
thesis for the degree of licentiate of engineering

Controlled Descent Training

Viktor Andersson

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 855

Controlled Descent Training

Viktor Andersson

Copyright © 855 Viktor Andersson
All rights reserved.

Technical Report No. 1111-111X
ISSN 3.1415-9265
This thesis has been prepared using LATEX.

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000
www.chalmers.se

Printed by Chalmers Reproservice
Gothenburg, Sweden, April855

Abstract
In this work, a novel and model-based artificial neural network (ANN) train-
ing method is developed supported by optimal control theory. The method
augments training labels in order to robustly guarantee training loss conver-
gence and improve training convergence rate. Dynamic label augmentation
is proposed within the framework of gradient descent training where the con-
vergence of training loss is controlled. First, we capture the training behavior
with the help of empirical Neural Tangent Kernels (NTK) and borrow tools
from systems and control theory to analyze both the local and global training
dynamics (e.g. stability, reachability). Second, we propose to dynamically
alter the gradient descent training mechanism via fictitious labels as control
inputs and an optimal state feedback policy. In this way, we enforce locally H2
optimal and convergent training behavior. The novel algorithm, Controlled
Descent Training (CDT), guarantees local convergence. CDT unleashes new
potentials in the analysis, interpretation, and design of ANN architectures.
The applicability of the method is demonstrated on standard regression and
classification problems.

Keywords: Label augmentation, gradient descent training, neural tangent
kernel, optimal control, convergent learning, label selection.

i

ii

List of Publications
This thesis is based on the following publications:

[A] Viktor Andersson, Balázs Varga, Vincent Szolnoky, Andreas Syrén,
Rebecka Jörnsten, Balázs Kulcsár, “Controlled descent training”. Submitted
to the International Journal of Robust and Nonlinear Control, Mar. 2023.

iii

iv

Acknowledgments
First of all I would like to express my sincerest gratitude to my supervi-
sors Balázs Kulscár and Rebecka Jörnsten. Your experience, knowledge, and
guidance have been of utmost importance for this research which would have
been impossible without your unwavering support. I would also like to thank
Balázs Varga who has greatly assisted me during my research along with Vin-
cent Szolnoky. Finally, I would like to thank Andreas Syrén who was the main
catalyst for this research idea.

I gratefully acknowledge the support of the project OCTON 1, 2 at Chalmers
University of Technology. This work was supported in part by the Transport
Area of Advance, at Chalmers University of Technology. Moreover, the project
was carried out in collaboration with and is supported by Centiro Solutions,
a logistics software company based in Sweden.

Acronyms

ODE: Ordinary Difference Equation

ANN: Artificial Neural Network

CDT: Controlled Descent Training

LQR: Linear Quadratric Control (-ler)

NTK: Neural tangent kernel

v

Contents

Abstract i

List of Papers iii

Acknowledgements v

Acronyms v

1 Introduction and Motivation 1
1.1 Machine Learning and Deep Learning 1

Fully-connected neural networks 2
Convolutional neural networks 2
Recurrent neural networks . 3
Generative adversarial networks 3
Transformer . 4

1.2 Reinforcement Learning . 5
Online . 5
Offline . 5
Deep Reinforcement learning 5

1.3 Control Theory . 6
Optimal control . 6

vii

ML in control theory . 7
1.4 NTK . 8

Indirect . 9
Direct . 9

1.5 Contributions: . 10
1.6 Thesis outline . 10
1.7 Ethics . 11
1.8 Notations . 11

2 Neural Network training dynamics 13
2.1 Neural Tangent Kernel . 13
2.2 Local and global ANN training dynamics 14
2.3 Controlled ANN training dynamics with label augmentation . . 15
2.4 Analytic properties of discrete-time training dynamics 16

Boundedness of the training dynamics 16
Reachability . 18

3 Locally Optimal Control of ANN training dynamics 21
3.1 Controlled Descent Training . 21

The CDT algorithm . 24

4 Numerical performance and benchmarking 25
4.1 Regression . 26
4.2 Classification . 36

5 Summary of included papers 39
5.1 Paper A . 39

6 Concluding Remarks and Future Work 41
6.1 Concluding remarks . 41

Future work . 42

7 Appendecies 45
7.1 Existence and uniqueness of solution 45
7.2 Local training dynamics . 46
7.3 Lagrange error bounds for local training dynamics 46
7.4 Loss Linearization . 47
7.5 Examples of equilibrium points 48

viii

7.6 Boundedness for common losses 49
7.7 Boundedness of the global dynamics 51
7.8 The DARE equation . 52
7.9 Initialization of the ANN . 52

References 55

ix

CHAPTER 1

Introduction and Motivation

1.1 Machine Learning and Deep Learning

In recent years, machine learning (ML) and deep learning methods have be-
gun to significantly impact society. Deep learning and artificial neural network
(ANN) models have made strides in solving complicated problems like image
recognition [1] and highly advanced regression problems [2]. Moreover, gener-
ative deep learning ANN models like the popular transformer and generative
adversarial networks (GANs) are able to generate text and images indistin-
guishable from human examples. The recent GPT-4 model, based on the
transformer architecture is able to pass a wide array of exams ranging from
the uniform bar exam for newly examined lawyers to advanced placement
physics and statistics [3].

A neural network, inspired by the neurological pathways in a biological
brain, is a network of interconnected nodes. Each node consists of a simple
linear function and an often nonlinear activation function. The nodes form a
network with a certain width (number of nodes per layer) and depth(number
of layers). At their core ANNs are universal function approximators. With
sufficient data and model complexity ANNs are able to approximate any com-

1

Chapter 1 Introduction and Motivation

plex and highly non-linear input-output relationships.
In general, ANNs are trained to fit the data using smooth loss functions

which capture the models adherence to the observed relationship. The loss
function is backpropagated through the network and parameters updated with
gradient descent-based methods [4] like mini-batch gradient descent. Mini-
batch gradient descent divides the data into mini-batches stochastically [5],
making the training process parallelizable and scalable with data size. Many
different ANN architectures exist with varying use cases. In the following
sections, a few particularly impactful architectures are discussed.

Fully-connected neural networks

Early iterations of ANNs, often referred to as dense or fully connected neural
networks connected each node to all nodes in the previous layer. The dense
or fully-connected architecture is often used for solving regression and tabular
data problems like time-series forecasting [6]. Recent practical applications
of dense ANNs include efficiency of water desalination estimation based on
solar thermal energy [7] and estimating compressive strength of CO2 concrete
[8]. However, dense ANNs need to learn local spatial relationships in the
input implicitly with many examples. This makes solving image-based tasks
possible but challenging.

Convolutional neural networks

ANNs main breakthrough came in 2012 with the convolutional neural network
(CNN) architecture outperforming humans on benchmark image recognition
tasks [9][10]. Rather than connecting all nodes directly, CNNs use convolution
to derive information on nearby inputs (e.g. nearby pixels) for every input (e.g.
pixel). Therefore, CNNs capture local relationships in the input explicitly,
making them particularly apt at handling image-based tasks. Since their
inception CNNs have been applied in many practical settings like radiology
[11], face recognition [12] and recommendation systems [13]. However, since
CNNs capture local relationships, long-sequenced inputs are challenging. To
solve this the recurrent neural network was developed.

2

1.1 Machine Learning and Deep Learning

Recurrent neural networks

CNNs are good at dealing with local input relationships but struggle with
sequential relationships like sentences or video. Recurrent neural network
(RNNs) input nodes can create cyclic connections where the output of a node
is used as input to subsequent input nodes. The RNN is therefore able to
explicitly capture sequential relationships in the input.

RNNs have been used for time series forecasting like end-of-life battery
forecasting [14] and mechanical failure diagnosis [15]. RNNs have also been
used in natural language processing [16].

RNN architectures do however struggle with long-term memory and very
long sequential inputs [17]. Moreover, they are prone to exhibit vanishing or
exploding gradients [18] causing stagnant or divergent training respectively.
Moreover, the RNN is not parallelizable when training due to the sequential
input dependency. Therefore, training requires a lot of time and resources
which may be wasted due to vanishing or exploding gradients.

These ANN architectures can not only be used for inference and prediction
but for sample generation like the generative adversarial network and the
transformer.

Generative adversarial networks

The generative adversarial networks (GAN) architecture is designed to gener-
ate novel samples plausibly drawn from a given dataset. The GAN consists of
a generative and an adversarial discriminatory model, often neural networks.
The two models work against each other. The generative model attempts to
generate a novel sample (e.g an image) given some input (e.g text prompt)
while the discriminator tries to classify the novel sample as either generated
or part of the original dataset.

GANs are used for image segmentation [19], art and music generation [20],
and medicinal image augmentation [21].

The adversarial nature of the GAN architecture makes the training unpre-
dictable. The GAN training is prone to divergence and instability due to
training rate imbalances between the generator and discriminator [22].

3

Chapter 1 Introduction and Motivation

Transformer

The transformer architecture has been the focus of recent ANN research. The
transformer is based on the self-attention mechanism which in short encodes
the relative importance of each input signal. The transformer can therefore
handle both local and sequential input relationships without suffering from the
memory decay of RNNs. Furthermore, the transformer architecture training
is parallelizable [23] allowing significantly larger models.

The transformer is the basis for well know NLP models like openAIs Gen-
erative Pretrained Transformer (GPT)-4 [3] or Googles Bidirectional Encoder
Representation from Transformers (BERT) [24]. These models are state-of-
the-art at solving complex NLP tasks like text generation, text summariza-
tion, and text translation [25] with high accuracy and human-like perfor-
mance. GPT-4 recently passed advanced exams in multiple fields [3], scoring
among the top 10% of students. Moreover, GPT-4 is the NLP model behind
GPT-chat, an AI chatbot that has gotten significant media attention for its
human-like text generation.

These models are however extremely large and resource intensive to train.
GPT-3, the predecessor to GPT-4, and BERT have 175 billion and 360 million
parameters respectively. These large-scale models have been criticized for the
environmental impact as well as the economic cost of training [25]. As stated
in [3] model-specific tuning like hyperparameter optimization is not feasible for
such large models. Moreover, the transformer architecture has been observed
to be prone to divergent training, yielding unusable models [23]. Guaranteeing
convergence of these often large models could result in fewer resources wasted
and more efficient training.

ANNs in all their forms have become one of the most widely used tools in
ML [10]. They are however unpredictable both during training and in output.
Training convergence rate and final network performance are highly dependent
on hyperparameters like learning rate for all variations and architectures. Hy-
perparameter selection is generally only evaluated after training [26]. Hence,
ANNs require multiple training repetitions in order to find non-divergent hy-
perparameters yielding acceptable model performance. The hyperparameter
search leads to costly and resource-intensive ANN training and is unfeasible
for larger models like GPT. Making ANN training more predictable, guaran-
teeing convergence, and limiting hyperparameter search spaces would reduce

4

1.2 Reinforcement Learning

wasted resources and environmental impact.

1.2 Reinforcement Learning
Another powerful tool of ML is reinforcement learning (RL).

Reinforcement learning (RL) is a method in ML based on Markov decision
processes. Decisions are taken in sequence in accordance with an action policy
and an environment. The outcome is observed and the policy evaluated. Many
policy models exist, but a common modern approach is deep reinforcement
learning using ANNs.

There are two approaches to training the policy model, offline and online.

Online
During online RL training, the action policy is evaluated and updated based
on observations derived from interacting with the environment.

However, updating the policy model online comes with risks. Interacting
with the environment directly may result in unpredictable policy evolution.
Moreover, interacting with certain environments can be costly and dangerous
(e.g safety-critical systems) [27]. Hence an offline approach to training can be
less risky.

Offline
Offline RL relies on training on static datasets similar to traditional ML.
Observations are pre-recorded and stored which is used to optimize the action
policy. The policy is then deployed in the real environment.

The offline training approach can be safer as the environment is not affected
directly. However, without online updates the model becomes less adaptive
to changes in the environment. Moreover, the static dataset may not be rich
enough to capture all possible interactions or actions [27].

Deep Reinforcement learning
Deep reinforcement learning (DRL) is an RL method where the policy model
consists of an ANN. DRL has been used in RL applications requiring com-

5

Chapter 1 Introduction and Motivation

plex inputs like computer vision [28] and health care [29]. Deep-Q networks
(DQN) are a widespread approach to DRL. DQN has successfully solved com-
plex tasks like playing atari video games [30] and more recently pathfinding
for autonomous vehicles [31]. DQN has also been used for process control
[32]. However, instability of DQN training has been observed due to the pol-
icy changing rapidly, especially in online settings [30].

Reinforcement learning both offline and online has its strengths and draw-
backs. Ensuring stable DRL training along with more predictable online train-
ing schemes could allow for dynamic and adaptive modeling even in safety-
critical applications. Control theory is a field dealing with modeling and
control of such safety-critical applications. Drawing inspiration from control
theory may assist in the predictability of DRL.

1.3 Control Theory
Control theory is a field of optimization that deals with the control of dy-
namical processes and systems. In control theory applications, the system
dynamics are modeled or approximated, often as an ordinary differential or
difference equation (ODE). System inputs are calculated from the model such
that the desired system state or output is achieved.

Optimal control
Optimal control is an approach to control theory where the input signals
are calculated optimally based on the observed current state of the system
with regard to a convex cost function. For linear ODEs optimal control has
well-established analytic proofs of stability and optimality under conditions of
reachability and open-loop stability[33]. Optimal control and control theory is
an old field with well-established applications in multiple industries and fields
[34].

Optimal control relies on accurate modeling of the system dynamics. In
practice control systems are often nonlinear [35] and require linearization in
order to adhere to the optimal control framework. Optimal control gives some
overhead in terms of robustness to modeling error. However, even for robust
control frameworks operational drift or changing systems can be challenging

6

1.3 Control Theory

to model [36]. Traditionally, high-dimensional systems have been challenging
for optimal control due to the curse of high dimensionality. However opti-
mal control has made progress in recent years[37], improving the reliability
for high-dimensional and large-scale systems[38][39]. Using ML methods like
ANNs or DRL as model estimators could allow optimal control of highly non-
linear or unknown systems.

ML in control theory
Recent works in the fields of control theory and system identification have tried
to use machine learning and ANNs in their respective fields. [40] develops a
model-free controller using a fully connected ANN with Deep-Q DRL. In this
framework, the ANN does both system identification and control design on
the fly requiring no modeling. This approach does however not come with
the same guarantees as e.g optimal control and [40] states stability analysis
as future work. Moreover, the drawbacks of online and deep RL are present
in this framework.

[36] uses a simple Gaussian process (GP) to compensate for operational
drift in a model predictive controlled (MPC) system. The system is modeled
and the controller designed offline while the GP updates the model online
based on live observations. The use of a simplistic data-driven model like
a GPs mitigates some of the dangers of online RL. The GP does however
assume a Gaussian output distribution meaning this approach is limited to
certain applications. Moreover, GP scales poorly with the number of data
points [41]. An ANN could potentially allow for a less restrictive approach to
operational drift estimation at the cost of less predictability and guarantees.

[42] proposes ML to find optimal action policies for constrained or safety-
critical systems. ML-safe sub-problems are specified in order to circumvent
the unpredictable nature of many complex ML methods. The authors use
look-ahead and proactive safety planning along with a control barrier function
(CBF) as part of the cost function. If the CBF is violated an optimal controller
kicks in as backup ensuring the safety maintained. This approach limits the
dangers of online DRL and allows safe environment exploration where the
safety constraints are well-defined and modellable. A more predictable policy
and ANN evolution would allow less restrictive CBFs.

ML clearly has its applications in control theory but is often restrained in
order to guarantee operationally safe applications. The unpredictability of

7

Chapter 1 Introduction and Motivation

training restricts online model training to simplistic models or backup safety
systems. Making ANN training more predictable, with guarantees of conver-
gence and reduced hyperparameter search space allows these powerful tools
to be used in online systems and control applications. Tackling ANNs from
a control systems perspective bridges a gap between the two disciplines and
gives access to mathematically well-grounded methods and tools such as sta-
bility and reachability analysis for ANNs. The theory required to bridge this
gap could come from the neural tangent kernel.

1.4 NTK
Recent insights into the learning behavior of ANNs come from the study of
ANNs with infinite width. [43] introduces the neural tangent kernel (NTK) for
ANNs, describing the gradient descent training behavior as a linear ordinary
difference equation (ODE). The authors use a first-order Taylor linearization
of the NTK to derive a linear ODE description of the training for finite-width
ANNs. Follow-up work by [44] demonstrates the empirical region of validity
of this linearization. The higher-order terms of the linearization have been
studied in [45]. This novel perspective on ANN evolution allows for more
insight into the training dynamics and its analytical properties.

Tangential work studied the infinite NTK for many different architectures
like CNNs [44], RNNs [46] and transformers [47]. Moreover, [48] introduces
the notion of architectural universality for the NTK and demonstrates its ex-
istence for any ANN architecture. The NTK has also been used for generative
architectures. The internal stability of GANs and other encoder-decoder ANN
structures are revealed by the NTK framework [49]. The NTK perspective
appears to be applicable to many deep learning methods and ANN architec-
tures.

One criticism of the NTK is its computational complexity. Recent work
has limited this drawback. [50] introduce an NTK approximation method
for improved computation speed of infinite NTKs. [51] significantly improves
both computational times and reduce the memory required for finite NTK
calculations by exploiting the Jacobian symmetric structure. This allows the
NTK to be used for real-time training analysis. Moreover, [52] reduces the
NTK dimensionality decreasing resource cost and requirement in direct NTK
applications.

8

1.4 NTK

Recent works have applied this NTK perspective in practice. The NTK
has been used to prune ANNs, i.e remove uninfluential node connections [53]
improving model performance. Moreover, the generalization of ANNs has
been analyzed using the NTK [54].

This perspective has had an impact on control theory applications using
ANNs as well. In this work, we define two categories of methods influencing
the ANN training dynamic using the NTK, indirect and direct.

Indirect

So far in the literature, the NTK and control theory perspective on ANN
training have been used indirectly through reference and model matching. [55]
uses the eigenvalues of the NTK to improve the convergence rate for physically
informed neural networks (PINNs). The NTK revealed disparities between
different loss components. The authors alter gradient descent using the NTK
eigenvalues during training such that the loss converges homogenously over
each loss component.

The NTK has been used to complement existing policy gradient methods
[56] and robust Q-learning [57]. The latter papers implement cascade optimal
control methods to enhance the convergence and stability of reinforcement
learning methods, implicitly.

Direct

However, in this research, we follow a direct approach to influence the ANN
training dynamics using optimal control. Firstly, the concepts of stability
and reachability is introduced for a given ANN, based purely on the NTK.
This allows for directed and reduced hyperparameter search spaces. Secondly,
we develop a novel ANN training algorithm introduced as Controlled De-
scent Training (CDT). CDT is a model-based, H2 optimal state feedback
label augmentation method built on the NTK that provides convergence guar-
antees (locally) and explicitly minimizes the cumulative training loss. This
brings predictability of ANN learning, increased robustness to hyperparame-
ter choices, and guarantees otherwise missing for ANNs without compromising
on performance.

9

Chapter 1 Introduction and Motivation

1.5 Contributions:
The main contributions of the research can be summarized as:

• The research expands on the NTK description of ANN training intro-
duced by [43]. A dynamic label augment is introduced to the expanded
description, allowing more direct control over the training dynamics.

• A novel training algorithm is introduced as controlled descent training
(CDT). The novel algorithm uses the expanded NTK description along
with optimal control of the label augment to guarantee local training
convergence and improve convergence rate.

• Stability is introduced for ANN training. It is demonstrated that local
stability is influenced by hyperparameter selection. Hence, it can be
demonstrated under which hyperparameters the local training is non-
divergent before training the network, greatly limiting the hyperparam-
eter search space.

• Reachability is introduced for ANN training. Examples of when reacha-
bility is not achieved is given and the implication on data structure and
network architecture discussed.

1.6 Thesis outline
Chapter 2 the NTK and ANN training dynamics given by [43] is recalled and
expanded on to include the dynamic training label. Moreover, stability and
reachability of the ANN training dynamics is introduced.

Chapter 3 introduces the controlled descent training (CDT) algorithm along
with the local convergence guarantees.

Chapter 4 demonstrates CDTs performance on benchmarking data sets com-
pared to traditional gradient descent.

Chapter 5 is a summary of the research so far. And finally Chapter 6 in-
cludes a conclusion of the thesis as well as future research. Chapter 7 contains
additional addendums with supplementary proofs and discussions.

10

1.7 Ethics

1.7 Ethics
This research follows the ethical guidelines regarding artificial intelligence and
machine learning put forth by Centiro. This thesis also follow the general
guidelines regarding publication ethics put forth by Chalmers and the Com-
mittee On Publication Ethics (COPE). No part of this thesis has been written
with the help of GPT or any other large language transformer model.

1.8 Notations
We introduce the notation for an artificial neural network (ANN) as F (θ(k), x) :
Rr×n0 → Rr×nL where θ(k) ∈ C denotes the parameterization comprising
weights and biases at training step k. C here denotes at least once continuous
differentiability. Let the output of the ANN for a fixed n0-dimensional set of
data x ∈ Rr×n0 be ŷ(θ(k), x) = F (θ(k), x) ∈ Rr×nL . Assume it is continu-
ously differentiable with respect to θ(k): ŷ(θ(k), x) ∈ C. r denotes the number
of data points.

11

CHAPTER 2

Neural Network training dynamics

In the following sections, the NTK and the ANN training dynamics given in
[43] is refreshed. Moreover, a dynamic label augment is introduced. Serving as
an additional input to the training dynamics the label augment allows greater
control of training behavior. Stability and boundedness of unaugmented train-
ing are introduced. The effects of hyperparameter selection on stability and
local training convergence is discussed. Reachability is then introduced for
the augmented training dynamics. The architectural and data structural im-
plications of reachability being fulfilled or unfulfilled by the ANN dynamics is
discussed. These two concepts give insight into ANN training behavior while
providing the required conditions under which CDT guarantees convergence.

2.1 Neural Tangent Kernel
The NTK is adopted to describe the ANN evolution in function space during
gradient descent training[43]. As the ANN width increases, the NTK evolution
rate stagnates. For finite-width ANNs the NTK is time-varying resulting in a
nonlinear Ordinary Difference Equation (ODE).

This latter NTK is referred to as the empirical tangent kernel. The in-

13

Chapter 2 Neural Network training dynamics

directly time-varying NTK ODE can be approximated as a time-invariant
system by Taylor linearization around the initial parameters [44]. Lineariza-
tion of the finite width NTK ODE description paves the way for our main
contribution, analysis, and explicit control of the ANN training dynamics. As
such we use the empirical NTK and define it as follows.

Definition 1: Neural Tangent Kernel. Given two data points xi, xj ∈
Rn0 ⊂ x ∈ D, the NTK for an r -batch size, n0-input nL-output ANN
F (θ(k), x) : Rr×n0 → Rr×nL at time instance k ∈ Z+, is

Θi,j(k) =
(

∂ŷ(θ(k), xi)
∂θ(k)

∂ŷ(θ(k), xj)
∂θ(k)

T
)
∈ RnL×nL (2.1)

where ŷ(θ(k), x) is the output of the ANN.
We define the full NTK for a subset of data x ∈ D ⊆ Rn0×r as

Θ(k) =

Θ0,0(k) Θ1,0(k) . . . Θr,0(k)

Θ0,1(k) Θ1,1(k)
...

...
. . .

...
Θ0,r(k) Θr,r(k)

 ∈ RrnL×rnL (2.2)

The above mentioned empirical Neural Tangent Kernel Θ(k) in eq. (2.2) is
always symmetric and positive semidefinite. Positive-definiteness of the NTK
ensures the convergence of the loss to a minimum for a class of loss functions
(e.g., quadratic losses) [43]. A weak assumption for positive-definiteness can
be made if each pair of training inputs are not parallel and lie within a Eu-
clidean unit ball [58]. Some additional conditions guaranteeing its definiteness
are given in[59].

2.2 Local and global ANN training dynamics
In this section, with the help of [43], [44] local and global finite-width ANN
training behavior is introduced.

Assuming a constant target vector y ∈ Y ⊆ RnL×r (i.e., static labels in
supervised learning), the output follows certain dynamics dictated by gradi-
ent descent. For the sake of brevity, we denote ŷ(θ(k), x) as ŷ(k), bearing in
mind that the estimated output ŷ(k) still depends on the input data sequence.

14

2.3 Controlled ANN training dynamics with label augmentation

Furthermore, we assume the loss function is at least once continuously differ-
entiable L(ŷ(k), y) ∈ C with respect to θ(k) and ŷ(k) at any time instance
k ∈ Z. The evolution of the parameter vector θ(k) and thereof the network
output ŷ(k) under gradient descent with learning rate α is given by

θ(k + 1) = θ(k)− α
∂L(ŷ(k), y)

∂θ(k) = θ(k)− α
∂ŷ(k)T

∂θ(k)
∂L(ŷ(k), y)

∂ŷ(k) (2.3)

ŷ(k + 1) = ŷ(k)− αΘ(k)∂L(ŷ(k), y)
∂ŷ(k) = fθ(ŷ(k)). (2.4)

Eq. (2.4) captures the evolution of the global training dynamics as a nonlinear
time-discrete (ODE).

As can be seen in eq. (2.4) the symmetric empirical kernel Θ(k) has a
central role in describing the training behaviour.

Proposition 1 in Appendix 7.1 (taken from [60]) demonstrates that the
global training under gradient descent has a unique solution on a discrete
time interval k ∈ [ki, kf]. A local and linear (in ŷ) training dynamics can
be obtained at any time instance k, by first order Taylor series approxima-
tion of eq.(2.4) (see Appendix 7.2 for full derivation). In this case, ŷ(k) is
approximated at θ(k0) when ϑ(k) ≡ θ(k)− θ(k0), such that

ŷϑ(k + 1) = ŷϑ(k)− αΘ(k0)∂L(ŷϑ(k), y)
∂ŷϑ(k) = fϑ(ŷϑ(k)). (2.5)

A bound on the error between the local and global dynamics can be found
using the Lagrangian error bound (see Appendix 7.3). This bound allows us
to quantify the error introduced via the first order approximation. Additional
linearization may be required for certain loss functions to reach input affine
form (see Appendix 7.4).

2.3 Controlled ANN training dynamics with label
augmentation

As mentioned previously, one of the main contributions of the research is
to explicitly control the NTK training dynamics. As such, we introduce a
dynamic label augmentation method, i.e. inject fictitious, time dependent

15

Chapter 2 Neural Network training dynamics

labels by yu(k) as
ȳ(k) = y + yu(k) (2.6)

Unlike y, ȳ(k) dynamically alters the targets to be estimated by the ANN.
The label augmented dynamics (controlled global training dynamics) is then
formulated by,

ŷ(k + 1) = ŷ(k)− αΘ(θ(k))∂L(ŷ(k), ȳ(k))
∂ŷ(k) . (2.7)

In eq. (2.7), the injected labels purports to give a new degree of freedom
to influence the local and global training behavior. In Section 3.1 an optimal
way to select the fictitious labels yu(k) is demonstrated.

2.4 Analytic properties of discrete-time training
dynamics

Before the CDT algorithm is introduced two conditions are established under
which CDT guarantees convergence of the local training dynamics; stability
and reachability.

Firstly, global and local stability concepts of ANN training dynamics are de-
fined around specific equilibrium values. Stability guarantees boundedness of
the unaugmented training dynamics. Secondly, we analyze the local controlled
training dynamics from a reachability perspective. If reachability conditions
are met, this ensures that the label augments yu(k) can help us to reach any
points in Y within a finite number of steps. Both properties can be verified
before training using the initial kernel Θ0.

Boundedness of the training dynamics

We relate boundedness of the network output via eq. (2.4) to the context of
internal stability. Stability refers to the existence of a finite bound between the
ANN output ŷ and some equilibrium output ŷe. Here, a training equilibrium
point ŷe is defined as follows,

ŷ(k + 1) = ŷ(k) = ŷe. (2.8)

16

2.4 Analytic properties of discrete-time training dynamics

Furthermore, it follows from the dynamics in eq. (2.4) that for most con-
ventional losses equilibrium points may exist at ŷe = y. We discuss the condi-
tions under which an equilibrium point may exist in Appendix 7.5. The formal
stability definition of eq. (2.4) can be captured by the following definition.

Definition 2: Uniform internal stability [61] The discrete-time ANN
training dynamics with network output ŷ(k), initial network output ŷ(k0) = y0
and equilibrium point ŷe is called uniformly bounded if there exists a finite
positive constant γ such that for any k0 and y0 the corresponding solution
satisfies

||ŷ(k)− ŷe||2 ≤ γ||ŷ(k0)− ŷe||2, k ≥ k0 (2.9)

In essence, the uniform stability guarantees the ANN output during training
ŷ does not diverge from the equilibrium point ŷe to infinity in finite time. The
stronger stability condition of exponential stability is defined as,

Definition 3: Uniform exponential internal stability [61] The discrete-
time ANN training dynamics in eq. (2.4) with network output ŷ(k), initial
prediction ŷ(k0) = y0, and equilibrium point ŷe is called uniformly exponen-
tially stable if there exists a finite positive constant γ and a constant 0 < κ ≤ 1
such that for all k0 and y0

||ŷ(k)− ŷe||2 ≤ γκk−k0 ||ŷ(k0)− ŷe||2, k ≥ k0. (2.10)

To verify the above mentioned conditions for generic loss functions by using
the global training dynamics is an uneasy task. However, the internal stability
conditions of the local training dynamics described in eq. (2.5) may result in
simplified conditions. As an example, the stability conditions of local training
dynamics with quadratic loss reduce to an eigenvalue condition. As such,
internal stability reads as

|λ| ≤ 1, det (λI − (I − αΘ(k0))) = 0 ∀λ (2.11)

where α uniformly scales the eigenvalues of the local-empirical NTK, Θ(k0).
If Θ(k0) is positive semi-definite and none of the scaled eigenvalues of αΘ(k0)
is larger than 1, the inequality in eq. (2.11) is strict. Hence, α can be choosen
such that the local training dynamics is guarantee to be stable stable. Fur-
thermore, this guarantees in the local sense that the equilibrium output is
asymptotically reached. In Appendix 7.6 a concise and loss function depen-
dent derivation of stability analysis is provided for certain common loss func-

17

Chapter 2 Neural Network training dynamics

tions.

Remark 1. Learning rate adaptation. Finally, some ANN training algo-
rithms[62] suggest altering the learning rate α. Intuitively, the learning rate
scales the eigenvalues of the local-empirical NTK and as such impacts stabil-
ity. Modifying the scalar parameter α may help the convergence of the training
dynamics.

Remark 2. Robust stability. The linearization error discussed in Appendix
7.3 can be propagated through eq.(2.10) to deduce global stability from the local
dynamics. This is further discussed in Appendix 7.7.

Reachability
Reachability is a property of the label augmented training dynamics given in
eq.(2.7). It verifies the existence of a bounded sequence of the label augments
yu(k) such that any targeted ANN output ŷ(kf) can be reached from ŷ0 within
f finite steps.

Definition 4: Reachability. The label augmented training dynamics eq. (2.7)
is called reachable on [k0, kf] if from a given initial state ŷ(k0) there exists at
a sequence of yu(k) such that any ŷ(kf) can be reached k0 < kf <∞.

From Definition (4) the label reachability (with y(kf) = y) can be derived
as a specific case of reachability. The reachability condition for the global
training dynamics (with input affine label augments) in eq. (2.7) can be veri-
fied using difference-geometric [63] or set theoretic algorithms [64]. This also
indicates that addressing the reachability question for generic and complex
loss functions is hard.

In some specific cases of the loss function (e.g. if the controlled training dy-
namics is local and the label augments are injected in an input affine way), the
reachability analysis is straightforward to perform. Especially, the reachabil-
ity analysis of quadratic losses and local training dynamics can be concluded
by using linear systems and control theory [61]. In such cases, we borrow the
Popov-Belman-Hautus (PBH) test given by,

rank
[
zI − (I − αΘ(k0)) αΘ(k0)

]
= rnL, ∀z ∈ C. (2.12)

Numerically, the PBH condition consists of the finitely many rank tests at the
eigenvalues of (I − αΘ(k0)).

18

2.4 Analytic properties of discrete-time training dynamics

Remark 3. Unreachable local training dynamics. The importance of
reachability in ANN training can easily be captured when it is not full-filled.
A specific example is if there exist two identical data points. In such a case, the
local empirical NTK has two similar rows or columns (see eq. 2.1) causing
rank deficiency in Θ(k0). The intuitive explanation is that two similar or
identical data points will yield the same ANN output. Hence these two points
are inseparable in ANN output space. In practice, if these data points have
the same label the training will be stabilizable (see remark 5).

Remark 4. Overfitting. Intuitively, if reachability is fulfilled, the aug-
mented training can perfectly fit the training data, causing overfitting. Con-
sequently, if reachability is not fulfilled the ANN cannot perfectly fit the data.
Hence reachability can be a good measure of whether or not a network is com-
plex enough to fit the data or if data has conflicting data points. Moreover,
the overfitting caused by the augmented learning can be remedied with various
regularization techniques (e.g. [65]).

Remark 5. Stabilizability. If the local dynamics is not full state reachable
but the non-reachable states partition is locally asymptotically stable, we call
the training dynamics locally stabilizable.

Finally, the above mentioned analytic conditions (stability, reachability, sta-
bilizability) support the deployment of model based and optimal label aug-
mentation solutions.

19

CHAPTER 3

Locally Optimal Control of ANN training dynamics

In this chapter the novel training algorithm controlled descent training is intro-
duced using the label augmented dynamics. Under conditions of reachability
and stability, CDT guarantees local convergence and optimally augmented
labels.

3.1 Controlled Descent Training
In Section 2.3, label augments, as new fictitious inputs, have been injected
into the training dynamics. In the following section, it is demonstrated how
to calculate the label augments yu(k) such that stability and some optimality
criteria are (at least locally) satisfied. The main idea is to use ŷϑ(k) and
transform it to yu(k) with a static gain. In Figure 3.1, the schematics of the
closed-loop and controlled label augmentation for a network trained with MSE
are depicted.

In order to find K (in Figure 3.1), we propose to use an optimal state
feedback label augmentation method. More precisely, yu(k) label injection
is aimed at H2 optimal closed loop training dynamics (CDT). In the follow-
ing section, we restrict ourselves to quadratic loss functions and assume the

21

Chapter 3 Locally Optimal Control of ANN training dynamics

Figure 3.1: Schematic of Controlled Decent Training. The CDT augmentation
block calculates the label augment yu dynamically from the ANN out-
put ŷ using the controller feedback matrix K. The new dynamically
augmented label ȳ = y + yu is fed to GD rather than the static label
y.

augmented training dynamics is stabilizable (or reachable).
The following notation is introduced,

ỹ(k) =
[
ŷϑ(k)

1

]
, (3.1)

(3.2)

This allows the standard infinite horizon cost to account for the offset in-
troduced by the labels y. More precisely, the following infinite horizon cost is
minimized according to

minyu

1
2
∑∞

i=k0
ỹ(i)T Q̃ỹ(i) + yu(i)T Ryu(i) (3.3)

s.t. ỹ(k + 1) =
[
I − αΘ(k0) αΘ(k0)y

0 1

]
ỹ(k) +

[
αΘ(k0)

0

]
yu(k) (3.4)

(3.5)

where Q̃ ∈ Rr(nL+1)×r(nL+1) and R ∈ RrnL×rnL
+ are real valued positive

semi-definite and positive definite weighting matrices, respectively. More pre-

22

3.1 Controlled Descent Training

cisely,

Q̃ =
[

Q −Qy

−yT Q yT Qy

]
. (3.6)

The cost includes the weighted squared error between the ANN predictions
according to the linear dynamics and the targets, as well as the weighted
square sum of the label augment yu. The weighting matrix Q ∈ RrnL×rnL

can be chosen such that certain data points or ANN outputs are more impor-
tant than others. Moreover, the local training dynamics in eq. (3.4) captures
learning interactions between data points in x which in turn influence the op-
timal solution. The optimization problem, if solved, delivers an H2 optimal
label augmentation solution. The cost function in eq. (3.3) describes a generic
energy approach to label augment selection where the weighting matrices Q, R

shape their relative importance. Finally, the first term in eq. (3.3) penalizes
the deviation from the static targets.

The locally stabilizing and optimal solution to eq. (3.3)-(3.5) can be found
by using the Discrete-time Algebraic Riccati equations (DARE) 1(see Ap-
pendix 7.8 for solution derivation). If the stationary and extremal solution to
DARE is P then the optimal feedback gain can be written as

K =
(

R +
[
αΘ(k0)

0

]T

P

[
αΘ(k0)

0

])−1 [
αΘ(k0)

0

]T

P

[
I − αΘ(k0) αΘ(k0)y

0 1

]
(3.7)

yu(k) =−Kỹ(k) (3.8)
ȳ(k) =yu(k) + y = −Kỹ(k) + y (3.9)

The closed and CDT controlled loop becomes[
ŷϑ(k + 1)

1

]
=
([

I − αΘ(k0) αΘ(k0)y
0 1

]
−
[
αΘ(k0)

0

]
K

)[
ŷϑ(k)

1

]
. (3.10)

The feedback gain matrix K maps the ANN output ỹ to target augments yu(k)
such that it minimizes the cost in eq. (3.5) on an infinite horizon. Note, the
optimal cost value with the state feedback policy is 1

2 ỹ(k0)T P ỹ(k0). Finally,

1Stabilizability and detectability conditions must hold [33]

23

Chapter 3 Locally Optimal Control of ANN training dynamics

the controller gain K can be calculated before training and remains constant
during training. In the local dynamical sense, the linear difference equation
in eq. (3.10) guarantees asymptotic stability, and therefore convergence.

Remark 6. Batch. CDT suggests using the local empirical NTK for the
whole training dataset (megabatch). In practice, it may be more attractive
with a traditional mini-batch approach, recalculating the NTK and feedback
controller for each batch. This would call for receding horizon optimal control.

Remark 7. Robustness. The proposed H2 state feedback control policy is
robust with a guaranteed magnitude [33]. This makes CDT applicable on the
global training dynamics in practice. However, for proper handling of the mod-
eling error between the global and the local training dynamics, robust control
methods are proposed.

The CDT algorithm
In previous sections, the concepts of reachability and stability were introduced
for ANNs and their implications on hyperparameter selection examined. The
optimal target augment sequence ȳ(k) was calculated using LQR such that
stability is guaranteed and convergence rate improved. The full CD training
algorithm for MSE is summarized in Algorithm 1.

Algorithm 1 CDT summary
1: Calculate Θ0 ← eq.(2.2) ▷ Calculate kernel at ANN initialization
2: Check stability with eq.(2.11) ▷ (Stability)
3: Check reachability with eq.(2.12) ▷ (Reachability)
4: Calculate K ← eq.(3.7) ▷ Calculate control feedback using DARE
ANN Training:
for k ∈ 1, 2, ..., training steps do

1: Calculate ȳ(k)← y −Kỹ(k) ▷ Label augments based on feedback
2: Update parameters θ(k + 1)← θ(k)− δL(ŷ(k), ȳ(k))/δθ(k)

24

CHAPTER 4

Numerical performance and benchmarking

In this chapter, traditional gradient descent (GD) and CDT are compared
numerically using two standard benchmarking datasets. The first example is
a regression problem using the Ames Housing dataset [66] with a single-target
fully connected ANN and MSE loss. The second example is a binary image
classification problem using ALEXNet[9] for the purpose of demonstrating
the applicability of CDT on Convolutional Neural Networks (CNN). Both
experiments run on a megabatch setup, meaning the data is shuffled and split
into validation and train datasets with all train data in a single batch. The loss
is averaged over the batch. Each model is trained 10 times with reshuffled data
and a new random initialization. For each dataset, the model is trained using
both optimization methods for a number of learning rates all with learning
rate decay according to

αk = 1
1 + 0.01k

α (4.1)

where k is the training step and α is the initial learning rate. The learning rate
decay is not modeled in the training dynamics to ensure the controller does
not compensate for the decay by scaling the system. The controller design

25

Chapter 4 Numerical performance and benchmarking

cost matrices Q and R in eq.(3.5) are chosen as scaled diagonal matrices,

Q = I1 (4.2)
R = pI2 (4.3)

with identity matrices I1 ∈ RrnL×rnL and I2 ∈ Rr×r and a pre-selected control
input cost p 1. Smaller values of be p give larger label augment values. In
the following experiments, p is a constant (p = 0.1) in order to demonstrate
that this design parameter is significantly less sensitive than learning rate α.
Note however that choosing p will influence performance. There are multiple
heuristics involving the choice of p, any of which can be used to yield even
lower validation loss. However, this research focuses on demonstrating the
applicability of the method and theory, rather than performance improvement.
The experiments are written in Python (3.7) using the latest version (1.9.1)
of PyTorch released by Facebooks AI Research Lab 2016.

4.1 Regression
The Ames Housing Price dataset contains 79 explanatory variables describing
houses in Iowa along with their final sale price. The regression target for
this dataset is the sale price. A description for each variable can be seen in
[66]. The full dataset has 2919 entries. For the experiments, 512 data points
are sampled without replacement, normalized around 0 and split into 70%
training and 30% validation data. The experiments are run on a mega batch
setup meaning all training data is run concurrently in a single batch. 2 I.e. a
fully connected feed-forward neural network setup is used according to,{

hl+1 = zlW l+1 + bl+1

zl+1 = ϕl(hl+1)

{
W l

i,j = σw√
nl

wl
i,j

bl
j = σbβl

j

(4.4)

where l < L ∈ N is the layer where L is the final layer, nl is number of input
features to the layer l, z0 is the input data x ∈ D ⊆ Rn0×r and r is the batch
size. wi,j and βj is the weight and bias where i = 1, . . . , nl and j = 1, . . . , nl+1.

1These penalties weights are tuning parameters
2For traditional mini-batch gradient descent the control scheme would be recalculated for

each batch, analogous to a receding horizon controller or MPC. For the purposes of this
research, the mega-batch setup better demonstrates the theory presented.

26

4.1 Regression

W l and bl are the matrix and vector describing the weights and bias of a layer
respectively. ϕl is the output activation function for layer l, hence h is the
output from layer l and z is the input to the next layer l+1. For the regression
set up no final activation ϕL function is used hence zL = hL. Finally ŷ = zL

is the ANN output. The weights and biases are initialized with a normal
distribution respectively N (0,

σ2
w

nl
) and N (0, σ2

b). The parameter vector θ is
defined as

θ =
[
vec(W L) bL . . . vec(W 1) b1]T (4.5)

where vec means concatenated vector form of the matrix. ŷ(θ, x) : Rn0×r −→
Rr is the output of the ANN using input data x and parameters θ.

The fully connected ANN architectures (of varying widths and depths) used
for the Housing price dataset can be seen in Table 4.1. All architectures
use ReLU as inter layer activation function with no final activation. This
ensures the results are not architecture dependent and demonstrate how CDT
is influenced by varying widths and depths.

Architecture

For the regression experiment 3 ANN architectures similar to the model de-
scription used in [44] is used with initializations given in Table 4.1.

Architecture Hidden Layers (L− 1) Width (nl+1 ∀l ∈ {l0, lL−1})
1 1 1500
2 3 500
3 6 250

Table 4.1: Single-target fully connected ANN architectures used for the regression
experiments.

Regression experiment

The experiment is run 10 times with different initializations, reshuffled train-
ing data, and validation indices for each architecture. Tables comparing the
analytical and observed properties of the two training algorithms can be seen
in Tables 4.3 to 4.5. In the aforementioned tables, α is the learning rate. The
MSE column describle the average model MSE loss over all initializations on

27

Chapter 4 Numerical performance and benchmarking

the validation data at the final training iteration. For the purpose of demon-
stration, if some but not all ANN initializations resulted in divergent training
the average loss over all non divergent initializations is indicated. The con-
vergence column describes how many initializations resulted in non divergent
training (ŷ does not tend toward infinity). |eig(Θ(k0))| < 1 describes the
open-loop local stability of training for all initializations. Reachability de-
scribes the reachability of training for all initializations. Figures 4.1a to 4.1c
show the average difference (LGD − LCDT) of MSE validation loss between
GD and CDT during training over all initializations for each architecture. The
relative difference between the two validation losses is always in favor of CDT
(the metric is never < 0) hence Figures 4.1a to 4.1c are shown in log10 scale.
Only learning rates where both CDT and GD converge for all initializations
are shown in the figures. The absolute MSE losses for each architecture and
learning rate can be seen in Figures 4.3a to 4.5d. CDT does not affect train-
ing time since the NTK and optimization are calculated before training. The
NTK and optimization are however computationally heavy. A table with the
average total computation time along with the average training time for each
architecture can be seen in table 4.2. The training and optimization were
done on a single NVIDIA RTX A2000 laptop GPU.

Architecture CDT Total (s) CDT Training (s) GD Training (s)
1 58.5 37.1 37.2
2 18.6 10.3 10.1
3 9.4 5.3 5.3

Table 4.2: CDT Computation time for each architecture on an RTX A2000 GPU.
CDT Total includes NTK calculation, optimal feedback optimization,
and augmented GD training.

28

4.1 Regression

α Reachability |eig(Θ(k0))| < 1 Convergence MSE 10−3

100 GD Yes No None ∞±∞
100 CDT Yes No All 150.01± 350.50
10−1 GD Yes No 7/10 3.04± 0.59
10−1 CDT Yes No All 1.95± 0.24
10−2 GD Yes Yes All 2.70± 0.61
10−2 CDT Yes Yes All 2.34± 0.49
10−3 GD Yes Yes All 5.90± 0.95
10−3 CDT Yes Yes All 3.72± 0.76

Table 4.3: Analytical and observed properties for fully connected architecture 1 on
regression dataset.

α Reachability |eig(Θ(k0))| < 1 Convergence MSE 10−3

100 GD Yes No None ∞±∞
100 CDT Yes No All 2.14± 0.28
10−1 GD Yes No All 2.31± 0.45
10−1 CDT Yes No All 1.90± 0.29
10−2 GD Yes Yes All 3.71± 0.62
10−2 CDT Yes Yes All 2.62± 0.54
10−3 GD Yes Yes All 7.47± 1.54
10−3 CDT Yes Yes All 5.24± 0.99

Table 4.4: Analytical and observed properties for fully connected architecture 2 on
regression dataset.

α Reachability |eig(Θ(k0))| < 1 Convergence MSE 10−3

100 GD Yes No None ∞±∞
100 CDT Yes No All 1.88± 0.27
10−1 GD Yes No All 2.63± 0.80
10−1 CDT Yes No All 1.90± 0.48
10−2 GD Yes Yes All 7.58± 1.84
10−2 CDT Yes Yes All 4.23± 1.05
10−3 GD Yes Yes All 12.20± 2.61
10−3 CDT Yes Yes All 10.42± 2.11

Table 4.5: Analytical and observed properties for fully connected architecture 3 on
regression dataset.

29

Chapter 4 Numerical performance and benchmarking

0 200 400 600 800 1000
Training Iteratio

10−3

10−2

10−1

Re
la
tiv
e
M
SE
 lo
ss
 (L
og
 1
0)

Relative MSE (GD - CDT)
 Architecture:1

Learning Rate: 0.01
Learning Rate: 0.001

(a) Architecture 1

0 200 400 600 800 1000
Training Iteratio

10−3

10−2

10−1

Re
la
tiv
e
M
SE
 lo
ss
 (L
og
 1
0)

Relative MSE (GD - CDT)
 Architecture:2

Learning Rate: 0.1
Learning Rate: 0.01
Learning Rate: 0.001

(b) Architecture 2

0 200 400 600 800 1000
Training Iteratio

10−3

10−2

Re
la
tiv
e
M
SE
 lo
ss
 (L
og
 1
0)

Relative MSE (GD - CDT)
 Architecture:3

Learning Rate: 0.1
Learning Rate: 0.01
Learning Rate: 0.001

(c) Architecture 3

Figure 4.1: Average relative difference between GD and CDTs (LGD −LCDT) MSE
validation loss for all learning rates where both training methods con-
verge for each of the three regression architectures. CDT has a lower
validation loss during the entirety of training for all learning rates and
architectures.

As can be seen in Table 4.3 to 4.5, CDT is more robust to higher learning
rates with competitive final MSE validation loss while SGD diverges to infinity.
CDT consistently converges to a lower loss for all architectures and learning
rates. Moreover, the CDT standard deviation is smaller than for GD hence
the augmented training is more consistent between initializations and data
shuffles. The difference between the highest and lowest final MSE loss is
consistently smaller for CDT and the performance only changes significantly
for very low learning rates. Hence, CDT is seemingly less affected by choice of
learning rate α than traditional GD. This behavior is expected as the controller
may scale the system as required. It can be seen in Table 4.3 that architecture
1 trained with CDT does not diverge for any initialization at the highest
learning rate α = 1 but converges further away from the true labels than at

30

4.1 Regression

0 200 400 600 800 1000
Training Iteration

0.26

0.28

0.30

0.32

ANN Output Evolution

ANN output (GD)
ANN output (CDT)
True Label
Augmented Label

(a) Sample 1

0 200 400 600 800 1000
Training Iteration

0.10

0.15

0.20

0.25

0.30
ANN Output Evolution

ANN output (GD)
ANN output (CDT)
True Label
Augmented Label

(b) Sample 2

0 200 400 600 800 1000
Training Iteration

0.08

0.10

0.12

0.14

0.16

0.18

0.20
ANN Output Evolution

ANN output (GD)
ANN output (CDT)
True Label
Augmented Label

(c) Sample 3

Figure 4.2: ANN outputs ŷ, true label y and augmented label ȳ evolution for ran-
dom samples when training under CDT and GD. First initialization of
architecture 1 with learning rate 0.01. CDT appears to converge closer
to true label y for most, but not all data samples in the training batch.

initialization. Due to the high learning rate and relatively few parameters
in the single hidden layer architecture, the true kernel Θ(k) changes rapidly
making the global dynamics drift from the local approximation Θ(k0). Note
however that despite this CDT does not diverge to infinity.

Table 4.2 demonstrates that the training time between GD and CDT is
negligible. However, calculating the NTK and solving the CDT optimization
does take about as much time as the fitting itself. It is worth noting that both
the NTK calculation time and the CDT optimization time scale exponentially
with batch size. Hence the mega batch setup exacerbates the computational
difference between total computation time and training time.

Regarding observed global convergence it can be seen in Tables 4.3 to 4.5
that for some learning rates, the local stability condition is not fulfilled. De-
spite this, both GD and CDT are observed to converge to the true labels.
This hints at the higher order interactions not modeled by the first order Tay-
lor approximation improves robustness and does not cause divergent training.
This requires more analysis to confirm and is left for future work. Further-
more, the reachability condition is always fulfilled for all architectures. The
dataset provided is clean and thoroughly examined for duplicates and other
issues hence loss of reachability resulting from duplicated data points is not
an issue.

31

Chapter 4 Numerical performance and benchmarking

(a)

0 200 400 600 800 1000
Training Iteration

10−1

Av
er
ag

e
M
SE

 lo

 (L
og

 1
0)

Average MSE lo
 Learning Rate: 1, Architecture: 1

CDT

(b)

0 200 400 600 800 1000
Training Ite ation

10−2

Av
e

ag
e

M
SE

 lo
ss

 (L
og

 1
0)

Ave age MSE loss
 Lea ning Rate: 0.1, A chitectu e: 1

CDT

(c)

0 200 400 600 800 1000
Training Iterati n

10−2

10−1

Av
er
ag

e
M
SE

 l
ss
 (L

 g
 1
0)

Average MSE l ss
 Learning Rate: 0.01, Architecture: 1

GD
CDT

(d)

0 200 400 600 800 1000
Training Iterati n

10−2

Av
er
ag

e
M
SE

 l
ss
 (L

 g
 1
0)

Average MSE l ss
 Learning Rate: 0.001, Architecture: 1

GD
CDT

Figure 4.3: Absolute MSE loss on validation data for fully connected ANN archi-
tecture 1 averaged over all 10 initializations and data shuffles during
training with GD and CDT. CDT converges with fewer iterations than
GD for all learning rates. Moreover, CDT is stable at higher learning
rates (α ≥ 0.1), while GD diverges to ∞+. While reaching a finite
steady-state behavior for learning rate α = 1 CDT is not observed to
converge to the true labels.

32

4.1 Regression

(a)

0 200 400 600 800 1000
Training Iteration

10−2

10−1
Av

er
ag

e
M
SE

 lo

 (L
og

 1
0)

Average MSE lo
 Learning Rate: 1, Architecture: 2

CDT

(b)

0 200 400 600 800 1000
Training Iterati n

10−2

10−1

Av
er
ag

e
M
SE

 l
ss
 (L

 g
 1
0)

Average MSE l ss
 Learning Rate: 0.1, Architecture: 2

GD
CDT

(c)

0 200 400 600 800 1000
Training Iterati n

10−2

10−1

Av
er
ag

e
M
SE

 l
ss
 (L

 g
 1
0)

Average MSE l ss
 Learning Rate: 0.01, Architecture: 2

GD
CDT

(d)

0 200 400 600 800 1000
Training Iterati n

10−2

Av
er
ag

e
M
SE

 l
ss
 (L

 g
 1
0)

Average MSE l ss
 Learning Rate: 0.001, Architecture: 2

GD
CDT

Figure 4.4: Absolute MSE loss on validation data for fully connected ANN archi-
tecture 2 averaged over all 10 initializations and data shuffles during
training with GD and CDT. CDT appears to converge with fewer it-
erations than GD for all learning rates. Moreover, CDT is stable at
higher learning rates (α ≥ 1), while GD diverges to ∞+.

Figure 4.1a to 4.1c demonstrate that CDT converges in fewer iterations
compared to GD. The difference in performance is largest at the start of
training, meaning CDT has already converged to a lower loss than GD during
early iterations. Figures 4.3a to 4.5d highlight this further.

Figure 4.2 show the ANN output evolution for 3 randomly selected sam-
ples and a single initialization under both training methods along with the
augmented ȳ(k) and static y labels. Not that in Figure 4.2a CDT converges
further away from the true label than GD. For this initialization, the ANN
trained with CDT is closer to the true labels for 253 out of 357 samples in
the training batch at the final iteration. Since CDT gives a lower average loss
and outputs closer to the true targets on most samples but not all, it can be

33

Chapter 4 Numerical performance and benchmarking

(a)

0 200 400 600 800 1000
Training Ite ation

10−2

Av
e

ag
e

M
SE

 lo
ss

 (L
og

 1
0)

Ave age MSE loss
 Lea ning Rate: 1, A chitectu e: 3

CDT

(b)

0 200 400 600 800 1000
Training Iteratio

10−2

Av
er
ag
e
M
SE
 lo
ss
 (L
og
 1
0)

Average MSE loss
 Lear i g Rate: 0.1, Architecture: 3

GD
CDT

(c)

0 200 400 600 800 1000
Training Iteratio

10−2

Av
er
ag
e
M
SE
 lo
ss
 (L
og
 1
0)

Average MSE loss
 Lear i g Rate: 0.01, Architecture: 3

GD
CDT

(d)

0 200 400 600 800 1000
Training Iteration

10−2

2 × 10−2

3 × 10−2

4 × 10−2

6 × 10−2

Av
er

ag
e

M
SE

 o
ss

 (L
og

 1
0)

Average MSE oss
 Learning Rate: 0.001, Architecture: 3

GD
CDT

Figure 4.5: Absolute MSE loss on validation data for fully connected ANN archi-
tecture 3 averaged over all 10 initializations and data shuffles during
training with GD and CDT. CDT converges with fewer iterations than
GD for all learning rates. Moreover, CDT is stable at higher learning
rates (α ≥ 1), while GD diverges to ∞+.

34

4.1 Regression

concluded that some data samples are prioritized by the CDT method while
others are not. As stated previously the empirical kernel Θ(k0) is a matrix
describing the effect of each sample on all other samples during training[43].
Hence the CDT algorithm will prioritize samples with a large effect on others
such that minimal loss is achieved. Since K is a static linear transform of the
ANN output as ŷ approaches the true static labels y the augmented label ȳ

converges to the true static label y.

MSE local stability criteria

An experiment is made to compare the local stability criteria on learning rate
for MSE loss with different learning rates. Only gradient descent is used for
the following experiment. An adaptive3 learning rate is calculated using the
NTK according to the stability criterion given in eq. 2.11 and trained using
gradient descent. The stable learning rate is calculated offline before training.
The comparison for each architecture can be seen in Figures 4.6a to 4.6c.

(a)

0 200 400 600 800 1000
Training Iteration

10−3

10−2

10−1

Av
er
ag
e
M
SE
 lo
ss
 (L
og
 1
0)

Average MSE loss
 Ada tive LR, Architecture: 1

Ada tive LR
LR: 0.1
LR: 0.01
LR: 0.001

(b)

0 200 400 600 800 1000
Training Iteration

10−3

10−2

10−1

Av
er
ag
e
M
SE
 lo
ss
 (L
og
 1
0)

Average MSE loss
 Ada tive LR, Architecture: 2

Ada tive LR
LR: 0.1
LR: 0.01
LR: 0.001

(c)

0 200 400 600 800 1000
Training Iteration

10−2

Av
er
ag
e
M
SE
 lo
ss
 (L
og
 1
0)

Average MSE loss
 Ada tive LR, Architecture: 3

Ada tive LR
LR: 0.1
LR: 0.01
LR: 0.001

Figure 4.6: MSE loss on validation data for fully connected ANN architectures
averaged over all 10 initializations and data shuffles during training
with GD. Adaptive learning rate calculated using the NTK and local
stability criteria compared to different learning rates.

It can be seen in Figures 4.6a to 4.6c that the calculated learning rate is
competitive with the learning rate yielding the lowest validation loss for all
dense architectures. However, the calculated adaptive learning rate only out-
performs the lowest loss learning rate for architecture 3. The adaptive learning

3Adaptive in the sense that it adapts to ensure local training stability based on the data
and architecture. The learning rate is still static during training.

35

Chapter 4 Numerical performance and benchmarking

rate guarantees local stability but higher learning rates may still yield globally
stable training and lower loss. The comparison between the calculated adap-
tive learning rate and hyperparameter optimization needs to be investigated
further. This experiment hints at the adaptive learning rate being close to
optimal without any additional training reruns. If optimal hyperparameters
are required then the adaptive learning rate can serve as a starting point for
other hyperparameter optimization schemes, reducing hyperparameter search
space.

4.2 Classification
The Microsoft research Cats vs. Dogs dataset [67] contains 25k images de-
picting cats and dogs equally distributed. However, for the demonstrative
purposes of this work, a subset of 256 images are sampled without replace-
ment. In order to verify the generalization properties of CDT 70% of the data
is placed in the validation set. The random sampling makes no distinction
between the classes, therefore the sampled dataset is not balanced between
the classes. Each image is resized to 96 × 96 pixels with all color channels
retained. The ALEXNet [9] CNN architecture is used for this dataset. This
architecture is very complex compared to the previous regression example
hence overfitting is expected. For the purposes of demonstration, the CNN is
trained with multi-target MSE rather than the standard cross-entropy loss.4
Figures 4.7a to 4.7d show the MSE validation loss evolution of both CDT and
GD for the different learning rates.

As can be seen in Table 4.6, CDT improves training robustness for CNNs
with multiple outputs at higher learning rates. Due to the small training
batch size, the performance is poor for both models. ALEXNet is a complex
network and will easily overfit the training data. As can be seen in Figure
4.7d, CDT accelerates learning for CNNs as well as ANNs for low learning
rates. However, Figure 4.7b demonstrates that both training algorithms over-
fit quickly for high learning rates. CDT however stabilizes at a lower loss,
indicating higher generalizability after many iterations. More robust experi-
mentation is required to verify this observation. As can be seen in Figure 4.7c

4We do this for two reasons; (1) it is more closely connected to the theory presented which
is the main focus of this research, and (2) it is easier to verify the theory applicability
on CNNs with multiple outputs without additional linearizations.

36

4.2 Classification

α Reachability |eig(Θ(k0))| < 1 Convergence MSE 10−3

100 GD Yes No None ∞±∞
100 CDT Yes No All 2.59± 0.15
10−1 GD Yes Yes All 3.37± 0.38
10−1 CDT Yes Yes All 3.33± 0.37
10−2 GD Yes Yes All 2.58± 0.11
10−2 CDT Yes Yes All 2.69± 0.29
10−3 GD Yes Yes All 2.67± 0.10
10−3 CDT Yes Yes All 2.58± 0.11

Table 4.6: Analytical and observed properties of ALEXNet on classification
dataset.

(a)

0 200 400 600 800 1000
Training Iteration

3 × 10−1

4 × 10−1

6 × 10−1

Av
er

ag
e

M
SE

 o
ss

 (L
og

 1
0)

Average MSE oss
 Learning Rate: 1, Architecture: ALEXNet

CDT

(b)

0 200 400 600 800 1000
Training Iteration

3×10−1

4×10−1

5×10−1

Av
er
a
e
M
SE
 lo
ss
 (L
og
 1
0)

Average MSE loss
 Learning Rate: 0.1, Architecture: ALEXNet

GD
CDT

(c)

0 200 400 600 800 1000
Training Iteration

3×10−1

4×10−1

5×10−1

Av
er
a
e
M
SE
 lo
ss
 (L
og
 1
0)

Average MSE loss
 Learning Rate: 0.01, Architecture: ALEXNet

GD
CDT

(d)

0 200 400 600 800 1000
Training Iteration

3×10−1

4×10−1

5×10−1

Av
er
a
e
M
SE
 lo
ss
 (L
og
 1
0)

Average MSE loss
 Learning Rate: 0.001, Architecture: ALEXNet

GD
CDT

Figure 4.7: Absolute MSE loss on validation data for ALEXNet during training
with GD and CDT, averaged over all 10 initializations and data shuffles
of classification dataset. As can be seen in b, overfitting occurs for high
learning rates α. c demonstrate overfitting occuring earlier for CDT
due to the acceleration of training.

37

Chapter 4 Numerical performance and benchmarking

CDT converges at a few iterations and reach a lower loss than GD but does
however overfit earlier than GD. The observed behavior is expected as CDT
accelerates training hence overfit sooner. This hints at using a regularization
method together with CDT for optimal performance when using complex net-
work architectures. invite the community to further investigate the learning
behaviour of controlled gradient descent.

38

CHAPTER 5

Summary of included papers

5.1 Paper A
Viktor Andersson, Balázs Varga, Vincent Szolnoky, Andreas Syrén,
Rebecka Jörnsten, Balázs Kulcsár
Controlled descent training
Submitted to the International Journal of Robust and Nonlinear Con-
trol, Mar. 2023 https://arxiv.org/abs/2303.09216 .

In this article a novel optimal control-based ANN training algorithm con-
trolled gradient descent (CDT) is introduced. CDT is demonstrated to guar-
antee local training convergence and improve convergence rate. CDT is based
on the neural tangent kernel framework, allowing ANN training to be analyzed
from the perspective of control theory. Moreover, reachability and stability
are introduced for ANN training. These two concepts are used to derive in-
sights regarding hyper-parameter impact on training and data trainability.
CDT performance compared to traditional gradient descent is demonstrated
numerically and shows faster convergence and more robust training dynamics.

39

CHAPTER 6

Concluding Remarks and Future Work

6.1 Concluding remarks

So far the research has demonstrated that the NTK ODE description is apt
for traditional control theory methods and analysis. For convex losses like
MSE stability analysis demonstrates an upper limit on learning rate guar-
anteeing local training convergence, greatly reducing hyperparameter search
space. Furthermore, the implications on stability for other losses were dis-
cussed. Moreover, reachability is demonstrated theoretically to impact over-
fitting and data suitability from the ANN architectural perspective.

The novel ANN training algorithm controlled gradient descent (CDT) was
introduced, under conditions of reachability and stability. The novel algo-
rithm uses an optimal feedback controller based on a quadratic optimization
of the NTK ODE training description to alter the training labels such that
minimal cumulative training loss is achieved. Moreover, CDT guarantees lo-
cal training convergence allowing more predictable training behavior. CDT is
demonstrated to converge to a lower validation loss than traditional gradient
descent for benchmark datasets in both regression and classification.

41

Chapter 6 Concluding Remarks and Future Work

Future work
The focus has been to demonstrate the validity of control theoretical con-
cepts on ANN architecture. The next steps would include expanding these
concepts to mini-batch gradient descent making a more robust comparative
performance analysis. This research can however be expanded in multiple
directions.

Expand CDT applications

The research so far shows good performance for fully-connected and convolu-
tional ANNs. This could be expanded to include the large-scale transformer
architecture, ensuring training convergence while allowing limited hyperpa-
rameter optimization or selection even for large-scale models.

More exotic losses can be explored and tackled using the same approach,
like cross-entropy common for classification problems. The effect of additional
linearization of for example softmax or other nonlinear final activations can
also be studied. Other controller frameworks like robust or nonlinear control
can be applied to deal with these additional uncertainties.

Deep reinforcement learning could also benefit from more predictable train-
ing behavior, especially in the online setting. Hence, CDT performance in
online DRL applications can be investigated.

While less intuitive, the control input could augment the ANN prediction
rather than the label. This could mitigate some of the issues regarding input
affinity and nonlinearity of certain losses.

Deeper ANN analysis

The stability analysis can be much expanded. Assumptions on the initial
training step yielding the largest parameter change could be used to more
robustly prove stability during the entire training. Moreover, the upper bound
on learning rate found by the stability analysis can be further investigated
and implemented in common hyperparameter optimization schemes like grid-
search.

The insights generated by the reachability analysis can also be expanded
upon. The examples given like data duplicates can be more robustly demon-
strated with numerical examples. Moreover, a deep dive into the mechanics
behind could yield insights into both generalization and data trainability.

42

6.1 Concluding remarks

This work is a first step in bridging the gap between control theory and
machine learning. Further work in this field could yield robust deep-learning
based adaptive estimators and controllers fulfilling the hard safety and pre-
dictability constraints put on control theory applications. Moreover, control
theory analytical tools would lend themselves well to the field of ML, re-
ducing time and resources required for training high-performing large-scale
deep-learning models.

43

CHAPTER 7

Appendecies

7.1 Existence and uniqueness of solution
The analysis in Section 3 and onward require the ANN training dynamics to
have a unique solution on the interval [ki, kf]. The following proposition is a
variation of a proposition on Liptschitzness given in [60].

Proposition 1: Suppose that fθ(ŷ(k)) is bounded on the discrete interval
k ∈ [ki, kf] and satisfies

||fθ(ŷ1)− fθ(ŷ2)||2 ≤ L||ŷ1 − ŷ2||2 (7.1)

∀ŷ1, ŷ2 ∈ Ro,∀k ∈ [ki, kf] with L being the Lipschitz constant. Then, for all
initial conditions ||fθ(ŷi)||2 ≤ ϕ with a bounded real scalar ϕ. The discrete
difference equation ŷ(k + 1) = fθ(ŷ(k)), with ŷi = ŷ(ki) has a unique solution
over the time interval [ki, kf].

Proof. By means of the continuity assumption of ŷ(k) in θ(k), the proof is a
direct consequence of [60] (Ch. 2.2, pp 67, Theorem 2.4).

It follows that when training an ANN under gradient descent a solution to

45

Chapter 7 Appendecies

eq. (2.4) always exists and that the solution is unique on the time interval
[ki, kf].

7.2 Local training dynamics
The following appendix details the first order Taylor linearization used to
derive eq. 2.5. The following is a variation of the linearization used in [44].
We define the time instance of linearization as k0. In this local aspect, ŷ(k)
is described with θ(k0) and ϑ(k) ≡ θ(k)− θ(k0). That is,

ŷ(k) = ŷ(k0) +
(

∂ŷ(k)T

∂θ(k)

)T

θ(k0)
ϑ(k) +

∞∑
i=2

∂(i)ŷ(k)T

∂(i)θ(k)

T

θ(k0)

ϑ(i)(k)
i! . (7.2)

Using only the first term from the Taylor expansion (eq. (7.2)) results in

ŷϑ(k) ≡ ŷ(k0) +
(

∂ŷ(k)T

∂θ(k)

)T

θ(k0)
ϑ(k). (7.3)

The smoothness (once continuously differentiable) of the loss function enables
the definition of the local training dynamics by,

ŷϑ(k + 1) = ŷϑ(k)− αΘ(k0)∂L(ŷ(k), y)
∂ŷ(k) = fϑ(ŷ(k)). (7.4)

7.3 Lagrange error bounds for local training
dynamics

In order to quantify the error between the local and the global training dy-
namics the Lagrange error bound [60] is used,

||ŷ(k)− ŷϑ(k)||2 ≤ max
θ(κ)

1
2

∣∣∣∣∣
∣∣∣∣∣
(

∂2ŷ(k)T

∂2θ(k)

)T

θ(κ)

∣∣∣∣∣
∣∣∣∣∣
2

· ||ϑ(k)||22 (7.5)

where for any κ on the discrete interval [k0, k] θ(κ) is evaluated. Note that eq.
(7.5) expresses the overbound of the deviation between the outputs obtained
from the local training dynamics Θ(k0) and the global training dynamics Θ(k).

46

7.4 Loss Linearization

Meaning, while the linear dynamics are not replicating the learning behavior
exactly we can still quantify the goodness of the approximation.

7.4 Loss Linearization

1 Although, the local training dynamics are linearized w.r.t. θ(k0), the deriva-
tive of the loss

(
∂L(ŷ(k),y)

∂ŷ(k)

)
θ(k0)

can still be a nonlinear function of the output

ŷ(k) (e.g., for cross entropy loss). When this is the case we propose a further
linearization step and apply a first-order Taylor series approximation on the
loss derivative:(

∂L(ŷ(k), y)
∂ŷ(k)

)
θ(k0)

=
(

∂L(ŷ(k0),y)
∂ŷ(k0)

)
θ(k0)

+
(

∂2L(ŷ(k0),y)
∂2ŷ(k0)

)
θ(k0)

(ŷ(k)− ŷ(k0))

+
∑∞

i=2

(
∂(i+1)L(ŷ(k0),y)

∂(i+1)ŷ(k0)

)
θ(k0)

(ŷ(k)−ŷ(k0))(i)

i! (7.6)

and(
∂L(ŷ(k), y)

∂ŷ(k)

)
L

=
(

∂L(ŷ(k0), y)
∂ŷ(k0)

)
θ(k0)

+
(

∂2L(ŷ(k0), y)
∂2ŷ(k0)

)
θ(k0)

(ŷ(k)−ŷ(k0))

(7.7)
with Lagrange error bound∣∣∣∣∣

∣∣∣∣∣
(

∂L(ŷ(k), y)
∂ŷ(k)

)
θ(k0)

−
(

∂L(ŷ(k), y)
∂ŷ(k)

)
L

∣∣∣∣∣
∣∣∣∣∣
2

≤ 1
2

∣∣∣∣∣
∣∣∣∣∣
(

∂3L(ŷ(k0), y)
∂3ŷ(k0)

)
θ(k0)

∣∣∣∣∣
∣∣∣∣∣
2

· ||(ŷ(k)− ŷ(k0))||22. (7.8)

1The following work was done together with Balázs Varga

47

Chapter 7 Appendecies

Next, insert the linearized loss into eq. (2.5) and assume ŷ(k) ≈ ŷϑ(k) and
ŷ(k0) = ŷϑ(k0). We define the control oriented training dynamics as

ŷϑ(k + 1) =

ŷϑ(k)− αΘ(k0)
((

∂L(ŷ(k0),y)
∂ŷ(k0)

)
θ(k0)

+
(

∂2L(ŷ(k0),y)
∂2ŷ(k0)

)
θ(k0)

(ŷϑ(k)− ŷ(k0))
)

=(
I − αΘ(k0)

(
∂2L(ŷ(k0),y)

∂2ŷ(k0)

)
θ(k0)

)
ŷϑ(k)

+αΘ(k0)
(

∂2L(ŷ(k0),y)
∂2ŷ(k0)

)
θ(k0)

ŷ(k0)− αΘ(k0)
(

∂L(ŷ(k0),y)
∂ŷ(k0)

)
θ(k0)

. (7.9)

Note that there is a bias term αΘ(k0)
(

∂2L(ŷ(k0),y)
∂2ŷ(k0)

)
θ(k0)

ŷ(k0)−αΘ(k0)
(

∂L(ŷ(k0),y)
∂ŷ(k0)

)
θ(k0)

that only offsets the dynamics. The cumulative error bound (based on eq.
(7.5) and eq. (7.8) can be given as follows. Denote the left hand side of
eq. (7.5) with Ey and eq. (7.8) with EL. Consider eq. (7.8) and inject the
linearization error of ŷ(k) as

EL(Ey) ≤ 1
2

∣∣∣∣∣
∣∣∣∣∣
(

∂3L(ŷ(k0), y)
∂3ŷ(k0)

)
θ(k0)

∣∣∣∣∣
∣∣∣∣∣
2

· ||(ŷϑ(k) + Ey − ŷ(k0))||22. (7.10)

Then, the error bound for the control-oriented training dynamics can be given
by

E ≤ Ey − αΘ(k0)EL(Ey). (7.11)

In certain cases, when the loss is a quadratic function of the output (e.g.,
SSE, or MSE losses), the linearization error of the loss disappears.

7.5 Examples of equilibrium points
The following appendix discusses the conditions under which an equilibrium
point may exist. The definition of an equilibrium point is a point where no
change to the ANN output occurs, i.e ŷ(k + 1) = ŷ(k). In case of the global
training dynamics ŷ(k+1) = ŷ(k) can only occur if αΘ(k)

(
∂L(ŷ(k),y)

∂ŷ(k)

)
θ(k)

= 0.
More precisely, there is an equilibrium point if any of the following conditions
are fulfilled.

1. The most important case is when the loss is at a (local) minimum,

48

7.6 Boundedness for common losses

(
∂L(ŷ(k),y)

∂ŷ(k)

)
θ(k)

= 0.

2. The learning is frozen α = 0.

3. The kernel is a null matrix Θ(k) = 0. However, it can only occur
in some very specific cases, e.g., if ∂ŷ(k,xi)T

∂θ(k) and ∂ŷ(k,xj)T

∂θ(k) for all data
combinations xi, xj .

4. A less trivial case is when Θ(k)
(

∂L(ŷ(k),y)
∂ŷ(k)

)
θ(k)

is a zero vector while

Θ(k) ̸= 0, and
(

∂L(ŷ(k),y)
∂ŷ(k)

)
θ(k)

̸= 0. I.e., the derivative of the loss(
∂L(ŷ(k),y)

∂ŷ(k)

)
θ(k)

is in the null space of the kernel.

7.6 Boundedness for common losses
The boundedness of some common loss functions is analyzed, assuming static
target y. This work was mainly conducted by Balázs Varga, post-doc at
Chalmers University.

• Mean squared error (MSE) loss: The MSE loss is given as L(ŷ(k), y) =
1

2rnL
(ŷϑ(k)− y)2. Substituting the MSE loss in eq. (2.5) one gets

ŷϑ(k + 1) = ŷϑ(k)− αΘ(k0)
rnL

(ŷϑ(k)− y). (7.12)

This difference equation has an equilibrium point at a bounded y, which
is proven in later sections. For the linear time-discrete ANN training
dynamics under MSE loss

ŷϑ(k + 1) =
(

I − αΘ(k0)
rnL

)
ŷϑ(k) + αΘ(k0)

rnL
y. (7.13)

In eq. (7.13), trajectories of ŷϑ(k) can be checked for boundedness by
looking at the eigenvalues of the system matrix

(
I − αΘ(k0)

rnL

)
. The local

training dynamics are internally exponentially bounded iff

|λ| < 1 ∀λ ∈ eig

(
I − αΘ(k0)

rnL

)
. (7.14)

49

Chapter 7 Appendecies

The proof for this can be found in [61].

• Sum of Squared Error (SSE) loss: The SSE loss is similar to
the MSE loss without the normalization with rnL, i.e., L(ŷϑ(k), y) =
1
2 (ŷϑ(k) − y)2. Therefore, following the same line of thought as for the
MSE, if

|λ| < 1 ∀λ ∈ eig(I − αΘ(k0)), (7.15)

then ŷϑ(k) does not diverge from y. Since rnL is a positive integer, the
overbound for a non-divergent α with SSE loss is smaller than with MSE
loss.

• Mean absolute error (MAE) loss: The mean absolute error loss is
given as L(ŷϑ(k), y) = 1

rnL
||ŷϑ(k) − y||1 and its derivative w.r.t. ŷϑ(k)

is
∂L(ŷϑ(k), yi)

∂ŷϑ(k) = 1
rnL

rnL∑
i=1

ŷϑ,i(k)− y

|ŷϑ,i(k)− yi|
(7.16)

for ŷϑ,i(k) ̸= yi∀i. Index i denotes one element of the vector-valued
outputs and labels. Outside of ŷϑ,i(k) = yi, the derivative is −1 if
ŷϑ,i(k) < yi and 1 if ŷϑ,i(k) > yi. Therefore, the discrete learning
dynamics with MAE loss can be written as

yϑ(k + 1) = yϑ(k)− αΘ(k0)
rnL

sgn(ŷϑ(k)− y). (7.17)

Intuitively, this means the loss will uniformly converge to the αΘ(k0)
rnL

radius of y. The conditions for exponential internal boundedness are
not fulfilled.

• Cross entropy loss: The cross entropy loss or log loss is used for
classification, rather than regression tasks. It can be computed as
L(ŷϑ(k), y) = −yT log(ŷϑ(k)). Then, the nonlinear difference-equation
for the learning dynamics is

yϑ(k + 1) = yϑ(k) + αΘ(k0)y̌ϑ(k)y, (7.18)

where y̌ϑ(k) is a diagonal matrix ∈ RrnL×rnL of the element-wise in-
verses of ŷϑ(k), assuming ŷϑ(k) has no zero elements. Then, y is an
equilibrium point for the difference equation if αΘ(k0)log(y̌ϑ(k)y is a

50

7.7 Boundedness of the global dynamics

null vector. I.e., y is an equilibrium point if it is in the nullspace of the
matrix αΘ(k0)y̌ϑ(k). A trivial solution to this if y = 0, and this is the
only solution if the columns in αΘ(k0)y̌ϑ(k) are linearly independent.
If they are linearly dependent, there are infinitely many equilibrium
points. For more in-depth analysis a Lyapunov function is sought to
give boundedness conditions for the cross entropy loss. In discrete-time,
Lyapunov boundedness is fulfilled if V (f(x)) − V (x) < 0, where V (x)
is a Lyapunov function [60]. Let V (x) = xT x be a Lyapunov function.
Then for eq. (7.18) the Lyapunov boundedness criteria is

(yϑ(k) + αΘ(k0)y̌ϑ(k)y)T (yϑ(k) + αΘ(k0)y̌ϑ(k)y)− yϑ(k)T yϑ(k) < 0
(7.19)

which can be simplified to

α2yT y̌T
ϑ (k)ΘT (k0)Θ(k0)y̌ϑ(k)y − 2αyT

ϑ (k)Θ(k0)y̌ϑ(k)y < 0. (7.20)

Although, this equation is easy to check whether it is fulfilled or not, a
universal conclusion cannot be drawn for the global boundedness. On
the other hand, the cross entropy loss is mainly used for classification
tasks rather than regression where the target y and the output yϑ(k)
are normalized, i.e., y, yϑ(k) ∈ (0, 1) ⊂ RrnL . In such a case (in a
local sense) α is always positive, y, and yϑ(k) are positive vectors, y̌ϑ(k)
is a diagonal matrix with positive elements. Θ(k0) is symmetric and
if the input is normalized, it is positive-definite too [43]. Then, for a
sufficiently small α, Lyapunov boundedness is fulfilled.

From the above list it is obvious, that from a control-oriented perspective, the
SSE and MSE losses are the most appropriate.

7.7 Boundedness of the global dynamics
2 A criteria for the boundedness of the global training dynamics can be given
based on the linearized dynamics. To this end, we subtract the Lagrange error
(in appendix eq. (7.5)) from eq. (2.10) giving a less conservative bound for

2The following work was done together with Balázs Varga

51

Chapter 7 Appendecies

the global training dynamics:

||ŷ(k)−ŷe||2 ≤ γe−λ(k−k0)||ŷϑ(k0)−ŷe||2−max
θ(r)

1
2

∣∣∣∣∣
∣∣∣∣∣
(

∂2ŷ(k)T

∂2θ(k)

)T

θ(r)

∣∣∣∣∣
∣∣∣∣∣
2

·||ϑ2(k)||2.

(7.21)
The above expression suggests that the global training dynamics is not expo-
nentially bounded given the Lagrange error is nonzero. On the other hand, it
has important implications on the validity of the linearized training dynam-
ics. Since the linearization error grows over time, a time instant kc > k0 can
be found where exponential boundedness for the local training dynamics gets
violated. I.e., if

||ŷϑ(kc)− ŷe||2 > γe−λ(kc−k0)||ŷϑ(k0)− ŷe||2

− max
θ(r)

1
2

∣∣∣∣∣
∣∣∣∣∣
(

∂2ŷ(kc)T

∂2θ(kc)

)T

θ(r)

∣∣∣∣∣
∣∣∣∣∣
2

· ||ϑ2(kc)||2 (7.22)

we can explicitly say that the linear model is poor and must be recalculated.

7.8 The DARE equation
The following appendix describes the standard Discrete-time Algebraic Riccati
Equation (DARE) [33] which is deployed in order to find the solution P to the
quadratic infinite optimization problem in eq. (3.5). The proof that eq. (7.23)
solves the cost given in eq. (3.5) is given in [33].

A =
[
I − αΘ(k0) αΘ(k0)y

0 1

]
, B =

[
αΘ(k0)

0

]
, P = AT PA + Q−AT PB

(
R + BT PB

)−1
BT PA(7.23)

7.9 Initialization of the ANN
There are three common ways to initialize neural networks of infinite width
to derive fixed kernels.

• Standard initialization. The weight for each neuron are given asN (0,
σ2

w

snl
)

(N (0,
σ2

w

snlnm
) for convolutional layers), and biases are N (0, σ2

b) with σw,
and σb being initialization variances, nl is the width of each layer, nm

52

7.9 Initialization of the ANN

is the number of spatial positions in the convolution kernel, and s is a
width-scaling factor that goes to ∞ for infinite width networks. The
main issue with this initialization is that in the infinie width-limit the
entries of the NTK diverge.

• NTK initialization, proposed by [43]. In this case, weights and biases are
initialized with normalized gaussian distributions N (0, 1). The weights
are multiplied with σw√

snl
, (σw√

snlnm
for convolutional layers), and the

biases are scaled with σb. That is to make the NTK values converge.

• Improved standard initialization [68]. The difference between the stan-
dard and the improved version is that the width-scaling factor is pulled
out from the normal distribution, i.e. 1√

s
N (0,

σ2
w

nl
) and 1√

s
N (0,

σ2
w

nlnm
).

The initializations are summarized in Table ??.
According to [68], [69], infinite width networks with various architectures

achieve similar error regardless of initialization. I.e., if they converge, the
final value will be similar in output space, regardless of initialization. On the
other hand, it is not the case in parameter space; the NTK will take different
final numerical values depending on initialization. This means it will traverse
a different trajectory during learning since the eigenvalues of the NTK will
influence the learning dynamics.

All experiments, both regression and classification, implement initialization
2 as recommended by [43].

53

References

[1] M. Tripathi, “Analysis of convolutional neural network based image clas-
sification techniques,” Journal of Innovative Image Processing, vol. 3,
no. 2, pp. 100–117, 2021.

[2] R. Olu-Ajayi, H. Alaka, I. Sulaimon, F. Sunmola, and S. Ajayi, “Build-
ing energy consumption prediction for residential buildings using deep
learning and other machine learning techniques,” Journal of Building
Engineering, vol. 45, no. 103406, 2022.

[3] OpenAI, “Gpt-4 technical report,” ArXiv, vol. 2303.08774, 2020.
[4] D. Baptista and F. Morgado-Dias, “A survey of artificial neural network

training tools,” Neural Computing and Applications, vol. 23, pp. 609–
615, 2013.

[5] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal dis-
tributed online prediction using mini-batches,” Journal of Machine Learn-
ing Research, vol. 13, 2012.

[6] F. Martínez, F. Charte, M. P. Frías, and A. M. Martínez-Rodríguez,
“Strategies for time series forecasting with generalized regression neural
networks,” Neurocomputing, vol. 491, pp. 509–521, 2022.

[7] H. Salem, A. Kabeel, E. M. El-Said, and O. M. Elzeki, “Predictive
modelling for solar power-driven hybrid desalination system using arti-
ficial neural network regression with adam optimization,” Desalination,
vol. 522, no. 115411, 2022.

55

References

[8] V. W. Tam, A. Butera, K. N. Le, L. C. D. Silva, and A. C. Evan-
gelista, “A prediction model for compressive strength of co2 concrete
using regression analysis and artificial neural networks,” Construction
and Building Materials, vol. 324, no. 126689, 2022.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Proceedings of the 25th In-
ternational Conference on Advances in Neural Information Processing
Systems (NeurIPS’25 2012),

[10] L. Alzubaidi, J. Zhang, A. Humaidi, and et al., “Review of deep learning:
Concepts, cnn architectures, challenges, applications, future directions,”
Journal of Big Data, vol. 8, p. 53, 2021.

[11] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional
neural networks: An overview and application in radiology,” Insights
into Imaging, vol. 9, pp. 611–629, 2018.

[12] M. P. Aneesa, N. Saabina, and K. Meera, “Face recognition using cnn:
A systematic review,” International Journal of Engineering Research &
Technology, vol. 11, 2022.

[13] A. Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music
recommendation,” Proceedings of the 26th International Conference of
Advances in Neural Information Processing Systems (NeurIPS’26 2013),

[14] J. Lu, R. Xiong, J. Tian, et al., “Battery degradation prediction against
uncertain future conditions with recurrent neural network enabled deep
learning,” Energy Storage Materials, vol. 50, pp. 139–151, 2022.

[15] J. Zhu, Q. Jiang, Y. Shen, C. Qian, F. Xu, and Q. Zhu, “Application
of recurrent neural network to mechanical fault diagnosis: A review,”
Journal of Mechanical Science and Technology, vol. 36, pp. 527–542,
2022.

[16] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudan-
pur, “Extensions of recurrent neural network language model,” 2011,
pp. 5528–5531.

[17] Y. Su and C.-C. J. Kuo, “On extended long short-term memory and de-
pendent bidirectional recurrent neural network,” Neurocomputing, vol. 356,
pp. 151–161, 2019.

56

References

[18] A. Ribeiro, K. Tiels, L. A. Aguirre, and T. Schön, “Beyond exploding
and vanishing gradients: Analysing rnn training using attractors and
smoothness,” ser. Proceedings of Machine Learning Research, vol. 108,
Aug. 2020, pp. 2370–2380.

[19] A. Aggarwal, M. Mittal, and G. Battineni, “Generative adversarial net-
work: An overview of theory and applications,” International Journal of
Information Management Data Insights, vol. 1, no. 100004, 2021.

[20] S. Shahriar, “Gan computers generate arts? a survey on visual arts, mu-
sic, and literary text generation using generative adversarial network,”
Displays, vol. 73, no. 102237, 2022.

[21] Y. Chen, X. Yang, Z. Wei, et al., “Generative adversarial networks
in medical image augmentation: A review,” Computers in Biology and
Medicine, vol. 144, no. 105382, 2022.

[22] D. Saxena and J. Cao, “Generative adversarial networks (gans): Chal-
lenges, solutions, and future directions,” vol. 54, no. 3, 2021.

[23] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
Proceedings of the 30nd International Conference on Advances in Neural
Information Processing Systems (NeurIPS’30 2017),

[24] J. Devlin, M.-W. Chang, K. Lee, and K. N. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understanding,”
vol. 1810.04805, 2018.

[25] C. Xu and J. McAuley, “A survey on model compression and accelera-
tion for pretrained language models,” 2022.

[26] Z. S. Kadhim, H. S. Abdullah., and K. I. Ghathwan, “Artificial neural
network hyperparameters optimization: A survey,” International Jour-
nal of Online and Biomedical Engineering (iJOE), vol. 18, no. 15, pp. 59–
87, 2022.

[27] R. F. Prudencio, M. R. O. A. Maximo, and E. L. Colombini, “A survey
on offline reinforcement learning: Taxonomy, review, and open prob-
lems,” IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–, 2023.

[28] N. Le, V. S. Rathour, K. Yamazaki, K. Luu, and M. Savvides, “Deep
reinforcement learning in computer vision: A comprehensive survey,”
Artificial Intelligence Review, vol. 55, pp. 2733–2819, 2022.

57

References

[29] C. Yu, J. Liu, S. Nemati, and G. Yin, “Reinforcement learning in health-
care: A survey,” vol. 55, no. 1, 2023.

[30] S. S. Mousavi, M. Schukat, and E. Howley, “Deep reinforcement learn-
ing: An overview,” Proceedings of SAI Intelligent Systems Conference
(IntelliSys), pp. 426–440, 2016.

[31] L. Luo, N. Zhao, Y. Zhu, and Y. Sun, “A guiding dqn algorithm for auto-
mated guided vehicle pathfinding problem of robotic mobile fulfillment
systems,” Computers & Industrial Engineering, vol. 178, no. 109112,
2023.

[32] R. R. Faria, B. D. O. Capron, A. R. Secchi, and M. B. de Souza, “Where
reinforcement learning meets process control: Review and guidelines,”
Processes, vol. 10, no. 11, 2022.

[33] H. Kwakernaak and R. Sivan, “Linear optimal control systems,” John
Wiley and Sons, New York, 1972.

[34] A. E. Bryson, “Applied optimal control,” Hemisphere Publishing Cor-
poration, California, 1975.

[35] Y. Zhang, S. Li, and X. Zhou, “A survey of near-optimal control of non-
linear systems,” Deep Reinforcement Learning with Guaranteed Perfor-
mance: A Lyapunov-Based Approach, pp. 1–20, 2020.

[36] M. Maiworm, D. Limon, and R. Findeisen, “Online learning-based model
predictive control with gaussian process models and stability guaran-
tees,” International Journal of Robust and Nonlinear Control, vol. 31,
no. 18, pp. 8785–8812, 2021.

[37] A. Dolgui, D. Ivanov, S. P. Sethi, and B. Sokolov, “Scheduling in pro-
duction, supply chain and industry 4.0 systems by optimal control: Fun-
damentals, state-of-the-art and applications,” International Journal of
Production Research, vol. 57, no. 2, pp. 441–432, 2019.

[38] F. Hagebring and B. Lennartson, “Time-optimal control of large-scale
systems of systems using compositional optimization,” Discrete Event
Dynamic Systems, vol. 29, pp. 411–443, 2019.

[39] Z. Zhou and H. Xu, “A novel mean-field-game-type optimal control for
very large-scale multiagent systems,” IEEE Transactions on Cybernet-
ics, vol. 52, no. 6, pp. 5197–5208, 2022.

58

References

[40] H. Wan, H. R. Karimi, X. Luan, and F. Liu, “Model-free self-triggered
control based on deep reinforcement learning for unknown nonlinear sys-
tems,” International Journal of Robust and Nonlinear Control, vol. 33,
no. 3, pp. 2238–2250, 2023.

[41] M. Seeger, “Guassian processes for machine learning,” International
Journal of Neural Systems, vol. 14, pp. 69–106, 2004.

[42] Z. Marvi and B. Kiumarsi, “Safe reinforcement learning: A control bar-
rier function optimization approach,” International Journal of Robust
and Nonlinear Control, vol. 33, no. 3, pp. 2238–2250, 2023.

[43] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Conver-
gence and generalization in neural networks,” Proceedings of the 31st
Internation Conference on Advances Neural Information Processing Sys-
tems (NeurIPS’31 2018),

[44] J. Lee, L. Xiao, S. S. Schoenholz, et al., “Wide neural networks of any
depth evolve as linear models under gradient descent,” Proceedings of
the 32nd International Conference on Advances Neural Information Pro-
cessing Systems (NeurIPS’32 2019),

[45] J. Huang and H. Yau, “Dynamics of deep neural networks and neural
tangent hierarchy,” Proceedings of the 37th International Conference on
Machine Learning, vol. 119, pp. 4542–4551, 2020.

[46] S. Alemohammad, Z. Wang, R. Balestriero, and R. Baraniuk, “The re-
current neural tangent kernel,” ArXiv, vol. 2006.10246, 2020.

[47] J. Hron, Y. Bahri, J. Sohl-Dickstein, and R. Novak, “Infinite attention:
Nngp and ntk for deep attention networks,” Proceedings of the 37th
International Conference on Machine Learning, vol. 119, pp. 4376–4386,
2020.

[48] G. Yang, “Tensor programs iib: Architectural universality of neural tan-
gent kernel training dynamics,” Proceedings of the 38th International
Conference on Machine Learning, vol. 139, pp. 11 762–11 772, 2021.

[49] J. Franceschi, E. Bézenac, I. Ayed, M. Chen, S. Lamprier, and P. Galli-
nari, “A neural tangent kernel perspective of gans,” Proceedings of the
39th International Conference on Machine Learning, vol. 162, pp. 6660–
6704, 2021.

59

References

[50] A. Zandieh, I. Han, H. Avron, N. Shoham, C. Kim, and J. Shin, “Scaling
neural tangent kernels via sketching and random features,” Proceedings
of the 34th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’34 2021), pp. 1062–1073,

[51] R. Novak, J. Sohl-Dickstein, and S. S. Schoenholz, “Fast finite width
neural tangent kernel,” ArXiv, vol. 2206.08720, 2022.

[52] N. Ailon and S. Shit, “Efficient ntk using dimensionality reduction,”
2022.

[53] Y. Wang, D. Li, and R. Sun, “Ntk-sap: Improving neural network prun-
ing by aligning training dynamics,” 2023.

[54] P. Ju, X. Lin, and N. Shroff, “On the generalization power of the over-
fitted three-layer neural tangent kernel model,” pp. 26 135–26 146.

[55] S. Wanga, X. Yua, and P. Perdikarisb, “When and why pinns fail to
train: A neural tangent kernel perspective,” Journal of Computational
Physics, vol. 449, no. 110768, 2022.

[56] B. Varga, B. Kulcsár, and M. H. Chehreghani, “Constrained policy gra-
dient method for safe and fast reinforcement learning: A neural tangent
kernel based approach,” ArXiv, vol. 2006.07678v2, 2021.

[57] ——, “Deep q-learning: A robust control approach,” International Jour-
nal of Robust and Nonlinear Control, vol. 33, no. 1, pp. 526–544, 2023.

[58] Z. Chen, Y. Cao, Q. Gu, and T. Zhang, “A generalized neural tangent
kernel analysis for two-layer neural networks,” Proceedings of the 33rd
International Conference on Advances in Neural Information Processing
Systems (NeurIPS’33 2020), pp. 13 363–13 373,

[59] J. C. Ye, “Geometry of deep learning: A signal processing perspective,”
Springer, Singapore, 2022.

[60] H. K. Khalil, “Nonlinear systems (3rd edition),” Patience Hall, Michi-
gan, 2002.

[61] W. J. Rugh, “Linear system theory (2nd edition),” Patience Hall, Michi-
gan, 1995.

[62] Q. Tong, G. Liang, and J. Bi, “Calibrating the adaptive learning rate to
improve convergence of adam,” Neurocomputing, vol. 481, pp. 333–356,
2022.

60

References

[63] A. Isidori, “Nonlinear control systems (3rd edition),” Springer, New
York, 1995.

[64] J. Maidens and M. Arcak, “Reachability analysis of nonlinear systems
using matrix measures,” IEEE Transactions on Automatic Control, vol. 60,
no. 1, pp. 265–270, 2015.

[65] V. Szolnoky, V. Andersson, B. Kulcsar, and R. Jörnsten, “On the inter-
pretability of regularisation for neural networks through model gradi-
ent similarity,” Proceedings of the 36th International Conference of Ad-
vances in Neural Information Processing Systems (NeurIPS’36 2022),

[66] D. D. Cock, “Ames house pricing dataset,” https://www.kaggle.com/c/house-
prices-advanced-regression-techniques, 2011.

[67] Microsoft-Research, “Cats vs. dogs,” https : //www.microsoft.com/en−
us/download/details.aspx?id = 54765, 2022.

[68] J. Sohl-Dickstein, R. Novak, S. S. Schoenholz, and J. Lee, “On the infi-
nite width limit of neural networks with a standard parameterization,”
ArXiv, vol. abs/2001.07301, 2020.

[69] D. Park, J. Sohl-Dickstein, Q. Le, and S. Smith, “The effect of network
width on stochastic gradient descent and generalization: An empirical
study,” Proceedings of the 36th International Conference on Machine
Learning, vol. 97, pp. 5042–5051, 2019.

61

	Abstract
	List of Papers
	Acknowledgements
	Acronyms
	1 Introduction and Motivation
	1.1 Machine Learning and Deep Learning
	Fully-connected neural networks
	Convolutional neural networks
	Recurrent neural networks
	Generative adversarial networks
	Transformer

	1.2 Reinforcement Learning
	Online
	Offline
	Deep Reinforcement learning

	1.3 Control Theory
	Optimal control
	ML in control theory

	1.4 NTK
	Indirect
	Direct

	1.5 Contributions:
	1.6 Thesis outline
	1.7 Ethics
	1.8 Notations

	2 Neural Network training dynamics
	2.1 Neural Tangent Kernel
	2.2 Local and global ANN training dynamics
	2.3 Controlled ANN training dynamics with label augmentation
	2.4 Analytic properties of discrete-time training dynamics
	Boundedness of the training dynamics
	Reachability

	3 Locally Optimal Control of ANN training dynamics
	3.1 Controlled Descent Training
	The CDT algorithm

	4 Numerical performance and benchmarking
	4.1 Regression
	4.2 Classification

	5 Summary of included papers
	5.1 Paper A

	6 Concluding Remarks and Future Work
	6.1 Concluding remarks
	Future work

	7 Appendecies
	7.1 Existence and uniqueness of solution
	7.2 Local training dynamics
	7.3 Lagrange error bounds for local training dynamics
	7.4 Loss Linearization
	7.5 Examples of equilibrium points
	7.6 Boundedness for common losses
	7.7 Boundedness of the global dynamics
	7.8 The DARE equation
	7.9 Initialization of the ANN

	References

