimated network structure of the Gaussian Graphical Model with partial Spearman correlation coefficients of (a) 29 OC- and CVD-
related omics features and (b) 12 PFAS- and CVD-related omics features. Detected communities (Spinglass algorithm) share the same color.
Abbreviations: Cer, ceramide; DG, diacylglycerol; DHA, docosahexaenoic acid; FGF-21, fibroblast growth factor 21; GDF-15, growth
differentiation factor 15; GPL, glycerophospholipid; IL-6, interleukin 6; LDL-receptor, low-density lipoprotein receptor; MI, myocardial infarction;
OC-C, organochlorine compound component; OPG, osteoprotegerin; PFAS-C, per- and polyfluoroalkyl substance component; RN, reverse-phase
negative mode; RP, reverse-phase positive mode; TG, triglyceride; tPA, tissue plasminogen activator; uPAR, urokinase-type plasminogen activator
receptor.
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associated with stroke (henceforth referred to as
OMICs_stroke; OR = 1.55; 95% CI = 1.16; 2.09) (Figure
4). We found high loadings (>0.4) for the LDL-receptor
protein, fibroblast growth factor 21 (FGF-21), growth
differentiation factor 15 (GDF-15), tissue plasminogen
activator (tPA), urokinase-type plasminogen activator receptor
(uPAR), and metabolite features belonging to classes of di- and
triaglycerol (positively) and glycerophospholipid (negatively)
in the OMICs_MI subpattern, while high loadings for two
carnitines and hydroxy-DHA (positively) were observed in the
OMICs_stroke subpattern (Figure 4, Supporting Table 4).
Both the OMICs_MI and OMICs_stroke patterns correlated
positively with OCs and with age, whereas only the
OMICs_MI subpattern correlated negatively with PFAS and
positively with BMI. Adjustment for confounding factors
(mainly due to age; data not shown) attenuated the correlation
between the OC component and the OMICs_stroke
subpattern (Figure 4).
To reveal some insight in associations between POP-related

omics and blood lipids, the OMICs_MI subpattern associated
with triglycerides and inversely with HDL, while the
OMICs_stroke subpattern associated with HDL (Supporting

Figure 1). Further, model estimates were robust to adjustment
for BMI, HDL, LDL or triglyceride levels, and hypertension
(sensitivity analyses) (Supporting Figure 1, model 2).
However, when extracting more components in the PCA (n
= 4) (Supporting Table 4for loadings), there were two
subpatterns related to MI (1 and 4) and triglyceride
adjustment attenuated the association between MI and
subpattern 1, while age adjustment attenuated the correlation
between the OC component and subpattern 4 (Supporting
Figure 2).

4. DISCUSSION
In this study, we observed associations between POP
exposures, omics features linked to lipid and inflammatory
pathways, and CVD outcomes, captured by two omics
patterns. One omics subpattern associated with increased risk
of MI and correlated positively with OC exposure, age, and
BMI and negatively with PFAS exposure. A second omics
subpattern associated with increased risk of stroke and
correlated positively with age and OC exposure, although the
exposure correlation was attenuated by age adjustment.

Figure 4. Associations of POP- and CVD-related omics subpatterns 1 and 2 with exposure components (OC_C and PFAS_C), age, BMI, lipids,
and CVD outcomes. The triplot represents the 41 selected omics features and their (1) correlations with POP exposure components, age, and BMI
and their (2) risk of MI and stroke.39 Correlations are unadjusted or adjusted for age, sample year, education, healthy diet score, and additionally
for BMI for the OC_C. Associations are presented as odds ratio and 95% confidence intervals derived from model 1 (matching factors age and
sample year, education, family history of CVD, smoking habits, physical activity, and healthy diet score). Abbreviations: Cer, ceramide; DG,
diacylglycerol; DHA, docosahexaenoic acid; FGF-21, fibroblast growth factor 21; GDF-15, growth differentiation factor 15; GPL,
glycerophospholipid; MI, myocardial infarction; OC-C, organochlorine compound component; PFAS-C, per- and polyfluoroalkyl substance
component; TG, triglyceride; tPA, tissue plasminogen activator; uPAR, urokinase-type plasminogen activator receptor.
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These findings are in line with several other studies showing,
on the one hand, null or inverse associations41−43 for PFAS
exposure, and on the other hand, positive associations of OC
exposures with both, CVD risk factors (i.e., obesity, diabetes,
and lipid abnormalities)20 and stroke and MI outcomes.44,45

Although there are also studies showing associations of PFAS
with increased CVD risk,46−48 these findings are consistent
with our previous work in the same study population but
without the inclusion of omics, showing a tendency of inverse
associations between PFAS exposures and MI19 and
associations between OC exposures with increased risk of
MI and stroke.18 Herein, we further elaborate on the
mechanisms underlying these observed associations. In agree-
ment with opposite associations with CVD risk for PFAS
(decreased risk) and OC (increased risk), our results showed
unique omics features in the OC and the PFAS component
models, which may indicate differences in mode of action.

4.1. POP-Related Omics Features and MI. The
OMICs_MI subpattern indicated involvement of lipid path-
ways and inflammation (i.e., di- and triglycerides, LDL-
receptor, FGF-21, GDF-15, uPAR, and tPA). The inverse
correlations of the OMICs_MI subpattern with PFAS
exposure may be explained by PPARα activation leading to
lower inflammation49 and lower triglyceride levels50 or by
upregulation of phosphatidylcholine synthesis.51 Our results
are in line with several other metabolomics studies showing
associations of PFAS with lipid metabolites52−56 and with
other exogenous chemicals.57,58 Inverse associations between
PFAS and inflammatory proteins24 and genes involved in
cholesterol transport59 have also been found. We did not find
proteins or genes among the selected features-of-interest in the
PFAS component models potentially because stronger
correlations with metabolite features could obscure weaker
associations to the other omics layers. However, PFAS did
correlate negatively with several proteins with roles in
metabolism, inflammatory, and endothelial function selected
in the OC component models (FGF-21, GDF-15, tPA).
For OCs, we speculate that the positive correlations with the

OMICs_MI subpattern could be related to endocrine
disruption and activation of the aryl hydrocarbon receptor
pathway leading to altered lipid metabolism and inflamma-
tion.20 This is also in line with several other metabolomics
studies that showed dysregulations in lipid metabolism.44,45 A
previous study investigated metabolite associations of lipid-
adjusted p,p′-DDE and HCB exposures and showed primarily
associations with fatty acids (such as DHA), glycerophospho-
lipids, monoglycerides, and sphingolipids and suggested that
BMI might mediate, but not modify, the associations between
OC and metabolites.49 We also found high correlations of the
OMICs_MI subpattern with BMI and adjustment for
triglycerides attenuated the associations of several lipid-related
features with MI risk, suggesting possible mediation by
triglycerides in the OC-MI association. Hypertriglyceridemia
is an important risk factor for atherosclerosis,60,61 and this may
relate to inflammation, which is also supported by the
aggregation of triglyceride features, the LDL-receptor, GDF-
15, FGF-21, tPA, and uPAR in one omics subpattern that also
correlated with chronic inflammatory factors like age and
BMI.62 However, mechanistic interpretations are made difficult
due to the complex relationship of OC concentrations in
tissues with BMI and blood lipids: OCs are lipid-soluble and
may be sequestered in adipocytes and transported to LDL
particles. Thus, OC levels in blood may fluctuate based on

BMI and weight loss history,63 but OC exposures may also
increase the risk of obesity.9 It is therefore not clear whether
BMI should be considered a confounder, mediator, or effect
modifier.13,64

Additionally, we observed correlations of POPs with other
exogenous chemicals, which could indicate confounding by
similar exposure sources. For example, hydroxy-DHA may be a
marker of fish intake and 3,5-dichloro-2,6-dihydroxybenzoic
acid has been associated with red meat and milk intake.65

However, a metabolic profiling study indicated lower PFOS,
PFOA, and 3,5-dichloro-2,6-dihydroxybenzoic acid after
surgical myectomy because of heart failure, which could also
be related to improved liver/kidney function.66 In addition, 4-
hydroxychlorothalonil has been reported as a potential marker
of microbiome diversity and this also associated with PFOS,
especially at high BMI.67 POP exposures have been linked to
microbiome disturbances before, and this may be another link
between POPs and cardiometabolic diseases.68,69

4.2. POP-Related Omics Features and Stroke. Our
results highlight involvement of carnitines in the OMIC_stroke
subpattern, which correlated positively with age and OC, but
only moderately with PFAS. This may indicate mitochondrial
dysfunction, incomplete fatty acid oxidation, and altered
carbohydrate and lipid metabolism.70 We found that adjust-
ment for age attenuated the correlations between
OMICs_stroke and OC. It is well documented that OC
concentrations increase with age, attributed to exposure during
high emission periods,71 increased exposure length,72 and age-
related metabolism changes.73 The strong effect of age
adjustment may therefore indicate confounding, but age has
also been suggested as an important part of the causal pathway
as a determinant of the exposure.74 The implied pathways like
oxidative stress, mitochondria, fatty acid metabolism, and
inflammation have been found for OC exposures before,75 and
some of its suggested pathways (i.e., PPARs or the aryl
hydrocarbon receptor) can be linked to aging as well.76,77 The
damaging effects of POP exposures to cellular mechanisms and
age-related diseases such as CVD may thus also be exacerbated
by a higher age. We also found hydroxy-DHA in this
subpattern, which could be indicative of inflammation,
oxidative stress, and aging, and the DHA/EPA ratio has been
shown to associate with an increased risk of stroke.78,79

4.3. Strengths and Limitations. Our study has several
important strengths. It is one of the first studies to connect
both multiple contaminant exposures, with both multiple
omics data sets (genetics, proteomics, and metabolomics) and
CVD outcomes. The prospective design made reverse causality
for the associations between omics features and CVD risk less
likely, although the associations between omics features and
POP exposures were still cross-sectional. The measurement of
POP exposures in the blood and robust CVD register linkage
reduced both exposure and outcome misclassification. We
furthermore used a technique for supervised multiomics
integration that was designed to minimize false positive
discovery and overfitting. Multiomics integration was addi-
tionally facilitated by the random forest modeling, which is
largely unaffected by variable scaling and different distributions
in individual omics layers. Nevertheless, there are also some
limitations. The study population consists of Caucasian,
postmenopausal women from a noncontaminated area, and it
is not known whether similar omics patterns would occur in
other groups or in highly exposed. Although sample treatment,
batch corrections, and adjustment for sampling years were
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performed with care to minimize a potential influence of these
factors, we cannot exclude this possibility. The use of a
principal component score to aggregate exposures together,
although facilitating result interpretation, may overlook the
importance of individual compounds and deflate the
importance of those with a high concentration. In addition,
we did not perform multiple testing adjustment for several
reasons: (1) the exploratory nature of this study, which uses p-
values more as a way to filter relevant features for hypothesis
generating purposes rather than strict hypothesis testing, (2)
the use of random forest as initial analysis, (3) several
metabolite features being highly correlated, making correction
overly stringent, and (4) we aggregate the individual features
into components to reduce the final number of presented tests.
Also, among selected metabolite features, a relatively large
number could not be identified, and several unidentified
features were of low intensity, which could represent artifacts
from the random forest modeling. Among the features selected
from data analysis, most were from metabolomics, which could
indicate that metabolites may reflect stronger potential causal
links between POP levels and CVD risk compared to
proteomics or genetics as it is closer to the biochemical effects
on the phenotype level. However, it could also be possible that
our sample size was too limited to discover significant genetic
polymorphisms or that our random forest modeling approach
was not as suitable for genetics data, as some studies with
different approaches show that polymorphisms can influence
biomarkers of exposures, which could impact susceptibility of
toxicity.80,81 Additionally, our approach selected only genetic
polymorphisms that were related to POP blood levels;
therefore, we may have missed polymorphisms that act as
effect modifiers of POP and CVD associations. We also did not
find associations with elevated cholesterol levels, which is a
relatively consistent finding for PFAS, potentially because we
selected features based on CVD outcomes instead of on
cholesterol. Additionally, several of the selected metabolite
features could be annotated as exogenous chemicals, which
constitutes both a strength and a limitation: it strengthens our
findings, as it is likely that these exogenous chemicals are
correlating with our POP exposures, but it also does not
provide insight into mechanisms for biological responses to the
exposures and contributes to difficulty in determining which
exposure is causal for CVD risk associations. Furthermore,
both age and triglycerides had a strong impact on the
associations between OC exposures, omics features, and CVD
risk, but we were unable to distinguish whether this constitutes
confounding or other important links in the causal structure.
Our results suggest that both PFAS and OCs can be linked

to lipid metabolism and mitochondrial and inflammatory
pathways, but while OCs correlated positively with omics
associated with increased MI and stroke risk, PFAS correlated
negatively with omics associated with increased MI risk but
only weakly positively with omics associated with increased
stroke risk. However, we also found that age may attenuate the
correlations between OC exposures and omics associated with
increased risk of stroke, while triglycerides may attenuate the
associations between omics and MI. Additionally, the link
between PFAS exposures and MI risk may be connected by
several other exogenous chemicals. Therefore, more research is
needed to disentangle potential confounding or effect
modification by age, triglycerides, or other exogenous
chemicals in the connections between POP exposures and
CVD risk. These results may shed light on potential pathways

affected by POP exposures that are relevant to CVD
development.
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