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A B S T R A C T

To sample from a given target distribution, Markov chain Monte Carlo (MCMC) sampling relies
on constructing an ergodic Markov chain with the target distribution as its invariant measure.
For any MCMC method, an important question is how to evaluate its efficiency. One approach
is to consider the associated empirical measure and how fast it converges to the stationary
distribution of the underlying Markov process. Recently, this question has been considered from
the perspective of large deviation theory, for different types of MCMC methods, including, e.g.,
non-reversible Metropolis–Hastings on a finite state space, non-reversible Langevin samplers, the
zig-zag sampler, and parallel tempering. This approach, based on large deviations, has proven
successful in analysing existing methods and designing new, efficient ones. However, for the
Metropolis–Hastings algorithm on more general state spaces, the workhorse of MCMC sampling,
the same techniques have not been available for analysing performance, as the underlying
Markov chain dynamics violate the conditions used to prove existing large deviation results
for empirical measures of a Markov chain. This also extends to methods built on the same idea
as Metropolis–Hastings, such as the Metropolis-Adjusted Langevin Method or ABC-MCMC. In
this paper, we take the first steps towards such a large-deviations based analysis of Metropolis–
Hastings-like methods, by proving a large deviation principle for the empirical measures of
Metropolis–Hastings chains. In addition, we also characterize the rate function and its properties
in terms of the acceptance- and rejection-part of the Metropolis–Hastings dynamics.

1. Introduction

Sampling from a given probability distribution is an essential problem in a range of areas, for example biology, physics,
epidemiology and ecology, and statistics. The most common approach is Markov chain Monte Carlo (MCMC), which allows the
user to sample from a target probability distribution 𝜋, by generating an ergodic Markov chain {𝑋𝑖}𝑖≥0 with 𝜋 as stationary
distribution. These sampling techniques are particularly helpful when it is not possible to use methods that simulate directly from 𝜋,
for example for computing posterior distributions in a Bayesian setting, or more generally when 𝜋 is only known up to a normalizing
constant. Because of this, MCMC methods are now widely used across scientific disciplines, and are integral tools in areas such as
computational chemistry and physics, statistics and machine learning [1,4,41].

Because of their prevalence in a range of fields, the performance of MCMC algorithms has become an important topic within
applied probability and computational statistics. In principle, even the standard Metropolis–Hastings algorithm [29,35] can be used
to sample from essentially any target distribution 𝜋. However, when the underlying problem, and thus the distribution 𝜋, becomes
more and more complex, convergence speed or the cost per iteration becomes an issue. Analysing and improving the convergence
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speed of a given class of algorithms, as well as comparing the performance of different types of algorithms, is therefore not only
interesting from a theoretical perspective, it is also of central importance for applications, where fast and accurate methods are
needed for increasingly complex problems.

When analysing performance of MCMC methods, the rate of convergence of time averages is a central quantity for comparing
ifferent methods, and for choosing hyperparameters. The fundamental idea underlying MCMC is that for an observable 𝑓 ∈ 𝐿1(𝜋),

for an ergodic Markov chain {𝑋𝑖}𝑖∈N with invariant distribution 𝜋, the 𝑛-step average 1
𝑛
∑𝑛−1

𝑖=0 𝑓 (𝑋𝑖) can be used to approximate the
xpectation E𝜋 [𝑓 (𝑋)]. This average can be viewed as the integral of 𝑓 with respect to the empirical measure of the Markov process.
he rate of convergence of the empirical measure is therefore directly linked to the performance of a given MCMC method.

Because of the role the empirical measure plays in MCMC, and for Monte Carlo methods in general, in the past decade there
as been an increasing interest in using the theory of large deviations for empirical measures to study the performance of MCMC
ethods [8,9,16,23,37–40]. However, surprisingly, existing large deviation results do not cover the empirical measure arising from

he Metropolis–Hastings algorithm [29,35] on a general state space. Thus, in order to use a large deviation approach to analyse this
oundational algorithm, or more advanced MCMC methods built on the same ideas as Metropolis–Hastings—such as the Metropolis-
djusted Langevin Method (MALA) [7,43,45] and methods based on Approximate Bayesian Computation (ABC) (see [5,33] for
n overview and further references)—the relevant large deviation results must first be established. This is the main contribution
f this paper: we prove the large deviation principle for the empirical measures associated with Markov chains arising from the
etropolis–Hastings algorithm. This sets the stage for future work proving similar results for Markov chains with dynamics that

esemble those of Metropolis–Hastings, and for analysing the corresponding MCMC methods.
The theory of large deviations has become a cornerstone in modern probability theory, with a wide range of applications. In

he context of Monte Carlo methods, it has been known for a long time that for rare-event simulation, sample-path large deviations
esults are integral to analysing and designing efficient algorithms; see [4,11,12] and the references therein. In the MCMC setting,
he theory remains much less explored for analysing performance and designing new, efficient methods. Instead, standard tools for
onvergence analysis of sampling methods based on ergodic Markov processes include: the spectral gap of the associated dynamics,
ixing times of the process, asymptotic variance and functional inequalities (Poincaré, log-Sobolev) [6,15,26,27,30,47]. However,

hese tools mainly provide information about convergence of the associated 𝑛-step transition operator or the law of the process,
either of which are directly linked to the convergence of the empirical measure. Empirical measure large deviations are instead
oncerned precisely with the convergence of the empirical measure. This is in turn linked to the transient behaviour of the underlying
arkov chain, which is of central importance for the performance of MCMC methods.

To the best of our knowledge, the first works on using large deviation theory to study the convergence of the empirical measures
rising from MCMC sampling are [23,37]. Therein, the authors analyse the performance of parallel tempering, one of the most
requently applied MCMC methods in computational chemistry and physics, from the perspective of large deviations, leading to
he construction of a new type of method known as infinite swapping. In the subsequent work [16], empirical measure large
eviations and associated stochastic control problems are used to analyse the convergence properties of parallel tempering and
nfinite swapping. In [24] the authors study methods like parallel tempering and infinite swapping in the low-temperature regime,
nd use empirical measure large deviations to solve the long-standing open problem of optimal temperature selection. Similarly,
n [8,38–40] a large deviation approach is used to analyse certain irreversible samplers. In [9], large deviations for the empirical
easures of certain piecewise deterministic Markov processes, including the zig-zag sampler, are obtained, and the associated rate

unction is used to address a key question concerning the optimal choice of the so-called switching rate of the zig-zag process. The
esults therein also highlight the differences in considering convergence of empirical averages, and in studying the convergence to
quilibrium with, e.g., the spectral gap; see also [47,49].

In this paper we focus on the Metropolis–Hastings algorithm [35] (described in Section 2.3), the most classical MCMC method
nd the main building block for many more advanced methods [1,4,41,48]. Because of its importance in the area of Monte Carlo
ampling, the method is well-studied and classical results on convergence properties and performance include [13,28,34,42,44,46];
ee also [20,36] and the references therein for the general theory of Markov chains. However, despite significant efforts over long
ime, there are still gaps in our understanding of the theoretical properties of this fundamental class of algorithms. As an example,
n a recent tour de force [2,3] the authors develop a functional analytical framework, aimed at analysing Markov chains arising in
ampling algorithms, and obtain the first explicit convergence bounds for the Metropolis algorithm. In [8] a non-reversible version
f Metropolis–Hastings is introduced and studied. One of the methods used for analysing performance is large deviations for the
ssociated empirical measure. Because the setting is a finite state space 𝑆, the classical results [17,19], due to Donsker and Varadhan,
ive the large deviation principle. To the best of our knowledge, this is the only work that studies large deviations for Markov
hains arising from algorithms of Metropolis–Hastings-type. In [8] the focus is on the effects of non-reversibility, and there is thus
o attempt at extending the large deviation results to the setting where the state space 𝑆 is instead a (uncountable) subset of R𝑑 .

The pioneering work by Donsker and Varadhan [17–19] is often the starting point for empirical measure large deviations for
arkov processes, and their results have been extended in numerous directions; see [12,14,25] and the references therein. However,

t is pointed out in [22] (see also Section 2.2) that even for fairly simple continuous-time pure-jump processes, the results by Donsker
nd Varadhan, or more general versions of them such as in, e.g., [32], do not hold. This is because all such large deviation results
ely on the transition probability function of the Markov process to have a density with respect to some reference measure. In [22]
he authors show how this condition can be replaced by a more general transitivity condition (Condition 2.1 in the current paper) to
nsure that a large class of processes are covered. However, for the Metropolis–Hastings chains, neither of these conditions hold due
o the rejection part of the dynamics. The purpose of this paper is to show that, despite this violation of the standard transitivity
2

onditions, the empirical measures of the Metropolis–Hastings chain do satisfy a large deviation principle. In fact, as discussed
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in Remark 3.4, the result holds for a more general class of discrete time Markov processes whose transition kernel 𝐾(𝑥, 𝑑𝑦) is a
mixture of a part with density with respect to some reference measure, and a Dirac mass in 𝑥. The proof is based on the weak
convergence approach [12,21], which is described in some more detail in Sections 2.2 and 4. With the large deviation results
established, our future work is aimed at (i) analysing the performance and comparing various Metropolis–Hastings algorithms using
the rate function, and comparing the conclusion to, e.g., the recent results [2]; (ii) investigate whether optimal scaling results,
similar to the celebrated results in [28,44], can be obtained from a large deviation perspective; (iii) extend the results to cover
more advanced MCMC algorithms, such as ABC-MCMC. These topics are all significant undertakings in their own right and we
leave them to be investigated separately in future work.

The remainder of the paper is organized as follows. In Section 2 we provide the preliminaries needed for the paper: notation
and definitions, a brief overview of large deviations for empirical measures, and a description of the Metropolis–Hastings algorithm.
Next, in Section 3 we present the assumptions used for the Metropolis–Hastings chain. The main result is stated in Theorem 4.1 in
Section 4. In this section we also show some properties of the associated rate function. The proof of Theorem 4.1 is divided into
two parts, in Sections 5 and 6 we prove the Laplace upper and lower bound, respectively, which combined prove Theorem 4.1.

2. Preliminaries

2.1. Notation and definitions

Throughout the paper we work with some probability space (𝛺, ,P). We use a.s. and w.p. 1 as shorthand for almost sure, or
almost surely, and with probability 1, respectively.

For a Polish space 𝑆, with a translation invariant metric 𝑑𝑆 , (𝑆) is the Borel 𝜎−algebra on 𝑆, and 𝐶(𝑆) and 𝐶𝑏(𝑆) denote the
paces of functions 𝑓 ∶ 𝑆 → R that are continuous, and bounded and continuous, respectively. For any 𝑟 ∈ R+ and 𝑥 ∈ 𝑆, 𝐵𝑟(𝑥) is
he open ball of radius 𝑟 with centre in 𝑥:

𝐵𝑟(𝑥) = {𝑦 ∈ 𝑆 ∶ 𝑑𝑆 (𝑥, 𝑦) < 𝑟}.

hen 𝑆 ⊆ R𝑑 , for some 𝑑 ≥ 1, we take 𝜆 to denote Lebesgue measure on R𝑑 . We abuse notation a bit in that 𝜆 is generically taken
o represent Lebesgue measure, regardless of the underlying dimension 𝑑. For integration with respect to 𝜆 we use the standard
otation 𝑑𝑥 for 𝜆(𝑑𝑥).

For a measure 𝜂 on 𝑆, and a measurable function 𝑓 on 𝑆, we denote the integral of 𝑓 with respect to 𝜂 by 𝜂(𝑓 ) = ∫𝑆 𝑓 (𝑥)𝜂(𝑑𝑥).
hen 𝑓 is the indicator of a set 𝐴, we write 𝜂(𝐴) = ∫𝐴 𝜂(𝑑𝑥).
The space of probability measures on 𝑆 is denoted by (𝑆). Given 𝛾 ∈ (𝑆2), denote by [𝛾]1 and [𝛾]2 the first and second

arginals of 𝛾, respectively. For 𝜇 ∈ (𝑆), define

𝐴(𝜇) = {𝛾 ∈ (𝑆2) ∶ [𝛾]1 = [𝛾]2 = 𝜇}. (1)

e consider the topology of weak convergence on (𝑆): 𝜈𝑛 → 𝜈 in this topology if, for all 𝑓 ∈ 𝐶𝑏(𝑆),

𝜈𝑛(𝑓 ) = ∫𝑆
𝑓 (𝑥)𝜈𝑛(𝑑𝑥) → ∫𝑆

𝑓 (𝑥)𝜈(𝑑𝑥) = 𝜈(𝑓 ), 𝑛 → ∞.

e use 𝜈𝑛 ⇒ 𝜈 as shorthand notation for {𝜈𝑛} ⊂ (𝑆) converging weakly to 𝜈 ∈ (𝑆). Unless otherwise stated, we equip (𝑆) with
he Lévy–Prohorov metric, denoted 𝑑𝐿𝑃 : for 𝜈, 𝜇 ∈ (𝑆),

𝑑𝐿𝑃 (𝜈, 𝜇) = inf {𝜖 > 0 ∶ 𝜈(𝐴) ≤ 𝜇(𝐴𝜖) + 𝜖, for all closed subsets 𝐴 ⊂ 𝑆} ,

here 𝐴𝜖 = {𝑥 ∈ 𝑆 ∶ 𝑑𝑆 (𝑥,𝐴) < 𝜖}. This metric is compatible with the topology of weak convergence (see, e.g., [12], Theorem A.1),
nd turns (𝑆) into a Polish space. For any signed measure 𝜂 on 𝑆, the total variation norm of 𝜂, ‖𝜂‖𝑇𝑉 , is defined as

‖𝜂‖𝑇𝑉 = sup
𝑓

|𝜂(𝑓 )| ,

here the supremum is taken over all measurable functions bounded by 1. For 𝜈, 𝜇 ∈ (𝑆), the total variation norm provides an
pper bound on 𝑑𝐿𝑃 :

𝑑𝐿𝑃 (𝜈, 𝜇) ≤ ‖𝜈 − 𝜇‖𝑇𝑉 .

For a measurable space ( ,), let 𝑞(𝑦, 𝑑𝑥) be a collection of probability measures on 𝑆 parameterized by 𝑦 ∈ 𝑌 . Then 𝑞 is called
stochastic kernel on 𝑆 given  if, for every 𝐴 ∈ (𝑆), the map 𝑦 ↦ 𝑞(𝑦, 𝐴) ∈ [0, 1] is measurable.

For a Markov chain {𝑋𝑖}𝑖∈N taking values in 𝑆, for a given 𝑥0 ∈ 𝑆, we denote by P𝑥0 the distribution of {𝑋𝑖}𝑖∈N starting at 𝑥0.
he associated expectation operator is denoted by E𝑥0 . The transition probability function, or transition kernel, of a Markov chain is a

stochastic kernel 𝑞, such that the distribution of 𝑋𝑖 given 𝑋𝑖−1 is given by 𝑞(𝑋𝑖−1, ⋅). We say that a transition probability function
𝑞(𝑥, 𝑑𝑦) on 𝑆 × (𝐴) satisfies the Feller property if, for any sequence {𝑥𝑛}𝑛∈N such that 𝑥𝑛 → 𝑥 ∈ 𝑆 as 𝑛 → ∞, 𝑞(𝑥𝑛, ⋅) ⇒ 𝑞(𝑥, ⋅).

Given a measure 𝜇 ∈ (𝑆) and a transition kernel 𝑞(𝑥, 𝑑𝑦), we say that 𝜇 is invariant for 𝑞, or for the corresponding Markov
hain, if for all 𝐴 ∈ (𝑆),

𝜇(𝐴) = 𝑞(𝑥,𝐴)𝜇(𝑑𝑥).
3

∫𝑆
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For 𝜈 ∈ (𝑆), 𝑅(⋅ ∥ 𝜈) ∶ (𝑆) → [0,∞] is the relative entropy (with respect to 𝜈), defined by

𝑅(𝜇 ∥ 𝜈) =

⎧

⎪

⎨

⎪

⎩

∫𝑆 log
(

𝑑𝜇
𝑑𝜈

)

𝑑𝜇, 𝜇 ≪ 𝜈,

+∞, otherwise.

We recall the following properties of relative entropy (see Lemmas 1.4.1 and 1.4.3 in [21]): 𝑅(⋅ ∥ ⋅) is jointly convex and jointly
ower semi-continuous with respect to the weak topology on (𝑆)2, and 𝑅(𝜇 ∥ 𝜈) = 0 if and only if 𝜇 = 𝜈. Another useful property
ollows from the chain rule for relative entropy (see Theorem 2.6 and Corollary 2.7 in [12]): given two transition kernels 𝑝, 𝑞, for
ny 𝜇 ∈ (𝑆),

𝑅(𝜇 ⊗ 𝑝 ∥ 𝜇 ⊗ 𝑞) = ∫𝑆
𝑅(𝑝(𝑥, ⋅) ∥ 𝑞(𝑥, ⋅))𝜇(𝑑𝑥). (2)

Lastly, for a set 𝐴, 𝐴◦ and �̄� denote the interior and closure of the set, respectively, and 𝑥 ↦ 𝐼{𝑥 ∈ 𝐴} is the indicator function of
he set 𝐴. When the set is a singleton, 𝐴 = {𝑦}, we write 𝐼{𝑥 = 𝑦}. We also use 𝛿𝑦 to denote this case.

.2. Large deviations for empirical measures of a Markov chain

Consider a Markov chain {𝑋𝑖}𝑖≥0 with state space 𝑆 and transition probability function 𝑝. The empirical measure, 𝐿𝑛, associated
ith the chain {𝑋𝑖} is defined as

𝐿𝑛(⋅) = 1
𝑛

𝑛−1
∑

𝑖=0
𝛿𝑋𝑖

(⋅). (3)

For each 𝑛, this is a random element of (𝑆). We can also view {𝐿𝑛}𝑛≥0 as a stochastic process in (𝑆).
In the context of MCMC methods, empirical measures are essential objects as they are used for forming approximations for any

observable: for a given observable 𝑓 ∈ 𝐶𝑏(𝑆), we have

𝐿𝑛(𝑓 ) = 1
𝑛

𝑛−1
∑

𝑖=0
𝑓 (𝑋𝑖).

f the Markov chain 𝑋 has an invariant distribution 𝜋 ∈ (𝑆) and is ergodic, we have 𝐿𝑛(𝑓 ) → 𝜋(𝑓 ), a.s. as 𝑛 → ∞. Thus, there is
direct link between the convergence properties of the empirical measure 𝐿𝑛 and the performance of Monte Carlo methods based

n time averages for approximating observables.
Classical methods for studying performance of MCMC methods are often mixing properties or asymptotic variance, which are

ot directly linked to the empirical measure 𝐿𝑛 of the underlying Markov chain. The theory of large deviations on the other hand,
s concerned precisely with deviations of 𝐿𝑛 from 𝜋 as the number of steps 𝑛 grows. It therefore serves as a useful complement to
he more traditional methods for analysing performance of a given MCMC method, as well as for designing new algorithms.

At the heart of the theory of large deviations is the large deviation principle (LDP): the sequence {𝐿𝑛} is said to satisfy an LDP
ith speed 𝑛 and rate function 𝐼 ∶ 𝑆 → [0,∞], if 𝐼 is lower semi-continuous, has compact sub-level sets and for any measurable
⊂ (𝑆),

− inf
𝜈∈𝐴◦

𝐼(𝜈) ≤ lim inf
𝑛→∞

1
𝑛
logP(𝐿𝑛 ∈ 𝐴◦) ≤ lim sup

𝑛→∞

1
𝑛
logP(𝐿𝑛 ∈ �̄�) ≤ − inf

𝜈∈�̄�
𝐼(𝜈).

The gist of these inequalities is that, if {𝐿𝑛} satisfies an LDP with speed 𝑛 and rate function 𝐼 , then for any 𝜈 ∈ (𝑆) and 𝑛 large,

P(𝐿𝑛 ≈ 𝜈) ≃ exp{−𝑛𝐼(𝜈)}.

The definition of an LDP makes this statement rigorous in the limit 𝑛 → ∞.
For any metric space, an equivalent formulation of the LDP is the Laplace principle (see e.g., Theorems 1.5 and 1.8 in [12]). In

the setting of the empirical measures {𝐿𝑛}, we have that this sequence satisfies a Laplace principle, with speed 𝑛 and rate function
𝐼 (same as in the LDP), if for any 𝐹 ∈ 𝐶𝑏 ((𝑆)),

lim
𝑛→∞

1
𝑛
logE

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

= − inf
𝜈∈(𝑆)

{𝐹 (𝜈) + 𝐼(𝜈)} . (4)

The starting point for large deviations of empirical measures of Markov processes is the pioneering work of Donsker and
Varadhan [17,19]. A central assumption in those works is that the transition probability function 𝑝 has a density with respect
to some reference measure. This is a reasonable transitivity assumption for processes that involve something that, in some sense,
resembles a diffusive term. However, in [22] the authors show that it is a rather restrictive condition and as an example construct
a simple continuous-time pure-jump process for which it does not hold. The following alternative condition on 𝑝 was used in [22]
to establish an LDP for the empirical measures of a Markov process.

Condition 2.1 (Condition 6.3 in [12]). The transition kernel 𝑝 of the Markov chain 𝑋 is such that there exist positive integers 𝑙0 and
0, such that for all 𝑥 and 𝜁 in 𝑆,

∑

2−𝑖𝑝(𝑖)(𝑥, 𝑑𝑦) ≪
∑

2−𝑗𝑝(𝑗)(𝜁, 𝑑𝑦), (5)
4

𝑖≥𝑙0 𝑗≥𝑛0
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where 𝑝(𝑘) denotes the 𝑘−step transition probability.

This condition is general enough to cover a large class of Markov processes, both in discrete and continuous time; see e.g., [12,22]
nd the references therein. However, it does not cover the case when 𝑋 comes from a Metropolis–Hastings scheme, as we show with
simple counterexample in Section 4. Condition 2.1, or variations of it, is a key ingredient in existing work on large deviations for
arkov chains. Because it is not satisfied for Metropolis–Hastings, in order to use large deviations to analyse the performance of such

lgorithms, and with an outlook towards more advanced MCMC methods that build on the Metropolis–Hastings algorithm—e.g.,
ALA and ABC-MCMC—we must first establish the relevant LDP. This is the main contribution of this paper.

.3. Metropolis–Hastings algorithm

We now give a brief description of the Metropolis–Hastings (MH) algorithm for constructing a Markov chain {𝑋𝑖}𝑖≥0 with the
target measure 𝜋 as invariant distribution. For simplicity we restrict ourselves to the setting where 𝑆 ⊆ R𝑑 and 𝜋 is equivalent
to Lebesgue measure. More abstract settings are possible as well, see for example [48]. However this would require different
assumptions and modifications of the proof of the large deviation principle in Section 2.2.

The main ingredient of the MH algorithm is the proposal distribution 𝐽 (⋅|𝑥) ∈ (𝑆), defined for all 𝑥 ∈ 𝑆. If the chain after 𝑛 steps
is in some state 𝑋𝑛 = 𝑥𝑛, a proposal 𝑌𝑛+1 for the next state 𝑋𝑛+1 is generated from 𝐽 (⋅|𝑥𝑛). This is followed by an acceptance–rejection
tep, which is defined in terms of the Hastings ratio,

𝜛(𝑥, 𝑦) = min
{

1,
𝜋(𝑦)𝐽 (𝑥|𝑦)
𝜋(𝑥)𝐽 (𝑦|𝑥)

}

;

where if 𝜋(𝑥)𝐽 (𝑦|𝑥) = 0, we set 𝜛(𝑥, 𝑦) = 1. The proposed move from 𝑋𝑛 = 𝑥𝑛 to 𝑋𝑛+1 = 𝑌𝑛+1 is accepted with probability 𝜛(𝑥𝑛, 𝑌𝑛+1),
and rejected with probability 1 − 𝜛(𝑥𝑛, 𝑌𝑛+1). In the latter case, we set 𝑋𝑛+1 = 𝑥𝑛. The pseudocode for the update step in the MH
algorithm is presented in Algorithm 2.1.

Algorithm 2.1 Metropolis–Hastings algorithm
Given 𝑋𝑛 = 𝑥𝑛,

1: Generate a proposal 𝑌𝑛+1 ∼ 𝐽 (⋅|𝑥𝑛)
2: Set

𝑋𝑛+1 =

{

𝑌𝑛+1 with probability 𝜛(𝑥𝑛, 𝑌𝑛+1)
𝑥𝑛 with probability 1 −𝜛(𝑥𝑛, 𝑌𝑛+1)

Define a transition kernel 𝑎(𝑥, 𝑑𝑦) and a function 𝑟 ∶ 𝑆 → [0, 1] by

𝑎(𝑥, 𝑑𝑦) = min
{

1,
𝜋(𝑦)𝐽 (𝑥|𝑦)
𝜋(𝑥)𝐽 (𝑦|𝑥)

}

𝐽 (𝑑𝑦|𝑥), (6)

and

𝑟(𝑥) = 1 − 𝑎(𝑥, 𝑆) = 1 − ∫𝑆
𝑎(𝑥, 𝑑𝑦). (7)

The kernel 𝑎 corresponds to the acceptance-part of the MH algorithm, i.e., it corresponds to transitions to proposed states that are
accepted in the MH algorithm. Similarly, 𝑟 corresponds to the rejection part: it represents the probability of rejecting a proposed
state, and thus remaining at the current state of the chain. With these definitions, the dynamics of the MH algorithm corresponds
to generating a Markov chain {𝑋𝑖}𝑖≥0, the MH chain, with transition kernel

𝐾(𝑥, 𝑑𝑦) = 𝑎(𝑥, 𝑑𝑦) + 𝑟(𝑥)𝛿𝑥(𝑑𝑦). (8)

For a more in-depth look at the MH algorithm and its various properties, see for example [41] and the references therein. A key
observation is that due to the form of the Hastings ratio, and the corresponding kernel 𝐾, under reasonable assumptions on the
proposal distribution 𝐽 , the MH chain {𝑋𝑖}𝑖≥0 generated according to the above has 𝜋 as its unique invariant measure.

3. Assumptions

In this section, we state the assumptions we make on the MH chain defined in Section 2.3. Rather than aiming to make them as
general as possible, we have aimed for assumptions, primarily on the proposal distribution 𝐽 , that are tangible from the perspective
of MCMC methods. One alternative, commonly used when studying this type of Markov chain, is to assume the existence of some
Lyapunov function [31,32,34,45]. Although this ensures the convergence of the empirical measures, for the large deviation results
additional assumptions are still needed; see e.g., the Donsker–Varadhan-like assumption on the transition kernel in [32].

As mentioned in Section 2.3, we make the assumption that 𝑆 ⊆ R𝑑 , for some 𝑑 ≥ 1. We make a slight abuse of notation, in that
we let 𝜋(⋅), 𝐽 (⋅|𝑥), and 𝑎(𝑥, ⋅) denote both the measures and the corresponding density functions. In order to establish the LDP, we
make the following additional assumptions.
5
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(A.1) 𝑆 is an open subset of R𝑑 and the target probability measure 𝜋 is equivalent to 𝜆 on 𝑆 (i.e., 𝜋 ≪ 𝜆 and 𝜆 ≪ 𝜋). The probability
density 𝜋(𝑥) is a continuous function.

(A.2) The proposal distribution 𝐽 (⋅|𝑥) is absolutely continuous with respect to the target measure 𝜋 (i.e., 𝐽 (⋅|𝑥) ≪ 𝜋), for all 𝑥 ∈ 𝑆.
The probability density 𝐽 (𝑦|𝑥) is a continuous and bounded function of 𝑥 and 𝑦, and it satisfies

𝐽 (𝑦|𝑥) > 0, ∀(𝑥, 𝑦) ∈ 𝑆2. (9)

(A.3) There exists a Lyapunov function 𝑈 ∶ 𝑆 → [0,∞) such that the following properties hold:

(a) inf𝑥∈𝑆
[

𝑈 (𝑥) − log ∫𝑆 𝑒𝑈 (𝑦)𝐾(𝑥, 𝑑𝑦)
]

> −∞
(b) For each 𝑀 < ∞, the set

{

𝑥 ∈ 𝑆 ∶ 𝑈 (𝑥) − log∫𝑆
𝑒𝑈 (𝑦)𝐾(𝑥, 𝑑𝑦) ≤ 𝑀

}

is a relatively compact subset of 𝑆.
(c) For every compact set 𝐾 ⊂ 𝑆 there exists 𝐶𝐾 < ∞ such that

sup
𝑥∈𝐾

𝑈 (𝑥) ≤ 𝐶𝐾 .

Because 𝜋 and 𝜆 are equivalent measures, the support of 𝜋 is all of 𝑆. However, it is not necessarily the case that 𝜋(𝑥) > 0 for
all 𝑥 ∈ 𝑆, as there may exist a (nonempty) set 𝐸 ⊂ 𝑆, such that 𝜆(𝐸) = 0 and 𝜋(𝑥) = 0 for 𝑥 ∈ 𝐸. Therefore, define the set 𝑆+ as

𝑆+ = {𝑦 ∈ 𝑆 ∶ 𝜋(𝑦) > 0}. (10)

Observe that 𝑆+ is an open subset of 𝑆, being the density function 𝜋(𝑥) continuous.
Assumptions (A.1)–(A.2) are used to show that the MH transition kernel 𝐾, and thus the MH chain {𝑋𝑖}𝑖≥0, has certain properties

needed for the LDP, including that 𝜋 is the unique invariant distribution. Assumption (A.3) replaces a compactness-assumption on
𝑆 for proving the LDP. In the case of a compact state space 𝑆, this assumption is not needed.

Remark 3.1. We start by showing that the combination of (A.1) and (A.2) ensures continuity and boundedness of the components
𝑎 (acceptance part) and 𝑟 (rejection part) of the MH transition kernel 𝐾.

Consider 𝑥 ∈ 𝑆+. Assumption (A.1) and Assumption (A.2) imply that 𝐽 (⋅|𝑥) ≪ 𝜆. Therefore, the acceptance part (6) of 𝐾(𝑥, ⋅) is
absolutely continuous with respect to the Lebesgue measure (i.e., 𝑎(𝑥, ⋅) ≪ 𝜆), and its density is given by

𝑎(𝑥, 𝑦) = min
{

1,
𝜋(𝑦)𝐽 (𝑥|𝑦)
𝜋(𝑥)𝐽 (𝑦|𝑥)

}

𝐽 (𝑦|𝑥). (11)

Since 𝜋(𝑥) is continuous for all 𝑥 ∈ 𝑆 and 𝐽 (𝑥|𝑦) is continuous and bounded for all (𝑥, 𝑦) ∈ 𝑆2, we have 𝑎(𝑥, 𝑦) ∈ 𝐶𝑏(𝑆+ × 𝑆).
From the continuity of 𝑎(𝑥, 𝑦) on 𝑆+×𝑆, we obtain that 𝑟(𝑥) = 1−𝑎(𝑥, 𝑆) is also continuous for all 𝑥 ∈ 𝑆+. This continuity extends

to all of 𝑆. First, if 𝑥 ∉ 𝑆+, so that 𝜋(𝑥) = 0, then

𝑟(𝑥) = 1 − 𝑎(𝑥, 𝑆) = 1 − ∫𝑆
𝐽 (𝑦|𝑥)𝑑𝑦 = 0,

since 𝜋(𝑦) > 0 for 𝜆-almost all 𝑦 ∈ 𝑆. Take 𝑥 ∉ 𝑆+ and a sequence {𝑥𝑛} ⊂ 𝑆 that converges to 𝑥. From the continuity of the target
ensity function 𝜋, 𝜋(𝑥𝑛) → 𝜋(𝑥) = 0. Moreover, for a fixed 𝑦 such that 𝜋(𝑦) > 0, we have 𝑎(𝑥𝑛, 𝑦) → 𝐽 (𝑦|𝑥) as 𝑛 → ∞. To see this,
ote that since 𝜋 and 𝜆 are equivalent, 𝜋(𝑦) > 0 for 𝜆−almost all 𝑦 ∈ 𝑆. It follows that lim𝑛→∞ 𝑎(𝑥𝑛, 𝑦) = 𝐽 (𝑦|𝑥) for 𝜆−almost all
∈ 𝑆. Recalling that 𝐽 is bounded, by dominated convergence we have

lim
𝑛→∞

𝑎(𝑥𝑛, 𝑆) = lim
𝑛→∞∫𝑆

𝑎(𝑥𝑛, 𝑦)𝑑𝑦 = ∫𝑆
lim
𝑛→∞

𝑎(𝑥𝑛, 𝑦)𝑑𝑦 = ∫𝑆
𝐽 (𝑦|𝑥)𝑑𝑦 = 1.

his in turn implies that

lim
𝑛→∞

𝑟(𝑥𝑛) = 1 − lim
𝑛→∞

𝑎(𝑥𝑛, 𝑆) = 0.

Since 𝑟(𝑥) = 0, this shows that 𝑟 is continuous on 𝑆.

Remark 3.2. Next, we show that (A.1)–(A.2) ensure that 𝐾 has the target measure 𝜋 as its unique invariant distribution, and the
MH chain {𝑋𝑖}𝑖≥0 is ergodic.

Let 𝑥 ∈ 𝑆+ as defined in (10). Since 𝜆 ≪ 𝜋 by (A.1), 𝜋(𝑦) > 0 for 𝜆−almost every 𝑦 ∈ 𝑆. Moreover, by Assumption (A.2),
𝐽 (𝑥|𝑦) > 0 for all (𝑥, 𝑦) ∈ 𝑆2. It follows that 𝑎(𝑥, 𝑦) > 0 for 𝜆−a.e. 𝑦 ∈ 𝑆. This in turn implies that 𝜆 ≪ 𝑎(𝑥, ⋅), and 𝜆 and 𝑎(𝑥, ⋅) are
equivalent measures for all 𝑥 ∈ 𝑆+. By transitivity, 𝑎(𝑥, ⋅) and 𝑎(𝑦, ⋅) are equivalent for all 𝑥, 𝑦,∈ 𝑆+. We now show that from this it
follows that the MH transition kernel 𝐾 is indecomposable, i.e. there are no disjoint Borel sets 𝐴1, 𝐴2 ∈ (𝑆) such that

𝐾(𝑥,𝐴1) = 1 ∀𝑥 ∈ 𝐴1 and 𝐾(𝑦, 𝐴2) = 1 ∀𝑦 ∈ 𝐴2.

We argue by contradiction. Assume that two such sets exist. Then,

1 = 𝐾(𝑥,𝐴 ) = 𝑎(𝑥,𝐴 ) + 𝑟(𝑥)𝛿 (𝐴 ). (12)
6
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Since 𝜆 ≪ 𝑎(𝑥, ⋅), we have 𝑎(𝑥, 𝑆) > 0, and thus 𝑟(𝑥) = 1 − 𝑎(𝑥, 𝑆) < 1 for all 𝑥 ∈ 𝑆. Combined with (12), this shows 𝑎(𝑥,𝐴1) > 0.
It follows from 𝑎(𝑥, ⋅) and 𝑎(𝑦, ⋅) being equivalent measures that 𝑎(𝑦, 𝐴1) > 0, which contradicts the assumption. Hence, 𝐾(𝑥, 𝑑𝑦)
s indecomposable. By Theorem 7.16 in [10], 𝜋 is the unique invariant distribution for the MH transition kernel 𝐾(𝑥, 𝑑𝑦) and the
arkov chain associated with 𝜋 and 𝐾(𝑥, 𝑑𝑦) is ergodic.

emark 3.3. The existence of a Lyapunov function 𝑈 satisfying Assumption (A.3) can be shown for different instances of the MH
lgorithm. For example, in forthcoming work we give precise results on conditions on the tail decays of 𝜋 and 𝐽 for Assumption

(A.3) to hold for independent MH and MALA. These results are in line with those of [34,45] on uniform and geometric ergodicity.
For the case 𝑆 = R𝑑 , Section 8.2 in [21] describes a class of models for which a Lyapunov function 𝑈 that satisfies (A.3) exists.

Here we present their example adapted to the MH kernel 𝐾. For specific choices of 𝐽 and/or 𝜋, this assumption can be made more
explicit (or verified).

Let 𝑏 ∶ R𝑑 → R𝑑 be measurable. Denote by ⟨⋅, ⋅⟩ the scalar product in R𝑑 and for 𝛼 ∈ R𝑑 define

𝐻𝑏(𝑥, 𝛼) = log
[

∫R𝑑
𝑒⟨𝛼,𝑦−𝑥−𝑏(𝑥)⟩𝑎(𝑥, 𝑑𝑦) + 𝑟(𝑥)𝑒−⟨𝛼,𝑏(𝑥)⟩

]

.

Consider the following assumptions.

(a) 𝑏 is bounded on all compact sets in R𝑑

(b) there exists 𝑟 > 0 such that

sup
𝑥∈R𝑑

𝐻𝑏(𝑥, 𝛼) < ∞,

for all 𝛼 ∈ R𝑑 that satisfy ‖𝛼‖ ≤ 𝑟
(c) there exists a Lipschitz continuous function 𝑈 ∶ R𝑑 → [0,∞) for which

lim
‖𝑥‖→∞

[𝑈 (𝑥 + 𝑏(𝑥)) − 𝑈 (𝑥)] = −∞.

If (a), (b) and (c) hold, then 𝑈 is a Lyapunov function as required by Assumption (A.3).
A natural choice for 𝑏 is

𝑏(𝑥) = ∫R𝑑
𝑦 ⋅ 𝑎(𝑥, 𝑑𝑦) − (1 − 𝑟(𝑥)) ⋅ 𝑥,

and the corresponding 𝐻𝑏 is

𝐻𝑏(𝑥, 𝛼) = −⟨𝛼,∫R𝑑
𝑦 ⋅ 𝑎(𝑥, 𝑑𝑦) + 𝑟(𝑥) ⋅ 𝑥⟩ + log

[

∫R𝑑
𝑒⟨𝛼,𝑦⟩𝑎(𝑥, 𝑑𝑦) + 𝑒⟨𝛼,𝑥⟩𝑟(𝑥)

]

.

Note that if the space 𝑆 is compact, then Assumption (A.3) is automatically satisfied (for example, take 𝑈 (𝑥) ≡ 0).

Remark 3.4. The large deviation principle that we prove in the present paper holds for a broader class of Markov chains than
those of MH type. In particular, Theorem 4.1 remains valid if Assumptions (A.1) and (A.3) are satisfied, in conjunction with the
following assumptions, which generalize Assumption (A.2).

(B.1) The Markov chain transition kernel can be decomposed as

𝐾(𝑥, 𝑑𝑦) = 𝑎(𝑥, 𝑑𝑦) + 𝑟(𝑥)𝛿𝑥(𝑑𝑦),

where 𝑎(𝑥, ⋅) is a measure on 𝑆 for all 𝑥 ∈ 𝑆, the map 𝑥 ↦ 𝑎(𝑥,𝐴) is measurable for every 𝐴 ∈ (𝑆), and 𝑟(𝑥) = 1− ∫𝑆 𝑎(𝑥, 𝑑𝑦).
(B.2) The measure 𝑎(𝑥, ⋅) is absolutely continuous with respect to the target measure 𝜋 (i.e., 𝑎(𝑥, ⋅) ≪ 𝜋), for all 𝑥 ∈ 𝑆. The

probability density 𝑎(𝑥, 𝑦) is a continuous and bounded function of 𝑥 and 𝑦, and it satisfies

𝑎(𝑥, 𝑥) > 0, ∀𝑥 ∈ 𝑆+,

and

∫𝑆
𝑎(𝑥, 𝑦)𝑑𝑦 = 1, ∀𝑥 ∉ 𝑆+,

i.e. if 𝜋(𝑥) = 0, then 𝑟(𝑥) = 0.
(B.3) The Markov chain associated with 𝜋 and 𝐾(𝑥, 𝑑𝑦) is ergodic.

4. Large deviations for empirical measures of Metropolis–Hastings chains

We are now ready to state our main result, an LDP for the sequence {𝐿𝑛} of empirical measures of the MH chain {𝑋𝑖}𝑖≥0 with
7

invariant distribution 𝜋 (see Section 2.3 for the definition).
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Theorem 4.1. Let {𝑋𝑖}𝑖≥0 be the Metropolis–Hastings chain from Section 2.3 and 𝐾(𝑥, 𝑑𝑦) the associated transition kernel. Let
𝐿𝑛}𝑛≥0 ⊂ (𝑆) be the corresponding sequence of empirical measures, defined in (3). Under Assumptions (A.1)–(A.3), with 𝐴(𝜇) as in
1), {𝐿𝑛}𝑛≥0 satisfies an LDP with speed 𝑛 and rate function

𝐼(𝜇) = inf
𝛾∈𝐴(𝜇)

𝑅(𝛾 ∥ 𝜇 ⊗ 𝐾). (13)

As mentioned in Section 2.1, we consider (𝑆) as a metric space (equipped with, e.g., the Lévy–Prohorov metric). Therefore,
he LDP is equivalent to the Laplace principle, and we will use the latter to prove Theorem 4.1. More specifically, the proof is split
p into proving the Laplace principle upper bound,

lim inf
𝑛→∞

−1
𝑛
logE𝑥𝑛

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

≥ inf
𝜇∈(𝑆)

{𝐹 (𝜇) + 𝐼(𝜇)} , (14)

and the Laplace principle lower bound,

lim sup
𝑛→∞

−1
𝑛
logE𝑥

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

≤ inf
𝜇∈(𝑆)

{𝐹 (𝜇) + 𝐼(𝜇)} , (15)

for every 𝐹 ∈ 𝐶𝑏((𝑆)), every sequence {𝑥𝑛} ⊂ 𝑆 and 𝑥 ∈ 𝑆. The respective proofs are given in Sections 5 and 6. The starting point
for both bounds is the following representation formula (Proposition 6.1 in [12]): for every bounded, measurable 𝐹 ∶ (𝑆) → R,

− 1
𝑛
logE

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

= inf
{�̄�𝑛𝑖 }

E

[

𝐹 (�̄�𝑛) + 1
𝑛

𝑛
∑

𝑖=1
𝑅(�̄�𝑛

𝑖 ∥ 𝐾(�̄�𝑛
𝑖−1, ⋅))

]

, (16)

where �̄�𝑛 is the controlled empirical measure, �̄�𝑛 = 1
𝑛
∑𝑛−1

𝑖=0 𝛿�̄�𝑛 , and the conditional distribution of �̄�𝑛
𝑖 given 𝜎(�̄�𝑛

1 ,… , �̄�𝑛
𝑖−1)

s �̄�𝑛
𝑖 . The infimum is over all such controls, i.e., random probability measures, �̄�𝑛

𝑖 , such that �̄�𝑛
𝑖 is measurable with respect to

𝑛
𝑖−1 = 𝜎

(

�̄�𝑛
1 ,… , �̄�𝑛

𝑖−1
)

, with 𝑛
0 = {∅, 𝛺}; see [12,21] for more details.

For the upper bound, under Assumptions (A.1)–(A.3), the proof of Proposition 6.13 in [12], with the additional arguments in
ection 6.10 therein to account for a non-compact state space, can be applied in our setting as well. The only thing that needs to
e verified is the Feller property of the MH transition kernel 𝐾 (see Lemma 5.2).

The work for proving Theorem 4.1 lies in proving the lower bound (15). Existing results rely on some variation of Condition 2.1.
owever, such a condition is not applicable in our setting, as the following simple example shows: Take an 𝑥 ∈ 𝑆 such that 𝑟(𝑥) > 0

(i.e., when in 𝑥, there is a positive probability of rejecting a proposed move and stay in 𝑥) and consider the Borel set 𝐴 = {𝑥} ∈ (𝑆).
If 𝑥 ≠ 𝜁 , then 𝐾 (𝑗)(𝜁, 𝐴) = 𝐾 (𝑗)(𝜁, {𝑥}) = 0,∀𝑗 ≥ 0. However, 𝐾 (𝑖)(𝑥, {𝑥}) > 0,∀𝑖 ≥ 0, since 𝑟(𝑥) > 0. This shows that (5) does not
hold for all 𝑥 ∈ 𝑆, and Condition 2.1 does not hold for the MH kernel 𝐾, nor for kernels of similar type, such as those arising in
ABC-MCMC or MALA.

In Section 6 we show how the Laplace principle lower bound can be shown for the MH chain without relying on a transitivity
assumption like Condition 2.1. The main point is that due to the specific structure of the MH kernel, under Assumptions (A.1)–(A.2)
the chain retains the properties that are important for proving the LDP (and typically guaranteed by something like Condition 2.1
combined with other assumptions).

The main difficulty in the proof arises from the fact that, contrary to the setting in [12], for 𝜈 ∈ (𝑆), 𝐼(𝜈) < ∞ does not imply
that 𝜈 ≪ 𝜋. In [12] this implication is used in defining near-optimal controls in the representation (16), which in turn can be used
to prove the lower bound.

Before proceeding with the proofs of the upper and lower bounds, in the following section we give some different characteriza-
tions and properties of the rate function 𝐼 in (13). Note that although here the rate function is phrased in terms of relative entropy,
other (equivalent) formulations are also possible, similar to, e.g., the early work by Donsker and Varadhan [17]. Establishing such
alternative formulations, and their use in analysing MCMC methods, is the topic of forthcoming work by the authors.

4.1. Characterization and properties of the rate function

We first express the rate function (13) in a more convenient form. By Lemma 6.8(a) in [12], the probability measures in the set
𝐴(𝜈) are of the form

𝛾(𝑑𝑥 × 𝑑𝑦) = 𝜈(𝑑𝑥) 𝑞(𝑥, 𝑑𝑦),

for a transition kernel 𝑞(𝑥, 𝑑𝑦) such that 𝜈 is invariant for 𝑞. Therefore, using (2), the chain rule for relative entropy, we can rewrite
(13) as

𝐼(𝜈) = inf
𝑞∈∫𝑆

𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈(𝑑𝑥), (17)

where  denotes the set of all the transition kernels 𝑞(𝑥, 𝑑𝑦) on 𝑆 such that 𝜈 is an invariant distribution for 𝑞. Lemma 6.8(b) in [12]
guarantees the existence of a minimizing 𝑞 in the definition of 𝐼(𝜈), under the assumption 𝐼(𝜈) < ∞. That is, there exists a transition
kernel 𝑞 with stationary distribution 𝜈 such that

𝐼(𝜈) = ∫𝑆
𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈(𝑑𝑥). (18)

The representation (18) of the rate function allows us to characterize the minimizers 𝑞, based on the form of the MH transition
kernel 𝐾 (8), as the following result shows.
8
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Lemma 4.2. If 𝐼(𝜈) < ∞, then the transition kernel 𝑞(𝑥, 𝑑𝑦) in (18) is 𝑞(𝑥, ⋅) ≪ 𝐾(𝑥, ⋅) 𝜈-a.s. In particular, it is of the form

𝑞(𝑥, ⋅) = 𝛼(𝑥, ⋅) + 𝜌(𝑥)𝛿𝑥(⋅), 𝜈-a.s., (19)

with 𝛼(𝑥, ⋅) ≪ 𝑎(𝑥, ⋅) 𝜈-a.s. and 𝜌(𝑥) is a measurable function.

Proof. If 𝐼(𝜈) < ∞, then (18) implies 𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅)) < ∞ 𝜈−a.s. By the definition of relative entropy, this means that
𝑞(𝑥, ⋅) ≪ 𝐾(𝑥, ⋅) 𝜈−a.s. Recall that

𝐾(𝑥, 𝑑𝑦) = 𝑎(𝑥, 𝑦)𝑑𝑦 + 𝑟(𝑥)𝛿𝑥(𝑑𝑦),

i.e. 𝐾(𝑥, ⋅) is a mixture of a transition kernel 𝑎(𝑥, ⋅) ≪ 𝜆, and a point mass in 𝑥. Therefore, for the transition kernel 𝑞(𝑥, ⋅) to be
𝑞(𝑥, ⋅) ≪ 𝐾(𝑥, ⋅) 𝜈−a.s., it must be of the form

𝑞(𝑥, 𝑦) = 𝛼(𝑥, 𝑦)𝑑𝑦 + 𝜌(𝑥)𝛿𝑥(𝑑𝑦),

where 𝛼(𝑥, ⋅) ≪ 𝑎(𝑥, ⋅) ≪ 𝜆, and 𝜌(𝑥) = 0 if 𝑟(𝑥) = 0. In particular, 𝜌(𝑥) must be a measurable function in order to make 𝑥 ↦ 𝑞(𝑥,𝐴) a
measurable function for every 𝐴 ∈ (𝑆), and therefore 𝑞 a stochastic kernel. □

With the characterization of 𝑞 from Lemma 4.2, we can write the rate function (18) in a more explicit way.

Proposition 4.3. If 𝐼(𝜈) < ∞, then the rate function can be expressed as

𝐼(𝜈) = ∫𝑆 ∫𝑆
log

(

𝛼(𝑥, 𝑦)
𝑎(𝑥, 𝑦)

)

𝛼(𝑥, 𝑦) 𝑑𝑦 𝜈(𝑑𝑥) + ∫𝑆
log

(

𝜌(𝑥)
𝑟(𝑥)

)

𝜌(𝑥) 𝜈(𝑑𝑥), (20)

with 𝛼(𝑥, 𝑦) and 𝜌(𝑥) as in Lemma 4.2.

roof. Applying the definition of relative entropy in (18), the rate function becomes

𝐼(𝜈) = ∫𝑆 ∫𝑆
log

(

𝑓𝑥(𝑦)
)

𝑞(𝑥, 𝑑𝑦)𝜈(𝑑𝑥), (21)

where 𝑓𝑥 denotes the Radon–Nikodym derivative of the transition kernel 𝑞(𝑥, ⋅) with respect to 𝐾(𝑥, ⋅) for a fixed 𝑥 ∈ 𝑆. By Lemma 4.2
𝑓𝑥 exists 𝜈-a.s. and, by combining (8) and (19),

𝑓𝑥(𝑦) =
𝛼(𝑥, 𝑦)
𝑎(𝑥, 𝑦)

𝐼{𝑦 ≠ 𝑥} +
𝜌(𝑥)
𝑟(𝑥)

𝐼{𝑦 = 𝑥}. (22)

Indeed, let 𝐴 ∈ (𝑆) and recall that 𝑎(𝑥, ⋅) ≪ 𝜆. Then, it holds

∫𝐴
𝑓𝑥(𝑦)𝐾(𝑥, 𝑑𝑦) = ∫𝐴

(

𝛼(𝑥, 𝑦)
𝑎(𝑥, 𝑦)

𝐼{𝑦 ≠ 𝑥} +
𝜌(𝑥)
𝑟(𝑥)

𝐼{𝑦 = 𝑥}
)

(

𝑎(𝑥, 𝑦)𝑑𝑦 + 𝑟(𝑥)𝛿𝑥(𝑑𝑦)
)

= ∫𝐴
𝛼(𝑥, 𝑦)𝑑𝑦 + 𝜌(𝑥)𝛿𝑥(𝐴) = 𝑞(𝑥,𝐴),

or 𝜈-almost all 𝑥 ∈ 𝑆. This proves that 𝑓𝑥(𝑦) in (22) is the Radon–Nikodym derivative of 𝑞(𝑥, ⋅) with respect to 𝐾(𝑥, ⋅) for 𝜈-almost
ll 𝑥 in 𝑆.

Replacing 𝑓𝑥(𝑦) in (21) with (22) gives

𝐼(𝜈) = ∫𝑆 ∫𝑆
log

(

𝛼(𝑥, 𝑦)
𝑎(𝑥, 𝑦)

𝐼{𝑦 ≠ 𝑥} +
𝜌(𝑥)
𝑟(𝑥)

𝐼{𝑦 = 𝑥}
)

(

𝛼(𝑥, 𝑦)𝑑𝑦 + 𝜌(𝑥)𝛿𝑥(𝑑𝑦)
)

𝜈(𝑑𝑥)

= ∫𝑆

(

∫𝑆
log

(

𝛼(𝑥, 𝑦)
𝑎(𝑥, 𝑦)

)

𝛼(𝑥, 𝑦)𝑑𝑦 + log
(

𝜌(𝑥)
𝑟(𝑥)

)

𝜌(𝑥)
)

𝜈(𝑑𝑥),

hich leads to (20). □

We end this section with an alternative characterization of the rate function, that highlights the fact that measures 𝜈 ∈ (𝑆) for
hich 𝐼(𝜈) < ∞ need not be absolutely continuous with respect to 𝜋.

For any 𝜈 ∈ (𝑆), by the Lebesgue decomposition theorem, we have

𝜈 = (1 − 𝑝) ⋅ 𝜈𝜆 + 𝑝 ⋅ 𝜈𝑠, (23)

here 𝑝 ∈ [0, 1], 𝜈𝜆, 𝜈𝑠 ∈ (𝑆), with 𝜈𝜆 ≪ 𝜆 and 𝜈𝑠 ⟂ 𝜆. Note that 𝑝 is specific to 𝜈, which we suppress in the notation. Associated
with the decomposition (23), we also define the partition 𝑆 = 𝑆𝜆 ∪ 𝑆𝑠, with 𝑆𝜆 ∩ 𝑆𝑠 = ∅, 𝜈𝑠(𝑆𝜆) = 0 and 𝜆(𝑆𝑠) = 0. The following
emma shows that 𝐼(𝜈) is split into two parts, one corresponding to 𝜈𝜆 and one corresponding to 𝜈𝑠.

emma 4.4. Let 𝜈 ∈ (𝑆) with 𝐼(𝜈) < ∞ and consider its decomposition as in (23). Let 𝑞(𝑥, 𝑑𝑦) be a transition kernel on 𝑆 with invariant
istribution 𝜈, that satisfies

𝐼(𝜈) = ∫𝑆
𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈(𝑑𝑥).
9
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(a) 𝑞 ∈ 𝜆 ∩𝑠, i.e. both 𝜈𝜆 and 𝜈𝑠 are invariant for 𝑞,
(b) the rate function satisfies

𝐼(𝜈) = (1 − 𝑝)𝐼(𝜈𝜆) + 𝑝𝐼(𝜈𝑠). (24)

roof. (a) By Lemma 4.2, we can write

𝑞(𝑥, ⋅) = 𝛼(𝑥, ⋅) + 𝜌(𝑥)𝛿𝑥(⋅), 𝜈-a.s.,

where 𝛼(𝑥, ⋅) ≪ 𝜆. By invariance of 𝜈 for 𝑞, for all 𝐴 ∈ (𝑆),

𝜈(𝐴) = ∫𝑆
𝑞(𝑥,𝐴)𝜈(𝑑𝑥) = ∫𝑆

𝛼(𝑥,𝐴)𝜈(𝑑𝑥) + ∫𝐴
𝜌(𝑥)𝜈(𝑑𝑥).

If we consider 𝐴 = 𝑆𝑠, for which 𝜆(𝑆𝑠) = 0, then 𝛼(𝑥, 𝑆𝑠) = 0 for 𝜈-almost all 𝑥 ∈ 𝑆 (because of 𝛼(𝑥, ⋅) ≪ 𝜆), and thus
𝜈(𝑆𝑠) = ∫𝑆𝑠

𝜌(𝑥)𝜈(𝑑𝑥). On the other hand, 𝜈(𝑆𝑠) = ∫𝑆𝑠
𝜈(𝑑𝑥). This implies that for all 𝑥 ∈ 𝑆𝑠 𝜈-a.s., we have that 𝜌(𝑥) = 1 a.s.,

and therefore 𝑞(𝑥, 𝑑𝑦) = 𝛿𝑥(𝑑𝑦).
With the form of 𝑞 on 𝑆𝑠 established, for 𝐴 ∈ (𝑆), we have

∫𝑆
𝑞(𝑥,𝐴)𝜈𝑠(𝑑𝑥) = ∫𝑆𝑠

𝑞(𝑥,𝐴)𝜈𝑠(𝑑𝑥) = ∫𝑆𝑠

𝛿𝑥(𝐴)𝜈𝑠(𝑑𝑥) = 𝜈𝑠(𝐴).

This proves that 𝜈𝑠 is invariant for 𝑞, which means that 𝑞 ∈ 𝑠.
We now show that 𝜈𝜆 is also invariant for 𝑞. The decomposition (23) combined with the invariance of 𝜈 for 𝑞, and given that

𝑞(𝑥, ⋅) = 𝛿𝑥(𝑑𝑦), 𝜈𝑠-a.s., gives, for 𝐴 ∈ (𝑆),

(1 − 𝑝) ⋅ 𝜈𝜆(𝐴) + 𝑝 ⋅ 𝜈𝑠(𝐴) = 𝜈(𝐴) = ∫ 𝑞(𝑥,𝐴)𝜈(𝑑𝑥)

= (1 − 𝑝) ⋅ ∫ 𝑞(𝑥,𝐴)𝜈𝜆(𝑑𝑥) + 𝑝 ⋅ ∫ 𝑞(𝑥,𝐴)𝜈𝑠(𝑑𝑥)

= (1 − 𝑝) ⋅ ∫ 𝑞(𝑥,𝐴)𝜈𝜆(𝑑𝑥) + 𝑝 ⋅ 𝜈𝑠(𝐴).

It follows that 𝜈𝜆(𝐴) = ∫ 𝑞(𝑥,𝐴)𝜈𝜆(𝑑𝑥). Since 𝐴 ∈ (𝑆) was chosen arbitrarily, 𝜈𝜆 is invariant for 𝑞, i.e., 𝑞 ∈ 𝜆.
To prove (b), by convexity of 𝐼 (see Lemma 6.10(a) in [12]),

𝐼(𝜈) = 𝐼
(

(1 − 𝑝) ⋅ 𝜈𝜆 + 𝑝 ⋅ 𝜈𝑠
)

≤ (1 − 𝑝) ⋅ 𝐼(𝜈𝜆) + 𝑝 ⋅ 𝐼(𝜈𝑠). (25)

On the other hand, by the decomposition (23),

𝐼(𝜈) = ∫𝑆
𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈(𝑑𝑥) = (1 − 𝑝) ⋅ ∫𝑆

𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝜆(𝑑𝑥) + 𝑝 ⋅ ∫𝑆
𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑠(𝑑𝑥). (26)

From part (a), 𝑞 is an element of both 𝜆 and 𝑠. Therefore,

∫𝑆
𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝜆(𝑑𝑥) ≥ inf

𝑞∈𝜆 ∫𝑆
𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝜆(𝑑𝑥).

The right-hand side of the previous display is precisely 𝐼(𝜈𝜆). Similarly,

∫𝑆
𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑠(𝑑𝑥) ≥ inf

𝑞∈𝑠 ∫𝑆
𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑠(𝑑𝑥),

and the right-hand side of this inequality is now 𝐼(𝜈𝑠). The two inequalities together with (26) imply

𝐼(𝜈) ≥ (1 − 𝑝) ⋅ 𝐼(𝜈𝜆) + 𝑝 ⋅ 𝐼(𝜈𝑠).

Combined with the opposite inequality (25), this proves the desired equality (24). □

5. Laplace principle upper bound

In this section we prove the Laplace principle upper bound (14).

Proposition 5.1. Let {𝐿𝑛}𝑛≥0 be the empirical measures defined in (3) and {𝑥𝑛}𝑛≥0 any sequence in 𝑆. Take 𝐹 ∈ 𝐶𝑏 ((𝑆)) and define
𝐼 ∶ (𝑆) → [0,∞] as in (13). Assume (A.1), (A.2) and (A.3). Then,

lim inf
𝑛→∞

−1
𝑛
logE𝑥𝑛

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

≥ inf
𝜈∈(𝑆)

[𝐹 (𝜈) + 𝐼(𝜈)].

As mentioned in Section 4, under (A.1)–(A.3), the arguments from [12] can be used. We include the main steps here for self-
containment and convenience of the reader; we emphasize that once the Feller property of 𝐾(𝑥, 𝑑𝑦) has been established, this part
of the proof goes precisely as in [12].

Lemma 5.2. Under Assumptions (A.1)–(A.2), the Metropolis–Hastings transition kernel 𝐾(𝑥, ⋅) satisfies the Feller property.
10
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Proof. Recall the form (8) for 𝐾, with 𝑎(𝑥, 𝑦) in (11) corresponding to the probability density of the acceptance part and 𝑟
corresponding to the rejection part. The assumptions ensure that both 𝑎 and 𝑟 are continuous and bounded functions of 𝑥 (see

emark 3.1). Consider now a function 𝑓 ∈ 𝐶𝑏(𝑆), and a sequence {𝑥𝑛}𝑛∈N ⊂ 𝑆 such that 𝑥𝑛 → 𝑥 ∈ 𝑆. By dominated convergence,
e have

∫𝑆
𝑓 (𝑦)𝐾(𝑥𝑛, 𝑑𝑦) = ∫𝑆

𝑓 (𝑦)𝑎(𝑥𝑛, 𝑦)𝑑𝑦 + 𝑓 (𝑥𝑛)𝑟(𝑥𝑛)

→ ∫𝑆
𝑓 (𝑦)𝑎(𝑥, 𝑦)𝑑𝑦 + 𝑓 (𝑥)𝑟(𝑥) = ∫𝑆

𝑓 (𝑦)𝐾(𝑥, 𝑑𝑦).

An application of the Portmanteau theorem then completes the proof. □

Proof of Proposition 5.1. In (16), take a control sequence {�̄�𝑛
𝑖 } such that

E

[

𝐹 (�̄�𝑛) + 1
𝑛

𝑛
∑

𝑖=1
𝑅(�̄�𝑛

𝑖 ∥ 𝐾(�̄�𝑛
𝑖−1, ⋅))

]

≤ inf
{�̂�𝑛𝑖 }

E

[

𝐹 (�̂�𝑛) + 1
𝑛

𝑛
∑

𝑖=1
𝑅(�̂�𝑛

𝑖 ∥ 𝐾(�̂�𝑛
𝑖−1, ⋅))

]

+ 1
𝑛
,

where �̄�𝑛 is the controlled empirical measure associated with {�̄�𝑛
𝑖 }. Let

𝜆𝑛(𝑑𝑥 × 𝑑𝑦) = 1
𝑛

𝑛
∑

𝑖=1
𝛿�̄�𝑛

𝑖−1
(𝑑𝑥)�̄�𝑛

𝑖 (𝑑𝑦).

By Assumption (A.3), {(�̄�𝑛, 𝜆𝑛)} is tight; see Section 6.10 in [12]. Thus, there is a subsequence, also denoted by 𝑛, such that {(�̄�𝑛, 𝜆𝑛)}
converges along that subsequence, to some limit (�̄�, 𝜆), and it is enough to prove the upper bound (14) for this subsequence. In fact,
taking 𝑛 → ∞, we have

lim inf
𝑛→∞

−1
𝑛
logE𝑥𝑛

[

𝑒−𝑛𝐹 (�̄�𝑛)
]

≥ E
[

𝐹 (�̄�) + 𝑅(𝜆 ∥ �̄� ⊗ 𝐾)
]

≥ inf
𝜈∈(𝑆)

[

𝐹 (𝜈) + inf
𝛾∈𝐴(𝜈)

𝑅(𝛾 ∥ 𝜈 ⊗ 𝐾)
]

= inf
𝜈∈(𝑆)

[𝐹 (𝜈) + 𝐼(𝜈)] . □

6. Laplace principle lower bound

We now proceed to prove the Laplace principle lower bound (15).

Proposition 6.1. Let {𝐿𝑛}𝑛≥0 be the empirical measures defined in (3) and define 𝐼 ∶ (𝑆) → [0,∞] as in (13). Assume (A.1)–(A.2).
Then, for 𝑥 ∈ 𝑆,

lim sup
𝑛→∞

−1
𝑛
logE𝑥

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

≤ inf
𝜈∈(𝑆)

[𝐹 (𝜈) + 𝐼(𝜈)]. (27)

As described in Section 4, in proving Theorem 4.1, the lower bound is where the lack of Condition 2.1 for the MH kernel 𝐾
plays a role. To see why the lack of this transitivity condition becomes an issue, one of the consequences of the condition is that if
𝜈 ∈ (𝑆) is such that 𝐼(𝜈) < ∞, then 𝜈 ≪ 𝜋. This property plays an important role in the proof of the LDP for empirical measures of
a Markov chain in [12]—it is implicitly used to define a sequence of near-optimal controls in the representation (16). Here, because
of the rejection part of the MH kernel, which is the reason Condition 2.1 does not hold, the implication is not true in general. As a
counterexample, consider an 𝑥0 ∈ 𝑆 such that 𝑟(𝑥0) > 0 and take 𝜈 = 𝛿𝑥0 ∈ (𝑆). Then 𝜈 is not absolutely continuous with respect
o 𝜆, and thus not with respect to 𝜋. Consider the transition kernel 𝑞(𝑥, ⋅) = 𝛿𝑥. Then 𝜈 is invariant for 𝑞 and from (17),

𝐼(𝜈) ≤ ∫𝑆
𝑅(𝛿𝑥(⋅) ∥ 𝐾(𝑥, ⋅))𝜈(𝑑𝑥) = 𝑅(𝛿𝑥0 (⋅) ∥ 𝐾(𝑥0, ⋅)).

From (22), the Radon–Nikodym derivative of 𝛿𝑥0 (⋅) with respect to 𝐾(𝑥, ⋅), for 𝑥 = 𝑥0, is given by 𝑓𝑥0 (𝑦) =
1

𝑟(𝑥0)
𝐼{𝑦 = 𝑥0}. It follows

hat the rate function is finite, since

𝐼(𝜈) ≤ 𝑅(𝛿𝑥0 (⋅) ∥ 𝐾(𝑥0, ⋅)) ≤ log 1
𝑟(𝑥0)

< ∞.

We circumvent the problem of not having Condition 2.1 by showing that if 𝜈 ∈ (𝑆) is such that 𝐼(𝜈) < ∞, then there exists
another probability measure 𝜈∗ ∈ (𝑆) that is arbitrarily close to 𝜈, and satisfies 𝜈⋆ ≪ 𝜋 and 𝐼(𝜈∗) ≤ 𝐼(𝜈) + 𝜀.

To prove the existence of such a measure, recall that the decomposition (23) allows us to separate 𝜈 into two parts: one part, 𝜈𝜆,
with a density with respect to 𝜆 (and thus with respect to 𝜋) and one, 𝜈𝑠, that is singular with respect to 𝜆. The idea is to approximate
the latter with measures that are absolutely continuous with respect to 𝜆. This allows us to construct near-optimal controls in the
representation formula, which in turn are used to prove Proposition 6.1.

The following is a brief outline of the argument.
In Lemma 6.2, we characterize the transition kernels 𝑞 that achieve the infimum in (17) for 𝜈𝑠 ∈ (𝑆) such that 𝜈𝑠 ⟂ 𝜆 and

𝐼(𝜈 ) < ∞. Next, in Lemma 6.3, we construct a sequence of random measures {𝜈𝑛} ⊂ (𝑆) that are absolutely continuous with
11

𝑠 𝑠
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𝛼

o

w

respect to 𝜆, 𝜈𝑛𝑠 ⇒ 𝜈𝑠 as 𝑛 → ∞, and lim𝑛→∞ 𝐼(𝜈𝑛𝑠 ) ≤ 𝐼(𝜈𝑠). This construction allows us to show (Lemma 6.4) that for any 𝜈 ∈ (𝑆)
such that 𝐼(𝜈) < ∞, for any 𝜀 > 0, there exists a 𝜈† ∈ (𝑆) that is arbitrarily close to 𝜈, 𝜈† ≪ 𝜆 and 𝐼(𝜈†) ≤ 𝐼(𝜈) + 𝜀. The existence
of such a probability is then used in Lemma 6.5 to prove the existence of a 𝜈∗ ∈ (𝑆) with the desired properties. From there, the
proof of Proposition 6.1 follows largely that of [12].

Lemma 6.2. Let 𝜈𝑠 ∈ (𝑆) be such that 𝜈𝑠 ⟂ 𝜆 and 𝐼(𝜈𝑠) < ∞. Then, 𝑞(𝑥, ⋅) = 𝛿𝑥(⋅) 𝜈𝑠−a.s. is the only transition kernel that satisfies
(18), i.e.,

𝐼(𝜈𝑠) = ∫𝑆
𝑅(𝛿𝑥(⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑠(𝑑𝑥) = ∫𝑆

log 1
𝑟(𝑥)

𝜈𝑠(𝑑𝑥)

Proof. By Lemma 4.2, if 𝐼(𝜈𝑠) < ∞, then the kernels 𝑞(𝑥, ⋅) that satisfy (18) are of the form 𝛼(𝑥, ⋅) + 𝜌(𝑥)𝛿𝑥(⋅), 𝜈𝑠−a.s. with
(𝑥, ⋅) ≪ 𝑎(𝑥, ⋅), 𝜈𝑠−a.s. Moreover, 𝑎(𝑥, ⋅) is in turn absolutely continuous with respect to 𝜆. Observe that since the set 𝑆𝑠 satisfies

𝜆(𝑆𝑠) = 0, then 𝑎(𝑥, 𝑆𝑠) = 0 and therefore 𝛼(𝑥, 𝑆𝑠) = 0. On the other hand, 𝜈𝑠(𝑆𝑠) = 1 by definition, and by invariance the following
must hold:

1 = 𝜈𝑠(𝑆𝑠)

= ∫𝑆
𝑞(𝑥, 𝑆𝑠)𝜈𝑠(𝑑𝑥)

= ∫𝑆

(

𝛼(𝑥, 𝑆𝑠) + 𝜌(𝑥)𝛿𝑥(𝑆𝑠)
)

𝜈𝑠(𝑑𝑥)

= ∫𝑆

(

0 + 𝜌(𝑥)𝛿𝑥(𝑆𝑠)
)

𝜈𝑠(𝑑𝑥)

= ∫𝑆𝑠

𝜌(𝑥)𝜈𝑠(𝑑𝑥).

Given that 𝜌(𝑥) ≤ 1 ∀𝑥 ∈ 𝑆, ∫𝑆𝑠
𝜌(𝑥)𝜈𝑠(𝑑𝑥) = 1 can only hold if 𝜌(𝑥) ≡ 1 𝜈𝑠−a.s. We conclude that the singular measure 𝜈𝑠 admits

only 𝑞(𝑥, ⋅) = 𝛿𝑥(⋅) 𝜈𝑠−a.s. as invariant kernel. This implies that

𝐼(𝜈𝑠) = ∫𝑆
𝑅(𝛿𝑥(⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑠(𝑑𝑥).

Furthermore, by Proposition 4.3, we have

∫𝑆
𝑅(𝛿𝑥(⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑠(𝑑𝑥) = ∫𝑆

log 1
𝑟(𝑥)

𝜈𝑠(𝑑𝑥).

This completes the proof. □

We now move to the construction of a sequence of random measures {𝜈𝑛𝑠 } ⊂ (𝑆) that can be used to approximate 𝜈𝑠 arbitrarily
well and satisfy lim𝑛→∞ 𝐼(𝜈𝑛𝑠 ) ≤ 𝐼(𝜈) a.s., while maintaining absolute continuity with respect to 𝜆. To facilitate this, we define, for
𝜀 > 0 and 𝑥 ∈ 𝑆+,

𝛥𝜀(𝑥) = sup{𝑡 ∶ |log 𝑎(𝑥, 𝑥) − log 𝑎(𝑦, 𝑧)| < 𝜀 and

|log 𝑟(𝑥) − log 𝑟(𝑦)| < 𝜀, ∀𝑦, 𝑧 ∈ 𝐵𝑡(𝑥)}. (28)

Lemma 6.3. Take 𝜈𝑠 ∈ (𝑆) such that 𝜈𝑠 ⟂ 𝜆 and 𝐼(𝜈𝑠) < ∞. Let {𝑌𝑖}∞𝑖=1 be independent and identically distributed according to 𝜈𝑠. For
𝑛 ∈ N, define

𝜚𝑛 = min
{

1
𝑛
, min
1≤𝑖≤𝑛

𝛥 1
𝑛
(𝑌𝑖),

1
2
min
𝑌𝑖≠𝑌𝑗

𝑑𝑆 (𝑌𝑖, 𝑌𝑗 ),
1
2

min
1≤𝑖≤𝑛

𝑑𝑆 (𝜕𝑆, 𝑌𝑖), min
1≤𝑖≤𝑛

𝑎(𝑌𝑖, 𝑌𝑖)
}

. (29)

Let 𝑉𝑛 = 𝜆(𝐵𝜚𝑛 (0)), the (Lebesgue) volume of the balls of radius 𝜚𝑛, and define the sequence of random measures {𝜈𝑛𝑠 }𝑛∈N ⊂ (𝑆) by

𝜈𝑛𝑠 (𝑑𝑥) ∶=
1
𝑛

1
𝑉𝑛

𝑛
∑

𝑖=1
𝐼{𝑥 ∈ 𝐵𝜚𝑛 (𝑌𝑖)}𝜆(𝑑𝑥). (30)

This sequence satisfies the following properties:

(a) 𝜈𝑛𝑠 ≪ 𝜆 for all 𝑛 ∈ N,
(b) 𝜈𝑛𝑠 ⇒ 𝜈𝑠 a.s.,
(c) There is an 𝑛0 ∈ N such that, for all 𝑛 > 𝑛0, 𝐼(𝜈𝑛𝑠 ) < ∞ a.s.,
(d) lim𝑛→∞ 𝐼(𝜈𝑛𝑠 ) ≤ 𝐼(𝜈𝑠) a.s.

Before we embark on the proof, some comments on the construction. First, because we consider 𝜈𝑠 such that 𝐼(𝜈𝑠) < ∞, 𝜈𝑠 can
nly put mass on points in 𝑆+: if 𝜈𝑠(𝑥) > 0 for some 𝑥 such that 𝜋(𝑥) = 0, then 𝑟(𝑥) = 0 (see Remark 3.1). By Lemma 4.2, the

corresponding transition kernel is of the form 𝑞(𝑥, ⋅) = 𝛼(𝑥, ⋅), where 𝛼(𝑥, ⋅) ≪ 𝑎(𝑥, ⋅). This is not compatible with 𝜈𝑠 being singular
12

ith respect to 𝜆; see also Lemma 6.2. Thus, the 𝑌𝑖s used in the construction are in 𝑆+ 𝜈𝑠-a.s.
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Next, we verify that for any fixed 𝑛 ∈ N, the radius 𝜚𝑛 of the 𝐵𝜚𝑛 (𝑌𝑖)-balls is well-defined, i.e., 𝜚𝑛 > 0 𝜈𝑠-a.s. Note that if 𝜈𝑠 = 𝛿𝑥
for some 𝑥 ∈ 𝑆+, then 𝜚𝑛 becomes

𝜚𝑛 = min
{

1
𝑛
, 𝛥 1

𝑛
(𝑥), 1

2
𝑑𝑆 (𝜕𝑆, 𝑥), 𝑎(𝑥, 𝑥)

}

.

For a generic 𝜈𝑠 such that 𝐼(𝜈𝑠) < ∞, we have for 𝑌𝑖 ∼ 𝜈𝑠,

E
[

log 1
𝑟(𝑌𝑖)

]

= ∫𝑆
log 1

𝑟(𝑥)
𝜈𝑠(𝑑𝑥) = 𝐼(𝜈𝑠) < ∞.

It follows that 𝑟(𝑌𝑖) > 0 w.p. 1. From Assumption (A.2) we have 𝑎(𝑌𝑖, 𝑌𝑖) = 𝐽 (𝑌𝑖|𝑌𝑖) > 0. Since the support of 𝜈𝑠 is in 𝑆+ (an open
subset of 𝑆; see Assumption (A.1)), and 𝑎(𝑌𝑖, 𝑌𝑖) and 𝑟(𝑌𝑖) are both strictly positive 𝜈𝑠-a.s., the continuity of 𝑟(⋅) and 𝑎(⋅, ⋅) on 𝑆 and
𝑆+ × 𝑆, respectively, ensures that 𝛥 1

𝑛
(𝑌𝑖) > 0, 𝑖 = 1,… , 𝑛. Moreover, 𝑑𝑆 (𝑌𝑖, 𝑌𝑗 ) > 0 for 𝑌𝑖 ≠ 𝑌𝑗 by definition, and 𝑑𝑆 (𝜕𝑆, 𝑌𝑖) > 0 𝜈𝑠-a.s.

since the support of 𝜈𝑠 is a subset of 𝑆+, which is an open subset of 𝑆. Combined, these show that 𝜚𝑛 > 0 𝜈𝑠-a.s.

Proof of Lemma 6.3. Part (a) follows directly from the definition (30) of 𝜈𝑛𝑠 . In particular, since 𝜆 and 𝜋 are equivalent measures
(Assumption (A.1)), then 𝜈𝑛𝑠 ≪ 𝜋.

To prove (b), i.e. that the sequence {𝜈𝑛𝑠 } converges weakly to 𝜈𝑠 a.s., we show that for any bounded and Lipschitz continuous
function 𝑓 it holds that ∫𝑆 𝑓𝑑𝜈𝑛𝑠 → ∫𝑆 𝑓𝑑𝜈𝑠 a.s. An application of the Portmanteau theorem then gives the claim.

To this end, let 𝑓 ∈ 𝐶𝑏(𝑆) be Lipschitz continuous and denote its Lipschitz constant by 𝐿𝑓 < ∞. For 𝑛 ∈ N, we have

∫𝑆
𝑓 (𝑥)𝜈𝑛𝑠 (𝑑𝑥) =

1
𝑛

1
𝑉𝑛

𝑛
∑

𝑖=1
∫𝐵𝜚𝑛 (𝑌𝑖)

𝑓 (𝑥)𝜆(𝑑𝑥). (31)

The Lipschitz continuity of 𝑓 implies that for all 𝑥 ∈ 𝐵𝜚𝑛 (𝑌𝑖) and for all 𝑖 ∈ {1,… , 𝑛},

𝑓 (𝑌𝑖) − 𝐿𝑓 ⋅ 𝜚𝑛 ≤ 𝑓 (𝑥) ≤ 𝑓 (𝑌𝑖) + 𝐿𝑓 ⋅ 𝜚𝑛.

By integrating over 𝐵𝜚𝑛 (𝑌𝑖) and dividing by 𝑉𝑛, it follows that

𝑓 (𝑌𝑖) − 𝐿𝑓 ⋅ 𝜚𝑛 ≤ 1
𝑉𝑛 ∫𝐵𝜚𝑛 (𝑌𝑖)

𝑓 (𝑥)𝜆(𝑑𝑥) ≤ 𝑓 (𝑌𝑖) + 𝐿𝑓 ⋅ 𝜚𝑛, 𝑖 = 1,… , 𝑛.

This implies the following bounds on the integral (31):

1
𝑛

𝑛
∑

𝑖=1
𝑓 (𝑌𝑖) − 𝐿𝑓 ⋅ 𝜚𝑛 ≤ ∫𝑆

𝑓 (𝑥)𝜈𝑛𝑠 (𝑑𝑥) ≤
1
𝑛

𝑛
∑

𝑖=1
𝑓 (𝑌𝑖) + 𝐿𝑓 ⋅ 𝜚𝑛.

By the strong law of large numbers, 1
𝑛
∑𝑛

𝑖=1 𝛿𝑌𝑖 (⋅) ⇒ 𝜈𝑠(⋅) a.s., and it follows that 1
𝑛
∑𝑛

𝑖=1 𝑓 (𝑌𝑖) → ∫𝑆 𝑓𝑑𝜈𝑠 a.s. Moreover, by construction
𝜚𝑛 → 0 as 𝑛 → ∞, which implies 𝐿𝑓 ⋅ 𝜚𝑛 → 0. The squeeze theorem now yields the desired result.

We now move to part (c). To show that 𝐼(𝜈𝑛𝑠 ) is finite for large enough 𝑛 ∈ N, we first note that by construction, 𝑉𝑛 → 0 as
𝑛 → ∞. Therefore, there is an 𝑛0 ∈ N such that 𝑉𝑛 < 1 for all 𝑛 > 𝑛0. Henceforth, we only consider such 𝑛.

Recall the characterization (17) of the rate function,

𝐼(𝜈𝑛𝑠 ) = inf
𝑞 ∫𝑆

𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑛𝑠 (𝑑𝑥),

where the infimum is taken over all the transition kernels 𝑞(𝑥, 𝑑𝑦) that are 𝜈𝑛𝑠−invariant. We will now construct such a transition
kernel 𝑞𝑛(𝑥, 𝑑𝑦), for which it also holds that

∫𝑆
𝑅(𝑞𝑛(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑛𝑠 (𝑑𝑥) < ∞.

This in turn implies that 𝐼(𝜈𝑛𝑠 ) < ∞. The collection of transition kernels {𝑞𝑛} will also be used to show part (d).
We begin by defining 𝑁𝑛(𝑥) as the number of 𝐵𝜚𝑛 (𝑌𝑖), 𝑖 = 1,… , 𝑛, that 𝑥 ∈ 𝑆 belongs to,

𝑁𝑛(𝑥) =
𝑛
∑

𝑖=1
𝐼{𝑥 ∈ 𝐵𝜚𝑛 (𝑌𝑖)}.

Next, we define 𝑞𝑛 by

𝑞𝑛(𝑥, 𝑑𝑦) = 1
𝑁𝑛(𝑥)

𝑛
∑

𝑖=1
𝐼{𝑥 ∈ 𝐵𝜚𝑛 (𝑌𝑖)}𝐼{𝑦 ∈ 𝐵𝜚𝑛 (𝑌𝑖)}𝑑𝑦 +

(

1 − 𝑉𝑛
)

𝛿𝑥(𝑑𝑦),

for 𝑥 such that 𝑁𝑛(𝑥) ≥ 1, and otherwise 𝑞𝑛(𝑥, 𝑑𝑦) = 𝛿𝑥(𝑑𝑦). Then, for all 𝑥 ∈ 𝑆, 𝑞𝑛(𝑥, ⋅) is a transition probability: if 𝑁𝑛(𝑥) ≥ 1,

𝑞𝑛(𝑥, 𝑆) = 1
𝑁𝑛(𝑥)

𝑛
∑

𝑖=1
𝐼{𝑥 ∈ 𝐵𝜚𝑛 (𝑌𝑖)}𝑉𝑛 +

(

1 − 𝑉𝑛
)

𝛿𝑥(𝑆) = 1,

𝑛 𝑛 𝑛
13

and, for 𝑁 (𝑥) = 0, it holds immediately that 𝑞 (𝑥, 𝑆) = 1. Moreover, due to the choice of 𝑛 > 𝑛0 𝑞 (𝑥,𝐴) ∈ [0, 1], for every 𝐴 ∈ (𝑆).
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T

To show that 𝑞𝑛(𝑥, ⋅) is also invariant for 𝜈𝑛𝑠 , consider a set 𝐴 ∈ (𝑆). We have

𝜈𝑛𝑠 (𝐴) =
1
𝑛

1
𝑉𝑛

𝑛
∑

𝑖=1
∫𝐴

𝐼{𝑥 ∈ 𝐵𝜚𝑛 (𝑌𝑖)}𝜆(𝑑𝑥) =
1
𝑛

1
𝑉𝑛

𝑛
∑

𝑖=1
𝜆(𝐴 ∩ 𝐵𝜚𝑛 (𝑌𝑖)).

ake 𝑥 ∈ 𝑆. If 𝑁𝑛(𝑥) ≥ 1,

𝑞𝑛(𝑥,𝐴) = 1
𝑁𝑛(𝑥)

𝑛
∑

𝑖=1
𝐼{𝑥 ∈ 𝐵𝜚𝑛 (𝑌𝑖)}∫𝐴

𝐼{𝑦 ∈ 𝐵𝜚𝑛 (𝑌𝑖)}𝜆(𝑑𝑦) +
(

1 − 𝑉𝑛
)

𝛿𝑥(𝐴)

= 1
𝑁𝑛(𝑥)

𝑛
∑

𝑖=1
𝐼{𝑥 ∈ 𝐵𝜚𝑛 (𝑌𝑖)}𝜆(𝐴 ∩ 𝐵𝜚𝑛 (𝑌𝑖)) +

(

1 − 𝑉𝑛
)

𝛿𝑥(𝐴).

From this it follows that

∫𝑆
𝑞𝑛(𝑥,𝐴)𝑑𝜈𝑛𝑠 (𝑑𝑥) =

1
𝑛

1
𝑉𝑛

𝑛
∑

𝑖=1
∫𝐵𝜚𝑛 (𝑌𝑖)

(

1
𝑁𝑛(𝑥)

𝑛
∑

𝑗=1
𝐼{𝑥 ∈ 𝐵𝜚𝑛 (𝑌𝑗 )}𝜆(𝐴 ∩ 𝐵𝜚𝑛 (𝑌𝑗 )) +

(

1 − 𝑉𝑛
)

𝛿𝑥(𝐴)

)

𝜆(𝑑𝑥)

= 1
𝑛

1
𝑉𝑛

𝑛
∑

𝑖=1

(

𝑉𝑛𝜆(𝐴 ∩ 𝐵𝜚𝑛 (𝑌𝑖)) + (1 − 𝑉𝑛)𝜆(𝐴 ∩ 𝐵𝜚𝑛 (𝑌𝑖))
)

= 1
𝑛

1
𝑉𝑛

𝑛
∑

𝑖=1
𝜆(𝐴 ∩ 𝐵𝜚𝑛 (𝑌𝑖)) = 𝜈𝑛𝑠 (𝐴),

where in the second equality we use that, due to the definition of 𝜚𝑛, there are no overlaps between the 𝐵𝜚𝑛 (𝑌𝑖)-balls. If instead
𝑁𝑛(𝑥) = 0, then 𝑞𝑛(𝑥,𝐴) = 𝛿𝑥(𝐴), and we have

∫𝑆
𝛿𝑥(𝐴)𝜈𝑛𝑠 (𝑑𝑥) = ∫𝐴

𝜈𝑛𝑠 (𝑑𝑥) = 𝜈𝑛𝑠 (𝐴).

Combined with the computation for 𝑁𝑛(𝑥) ≥ 1, this proves the invariance.
From (17), 𝐼(𝜈𝑛𝑠 ) is defined in terms of the infimum over the set of 𝜈𝑛𝑠 -invariant kernels (17). Therefore,

𝐼(𝜈𝑛𝑠 ) ≤ ∫𝑆
𝑅(𝑞𝑛(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑛𝑠 (𝑑𝑥)

= ∫{𝑥∶𝑁𝑛(𝑥)=0}
𝑅(𝑞𝑛(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑛𝑠 (𝑑𝑥) + ∫{𝑥∶𝑁𝑛(𝑥)≥1}

𝑅(𝑞𝑛(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑛𝑠 (𝑑𝑥).

For the first integral in the last display, since 𝜈𝑛𝑠 has no mass on {𝑥 ∈ 𝑆 ∶ 𝑁𝑛(𝑥) = 0}, this integral is zero. For the second integral,
we have

∫{𝑥∶𝑁𝑛(𝑥)≥1}
𝑅(𝑞𝑛(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑛𝑠 (𝑑𝑥)

= 1
𝑛

1
𝑉𝑛

𝑛
∑

𝑖=1
∫𝐵𝜚𝑛 (𝑌𝑖)

(

∫𝐵𝜚𝑛 (𝑌𝑖)
log 1

𝑎(𝑥, 𝑦)
𝜆(𝑑𝑦) + (1 − 𝑉𝑛) ⋅ log

1 − 𝑉𝑛
𝑟(𝑥)

)

𝜆(𝑑𝑥)

= 1
𝑛

1
𝑉𝑛

𝑛
∑

𝑖=1

(

∬(

𝐵𝜚𝑛 (𝑌𝑖)
)2
log 1

𝑎(𝑥, 𝑦)
𝜆(𝑑𝑦)𝜆(𝑑𝑥) + (1 − 𝑉𝑛)∫𝐵𝜚𝑛 (𝑌𝑖)

log
1 − 𝑉𝑛
𝑟(𝑥)

𝜆(𝑑𝑥)

)

Recalling that we only consider 𝑛 > 𝑛0, so that 𝑉𝑛 < 1, we obtain the upper bound

∫{𝑥∶𝑁𝑛(𝑥)≥1}
𝑅(𝑞𝑛(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈𝑛𝑠 (𝑑𝑥)

≤ 1
𝑛

1
𝑉𝑛

𝑛
∑

𝑖=1

(

∬(

𝐵𝜚𝑛 (𝑌𝑖)
)2
log 1

𝑎(𝑥, 𝑦)
𝜆(𝑑𝑦)𝜆(𝑑𝑥) + ∫𝐵𝜚𝑛 (𝑌𝑖)

log 1
𝑟(𝑥)

𝜆(𝑑𝑥)

)

. (32)

From the definition of 𝜚𝑛 (see (29)), it holds that 𝜚𝑛 ≤ 𝑎(𝑌𝑖, 𝑌𝑖) and 𝜚𝑛 ≤ 𝛥 1
𝑛
(𝑌𝑖) for all 𝑖 = 1,… , 𝑛. Moreover, the definition of 𝛥 1

𝑛

implies that, for a fixed 𝑖 = 1,… , 𝑛 and (𝑥, 𝑦) ∈
(

𝐵𝜚𝑛 (𝑌𝑖)
)2,

log 1
𝑎(𝑥, 𝑦)

= − log 𝑎(𝑥, 𝑦) + log 𝑎(𝑌𝑖, 𝑌𝑖) − log 𝑎(𝑌𝑖, 𝑌𝑖) < − log 𝑎(𝑌𝑖, 𝑌𝑖) +
1
𝑛
≤ − log 𝜚𝑛 + 1

𝑛
= − log

(

𝐶𝑑𝑉
1
𝑑

𝑛

)

+ 1
𝑛
, (33)

for some constant 𝐶𝑑 that depends on the dimension 𝑑 of the space 𝑆 ⊆ R𝑑 . Similarly, for a fixed 𝑖 = 1,… , 𝑛 and 𝑥 ∈ 𝐵𝜚𝑛 (𝑌𝑖),

log 1
𝑟(𝑥)

= − log 𝑟(𝑥) ≤ − log 𝑟(𝑌𝑖) +
1
𝑛
. (34)

Using the inequalities (33) and (34) in (32) gives the upper bound

𝐼(𝜈𝑛𝑠 ) ≤
1 1

𝑛
∑

(

𝑉 2
𝑛

(

− log
(

𝐶𝑑𝑉
1
𝑑

𝑛

)

+ 1
)

+ 𝑉𝑛
(

− log 𝑟(𝑌𝑖) +
1)

)

14

𝑛 𝑉𝑛 𝑖=1 𝑛 𝑛
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o

= −𝑉𝑛 log
(

𝐶𝑑𝑉
1
𝑑

𝑛

)

+
𝑉𝑛
𝑛

+ 1
𝑛

𝑛
∑

𝑖=1
log 1

𝑟(𝑌𝑖)
+ 1

𝑛
,

whenever 𝑛 > 𝑛0. Since 𝑉𝑛 → 0 by construction, we conclude that

lim
𝑛→∞

𝐼(𝜈𝑛𝑠 ) ≤ lim
𝑛→∞

1
𝑛

𝑛
∑

𝑖=1
log 1

𝑟(𝑌𝑖)
= ∫𝑆

log 1
𝑟(𝑥)

𝜈𝑠(𝑑𝑥) = 𝐼(𝜈𝑠) a.s.,

where the second-to-last equality follows from the strong law of large numbers, and the last equality is motivated by Lemma 6.2. □

Lemma 6.4. Let 𝜈 ∈ (𝑆) be such that 𝐼(𝜈) < ∞. Take 𝜀 > 0 and 𝛿 > 0. There exists a probability measure 𝜈† ∈ (𝑆) absolutely
continuous with respect to the Lebesgue measure and such that

𝑑𝐿𝑃 (𝜈†, 𝜈) <
𝛿
2

and 𝐼(𝜈†) < 𝐼(𝜈) + 𝜀.

Proof. First, if 𝜈 ≪ 𝜆 there is nothing to prove. Therefore, suppose this does not hold and the decomposition (23) is non-trivial.
Sample {𝑌𝑖}∞𝑖=1 i.i.d. 𝜈𝑠 and define the sequence of random probability measures {𝜈𝑛𝑠 }𝑛∈N as in the construction in Lemma 6.3.

Motivated by the decomposition (23) for 𝜈, we define a new sequence of random probability measures {𝜈𝑛}𝑛∈N by

𝜈𝑛 = (1 − 𝑝) ⋅ 𝜈𝜆 + 𝑝 ⋅ 𝜈𝑛𝑠 ,

where 𝑝 ∈ [0, 1] is the same as in (23), again suppressing in the notation that 𝑝 depends on 𝜈. By part (a) of Lemma 6.3, 𝜈𝑛𝑠 ≪ 𝜆 for
all 𝑛. It follows that 𝜈𝑛 ≪ 𝜆. Moreover, from part (b) of the same Lemma, 𝜈𝑛 converges weakly to 𝜈 𝜈𝑠-a.s. Therefore, for any 𝜔 ∈ 𝛺
utside of a 𝜈𝑠-null set, there is an 𝑁𝛿 = 𝑁𝛿(𝜔) ∈ N such that

𝑑𝐿𝑃 (𝜈𝑛(𝜔), 𝜈) <
𝛿
2
, ∀𝑛 ≥ 𝑁𝛿(𝜔).

Consider now 𝐼(𝜈𝑛). By convexity,

𝐼(𝜈𝑛) ≤ (1 − 𝑝) ⋅ 𝐼(𝜈𝜆) + 𝑝 ⋅ 𝐼(𝜈𝑛𝑠 ),

for which the right-hand-side is finite w.p. 1 whenever 𝑛 ≥ 𝑛0. Combined with part (d) of Lemma 6.3, this yields that, 𝜈𝑠-a.s.,

lim
𝑛→∞

𝐼(𝜈𝑛) ≤ (1 − 𝑝)𝐼(𝜈𝜆) + 𝑝 ⋅ 𝐼(𝜈𝑠) = 𝐼(𝜈).

Similar to before, this implies that for any 𝜔 ∈ 𝛺 outside of a 𝜈𝑠-null set, there is a 𝑁𝜀 = 𝑁𝜀(𝜔) ∈ N, such that

𝐼(𝜈𝑛(𝜔)) < 𝐼(𝜈) + 𝜀, ∀𝑛 ≥ 𝑁𝜀(𝜔).

As a consequence, for any 𝜔 ∈ 𝛺 outside of a null set, we can define

𝑁(𝜔) = max{𝑁𝛿(𝜔), 𝑁𝜀(𝜔), 𝑛0}.

Then, for 𝑛 ≥ 𝑁(𝜔), 𝜈𝑛(𝜔) ≪ 𝜆, 𝑑𝐿𝑃 (𝜈𝑛(𝜔), 𝜈) < 𝛿∕2, and 𝐼(𝜈𝑛(𝜔)) < 𝐼(𝜈) + 𝜀. Since this is outside a 𝜈𝑠-null set, it has positive
probability also under 𝜈. This proves the existence of a measure 𝜈† with the claimed properties. □

We emphasize that the randomness of the sequence {𝜈𝑛} is entirely due to the sequence of random variables {𝑌𝑖}∞𝑖=1. Thus, the set
of outcomes of {𝑌𝑖} that lead to a measure 𝜈𝑛 with the desired properties is a set with strictly positive probability. This guarantees
the existence of a measure 𝜈† with the claimed properties. The following result is a version of Lemma 6.17 in [12].

Lemma 6.5. Let 𝜈 ∈ (𝑆) satisfy 𝐼(𝜈) < ∞. Under (A.1)–(A.2), for given 𝜀 > 0 and 𝛿 > 0, there exists 𝜈∗ ∈ (𝑆) with the following
properties:

(a) 𝑑𝐿𝑃 (𝜈∗, 𝜈) < 𝛿;
(b) 𝜈∗ ≪ 𝜋 and 𝜋 ≪ 𝜈∗;
(c) there exists a transition probability function 𝑞∗(𝑥, 𝑑𝑦) on 𝑆 such that 𝜈∗ is an invariant measure of 𝑞∗(𝑥, 𝑑𝑦), the associated Markov

chain is ergodic, and

𝐼(𝜈∗) < 𝐼(𝜈) + 𝜀. (35)

Proof. To prove (a), by Lemma 6.4, there exists a measure 𝜈† that satisfies

𝑑𝐿𝑃 (𝜈†, 𝜈) <
𝛿
2

and 𝐼(𝜈†) < 𝐼(𝜈) + 𝜀 (36)

Define 𝜈∗ by

𝜈∗ =
(

1 − 𝛿
4

)

𝜈† + 𝛿
4
𝜋. (37)

Then,

𝑑𝐿𝑃 (𝜈∗, 𝜈†) ≤ ‖𝜈∗ − 𝜈†‖𝑇𝑉 =
‖

‖

‖

‖

(

1 − 𝛿 ) 𝜈† + 𝛿 𝜋 − 𝜈†
‖

‖

‖

‖

= 𝛿
‖𝜋 − 𝜈†‖𝑇𝑉 ≤ 𝛿 .
15

‖

4 4
‖𝑇𝑉

4 2
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f

Combining this with (36) and the triangle inequality now yields the desired upper bound on 𝑑𝐿𝑃 (𝜈∗, 𝜈),

𝑑𝐿𝑃 (𝜈∗, 𝜈) ≤ 𝑑𝐿𝑃 (𝜈†, 𝜈) + 𝑑𝐿𝑃 (𝜈∗, 𝜈†) < 𝛿.

(b). The first part of follows from 𝜈† ≪ 𝜆 (see Lemma 6.4) and the fact that, by Assumption (A.1), 𝜆 ≪ 𝜋. For the second part,
for any 𝐴 ∈ (𝑆), 𝜈∗(𝐴) ≥ 𝛿

4𝜋(𝐴) by construction. Thus, 𝜋 ≪ 𝜈∗.
We now prove part (c), following the steps in [12, Lemma 6.17]. Since 𝐼(𝜈†) < ∞, by Lemma 6.8(b) in [12], we can choose a

transition kernel 𝑞(𝑥, 𝑑𝑦) with invariant measure 𝜈† and

∫𝑆
𝑅(𝑞(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈†(𝑑𝑥) = 𝐼(𝜈†).

Define the 𝛾†, 𝜃 and 𝛾∗ in (𝑆2) by,

𝛾† = 𝜈† ⊗ 𝑞,

𝜃 = 𝜋 ⊗ 𝐾,

and

𝛾∗ =
(

1 − 𝛿
4

)

𝛾† + 𝛿
4
𝜃.

oth marginals of 𝛾† equal 𝜈†. Similarly, both marginals of 𝜃 equal 𝜋. From (37) it then follows that both marginals of 𝛾∗ equal 𝜈∗.
From Lemma 6.8(a) in [12], there exists a transition kernel 𝑞∗(𝑥, 𝑑𝑦) that has 𝜈∗ as invariant probability distribution and such that
𝛾∗ = 𝜈∗ ⊗ 𝑞∗. Using the convexity of relative entropy, the property 𝑅(𝛼 ∥ 𝛼) = 0 and (36), we obtain the upper bound (35):

𝐼(𝜈∗) ≤ ∫𝑆
𝑅(𝑞∗(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈∗(𝑑𝑥)

= 𝑅(𝛾∗ ∥ 𝜈∗ ⊗𝐾)

= 𝑅
((

1 − 𝛿
4

)

𝜈† ⊗ 𝑞 + 𝛿
4
𝜋 ⊗ 𝐾‖

‖

‖

(

1 − 𝛿
4

)

𝜈† ⊗𝐾 + 𝛿
4
𝜋 ⊗ 𝐾

)

=
(

1 − 𝛿
4

)

𝑅(𝜈† ⊗ 𝑞 ∥ 𝜈† ⊗𝐾) + 𝛿
4
𝑅(𝜋 ⊗ 𝐾 ∥ 𝜋 ⊗ 𝐾)

=
(

1 − 𝛿
4

)

𝐼(𝜈†)

< 𝐼(𝜈) + 𝜀.

It remains to show that the Markov process associated with 𝑞∗ is ergodic. Let 𝑓 = 𝑑𝜈∗

𝑑𝜋 be the Radon–Nikodym derivative of 𝜈∗

with respect to 𝜋, which is well-defined by part (b). Since 𝜈∗(𝐴) ≥ 𝛿
4𝜋(𝐴) for all 𝐴 ∈ (𝑆), for all 𝑥 ∈ 𝑆, 𝑓 (𝑥) ≥ 𝛿

4 . We observe that
or any 𝐴,𝐵 ∈ (𝑆),

𝛾∗(𝐴 × 𝐵) = ∫𝐴
𝑞∗(𝑥, 𝐵)𝜈∗(𝑑𝑥) = ∫𝐴

𝑞∗(𝑥, 𝐵)𝑓 (𝑥)𝜋(𝑑𝑥),

and, from the definition of 𝛾∗,

𝛾∗(𝐴 × 𝐵) ≥ 𝛿
4
𝜃(𝐴 × 𝐵) = 𝛿

4 ∫𝐴
𝐾(𝑥, 𝐵)𝜋(𝑑𝑥).

It follows that

𝑞∗(𝑥, 𝐵) ≥ 𝛿
4𝑓 (𝑥)

𝐾(𝑥, 𝐵), ∀𝑥, 𝜋 − a.s.,

for all 𝐵 ∈ (𝑆). Thus, 𝜋-a.s. for 𝑥 ∈ 𝑆, 𝐾(𝑥, ⋅) ≪ 𝑞∗(𝑥, ⋅). To show absolute continuity in the reverse direction, note that from

∫𝑆
𝑅(𝑞∗(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈∗(𝑑𝑥) < ∞,

it follows that 𝑅(𝑞∗(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅)) < ∞. Thus, 𝑞∗(𝑥, ⋅) ≪ 𝐾(𝑥, ⋅), 𝜈∗-a.s. As 𝜈∗ and 𝜋 are equivalent measures, we obtain that 𝑞∗(𝑥, ⋅)
and 𝐾(𝑥, ⋅) are equivalent 𝜋-a.s. This means that there exists a Borel set 𝐶 ∈ (𝑆) such that 𝜋(𝐶) = 0 = 𝜈∗(𝐶), and 𝑞∗(𝑥, ⋅) and 𝐾(𝑥, ⋅)
are equivalent for all 𝑥 in the complement of 𝐶. If we redefine 𝑞∗(𝑥, ⋅) = 𝐾(𝑥, ⋅) for all 𝑥 ∈ 𝐶, we obtain the equivalence between
𝑞∗(𝑥, 𝑑𝑦) and 𝐾(𝑥, ⋅) for all 𝑥 ∈ 𝑆. Besides, being 𝜈∗(𝐶) = 0, the newly defined 𝑞∗(𝑥, ⋅) still has 𝜈∗ as invariant measure. To show that
𝑞∗(𝑥, ⋅) is ergodic, recall that in Remark 3.2 we proved that there are no disjoint Borel sets 𝐴1, 𝐴2 ∈ (𝑆) such that

𝐾(𝑥,𝐴1) = 1 ∀𝑥 ∈ 𝐴1 and 𝐾(𝑦, 𝐴2) = 1 ∀𝑦 ∈ 𝐴2.

Because 𝑞∗(𝑥, ⋅) and 𝐾(𝑥, ⋅) are equivalent for all 𝑥 ∈ 𝑆, it follows that also 𝑞∗(𝑥, ⋅) satisfies the property that there do not exist
disjoint 𝐴1, 𝐴2 ∈ (𝑆) for which

𝑞∗(𝑥,𝐴1) = 1 ∀𝑥 ∈ 𝐴1 and 𝑞∗(𝑦, 𝐴2) = 1 ∀𝑦 ∈ 𝐴2,

meaning that 𝑞∗(𝑥, ⋅) is indecomposable. Therefore, by Theorem 7.16 in [10], 𝜈∗ is the unique invariant distribution for 𝑞∗(𝑥, 𝑑𝑦)
∗ ∗
16

and the Markov chain associated with 𝜈 and 𝑞 (𝑥, 𝑑𝑦) is ergodic. □
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We are ready to prove Proposition 6.1, the Laplace principle lower bound. The following proof is mostly based on the proof of
roposition 6.15 in [12], with minor changes due to the lack of Condition 2.1. The main work has been done in Lemmas 6.2–6.5,
nd most of the proof from [12] now goes through, with some minor modifications to rely on those results rather than Condition 2.1.
e include the full argument for self-containment and convenience for the reader.

roof of Proposition 6.1. To prove the Laplace lower bound (27), it is sufficient to consider only bounded Lipschitz continuous
unctions 𝐹 (see Corollary 1.10 in [12]). Since we have endowed (𝑆) with the Lévy–Prohorov metric 𝑑𝐿𝑃 , a function 𝐹 ∈ 𝐶𝑏((𝑆))

is Lipschitz if

sup
𝜈1≠𝜈2

|

|

𝐹 (𝜈1) − 𝐹 (𝜈2)||
𝑑𝐿𝑃 (𝜈1, 𝜈2)

< ∞.

Recall that {𝑋𝑖}𝑖≥0 denotes the Metropolis–Hastings chain, as described in Section 2.3, and {𝐿𝑛}𝑛 the associated sequence of
mpirical measures. We now construct a nearly optimal sequence of controls in the variational representation (16),

−1
𝑛
logE𝑥

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

= inf
{�̄�𝑛𝑖 }

E𝑥

[

𝐹 (�̄�𝑛) + 1
𝑛

𝑛
∑

𝑖=1
𝑅(�̄�𝑛

𝑖 ∥ 𝐾(�̄�𝑛
𝑖−1, ⋅))

]

. (38)

Let 𝜀 > 0 be given and choose 𝜈 ∈ (𝑆) such that

𝐹 (𝜈) + 𝐼(𝜈) ≤ inf
𝜇∈(𝑆)

[𝐹 (𝜇) + 𝐼(𝜇)] + 𝜀 < ∞ (39)

Since 𝐹 is continuous, there exists 𝛿 > 0 such that 𝑑𝐿𝑃 (𝜇, 𝜈) < 𝛿 implies |𝐹 (𝜇) − 𝐹 (𝜈)| < 𝜀. In Lemma 6.5 it is shown that, for any
such pair 𝛿, 𝜀, there exists a probability measure 𝜈∗ ∈ (𝑆) and a transition probability 𝑞∗(𝑥, 𝑑𝑦) such that 𝜈∗ is an invariant measure
for 𝑞∗(𝑥, 𝑑𝑦), the Markov chain with initial distribution 𝜈∗ and transition probability 𝑞∗(𝑥, 𝑑𝑦) is ergodic, and

𝐼(𝜈∗) ≤ ∫𝑆
𝑅(𝑞∗(𝑥, ⋅) ∥ 𝐾(𝑥, ⋅))𝜈∗(𝑑𝑥) < 𝐼(𝜈) + 𝜀 < ∞. (40)

Moreover, Part (a) of the Lemma ensures 𝑑𝐿𝑃 (𝜈∗, 𝜈) < 𝛿, which then implies

𝐹 (𝜈∗) < 𝐹 (𝜈) + 𝜀. (41)

Thus, 𝜈∗ is such that

𝐹 (𝜈∗) + 𝐼(𝜈∗) < 𝐹 (𝜈) + 𝐼(𝜈) + 2𝜀.

The transition probability function 𝑞∗ associated with 𝜈∗ is now used to define the controls,

�̄�𝑛
𝑖 (𝑑𝑦) = 𝑞∗(�̄�𝑛

𝑖−1, 𝑑𝑦), 𝑖 = 1,… , 𝑛. (42)

With the inequalities (40)–(41) established, and the choice (42) for the controls, we can proceed with the same arguments as in the
proof of Proposition 6.15 in [12].

With the choice (42), the running costs for the controlled chain �̄�𝑛 are

1
𝑛

𝑛
∑

𝑖=1
𝑅(�̄�𝑛

𝑖 (⋅) ∥ 𝐾(�̄�𝑛
𝑖−1, ⋅)) =

1
𝑛

𝑛−1
∑

𝑖=0
𝑅(𝑞∗(�̄�𝑛

𝑖 , ⋅) ∥ 𝐾(�̄�𝑛
𝑖 , ⋅)).

The �̄�𝑛
𝑖 s only give the conditional distributions for �̄�𝑛

𝑖 for 𝑖 = 1,… , 𝑛. For the distribution of the initial point �̄�𝑛
0 , consider two

choices: 𝛿𝑥 and 𝜈∗. Let P𝑥 and P∗ denote the corresponding probability measures and let E𝑥 and E∗ be the associated expectation,
respectively. Define 𝐷𝑛 and 𝐷𝑛

𝑥 as the expected difference between the empirical average of the relative entropy between 𝑞∗ and 𝐾,
nd its mean, under P∗ and P𝑥, respectively,

𝐷𝑛 = E∗

[

|

|

|

|

|

|

1
𝑛

𝑛−1
∑

𝑖=0
𝑅(𝑞∗(�̄�𝑛

𝑖 , ⋅) ∥ 𝐾(�̄�𝑛
𝑖 , ⋅)) − ∫𝑆

𝑅(𝑞∗(𝜉, ⋅) ∥ 𝐾(𝜉, ⋅))𝜈∗(𝑑𝜉)
|

|

|

|

|

|

]

,

and

𝐷𝑛
𝑥 = E𝑥

[

|

|

|

|

|

|

1
𝑛

𝑛−1
∑

𝑖=0
𝑅(𝑞∗(�̄�𝑛

𝑖 , ⋅) ∥ 𝐾(�̄�𝑛
𝑖 , ⋅)) − ∫𝑆

𝑅(𝑞∗(𝜉, ⋅) ∥ 𝐾(𝜉, ⋅))𝜈∗(𝑑𝜉)
|

|

|

|

|

|

]

.

From the definition of the controls (42), and since 𝜈∗ is an invariant measure of 𝑞∗(𝑥, 𝑑𝑦), all terms of the controlled process
{�̄�𝑛

𝑖 }
𝑛
𝑖=0 with 𝜈∗ as initial distribution are distributed according to 𝜈∗. By the non-negativity of the relative entropy and 𝑅(⋅ ∥ ⋅) and

40), we obtain

E∗ [
|

|

𝑅(𝑞∗(�̄�𝑛
𝑖 , ⋅) ∥ 𝐾(�̄�𝑛

𝑖 , ⋅))||
]

= ∫𝑆
𝑅(𝑞∗(𝜉, ⋅) ∥ 𝐾(𝜉, ⋅))𝜈∗(𝑑𝜉) < 𝐼(𝜈) + 𝜀 < ∞.

The 𝐿1-ergodic theorem [10, Corollary 6.25] then gives

lim 𝐷𝑛 = 0.
17

𝑛→∞
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p

P

b

Moreover, note that 𝐷𝑛 = ∫𝑆 𝐷𝑛
𝑥𝜈

∗(𝑑𝑥). Therefore, the convergence of 𝐷𝑛 also implies that

lim
𝑛→∞∫𝑆

𝐷𝑛
𝑥𝜈

∗(𝑑𝑥) = 0.

Convergence in probability of 𝐷𝑛
𝑥 to 0 now follows from Chebyshev’s inequality: for any 𝑐 > 0,

lim
𝑛→∞

𝜈∗{𝑥 ∈ 𝑆 ∶ 𝐷𝑛
𝑥 ≥ 𝑐} ≤ lim

𝑛→∞
1
𝑐 ∫{𝑥∶𝐷𝑛

𝑥≥𝑐}
𝐷𝑛

𝑥𝜈
∗(𝑑𝑥) ≤ 1

𝑐
lim
𝑛→∞

𝐷𝑛 = 0.

From this convergence in probability, for every subsequence of {𝑛} there is a further subsequence, which we also denote by {𝑛},
such that the convergence is w.p. 1. That is, there is a Borel set 𝛷1 with 𝜈∗(𝛷1) = 1, such that along such (sub)subsequences and
for all 𝑥 ∈ 𝛷1,

lim
𝑛→∞

E𝑥

|

|

|

|

|

|

1
𝑛

𝑛−1
∑

𝑖=0
𝑅(𝑞∗(�̄�𝑛

𝑖 , ⋅) ∥ 𝐾(�̄�𝑛
𝑖 , ⋅)) − ∫𝑆

𝑅(𝑞∗(𝜉, ⋅) ∥ 𝐾(𝜉, ⋅))𝜈∗(𝑑𝜉)
|

|

|

|

|

|

= 0. (43)

Abusing notation, we now fix such a subsubsequence {𝑛}. The previous argument shows the a.s. convergence of the running costs
and we now consider the corresponding sequence of controlled empirical measures {�̄�𝑛}. Because 𝑆 ⊂ R𝑑 , there is a countable
convergence-determining class 𝛯 ⊂ 𝐶𝑏(𝑆) (see e.g. Appendix A in [12]). For each 𝑔 ∈ 𝛯, we define the set

(𝑔) =

{

𝜔 ∈ 𝛺 ∶ lim
𝑛→∞

1
𝑛

𝑛−1
∑

𝑖=0
𝑔(�̄�𝑛

𝑖 (𝜔)) = ∫𝑆
𝑔(𝑥)𝜈∗(𝑑𝑥)

}

.

By the pointwise ergodic theorem [10, Sect. 6.5],

P∗ {(𝑔)} = 1.

Observing that P∗ {(𝑔)} = ∫𝑆 P𝑥 {(𝑔)} 𝜈∗(𝑑𝑥), we obtain

∫𝑆
P𝑥 {(𝑔)} 𝜈∗(𝑑𝑥) = 1.

This implies that P𝑥 {(𝑔)} = 1 a.s., i.e., there exists a Borel set 𝛷2(𝑔) ∈ (𝑆) with 𝜈∗(𝛷2(𝑔)) = 1 and such that P𝑥 {(𝑔)} = 1 for
𝑥 ∈ 𝛷2(𝑔).

To establish the convergence of �̄�𝑛, we define 𝛷2 = ∩𝑔∈𝛯𝛷2(𝑔). Since 𝛯 is countable, 𝛷2 satisfies 𝜈∗(𝛷2) = 1. Then, for all initial
oints �̄�𝑛

0 = 𝑥 ∈ 𝛷2,

lim
𝑛→∞∫𝑆

𝑔 𝑑�̄�𝑛 = lim
𝑛→∞

1
𝑛

𝑛−1
∑

𝑖=0
𝑔(�̄�𝑛

𝑖 ) = ∫𝑆
𝑔 𝑑𝜈∗,

𝑥−a.s. for all 𝑔 ∈ 𝛯. Because 𝛯 a convergence determining class, it follows that �̄�𝑛 ⇒ 𝜈∗ P𝑥−a.s. for all 𝑥 ∈ 𝛷2. From the continuity
of 𝐹 on (𝑆), we then have

lim
𝑛→∞

𝐹 (�̄�𝑛) = 𝐹 (𝜈∗), (44)

for all 𝑥 ∈ 𝛷2.
We now combine the arguments for the running costs and the controlled empirical measures to show the Laplace principle lower

ound on a set of 𝜈∗-measure 1. Define the set 𝛷 = 𝛷1 ∩𝛷2 ⊂ 𝑆. Since 𝜈∗(𝛷) = 𝜈∗(𝛷2) = 1, we have 𝜈∗(𝛷) = 1. For all 𝑥 ∈ 𝛷, both
(43) and (44) hold, and

lim sup
𝑛→∞

−1
𝑛
logE𝑥𝑒

−𝑛𝐹 (𝐿𝑛) ≤ lim
𝑛→∞

E𝑥

[

𝐹 (�̄�𝑛) + 1
𝑛

𝑛−1
∑

𝑖=0
𝑅(𝑞∗(�̄�𝑛

𝑖 , ⋅) ∥ 𝐾(�̄�𝑛
𝑖 , ⋅))

]

= 𝐹 (𝜈∗) + ∫𝑆
𝑅(𝑞∗(𝜉, ⋅) ∥ 𝐾(𝜉, ⋅))𝜈∗(𝑑𝜉)

≤ 𝐹 (𝜈) + 𝐼(𝜈) + 2𝜀

≤ inf
𝜇∈(𝑆)

[𝐹 (𝜇) + 𝐼(𝜇)] + 3𝜀,

where the inequality on the third line comes from (40) and (41), while the inequality on the last line follows from (39). By taking
the limit 𝜀 → 0 we obtain the upper bound (27) for all 𝑥 ∈ 𝛷.

We conclude the proof by extending this result from 𝛷 to the whole space 𝑆. Whereas [12] relies on the transitivity condition (5)
for this extension, we instead rely on the properties of the MH kernel; this requires only minor changes in the argument.

By Lemma 6.5, 𝜈∗ and 𝜋 are equivalent, thus 𝜈∗(𝛷) = 1 implies 𝜋(𝛷) = 1. Moreover, 𝜋 and 𝜆 are equivalent measures by
Assumption (A.1), and we have

𝑎(𝑥,𝛷) = ∫𝛷
𝑎(𝑥, 𝑦)𝑑𝑦 = ∫𝑆

𝑎(𝑥, 𝑦)𝑑𝑦 = 𝑎(𝑥, 𝑆),

for all 𝑥 ∈ 𝑆. As a consequence, 𝐾(𝑥,𝛷) ≥ 𝑎(𝑥,𝛷) = 𝑎(𝑥, 𝑆), which is strictly positive for all 𝑥 ∈ 𝑆 (see Remark 3.2). It follows that
18

𝐾(𝑥,𝛷) > 0, ∀𝑥 ∈ 𝑆. (45)
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S

L

Define �̃�𝑛 as the empirical measure of 𝑋1,… , 𝑋𝑛,

�̃�𝑛 = 1
𝑛

𝑛
∑

𝑖=1
𝛿𝑋𝑖

.

ince 𝐿𝑛 and �̃�𝑛 only differ in the first and last summands,

‖�̃�𝑛 − 𝐿𝑛
‖𝑇𝑉 ≤ 2

𝑛
.

et 𝐿𝐹 < ∞ denote the Lipschitz constant of 𝐹 with respect to the Lévy–Prohorov metric. For all 𝜔 ∈ 𝛺,

𝐹 (𝐿𝑛) ≤ 𝐹 (�̃�𝑛) + 𝐿𝐹 ⋅ 𝑑𝐿𝑃 (𝐿𝑛, �̃�𝑛) ≤ 𝐹 (�̃�𝑛) + 𝐿𝐹 ‖𝐿
𝑛 − �̃�𝑁

‖𝑇𝑉 ≤ 𝐹 (�̃�𝑛) +
2𝐿𝐹
𝑛

.

Take any 𝑥 ∈ 𝑆 and 𝑛 ∈ N. Since the 𝑋𝑛
𝑖 s evolve according to 𝐾, using the previous inequality we have,

E𝑥

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

≥ 𝑒−2𝐿𝐹 E𝑥

[

𝑒−𝑛𝐹 (�̃�𝑛)
]

= 𝑒−2𝐿𝐹
∫𝑆

E
[

𝑒−𝑛𝐹 (�̃�𝑛) ∣ 𝑋1 = 𝑦
]

𝐾(𝑥, 𝑑𝑦)

= 𝑒−2𝐿𝐹
∫𝑆

E𝑦

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

𝐾(𝑥, 𝑑𝑦)

≥ 𝑒−2𝐿𝐹
∫𝛷

E𝑦

[

𝑒−𝑛𝐹 (�̃�𝑛)
]

𝐾(𝑥, 𝑑𝑦), (46)

where the equality on the third line is due to the Markov property. With this lower bound established, from here we can again
follow the proof of Proposition 6.15 in [12]. Let 𝜀 > 0 be fixed. We have that (27) holds for all 𝑦 ∈ 𝛷, why for each such 𝑦 there
exists an 𝑁(𝑦, 𝜀) ∈ N such that

− 1
𝑛
logE𝑦

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

≤ inf
𝜇∈(𝑆)

[𝐹 (𝜇) + 𝐼(𝜇)] + 𝜀 (47)

for all 𝑛 ≥ 𝑁(𝑦, 𝜀). Without loss of generality, take 𝑁(𝑦, 𝜀) as the smallest integer with this property. Then, the function 𝑆 → N that
maps 𝑦 into 𝑁(𝑦, 𝜀) is measurable, the sets

𝛷(𝑖) = {𝑦 ∈ 𝛷 ∶ 𝑁(𝑦, 𝜀) = 𝑖} ⊂ 𝑆

are disjoint Borel sets, and 𝛷 = ∪∞
𝑖=1𝛷

(𝑖).
Because 𝐾(𝑥,𝛷) > 0 for all 𝑥 ∈ 𝑆 (see (45)), we have that for all 𝑥 ∈ 𝑆 there exists an 𝑖0 ∈ N such that 𝐾(𝑥,𝛷(𝑖0)) > 0. Combined

with the bounds in (46), and (47), this implies that for all 𝑛 ≥ 𝑖0,

E𝑥

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

≥ 𝑒−2𝐿𝐹
∫𝛷

E𝑦

[

𝑒−𝑛𝐹 (�̃�𝑛)
]

𝐾(𝑥, 𝑑𝑦)

≥ 𝑒−2𝐿𝐹
∫𝛷(𝑖0)

E𝑦

[

𝑒−𝑛𝐹 (�̃�𝑛)
]

𝐾(𝑥, 𝑑𝑦)

≥ 𝑒−2𝐿𝐹 exp
{

−𝑛
(

inf
𝜇∈(𝑆)

[𝐹 (𝜇) + 𝐼(𝜇)] + 𝜀
)}

𝐾(𝑥,𝛷(𝑖0)).

It follows that

lim sup
𝑛→∞

−1
𝑛
logE𝑥

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

≤ inf
𝜇∈(𝑆)

[𝐹 (𝜇) + 𝐼(𝜇)] + 𝜀 + lim
𝑛→∞

2𝐿𝐹 − log𝐾(𝑥,𝛷(𝑖0))
𝑛

= inf
𝜇∈(𝑆)

[𝐹 (𝜇) + 𝐼(𝜇)] + 𝜀.

In the limit 𝜀 → 0, we have for all 𝑥 ∈ 𝑆,

lim sup
𝑛→∞

−1
𝑛
logE𝑥

[

𝑒−𝑛𝐹 (𝐿𝑛)
]

≤ inf
𝜇∈(𝑆)

[𝐹 (𝜇) + 𝐼(𝜇)] + 𝜀.

This concludes the proof of the Laplace principle lower bound. □
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