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ABSTRACT

In this thesis the low-frequency dynamic behaviour of the induction machine is
analysed. Disturbances in the shaft torque and supply voltage are investigated
theoretically. The calculated response to shaft torque disturbances is verified
with measurements on a 15 kW machine. Furthermore, the influence of the
machine parameters, skin effect and operating-point is studied. The results
predicted using some models of lower order are compared with measurements
and results obtained by using a two-axis model. The results indicate that a first-
order model can be used to determine the dynamic response to shaft torque and
voltage disturbances up to one or a few hertz. By using a second-order model
also higher disturbance frequencies can be treated with a rather small loss of
accuracy. The temperature significantly effects the low-frequency dynamics of
the induction machine while the influence of the skin effect and static shaft
torque is of less importance to an ordinary industrial machine.
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1 INTRODUCTION

Electric power pulsations from two-bladed wind turbines have been observed
with a frequency twice the rotational frequency of the wind turbine. One
reported example is the 2.4 MW wind turbine situated at Ndsudden on the Island
of Gotland in the Baltic Sea [1]. This wind turbine is equipped with an induction
machine which in certain frequency regions can amplify shaft torque
disturbances. It has been suggested by Hinrichsen et al. [2] and Chan et al. [3] that
these shaft torque pulsations could be caused by the wind shear (different wind
speeds at different heights) or by aerodynamical effects when the blades pass the
tower. Other examples, where shaft torque pulsations have been reported, are
compressor drives. Since the commonly used dynamic representation of the
induction machine is a fifth-order non-linear system, numerical simulations must
often be performed to analyse these situations. If the phase currents are of
interest, such a detailed model will be needed. However, it is possible to use a
simpler model, if the rotor speed and electrodynamical torque perturbations due
to low-frequency pulsations in the shaft torque and supply voltage are to be
calculated. The need of simple but still reliable models increases when a larger
system consisting of several machines is to be investigated. An example of such a
multi-machine system is a wind farm.

Several papers have been presented on simplified induction machine models and
on the low-frequency dynamic behaviour of the induction machine. Nacke [4]
suggested that the induction machine could be represented by a spring, a mass
and a damper. With this second-order model it is possible to determine the
induction machine response to disturbances in the shaft torque. The induction
machine is usually subcritically damped and the eigenfrequency is located in the
region of 5-30 Hz. There is also another eigenfrequency, just below the supply
frequency according to Lorenzen [5], but only the lower, often referred to as the
dominating one, influences the response to shaft torque disturbances. The
damping at the dominating eigenfrequency can be very poor, especially for large
and low-slip induction machines according to Novotny et al. [6], or even non-
existing. The possibility of self-excited oscillations for certain combinations of
machine parameters, above all for high stator resistance, was investigated by
Lorenzen [S, 7, 8] and Nelson et al. [9]. Palit [10] and Kron et al. [11] presented
experiments in which the stator resistance was increased until the investigated
induction machine started to self-oscillate.
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Nacke [12] and Peterson [13] performed experiments in order to determine the
damping ratio and eigenfrequency of the induction machine by supplying the stator
with dc-current and in this way transforming the synchronous speed to zero.
Peterson also found an additional lower resonance possibility at which increased
stator resistance lead to reduced damping. At the dominating eigen-frequency,
hewever, he found the opposite. Also Spith [14] suggested that the stator resistance
improved the damping at the dominating eigenfrequency. However, the
measurements presented were not compared with calculations. Leonhard [15]
measured the electrodynamical torque response to shaft torque disturbances and
obtained a good agreement between measured and calculated values. To determine
the electrodynamical torque, the electrical power was measured with an
instantaneous power meter consisting of Hall-elements. Spith as well as Leonhard
performed the experiments on an induction machine connected to a 50 Hz grid.

The low-frequency dynamics of the machine is influenced by the skin effect,
Lorenzen {16] and Langheim [17], and also by a varying static load, Nacke [12] and
Kovacs [18]. Several authors have derived and investigated third-order numerical
models based on the negligence of the fast stator transients. These models are not
only capable of calculating disturbances in the shaft torque. Wasynczuk et al. [19]
claimed that the response to perturbations in the amplitude of the supply voltage
with a frequency up to the dominating eigenfrequency can be calculated.

The purpose of this thesis is to investigate the validity of some low-order induction
machine models. The models are: a first-order model based on the equivalent
circuit and- a second-order model based on the negligence of the stator resistance.
In order to- do this, it is also important to have a good knowledge of the low-
frequency behaviour'of the induction machine. Thus, the influence of the stator
resistance, operating-point, temperature and skin effect must be studied. To verify
the calculations with measurements is also an objective. The ambition has been to
give valuable information for the selection of an induction machine model to be
used when analysing a larger system,' for instance a wind turbine.

In Chapter 2 thel induction machine is analysed using linear theory, and the
different models are derived. After presenting the measurement equipment and
methods in Chapter 3, the models are compared with measurements in Chapter
4. In Chapter 5 the dynamic influence of different factors such as varying
machine parameters, different operating-points, skin effect in the rotor conductors
and machine temperature is investigated. Finally, In Chapter 6 an example of
how the analysis of the drive train of a wind turbine can be simplified is presented.
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2 THEORY

In this chapter, a short summary of the linear analysis necessary for the
investigation is given selected from [20, 21]. The models to be used are also
derived in this section as the theoretical background for each model has been
presented.

2.1 Linear systems analysis

Many systems are non-linear and a non-linear numerical simulation must be
performed in order to analyse these thoroughly, since the dynamics of the system
may depend on the operating-point or the magnitude of the disturbance. Some
non-linear systems of low order can be analysed analytically, but this is not the
case with the induction machine. A generally used method te analyse a non-linear
system is to linearize it around a certain operating-point and derive a linear
small-perturbation model. The system can now be analysed using linear methods.
However, caution must be taken in order to avoid extrapolation.

A linear system on state-space representation is usually described by
4, Ax + B 2.1
g X =Ax +Bu (2.1)

y=Cx+Du , (2.2)

where x is the state vector, u the input vector and y the output vector. A is the
system matrix, B the input matrix, C the output matrix and D the direct matrix.
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If the input signals u1,_, u,, of a system, have the Laplace transforms U(s), ,
Un(s) and the output signals yj, ,y, have the Laplace transforms Yi(s),..,
Yp(s) they will be related as:

Y1(s) G11(5) ... G1j(s) ... G1m(s) Ui(s)
Yio) =] G - Gy o Gimts) || Ut | 2.3)
Yp(©)d L Gp1() . Gpys) . Gpm() AL Un(s)
Equation (2.3) can also be expressed as
Y(s) = G(s)U(s) (2.4)

where G(s) is a matrix containing the transfer functions of the system with U(s)
as the input signal vector and Y(s) as the output signal vector.

The transfer function matrix G(s) can be determined by the relation
G(s)=CGI-AyIB+D - (2.5)
where I is the identity matrix.

Gij(s) is the transfer function with u; as input and y; as output:

ooy o 28)
GO =Ky~ | (2.6)
The denominator. of Gij(s), a(s), has an order of n, the number of states. The

order of the numerator b(s) is equal to or lower than n. The constant K can either
be included in or excluded from b(s). The roots of the expression b(s) = 0 which
make G,-j(S) = 0, are referred to as zeros, and the roots of the expression a(s) =0,
which make the polynomial G;j(s) — oo, are referred to as poles or eigenvalues.
The equation a(s)=0 is also called the characteristic equation. %&iwstem,
the poles are the same for all the transfer functions while the zeros-differ from
oné transfer function to another. Knowing the location of the zeros and poles of a
system, the system dynamics can be completely described.
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2.1.1 Damping, eigenvalues, eigenfrequency, frequency and step response

Although the zeros influence the dynamics of a system, it is the poles which often
play the most important role. With the knowledge of the pole location it is
possible to determine the frequencies, where resonances can emerge, and if there
is a risk for poor damping. When only the poles are investigated, they are
usually referred to as eigenvalues, A; ,. With a denominator of order n, the
impulse response, also called the natural response, of the transfer function (2.6)
will be
h(t) = cieM + oo+ cjehi+ . + cpen 2.7)

The values of the constants c;...c, depend on the location of both the zeros and

poles. The eigenvalues can either be real, A; = o, or complex, A; ; 41 =0t jw. A
real eigenvalue gives a contribution to the natural response of

and a complex eigenvalue pair gives a contribution of

. . cj ‘
cieti + cjeti+] = fem(cosa)t) \ (2.9)

From (2.8) and (2.9) it can be noted that with a positive real part of the
eigenvalue the system will be negatively damped, i.e. unstable, and that with a
negative, but small, real part the system will be poorly damped. If the eigenvalue
has an imaginary part, the contribution to the natural response will be an
oscillating term.

Consider a simple second-order system with the transfer function

0)02
52+ 28wgs + wy?

H(s) = (2.10)

where @y is the undamped natural angular frequency and ¢ is the damping ratio.
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The poles of the system are
P12=-Ewp* V1 - &2 (2.11)

In Fig. 2.1. the poles of the system with the damping ratio, £, being 0.1, 0.3 and
0.5 are presented.

P(E=0.3)— ” /X—A Imaginary axis

P1(§=o.5>//7f —\— @Vl - &
y |
/ |
/ |
/ |
l I
| l > | axi
‘ 5(90 Real axis
\ |
\ |
\ I
\ I
Py(&= 0.1)\'
Py(£=0.3) —3-X.

/X—
Pz(é = 05)

Figure 2.1. Location of poles in the S-plane with varied values of the damping
ratio, &.

All poles have the same distance, @y, to the origin. -
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From the location of the poles (and zeros if there are any) the frequency
response and the step response can be calculated as illustrated in Figs. 2.2 and

2.3, respectively.

15+

- . . — ,"l
10-f g=01—7/\

s el
5 £=03 \\\

)
z
7 104 £=05 .. \\
N
201 N
1 10
f(Hz)

Figure 2.2. Gain of the transfer function H(s) with wg = 100 and varied values
of the damping ratio, .

2 LOLELEL rrrr T lllr T
- & 01
Q i " = V.
£ 154 [
’% i A =03
= - /l N~ .
B 0.5\ |
g | §zj\osg
E ol
< i
-0.5 |

ik K 1 1t 1 i 11 3 & I b4 11 i1 3 1 L1 4 1 B
0 01 02 03 04 05 06
t(s)

Figure 2.3. Step response of the transfer function H(s) with wy = 100 and varied
values of the damping ratio, .

The reduced damping due to a small £ is clearly visible in Figs. 2.2 and 2.3. If £
is equal to 1/V2, there will be no amplification in the frequency response for any
frequency leading to a critically damped system and if &>1, the step response
will not oscillate.
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2.2 Equations of the three-phase induction machine
2.2.1 Generalized induction machine equations

When the induction machine dynamics is studied, some simplifying assumptions
are usually made. The windings are considered to be sinusoidally distributed and
the core losses are neglected. The machine parameters are considered to be
constant, i.e. no change in the saturation level or influence of the skin effect.
With these assumptions, the squirrel cage induction machine can be described by
the following equations:

d¥ |
us=isRs+—g; +io¥s (2.12)
R & <
0= LrRr"'_dt_'*'J(wk“me)iIr ‘ (2.13)
Jme =T, T (2.14)
T = pIm(¥*is) | (2.15)

where i, i are the stator and rotor current vectors, £, is the mechanical rotor
speed, @y the angular velocity of the coordinate system, T the shaft torque, T
the electrodynamical torque and ug the supply voltage vector. Rg, R, are the
stator and rotor resistances, Jp, is the inertia of the machine and p the pole pair
number. All the rotor parameters and variables are referred to the stator side.
As can be noted from (2.15) the ratio between the numbers of turns in the two-
phase winding and three-phase winding is chosen to be V2/3. The stator and
rotor flux vectors are obtained by the following expressions:

W= Lgis+Li; (2.16)
Y=L +Lgis » | (2.17)

Lg, Ly and Ly, are the stator, rotor and magnetizing inductances, respectively.
The system is non-linearkas can be noted, if (2.16) or (2.17) is inserted to (2.15)
or (2.13), respectively.



19

At o =ws, the supply angular frequency, and with the voltage in the quadrature

direction, the following system of induction machine equations is obtained with
motor references:

I
U=RI+L ((jit _ (2.18)

where U is the voltage vector, I is the current vector, R is the resistance matrix
and L is the inductance matrix. The elements in the vectors and matrices are:

po— . — —

ids 0 [ LiLp,0 0 O

Idr 0 Ln,L: 0 0 O

I=| ig u=| O L= 0 0L, L,O

igs Uq 0 0L,Ls O

| Q. T . 000 0~y
and

B R, 0 —L 0 ~Liwg O]
0 Ry L(pQn—s) Lin(pL2m—05)0
R=| Lun(@0spLm) Ll0spm) R; 0 0
Lwq Lo 0 Ry 0
- 0 0 —PLmids pPLyidr O

where igs, igr iqr and igqs are the stator and rotor currents in direct and
quadrature axes and Ugq is the voltage in the quadrature axis. The induction
machine model (2.18) will be referred to as the detailed model in this
investigation.
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Skin effect correction

With higher frequencies of the rotor currents, the value of the rotor resistance
increases and the value of the rotor leakage inductance decreases due to the skin
effect in the rotor conductors. At 40 Hz, the upper limit of investigation, the
value of the rotor leakage inductance has approximately been reduced by 6 %
while the rotor resistance value is 40 % higher than the dc-value. In this thesis
the rotor leakage inductance is considered to be constant. By using a simpie
method the variation of the rotor resistance due to the skin effect in the rotor
conductors is taken into account. One frequency of shaft torque disturbances is
applied at each calculation and the value of the rotor resistance at this frequency
is used. Another way of compensating for the skin effect proposed in [22] is to
develop a layer model. By using this method the rotor conductors are
transformed to a network of several thin conductors, leading to a large number
of equations. The result from the method used is compared with results obtained
by using a method based on superposition. A small-signal solution with adjusted
values of the rotor resistance is added to a steady-state solution with the rotor
resistance having its dc-value and it is found that the method used and the
superposition method predicted similar results. The determination of the rotor
resistance is presented in Appendix A.
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2.2.2 The steady-state equivalent circuit of the induction machine

If the induction machine is operating in steady-state with a sinusoidal symmetrical
supply voltage and the core losses are neglected, the machine can be described by
the steady-state equivalent circuit, see Fig 2.4. All the parameters are referred to
the stator side.

_!S : _l_r
—_— -+
R Xsa X,
+
. R,
Uph JXm _S-

Figure 2.4. The steady-state equivalent circuit of the induction machine.

X X, and X, are the stator leakage, rotor leakage and magnetizing reactances
respectively, § the slip and Uy, the phase voltage. and [, are the stator and
rotor current phasors, respectively. The steady-state equivalent circuit can be

simplified to a two-terminal network. In Fig 2.5 the simplified equivalent circuit
is presented.

Figure 2.5. The simplified equivalent circuit of the induction machine.
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The equivalent voltage, resistance and reactance are determined by the following
equations:

Ug = kUph (2.19)

Ro= kR (2.20)

Xo=Xn + kX) (2.21)
where X

k= )T?fsx (2.22)

The electrodynamical torque, T, is in steady-state a function of the slip and can
be determined by
3pR, Up?
Te= S R (2.23)
(O r.2
(Ro+ )7 + Xo?




2.3 Application of linear theory on the induction

machine equations.
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If the induction machine equations are linearized at a certain operating-point, a
small-perturbation state space model of the induction machine can be derived
[23]. From this model, the small-perturbation transfer functions of the induction

~ machine can be determined.

In this thesis there are six small-perturbation transfer functions of special
interest. They are the transfer functions which can be derived with the
disturbances in the shaft torque, amplitude and frequency of the supply voltage
as inputs, and the disturbances in the rotor speed and electrodynamical torque as

outputs, see Fig. 2.6.

Ag—>=="5
AU ——>f ===

Figure 2.6. The induction machine as an input-output box.

———> AT,
> ALy

Four induction machines are investigated. The parameters of the machines are

presented in Table 2.1.

Table 2.1. Machine parameters for the investigated machines (cold machines).
The rotor parameters are referred to the stator side.

Rated power P, 24 MW S5 kW 22 kW 15 kW
Stator resistance, R 0072Q | 0.032Q 0.15Q | 0.18Q
Rotor resistance, Ry 0.095Q | 0.071 Q 0.17 Q 0.19 Q
Stator leakage inductance, Lg) | 39mH | 0.52mH | 1.5mH 2.2mH
Rotor leakage inductance, L) | 7.1mH | 0.66mH [ 1.7 mH 1.8 mH
Magnetizing inductance, Ly, | 2048 mH | 14.6mH | 38.5mH | 38.8 mH
Rated voltage, U, 6000 V 380V 380V 380 V
Machine inertia, J;y, - 100 kgm?2 | 0.97 kgm? | 0.19 kgm? | 0.22 kgm?
Number of pole pairs, p 4 4 4 6
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The calculations are performed with the machines operating in rated generator
operation with a supply frequency of 50 Hz. The supply voltage used for the
larger machine is the rated voltage but for the three smaller machines the used
voltage is 400 V. The reason for using 400 V instead of the rated voltage of 380
V, is that 400 V is the nominal grid voltage. -

2.3.1 The eigenvalues of the induction machine

If the eigenvalues of the induction machine are determined, five eigenvalues will
be obtained. It is not possible to solve the eigenvalues analytically, since there is
no general solution to a fifth-order equation. However, if the rotor inertia is
considered to be infinite (the mechanical equation (2.14) is removed), it will be
possible to obtain analytical values on those four eigenvalues according . to
Narraway [24] and Policastro et al. [25]. In Table 2.2 the eigenvalues of the
investigated machines are presented.

Table 2.2. The eigenvalues of the induction machines (rated generator

operation).
A12 A3.4 As
2.4 MW machine —6.8 *+j314 —4.60 * i35 8.1
55 kW machine -27.3 £ ;310 -30.8 £ j67 =59
22 kW ' machine —50.0 * j307 —23.6 + j98 ' —52
15 kW machine —47.2 +j309 -19.5 +j120 —46.2

From Table 2.2 it can be observed that the induction machine has two pairs of
complex-conjugated eigenvalues and one real eigenvalue. This means that there
are two eigenfrequencies: one upper, just below the supply angular frequency,
314 rad/s, 50 Hz, and one lower in the region of 35-120 rad/s, 5-20 Hz. A

' physical explanation of the two eigenfrequencies is given by Lorenzen [26]. The
upper resonance exists due to the oscillation in the magnetic energy between the
rotor and the stator and the lower eigenfrequency indicates the possibility of
energy oscillations between the kinetic energy stored in the rotor and the .
magnetic energy stored in the leakage fields of the machine.
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2.3.2 Small-perturbation transfer functions of the induction machine

The small-perturbation transfer functions presented in this Section will be
determined for the 15 kW machine. The results from calculations performed on
the other machines are mainly the same but the damping ratios and eigen-
frequencies are of course different for different machines. The small-
perturbation transfer function with the shaft torque as input and the
electrodynamical torque as output is for the 15 kW machine operating with rated
torque as generator:

ATe 14785 (s2 + 47.0 s + 97025) (s + 46.2)
AT~ (s2+ 39.05 + 14727) (s + 94.5 5 + 97388) (s + 46.2)

(2.24)

The gain of the transfer function (2.24) is presented in Fig. 2.7.
1 o [ T T T LEBRER Y"I']l T T T T

. o\

-10-f

-
4

e

]ATe /ATS| (dB)

Liti el tiaealiinalantl Llll‘1

154 \

204 \V\

-25- S

30+ b ]
1 10 100

f(Hz)
Figure 2.7. Gain of the transfer function AT,/ AT;.

From (2.24) and Fig. 2.7 it can be observed that the linearized transfer function
AT/AT; acts as a second-order low-pass filter with a resonance frequency
around 18 Hz caused by the lower eigenfrequency, often referred to as the
dominating one. The amplification from the disturbance in shaft torque to the
disturbance in electrodynamical torque at 18 Hz is almost three times compared
to the low-frequency case. The upper eigenfrequency is suppressed by the
complex zero pair in (2.24). In fact, the effect of the double zero is that the
damping of AT./AT; is improved around the disturbance frequency of 50 Hz
which can be seen in Fig. 2.7. The real pole and the real zero also almost have
the same location. If the three zeros cancel out the three poles, a second-order
system will be obtained:

AT, 14727 _ >
AT~ (s2+ 39.05 + 14727) ~ 52+ 2&wgs + w2

(2.25)
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With the 15 kW machine, the undamped dominating eigenfrequency

fo=m (226)

is situated at 19 Hz with a damping ratio of £ = 0.16. The undamped
eigenfrequency will from now on be referred to as the eigenfrequency only. In
Table 2.3 the dominating eigenfrequencies and the damping at these eigen-
frequencies are presented for the investigated machines.

Table 2.3. Location of and damping at the dominating eigenfrequency for
the investigated machines (rated generator operation).

fo (Hz) g
2.4 MW machine 5.6 0.13
55 kW machine 12 0.42
22 kW machine 16 0.23
15 kW machine 19 0.16

In Fig. 2.8 the gain of the transfer function (2.25) is compared with the gain of
the transfer function (2.24). :
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Figure 2.8. Gain of the transfer function AT /ATs. The dashed line represents
calculations performed with the detailed model and the solid line
represents calculations performed using the simplified transfer
function.



27

As can be seen in Fig. 2.8, the gain of the transfer function AT/AT predicted
using the detailed transfer function and the simplified one are almost identical.
The only notable difference is around a disturbance frequency of 50 Hz, where
the effect of the neglected upper double pole and double zero is visible.

With the disturbance in the rotor speed as output and the disturbance in the shaft
torque as input the small-perturbation transfer function will be

AQn 4.54(s2+92.65 +2142)(s2+ 87.25 +96960)
AT = (s2+39s +14727)(s2+ 94.55 +97388) (s +46.2)

(2.27)

The gain of the transfer function A2,/ATy is presented in Fig 2.9.
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Figure 2.9. Gain of the transfer function AS2,,/AT;.

The DC-gain is —37 dB which corresponds to the slope of the steady-state torque
speed curve at rated operating-point as a generator. The amplification at the
lower, dominating, eigenfrequency is as high as 7 times compared to the low-
frequency case. Again the effect of the upper pole pair is eliminated by the upper
zero pair and the real pole has a location close to one of the zeros. If these three
zeros cancel out three of the poles, a second-order system will be obtained:

AQn -1 (s + 46.3) -1 (s +A)
AT, ~ Jp(s2+ 39.0s + 14727) ~ Jyp 52+ 28wps + wp?

(2.28)
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In Fig. 2.10 the simplified small-perturbation transfer function AQy,/ATy is
compared with the detailed one.
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Figure 2.10. Gain of the transfer function AQ,,/ATs. The dashed line represents
calculations performed using the detailed model and the solid line
represents calculations performed using the simplified transfer
function.

In Fig. 2.10 it can be observed that the agreement between the predictions of the
gain obtained by using (2.27) and (2.28) is very good. The parameters A, g
and & of these linear second-order transfer functions depend on the operating-
point. In Table 2.4 the parameters are presented for some different operating-
points of the 15 kW machine.

Table 2.4. Parameters of the second-order numerical transfer functions. for
some different operating-points of the 15 kW machine.

Torque [N & A

T, (mot) |118.0 0.170 46.3
Tp/4 (mot) |120.2 0.161 46.3
No-load 120.6 0.159 46.3
Tn/4 (gen) 121.0 0.158 46.3
T, (gen) 121.3 0.161 46.3

From Table 2.4 it can be observed that the damping increases some when the
machine is loaded, especially in motor operation, while the undamped angular
frequency almost remains unchanged.
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The gain of the small-perturbation transfer function with the supply voltage as
input and the electrodynamical torque as output

AT, 835.85(s+ 55.2) (s _+ 50.8) (s — 63.5) :
AU ~ (s2+ 39.05 + 14727) (s2 + 94.5s + 97388) (s + 46.2)

(2.29)

is presented in Fig 2.11.
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Figure 2.11. Gain of the transfer function AT /AU.

o
o

iBoth eigenfrequencies are visible in this case making it impossible to simplify
(2.29) to a second-order model with an acceptable loss of accuracy by neglecting
the effect of the upper eigenfrequency.

The small-perturbation transfer function with the rotor speed as output

AL 3800 (s + 55.2) (s + 50.8) (s — 63.5)
AU ~ (52 + 39.05 + 14727) (s2 + 94.5 5 + 97388) (s + 46.2)

(2.30)

can also be obtained by applying small-signal analysis on (2.14) which gives

AQL, AT, 1
AU ~ AU Jgy s

(2.31)

and inserting (2.29) into (2.31) since the shaft torque is constant.
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It is interesting to note that the transfer functions (2.29) and (2.30) are mixed
phase systems. This matter can be studied more in detail in [27] but the
consequence for the induction machine will be dealt with in Section 5.4.2. The
gain of the transfer function (2.30) is presented in Fig. 2.12.
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Figure 2.12. Gain of the transfer function A$2,,,,AU.

Finally, the transfer functions with the frequency of the supply voltage as input

AT, 49437 s (s + 46.2) (s + 2210) 232)
Awg ~ (s2+ 39.05 + 14727) (52 + 94.55 + 97388) (s + 46.2) :
and
\ |
O 224720 (s + 46.2) (s + 2210) (2.33)

Awg = (s2+39.05 + 14727) (s2 + 94.55 + 97388) (s + 46.2)

have the gains presented in Figs. 2.13 and 2.14.
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Figure 2.14. Gain of the transfer function A, Aw.

Also in this case, the transfer function with the rotor speed variation as output can
be derived from the transfer function with the electrodynamical torque variation as
output inserted into (2.31). The lower eigenfrequency is of more importance than
the higher one for the frequency transfer functions. However, the influence of the
higher eigenfrequency can not be neglected without a larger loss of accuracy as in
the case with the disturbance in the shaft torque as input, but still, it is of less
importance than in the case with the disturbance in the amplitude of the supply
voltage as input.
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2.3.3 First-order models of the induction machine

The slope of the steady-state torque speed curve can be determined by a
differentiation of (2.23) with respect to the slip:

R; 5
dT, 6PUQR:2 (Rg +g) = 3pUg2R:S

e R . ) (2.34)
S30y(Ro +5)? + (X0 + X1)?)
At the synchronous speed, S = 0, (2.34) can be simplified to:
dT. 3pUy? :
i @39

From (2.35), the linearized torque-speed characteristic at the synchronous speed
is obtained:

3pUqg? 3pUq?
WsR T 2R rAQm

AT, = (2.36)

In Fig. 2.15. the linearized torque speed characteristic (2.36) is compared with
the steady-state torque speed characteristic obtained by using (2.23).

TC
4

A
\
Figure 2.15. Comparison between linearized (dashed line) and non-linear
(solid line) torque-speed characteristics.
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The steady-state torque speed error grows as the slip increases, especially in
motor operation. In Table 2.5 the steady-state error is presented for the
induction machines operating at rated torque in motor as well as in generator
operation. '

Table 2.5. Steady-state slip error at rated torque, T,

2.4 MW 55 kW 22 kW 15 kW
Motor 8.1 % 4.4 9 72 % 6.1 %
Generator -53% 04 % -19% -1.1 %

If (2.14) is Laplacetransformed and small-signal analysis is applied we get:

JSAQ = AT, - AT, (2.37)

By inserting (2.36) into (2.37) the damper model, a linear first-order model of
the induction machine is obtained:

(2.38)

In Fig. 2.16 a mechanical analogy of the damper model is presented:

AT, )|

B

B=Equivalent damper

Aw AT,

Figure 2.16. Mechanical analogy of the damper model.

If (2.23) is inserted into (2.37) instead, we will receive a first-order-non-linear
model. In this model the value of the damper B varies as the operating-point
changes.
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2.3.4 Simplified analysis by neglecting the stator resistance
If the stator resistance is neglected, it will be possible to derive analytical second-

order transfer functions of the induction machine operating at no-load with the
shaft torque as input according to Kovacs [18]:

( ) Pz l{Ids
AT, L Jmlr
AT, Lm,2p?%as? 239
52+ s L' + ( L, ) TL
-1 R
AQ, j_ (s + —.r)
= > (2.40)
AT =, Re  Lmo2p ‘f’ds
where
' Ly ‘
L, = Ls?LZ_"‘Lr?» (2.41)
S
is the rotor transient inductance and
U
Wys = 3 (2.42)

Ws

is the d-component of the stator flux. L is also presented in Fig 2.17.
le

s

Figure 2.17. Rotor transient inductance.

Analogously the stator transient inductance can be derived:

' Lm
L= L‘")‘fr-+[’57‘ (2.43)
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In Fig. 2.18 the stator transient inductance is presented.
Lo Ly,

[J'S { Lm

Figure 2.18. Stator transient inductance.

The induction machine can now be represented by the mechanical and electrical
analogies presented in Fig. 2.19 [4, 18].

Ur = ATC

L=J, T 'p
—illl—1 1
+ C

I

ATSQ’ Im
- I=Aw

AT, A, —<€

Figure 2.19. Mechanical and electrical second-order models of the induction
machine.

The values of the equivalent spring constant, damper, capacitor and resistance
are:

K = (%‘52)23%; | (2.44)

B= (-Li‘f)z’—’z—}‘{%sf (245)

C= (LAS—)2 2L', (2.46)
m  p“Yds

R = (%)28'2;’—:153 (2.47)
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With numerical values for the 15 kW machine inserted into (2.39) and (2.40) the
damping ratio is £ = 0.191 and the undamped angular frequency @y = 120.7. If

these values are compared with the values presented in Table 2.4 it can be noted
that the largest error when neglecting the stator resistance is that the damping at
the dominating eigenfrequency is overestimated.

It is also possible to use these Neglecting Stator Resistance-models (NSR-models)
to determine the response to disturbances in the supply frequency. The electrical
and mechanical models from Fig 2.19 can now be modified as in Fig. 2.20.

L + UI':ATC'

+

AT )| W Jaayp U=aT,
AT, AQ, _@_

Aax/p

Figure 2.20. Simplified models (NSRA-models) of the induction machine to
determine the response to disturbances in the supply frequency and
shaft torque.

The transfer functions with the supply frequency as input can now be derived
from Fig. 2.20:

( )2P\Pds
Ale _ Ls’ Lr (2.48)
As s2 + s& + (é_ﬂl 2p2¥as? '
Ly " “Lg" Jnlx
P?Ids
Al (L ) e (2.49)

Awg - 24 R, + (Lm 2P2'1Vds
FEL T Jnly

This approach to derive simplified transfer functions cannot be used to derive
models with the amplitude of the supply voltage as input.
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3 MEASUREMENT PROCEDURE

The measurements are made on the 15 kW induction machine. A converter-
controlled dc-machine is used to create torque variations on the shaft of the
induction machines. The rotor speed and electric power response are together
with the shaft torque measured into a computer. The experimental set-up is
presented in Fig. 3.1.

Current and voltage

Converter measurement modules
Torque transducer —
Tachometer orq § /
DC.' - Induction Instantaneous
machine machine power meter
Amplifier
circuit l + l

Measurement computer+
analog input card

Figure 3.1. The experimental set-up.
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The experimental equipment used in the dynamic measurements is presented in

Table 3.1.

Table 3.1. The experimental and measurement equipment.

torque transducer

HBM T30EN, 500 Nm

current modules

LEM (Liasons Electroniques
Mécaniques) LT 100 S

voltage modules

LEM (Liasons Electroniques
Mécaniques) LV 100

analog input card

National Instruments NB-MIO-16

induction machine

ABB MBT-180L, 15 kW, 970 rpm

direct current machine

ABB DMP-4 S, 40.1 kW, 2470 rpm

converter

ABB TYRAK S 120 A

tachometer

Radio-energie, Dynamo Tachometer
REo 444 R1

The electrical power P, is calculated from the voltages and currents measured by

an instantaneous power meter consisting of analog multipliers, AD 632, and a
summing amplifier based on an operational amplifier, LF 347. The instantaneous
power meter is presented in Fig. 3.2.

Signals from the

LF 347

measurement modules
AD 632
Uy
P
AD 632
Up
Ip *
AD 632
Uc
%

Figure 3.2. Instantaneous power meter.

The reason for using this type of power meter, is that conventional power meters

have too a low bandwidth.
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Knowing the air gap power, P§, the electrodynamical torque T, can be

determined:

, Ps
Tc=PZ;; 3.1

The air gap power can be calculated from the electric power and the stator
losses:

P§=Pe—Pcys— PFes (3.2)

where P, represents the stator resistance losses and Preg represents the stator

core losses. The stator resistance losses can be calculated from the stator
currents:

Pcys = Rgia? + Rgip? + Rgic2 (3.3)

With the stator core losses, Pfges, regarded as constant, the electrodynamical
torque, T, can now be determined:

Pe— Pcys— PE
Te=p— a;]: = (3.4)

Linear systems can be identified when knowing the input and the output signals
[28]. Here, the input signal is the shaft torque and the output signals are the rotor
speed and electrodynamical torque. One suitable method is the PRBS (Pseudo-
Random Binary Signal) which is an input signal varying between two levels with
a suitable frequency spectrum. It is not possible to receive a shaft torque which
varies between two levels, so this method has to be somewhat modified. The
desired frequency region is also well-known, making it possible to use a square-
wave signal with a constant frequency of 2 Hz. The torque reference signal is
presented together with the created shaft torque pulsations in Fig. 3.3.
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Figure 3.3. The reference signal to the rectifier and the measured shaft torque.

The torque pulsations create electrical power pulsations as shown in Fig. 3.4.

12 + f % ]
R Wi
= C V] 1.
3 C 3
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Figure 3.4. The measured electrical power.

Knowing the input and output signals, a suitable model is constructed. The use of
this model is somewhat limited, because it is only valid for a small disturbance
around a specific operating-point. But the dominant eigenvalues predicted by this
method match well the result obtained by the safer method of sinusoidal
pendulums. The advantage with the PRBS-method is that it needs a very short
measurement time. A few seconds are enough to identify the dominant
eigenvalues. The oscillation observed in Fig. 3.3 is a mechanical oscillation
originating from the measurement set-up with a frequency of 130 Hz. In Fig. 3.4
the dominating disturbance frequency is 50 Hz. This is one of the reasons why 40
Hz is selected to be the upper limit for investigation.
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The system identification methods require a linear system. In order to observe
non-linearities a more time-consuming method is used. Sinusoidal-shaped torque
pulsations on the machine shaft are obtained by controlling the rectifier in this
way. The rotor speed and electrical power are measured and the
electrodynamical torque is calculated. Since the measured signals, especially the
rotor shaft torque and rotor speed signal, contain a considerable amount of
noise, the measured signals have to be frequency-analysed. The ratios and phase
shifts are determined at 15 frequency points, from 1 Hz up to 40 Hz. In each case
8192 values are collected per channel, with a sample rate of 20 times higher than
the applied disturbance frequency in order to obtain as high an accuracy as
possible. One example of a measurement "shot" is presented in Fig. 3.5.
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Figure 3.5. Example of measurements with sinusoidal pendulums.
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4 COMPARISON BETWEEN DIFFERENT MODELS
AND MEASUREMENTS

4.1 Torque pulsation

The measurements and calculations presented in this Section are made on the 15
kW machine operating as a generator with a driving shaft torque of 43 Nm (0.34
times the rated torque). The amplitude of the shaft torque pulsations, ATy, is
approximately 4 Nm and the frequency of the perturbations are varied from 1
Hz up to 40 Hz. The models used to determine the response to pulsations in the
shaft torque are presented in Table 4.1.

Table 4.1. Models used to determine the response to pulsations in the shaft

torque.
Model Abbreviation Equation(s)
Detailed model Det-model (2.18)
Small-perturbation SP-model (2.24) and (2.27)
model :
Neglecting stator NSR-model (2.39) and (2.40)
resistance model
Linear damper model LD-mod (2.38)

The results from the second-order numerical models are not presented here,
since the results predicted with these models are almost the same as the results
obtained by using the small-perturbation models for frequencies below 40 Hz.
The models are temperature-corrected, the detailed model is also corrected for
the skin effect in the rotor conductors. After each completed measurement the
machine is stopped and disconnected from the grid making it possible to measure
the stator resistance. The rotor resistance value is obtained by measuring the slip

and using (2.36). The measured and calculated gains and phase shifts of the
transfer functions AT./ATs and AQ, /AT are presented in Figs. 4.1-4.4.
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Figure 4.1. Gain of the transfer function AT./AT;. The dots are measured
values and the lines are values determined by means of the different
models.
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Figure 4.2. Phase shift of the transfer function AT,/ATy. Lines and dots as in
Fig 4.1.
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Figure 4.4. Phase shift of the transfer function A, /AT;. Lines and dots as in
Fig 4.1.

The measured values of the gain and phase shift of the transfer function AT,/ATg
agree well with the values predicted using the detailed model. When predicting
the gain and phase shift of the transfer functions AQ,,/AT using the detailed
model, the damping is somewhat overestimated. The reason for this is not
further investigated, since the errors are within the accuracy desired. The results
obtained using the small-perturbation models underestimate the damping due to
the fact that these models do not take the skin effect into account. The NSR-
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model overestimate the damping as mentioned in Section 2.3.4. The damper
model can only be used to calculate the response to very low-frequency
perturbations and the error towards the values predicted with the detailed model
is presented in Table 4.2.

Table 4.2. Discrepancy in the prediction of the gain and phase shift between the
detailed model and the damper model at some frequencies.

f(Hz) Gain Gain Phase Phase

discrepancy of |discrepancy of |discrepancy of | discrepancy of
AT /AT (dB) |AQL/AT (dB) | AT/AT; (°) AQL /AT (°)

1 0 (0%) 0 (0%) 0.1 7
3 —0.20 (-2.4%) | 0.6 (-7 %) 0.3 20
5 —0.60 (-7.1%) |-1.77 (~23%) 0.7 32
10 ~2.52 (<34 %) |-6.1 (~101 %) 3.6 47

The negligence of the stator resistance in the NSR-model and the damper model
gives an error which can be seen in Fig. 4.3, where the two models over-
estimated the gain of the transfer function A, /AT for very low-frequency
perturbations. In this case, the operating-point is close to the no-load point and
the error is small. However, with an operating-point closer to the stall-point, the
error will be larger, see Table 2.5, and it may be necessary to use the non-linear
damper model instead.
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The damper model can be used below a frequency limit, which depends on the

accuracy desired and the purpose of the investigation. If, for instance, the
‘criteria is to have a gain error of the transfer function AT./AT; less than 3 %,

the frequency limit, f}, where to choose between the damper model and the
detailed model will be 3 Hz. The limit frequencies for the investigated machines,
with this criteria, are presented in Table 4.3 together with the dominating
eigenfrequencies.

Table 4.3. The dominating eigenfrequencies and suggested limit frequencies for
the damper model.

fo (Hz) f1 (Hz)
15 kW machine 19 3
22 kW machine 16 3
55 kW machine 12 ‘ : 2.5
2.4 MW machine 5.6 1.0

From Table 4.3 it can be observed that the limit frequency in this case is
approximately one fifth of the dominating eigenfrequency of the machine. So the
validity of the damper model for a given accuracy can approximately be
expressed as a certain part of the eigenfrequency.

One interesting observation from Fig. 4.4 is that the phase shift between AT and
A2, is positive for perturbations with a frequency lower than the eigen-

frequency. This should not surprise the reader, since the transfer function
A, /ATy is not dimensionless.
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The results presented in Figures 4.1-4.4 can also be illustrated in another way. In
the following simulated example the shaft torque varies sinusoidally between
rated and zero for the 15 kW machine with some different frequencies. The
machine will now respond as shown in Fig. 4.5.

\ |
T T T T T T T T

2

T, (times Ty,)

0 - f= I\H z ‘Steady—state |
i / torque-speed
I curve
- f=60Hz ]
- 1 i 1 A 1 ]’ 1 I i
900 950 1000 \1050 1100
n (rpm)

Figure 4.5. Induction machine response due to shaft torque perturbations of
some different frequencies.

For very low disturbance frequencies the electrodynamical torque and the rotor
speed follow the stationary torque-speed curve. As the frequency of the
disturbances increases, the stationary torque-speed curve is no longer applicable.
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4.2 Voltage pulsation

The supply voltage can either vary in amplitude or in frequency (phase). In the
first case the supply voltage is amplitude-modulated

ug() = U(1 + esin2nft))e it (4.1)
and in the second case frequency-modulated
us(t) = Ue joso(1 +esin(2afD)t (4.2)

where ¢ is the relative amplitude of disturbance and wgg is the steady-state
supply angular frequency. No measurements are performed with voltage
pulsations, only calculations. The resistance values at a cold machine are used

and no compensation is performed for the skin effect in the rotor conductors.
The selected operating-point is T/4 as a generator. The magnitude of the

disturbance is small, €= 0.01 (AU =8V, Aws = 0.5 Hz).

4.2.1 Pulsations in the amplitude of the supply voltage

In Table 4.4 the models used to determine the response to pulsations in the
amplitude of the supply voltage are presented.

Table 4.4. Models used to determine the response to perturbations in the
amplitude of the supply voltage.

Model Abbreviation Equation(s)

Detailed model Det-model (2.18)

Small-perturbation SP-model (2.29) and (2.30)

model

Non-linear damper ND-model (2.23) inserted into (2.37)
model

Figurés 4.6 and 4.7 present the gains and phase shifts of the transfer functions
AT./AU and A, /AU determined by means of the different models. It was not

possible to derive NSR-models with the amplitude of the supply voltage as input
as mentioned in Section 2.3.4.
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The results from the small-perturbation model match well the results computed
using the detailed model, since a small disturbance amplitude is used. Since the
transfer function AT./AU is an integration of the transfer function AQ,/AU, the
phase diagrams in Fig. 4.7 are identical with a difference of 90 °. Also in the
case where the response to pulsations in the amplitude of the supply voltage is to
be calculated, the use of a first-order model is limited to very low-frequency
disturbances. The error in the prediction of the gains and phase shifts between
the detailed model and the non-linear damper model is presented in Table 4.5.
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Table 4.5. The discrepancy between the detailed model and the non-linear

damper model in the predictions of the gain and phase shift of the
voltage transfer functions.

f (Hz) Gain discrepancy (dB) Phase shift discrepancy (°)
0.5 —0.16 (2 %) 0
1 —0.58 (6.9 %) —0.15
3 4.1  (60%) -3.1
5 -84 (163 %) —7.8

From Table 4.5 it can be observed that the validity of the damper model is very

limited in this case. Wasynczuk et al. [19 ] showed that it is possible to predict
rather well the gain of AQ,,/AU up to the dominating eigenfrequency with a

third-order numerical model, at least in generator operation.
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In Fig. 4.8 the response to sinusoidal perturbations of some different frequencies
in the amplitude of the supply voltage of AU=8 V is presented. The calculation is

performed on the 15 kW machine operating as a generator with a shaft torque of
T,/4.
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Figure 4.8. Induction machine response to a pulsating supply voltage amplitude.

For low-frequency perturbations, the slip (speed) of the machine slowly varies as
the voltage pulsates in order to keep the electrodynamical torque constant. As the
frequency of the pulsations increases, both the speed and the torque pulsate
strongly. When the frequency of the voltage perturbations increases further,
above the upper eigenfrequency, the oscillations will fall off.
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4.2.2 Pulsations in the supply frequency

The models used to determine the induction machine response to perturbations in
the frequency of the supply voltage are presented in Table 4.6.

Table 4.6. Models used to determine the response to perturbations in the
frequency of the supply voltage.

Model Abbreviation Equations

Detailed model Det-model (2.18)

Small-perturbation SP-model (2.32) and (2.33)

model

Neglecting Stator NSR-model (2.48) and (2.49)
Resistance model ‘

Non-linear damper ND-model (2.23) inserted into (2.37)
model

Figures 4.9 and 4.10 show the ratios and phase shifts for the transfer functions
ATe/Awg and AQ,/Awg calculated using different models.
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Figure 4.9. Calculated gains: a) AT,/ Awg b) AL,/ Awg
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The results are similar to the ones obtained in the previous case, where the
response due to disturbances in the amplitude of the supply voltage was
calculated. Also in this case a small disturbance amplitude has been used so the
values predicted by the transient model and the small-perturbation model agree
well. The prediction of the ratios and phase shifts obtained by means of the NSR-
model resembles the result predicted using the detailed model up to the lower
eigenfrequency. The most important difference is that the damping is over-
estimated. The non-linear damper model is in this case capable of calculating the

response of the machine for frequencies higher than in the case, where the
amplitude of the voltage pulsated sinusoidally. Still, the error in the gain of AT,

AQ/Awg is somewhat higher than in the case where the input is the disturbance
in the shaft torque. However, the prediction of the phase shift is very good. The
discrepancy between the results obtained by means of the damper model and the
detailed model is presented in Table 4.7.

Table 4.7. The discrepancy between the detailed model and the non-linear
damper model in the predictions of the gain and phase shift of the
frequency transfer functions.

f (Hz) Gain discrepancy (dB) Phase discrepancy (°)
1 —0.03 (0.3%) 0
3 -0.27 (3.1 %) 0
5 —0.75 9 %) —0.1
10 -3.12 (43 %) -5.5
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In Fig. 4.11 the response to perturbations of some different frequencies in the
frequency of the supply voltage of Awg = 0.5 Hz is presented. The calculation is

performed on the 15 kW machine operating as a generator with a shaft torque of
T,/4.
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Figure 4.11. The response to a sinusoidally varying frequency of the supply
voltage.

The machine adjusts the speed without any larger electrodynamical torque
pulsations for slow frequencies, but as the frequency of the disturbance increases
towards the lower eigenfrequency, the machine oscillations grow. As the
frequency increases more, the oscillations are attenuated.
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5 INFLUENCE ON THE DYNAMICS

5.1 Different disturbance amplitudes

In a linear system the gain is always independent of the disturbance magnitude.
However, in a non-linear system this is not the case. For instance, in the
induction machine, a large disturbance in the shaft torque will eventually cause
the machine to pass the stall-point.

5.1.1 Torque pulsation

The difference between the response to a large and a small shaft torque
perturbation increases as the static shaft torque increases. (The slope of the
steady-state torque-speed curve decreases.) In Fig. 5.1 a calculated example is
presented, in which a large and a small shaft torque pulsation are applied on the
15 kW machine operating as motor with an average shaft torque of 1.5 times the
rated.
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o o / f
I / ]
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- AT, = 1.5T, ]
- 5 r 1 1 1 | S S Y | 1 ]
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f (Hz)

Figure 5.1. Calculated gain with different perturbation amplitudes for the 15 kW
machine.

Although the rated operating-point has been passed, the difference in the gain of
the transfer function AT¢/ATg is only detectable around the dominating
eigenfrequency, where it is 0.6 dB = 7 %. In generator operation, where the
slope of the steady-state torque-speed curve decreases less, the influence is even
smaller.



58

5.1.2 Voltage pulsation

As a large pulsation in the supply voltage amplitude, 20% of the nominal grid

voltage is selected. Figure 5.2 presents the response to a 7 Hz sinusoidal
perturbation in the amplitude of the supply voltage of AU = 0.02U and AU =

0.2U,, respectively. The machine is operating as a motor with rated torque. The
response to the small disturbance is amplified 10 times in order to obtain the
same response magnitude.

10 &
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Figure 5.2. Torque response to a small (dashed curve) and a large (solid curve)
perturbation in the supply voltage amplitude.

From Fig. 5.2 it stands clear that with a disturbance amplitude of 80 V, the linear
analysis no longer predicts a good result.
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If a small signal analysis is applied on (2.15) we get

Te+ATe = p In(Hs" i + ¥ Ais + A" is + A¥S™ Ai) 5.1)
and with the steady-state solution (2.14) subtracted

ATe = p Im(¥* Al + AY i + AT AL) (5.2)

The last term in (5.2), small disturbance times small disturbance, is neglected in
a small signal analysis which finally gives

AT = p Im(¥s* Ais + A ¥" i) (5.3)

Neglecting the last term in (5.2) works well in the case where the disturbance is
8 V, but in the second case this term is too large to be neglected.

The last term in (5.2) has a frequency of twice the disturbance frequency, 14 Hz.
‘This second harmonic is clearly visible in Fig. 5.2.
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5.2 Influence of machine parameters

The effect of the machine parameters on the dynamics of the machine, except for
the stator resistance, can approximately be determined by examining (2.39) and
(2.40). These equations indicate the damping at and the location of the
dominating eigenfrequency for an induction machine. For a more detailed
determination, small-signal analysis can be used if the disturbances are not too
large. Figures 5.3 and 5.4 present the results from a small-signal calculation
performed on the 15 kW machine operating as a generator with a shaft torque of

40 Nm.

Relative damping

Relative value of machine parameter
Figure 5.3. Damping with varied values of the machine parameters.
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Figure 5.4. Eigenfrequency with varied values of the machine parameters.
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The results approximately coincide with the results obtained by examining the
NSR-models (2.39) and (2.40), but not exactly. For instance, a rotor resistance 4
times larger would according to (2.39) give a 4 times higher damping, but it
gives a damping which is 4.6 times higher. Except for the rotor resistance,
which effects the damping very strongly, the inertia also influences the damping.
The influence of the other machine parameters can be neglected except for the
stator resistance which usually causes a reduced damping for increasing values.
The eigenfrequency is mainly effected by the inertia and the leakage inductances.
As can be seen from Fig. 5.3, the damping is very low for a small inertia. With a
machine inertia of 0.15 times the existing one, the damping ratio of the 15 kW
machine will be negative leading to self-excited oscillations. That the inertia
would be this small is not likely to happen, but the 15 kW machine can also
oscillate for other combinations of machine parameters. For instance, if the
machine is loaded with an extra inertia of 1.5 times the .existing one and the
stator resistance is 20 times the nominal one, the machine will respond to a small
impulse disturbance according to Fig. 5.5.
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Figure 5.5. Self-excited oscillations of the 15 kW machine.

Instead of using different machines to verify the calculations with measurements,
the parameters and operating variables of the 15 kW machine used are modified.
For instance, the warming up of the machine is utilized to get a varied rotor
resistance. External resistances and inductances are used in order to increase the
stator resistance and stator leakage inductances and a lower supply voltage is
used in order to reduce the flux level in the machine.
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5.2.1 Leakage inductance

Increased stator leakage inductance mainly leads to lowered resonance frequency

but also to reduced damping. Figure 5.6 shows the measured and calculated gain
of AT./AT for a stator leakage inductance of 2.2 mH and 6.4 mH. The machine

is operating as a generator with a shaft torque of 43 Nm.
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Figure 5.6. Gain of AT,/ AT, with different stator leakage inductances. The lines

are calculated according to the detailed model and the dots are
measured values.

5.2.2 Rotor resistance

The rotor resistance can not be directly measured. Instead a method is used in
which the rotor resistance is determined by measuring the slip of the machine at
some different times and using (2.36). The result is presented in Table 5.1.

Table 5.1. Measured slip and estimated rotor resistance at four different time
points. The machine is operating as a motor with a shaft torque of

100 Nm.
¢t (min) S R,
0 0.0145 0.19Q
10 0.0158 0.207 Q
40 0.0173 0.227 Q
180 0.0194 0.254 Q
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At the same time, the damping at the dominating eigenfrequency of the machine

is determined from measurements obtained by using the PRBS-method. Figure
5.7 presents the gain of AT./AT; at some different time points.
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Figure 5.7. Measured gain of AT,/AT at different points of time.

The damping at the dominating eigenfrequency obtained by using the PRBS-
method, is approximately proportional to the rotor resistance. The rotor
resistance obtained by this method is the rotor resistance at the eigenfrequency,
19 Hz, which is 10 % higher than the low-frequency rotor resistance (See Fig.
A.2). In Table 5.2 the dominant eigenvalues, and the estimated rotor resistances
are presented.

Table 5.2. Estimated dominant eigenvalues and rotor resistances.

t (min) dominant estimated Ry (skin | estimated low-
eigenvalues effect incl.) frequency R;
2-3 -22.8 £j117 0.221 Q 0.201 Q
10 -23.0 + 166 0.230 Q 0.209 Q
40 —26.5 +j115 0.251 Q 0.228 Q
180 -28.5 £j115 0.277 Q 0.252 Q

The results predicted by means of the two methods coincide well except for the
dc-value of the rotor resistance determined by using the PRBS-method directly
after start which is too high.
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5.2.3 The effect of stator resistance

In (2.39) and (2.40) the stator resistance is not included. At a supply frequency
of 50 Hz, this is not of great importance for larger machines with a relatively
small stator resistance. For smaller machines, though, the reduction of the
damping due to the stator resistance cannot be neglected. For the investigated 15
kW machine the damping is reduced by 20 % due to the stator resistance. In
some cases the damping can even be negative leading to self-excited oscillations
as shown in Fig 5.5. If there is a series resistance, this must be included in the

stator resistance when determining the stability of the machine. The results from
measurements and calculations made on the 15 kW machine with Rg=0.25 Q

and Ry = 0.80 Q are presented in Fig. 5.8. The machine is operating as a

generator with a shaft torque of 43 Nm.
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Figure 5.8. Gain of the transfer function AT,/ AT with different stator

resistances. The lines are calculations performed according to the
detailed model and the dots and circles are measured values.

When the machine is operated with a converter, the resistance in the power
switches, such as transistors or GTOs, must be added to the stator resistance,
leading to reduced damping. Another important feature of power switches is that
they have a voltage drop which has the same effects as an additional stator
resistance. This might be of importance, especially at low currents.
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Increased stator resistance does not automatically lead to reduced damping. For
low supply frequencies the condition is usually the opposite. A growing stator
resistance will always finally lead to increased damping. Normally, the induction
machine has a certain stator resistance value for which the damping reaches a
minimum or even becomes negative. As the stator resistance increases above this
value, the damping is improved. For the 15 kW machine operating at 50 Hz the
damping reaches a minimum for a stator resistance of 3.5 Q with a damping
ratio & = 0.0082. With this damping the amplification from shaft torque
perturbation to perturbation in the electrodynamical torque at the dominating
resonance frequency is 60 times larger than the low-frequency case. If the inertia
of the machine had been 2.5 times the existing one, the damping would have been
negative. The effect of this was demonstrated in Fig 5.5. At the upper eigen-
frequency increasing stator resistance leads to improved damping.

The reason for the destabilizing effect of the stator resistance at the lower
eigenfrequency can be found, if the stator flux is observed during a disturbance
in the shaft torque. When the machine is disturbed by a pulsating shaft torque,
both the reactive and active stator currents, oscillate, leading to an oscillation in
the stator flux amplitude as well as in the stator flux phase due to the stator
resistance. With a higher stator resistance the oscillation increases.
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5.2.4 Flux level in the machine

The flux level in the machine is decreased by reducing the amplitude of the
supply voltage without lowering the frequency. The purpose of reducing the flux
level in the induction machine is that the efficiency can be improved when the
static shaft torque is small. Figure 5.9 presents measurements and calculations on
two different voltage levels, 230 V and 400 V. At 230 V the magnetizing
inductance, L, is measured to be 44 mH. The 15 kW machine is operating as a
generator with a driving shaft torque of 14 and 43 Nm, respectively, in order to
obtain the same steady-state rotor speed.
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Figure 5.9. Gain of the transfer function AT,/AT;. Dots are measured values and
lines are values calculated according to the detailed model.

The calculations of the 230 V case predict a somewhat lower damping and higher
eigenfrequency than the measurements. The reason for this is unknown and has
not been further investigated.
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5.3 Variable frequency

When an induction machine is driven in variable-speed operation, the voltage is
usually reduced in proportion to the frequency in order to keep the flux in the
machine constant. If the proportion between the supply voltage and supply
frequency is kept constant, the NSR-model (2.39) does not indicate that the
dynamic behaviour should change as the supply frequency is varied. However, as
seen in Fig. 5.10, which presents a calculated example made on the 15 kW
machine operating as a generator with a driving shaft torque of 40 Nm, the
damping and the resonance peak vary strongly.

20
- fs=25Hz /“7/\

g %
B~ C /
< C
o -10 T 7
: fs=10Hz
— -20

-30

1 10 100
f(Hz)
Figure 5.10. Gain of the transfer function AT/ AT, for some different supply
frequencies.

Again, it is the influence of the stator resistance which leads to different dynamic
behaviour as the supply frequency varies. When the supply frequency is lowered,
the stator resistance will be relatively larger compared to the reactances in the
machine. Fig. 5.10 also shows that the NSR-model must be used with caution.
Not even the second-order numerical model (2.25) works well at low supply
frequencies. This is due to the fact that both eigenfrequencies play an important
role on the induction machine dynamics at low supply frequencies.
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5.4 The effect of different operating-points

5.4.1 Torque pulsation

Within the normal operating region of the machine, the dynamics is slightly

influenced by the operating-point [12,18] as can be seen in the calculated example
presented in Fig. 5.11.
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Figure 5.11. Gain of the transfer function AT,/ AT;. The machine is operating as
a motor with Ts=1.5Ty and at no-load. Temperature variations are
not taken into account.

In the normal operating region it is more important that the damping is
improved with increasing temperature in the machine. As the temperature raises,
the stator resistance increases which leads to reduced damping and the rotor
resistance also grows leading to improved damping. The total effect is that the
damping is increased as the temperature raises.
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In Fig. 5.12 the calculated ratios of AT¢/ATs are presented for some different
operating-points. The machine is operating as a motor, but the results are very
much the same in generator operation.
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Figure 5.12. Gain of the transfer function AT /AT at some different operating-
points with temperature variations taken into account.
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5.4.2 Voltage pulsation

Without taking temperature changes into consideration, the effect of the
operating-point on the dynamics will be of little importance, if the shaft torque
disturbance is the input. However, the influence of the operating-point is of large
importance for the response to a disturbance in the amplitude of the supply

voltage, even when temperature changes are not considered. In Fig. 5.13 the gain
of the transfer functions A,,/AU is compared in motor and generator

operation.
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Figure 5.13. Gain of the transfer function AS2,,/AU in generator and motor
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operation.

If small-signal analysis is used, the difference in the location of the zeros gives
the explanation. In motor operation the linearized transfer function with the
amplitude of the supply voltage as input, has a complex double zero. This does
not exist in generator operation, where the transfer functions instead have one of
the zeros in the right half of the s-plane (one of the zeros has a positive real
part).
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The location of the zeros for both motor and generator operation is presented in
Fig. 5.14.
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Figure 5.14. Zeros for the transfer function AS2,,/AU in motor and generator

operation.

The positive real part of one of the zeros indicates that the induction machine in
generator operation will be a mixed phase system, if the input is a disturbance in
the supply voltage amplitude. This can give special problems when controlling
the machine in generator operation. The immediate response to a supply voltage
increase is an increase of the rotor speed in generator as well as in motor
operation. This is, however, the opposite direction towards the final value in
generator operation, which is a decrease of the rotor speed. The physical

explanation of this is that the immediate reaction on a raised voltage is that the
current directed in the same axis as the voltage, igs, increases. This leads directly

to a reduction of the rotor current in the quadrate axis, iq;. Meanwhile, the rotor
flux has not had time to change which means that the electrodynamical torque
decreases, leading to a rotor speed acceleration in motor as well as in generator
operation.
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5.5 The influence of skin effect

The rotor conductors of a cage-bar induction machine are designed to give a
higher resistance when the rotor current has a higher frequency in order to
is done by utilizing the skin effect.

obtain a higher starting torque. This

A torque disturbance on the shaft leads to a disturbance in the rotor current of
the same frequency. Figure 5.15 shows a calculated case where the 15 kW -
machine is operating with rated shaft torque as a generator. The slip is 2% which
Hz. This is represented by the dashed curve.
In the second case, a sinusoidal shaft torque disturbance with a frequency of 18
current with a ripple of 18 Hz. The rotor
resistance is larger for this additional current. The solid line represents the rotor

gives a rotor current frequency of 1
Hz is applied, resulting in a rotor

current in the second case.
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Figure 5.15. Calculated rotor currents. Dashed curve without a shaft torque
pulsation and solid curve with a 18 Hz shaft torque perturbation.
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Apart from the fact that the starting torque is raised by utilizing the skin effect,
the damping is also increased as seen in Fig. 5.16.
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Figure 5.16. Calculated gain for the transfer function AT/ AT with and without

skin effect taken into account.

At 18 Hz, which is the dominating resonance frequency of this machine, the
rotor resistance is increased by 10 %, and consequently the damping is improved
by 10 %. With a deep-bar rotor the increase of the rotor resistance will be
larger. Meyer [17] found an increase of the damping of 20 % for a 3.1 MW
machine with such conductors.



74



75

6 AN EXAMPLE WITH A NON-STIFF MACHINE
SHAFT

The purpose of deriving linear and reduced order models of the induction
machine is to simplify the analysis of the dynamics. With the NSR-model it is
possible to analyse a larger system analytically, for instance the drive train of a
wind turbine. Electric power pulsations from two-bladed wind turbines have
been observed with a frequency twice the rotational frequency of the wind
turbine. One reported example is the 2.4 MW wind turbine situated at Nisudden
on the Island of Gotland in the Baltic Sea [1]. It has been suggested that these
pulsations are caused by different wind speeds at different heights or due to the
passing of the blades [2, 3]. The purpose of this section is not to analyse this
specific problem but only to use it as a simple example. (The drive train of this
wind turbine has been replaced during 1993.) The shaft of the large wind turbine

on the island of Gotland had a torsional stiffness of a@ = 7.2-108 Nm/rad,
including the gear-box. The turbine inertia, J;, was 8.7-106 kgm2 and the

machine inertia, Jp,, was 360 000 kgm? referred to the low speed side, see Fig.
6.1.

Low speed sidd  High speed side
I

Wind n=25 ' n=1500
v T —
V¢ L —

Gear-box Induction
Ratﬁo =60 machine

Figure 6.1. The drive train of the 2.4 MW wind turbine.

If the two masses are connected with a shaft having the torsional stiffness o and
no damping, the undamped eigenfrequency of the two-mass system will be

1 a(Jy, +J
fo=§,;\/ A ! (6.1)

This gives an approximate value of the shaft eigenfrequency of 7 Hz.
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A more accurate calculation of the shaft eigenfrequency can be made by
determining the small-perturbation transfer functions of the system or a direct
non-linear simulation.

If the NSR-model is used as the induction machine together with the soft shaft
and wind turbine rotor, the following simplified model of the whole system will
be obtained, see Fig 6.2.

Wind
turbine
rotor Induction machine

e —— — — w— am— d— — ——

Figure 6.2. NSR-model connected with a wind turbine rotor via a soft shaft.

The linearized analytical transfer function ATe/ATyinq can now be derived.

AT, .
Awand B S4]tJm ;,,]mJtK ) : K KJ+ Ky, (6.2)
o TS T Bo T Umt A+ )+ + K

It is also possible to analyse the response to frequency disturbances. For instance,
the simplified transfer function ATe/Aws is

JiJ
AT, 53 —_tam + s(Um+ Jp)

JJm ImdK K. KitKJ
A 3 2t S+ s g +K

Ao = (6.3)
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The gain of the transfer function AT¢/ATying predicted with the NSR-based

model and a model based on the detailed model are presented in Fig. 6.3 for the
2.4 MW wind turbine with the torsional stiffness varied.

20 i

|ATe /AT ying| (dB)

Figure 6.3. The gain of the transfer function AT ,/AT,,;,q with varied shaft
torsional stiffness. Solid curves are values determined by the NSR-
based model and circle values determined with the detailed model.

As can be observed in Fig. 6.3, the NSR-based model predicts almost the same
result as the detailed model. When the shaft is very soft, a = 7.2:107,
disturbances around 0.4 Hz are amplified up to 7 dB, 2.2 times. The dominating
eigenfrequency for this machine without load, 5.6 Hz (Table 2.3), can also be
observed. For the case of a = 7.2-108 it can be noted that a disturbance in the
wind torque with a frequency of 0.4-1 Hz is slightly amplified. The eigen-
frequency between the machine and the wind turbine rotor inertia can be
observed, 9 Hz (7 Hz computed using (6.1)).



78



79

7 CONCLUSION

In this thesis the low-frequency response of the induction machine has been
invéstigated. The validity of results obtained by using linear analysis has been
examined. For instance, the influence of varying machine parameters, different
disturbance amplitudes, different operating-points, and the importance of the
skin effect have been analysed. The results obtained have been used to give some
guide-lines to when the induction machine can be represented by a simpler
model.

The measured response to pulsations in the shaft torque can be very well
predicted with the two-axis model, even if the non-sinusoidal distribution of the
windings and saturation are not taken into account. It is important to take
temperature variations into consideration, while corrections for skin effect seem
to be of moderate importance for an ordinary industrial motor.

It was found that a first-order model can be used to determine the dynamic
response to shaft torque or supply frequency disturbances up to a disturbance
frequency of one or a few hertz, depending on the desired accuracy. The
frequency region in which a first-order model can be used is even smaller when
the response to disturbances in the amplitude of the supply voltage is to be
calculated. The NSR-model (a second-order model derived by neglecting the
stator resistance) can predict the response to shaft torque and supply frequency
disturbances rather well providing that the stator resistance is low and that the
supply frequency is not too low. If the stator resistance is too high, the damping
will be over-estimated. The damping can be well predicted with a second-order
numerical model also for smaller machines where the stator resistance usually is
comparatively large. For low supply frequencies none of the second-order
models work well, since both the eigenfrequencies then play an important part
on the low-frequency dynamics of the machine.

The low-frequency dynamics of the machine is governed by the dominating
eigenfrequency, provided that the supply frequency is not too low. In this
investigation it was found that increasing stator resistance usually leads to
reduced damping.

Finally an example was demonstrated where the NSR-model is used to derive
analytical transfer functions for the whole drive train of a wind turbine.
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APPENDIX A DETERMINATION OF THE ROTOR
RESISTANCE OF THE 15 KW MACHINE

The rotor resistance is usually determined from the locked-rotor resistance
Ry = Rs+(—27R, 4R (A1
k = fts Lo, + Lo r cl 1)

where R is an equivalent to the core losses. R is usually not taken into account
which means that the determined rotor resistance value will be somewhat too
high. With a different method it is possible to obtain a more accurate rotor
resistance value.

The locked rotor current /. can be determined from the simplified equivalent

circuit

Ug?
I, = 5 (A.2)
(Ro+ Ry )“+X¢?

With (A.2) inserted into (2.23) the electrodynamical torque expression becomes

3pR;

2
o, It (A.3)

Te

By rearranging (A.3) the rotor resistance can be expressed as

(A.4)

since Tg=T,. With the knowledge of the voltage, current, power factor,

frequency and shaft torque the rotor resistance is determined by using an
iteration procedure in which (2.18), (A.4) and (A.1) are involved.

The measurement set-up to determine the rotor resistance is presented in Fig.
Al
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Power meter

Synchronous
} generator

Figure A.1. The measurement set-up during the locked rotor test.

The locked rotor test is performed on different voltage levels and at different
supply frequencies. Throughout the locked rotor test measurements, the machine
temperature is kept constant. The variable frequency variable voltage source is
produced by a synchronous generator in order to obtain a low harmonic content.
The voltages, currents, frequency and power factor are measured with a power
meter (Yogogawa 2533). The torque is calculated by measuring the force F with
a dynamometer (MESK, 10 N) at the end of a lever. The locked-rotor torque is
determined as the average torque over one cogging period. The current levels
are kept below the rated current in order not to saturate the machine. The
measured values of the rotor resistance are presented in Fig. A.2.
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Figure A.2. Measured rotor resistance.



