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Abstract – The wavenumber domain Boundary Element (2.5D BE) method is well suited to calculate the
acoustic sound field around structures with a constant cross-section along one dimension, such as noise barriers
or railway track. By expressing the sound field along this dimension in wavenumber domain, the numerical
model is reduced from a 3D model to 2D model at each wavenumber. A consequence of the required discrete
Fourier domain representation is that the sound field is represented by periodically repeating sections, of which
only one section is physically meaningful. The resolution and the number of required wavenumbers increases
with the desired length and spatial discretisation of this section. Describing the sound field adequately to aur-
alise the sound without disturbing artefacts requires a large number of wavenumbers (and thus 2D BE compu-
tations), which is not feasible for large geometries. Here, a method is introduced that allows the calculation of
the 3D sound field by solving a single 2D BE problem for a dense frequency spectrum and interpolating at high-
er wavenumbers. The calculation efficiency is further increased by precalculating the acoustic transfer functions
between each BE surface element and receiver positions. Combining these two methods allows for efficient cal-
culation of the 3D sound field around acoustically rigid structures such as slab tracks. The numerical approach
is validated by comparison with a standard 2.5D BEM calculation and an analytical solution. Precalculated
transfer functions to calculate the sound radiation from railway track, which are made available online, are
illustrated. An example application is presented.

Keywords: 2.5D BE, Acoustic sound field, Acoustic transfer functions, Numerical methods, Railway track

1 Introduction

With the growing transport needs and the intended
shift towards more sustainable modes of transport, the
noise from railway operations is expected to increase [1].
Rolling noise due to vibrations on the track and wheels
dominates the noise in a wide range of vehicle speeds [2].
Estimating the noise radiated from operations on new
tracks or the effect of introducing abatement measures on
existing tracks has been of interest to both the scientific
community and railway operators for several decades.
Starting with analytical models, such as, for example, pre-
sented by Remington [3], the requirements on and the com-
plexity of such predictive models have continuously grown
in parallel to the computational possibilities. Thompson
et al. [4] used point-dipole sources to represent the radiation
of a rail in free space and investigated its directivity. This
approach was continued by Zhang et al. [5], where the effect

of discrete support and proximity to the ground was
included using line multipole sources and quadrupoles in
each sleeper span.

A prevalent numerical approach to calculate the radia-
tion from the rail is the Wavenumber domain Boundary
Element method (2.5D BE), an adapted Boundary Element
method in which one dimension is decomposed into a
wavenumber spectrum [6–11]. The 3D geometry is reduced
to a 2D geometry. 2D BE problems then need to be solved
for each wavenumber in the spectrum. The computational
cost increases proportionally with the number of 2D BE cal-
culations, and is thus a function of the required resolution
and the upper limit of the wavenumber and frequency
spectra.

The computational cost increases proportionally to the
number of 2D BE calculations, which itself depends on
the resolution and the upper limit of both spectra. The
upper limit is determined by the required temporal and spa-
tial resolutions. Nilsson et al. [8] point out that in the case of
radiation from a rail, whose vibration is typically domi-
nated by few propagating waves, the wave numbers can*Corresponding author: jannik.theyssen@chalmers.se
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be spaced more closely to these waves to increase efficiency
in the calculation. Still, for other applications and for a
desired high spatial and temporal resolution of the sound
field, the computational cost of the standard 2.5D method
can be infeasible. A high spatial and temporal resolution
is, for example, necessary when aiming for a time-domain
calculation of the sound field quantities. A time-domain
approach allows, among others, the calculation of peak
levels, squealing noise amplitudes, the acoustic effect of a
wheel flat or a rail joint, or other transients in rolling noise.
The need to develop a time-domain model for the prediction
of transient noise has been pointed out by Torstensson et al.
[12] and Nielsen et al. [13].

Here, we describe an extension of the 2.5D BE method
to calculate the 3D sound field generated by the vibration
of railway tracks. This sound field is calculated efficiently
in a resolution adequate to, for instance, modelling a pass-
by of a moving force in the time domain. Note that a similar
method is used by Li et al. [14] for predicting the low-
frequency radiation from concrete bridges. However, in
[14], radiation is precalculated per bridge mode instead of
per BE node, and the analysis is limited to the frequency
range up to 1000 Hz. The presented method is limited to
acoustically hard surfaces, and absorption is not considered.

The computational efficiency is addressed in two ways.
First, a geometric relation is used between the wavenumber
in air and the wavenumber along the track to avoid the
need to solve the BE problem for each combination of
wavenumber and frequency. Instead, the BE-problem only
needs to be solved for the lowest wavenumber in the spec-
trum. Then, the BE-result at any higher wavenumber can
be derived by an interpolation operation. Essentially, the
3D sound field can be calculated for the cost of a 2D sound
field, plus an interpolation operation. This reduces the com-
putational cost when using the 2.5D BE method.

Second, acoustic transfer functions are precalculated for
common acoustic geometries such as a rail in acoustic free
space and half space, a rail above a track surface, and a
track and train combination. Once accomplished, this
replaces the need for solving the BE-problem with a simple
multiplication and summation operation. These two
approaches are presented in Sections 2 and 3, respectively.
A validation of the first approach is presented in Section 2.2.
In Section 3.2, four acoustic geometries are introduced for
which the transfer functions have been precalculated. An
example of these transfer functions is discussed for illustra-
tion. The calculation procedure is available online in an
open-source Python package [15], which allows the calcula-
tion of the sound pressure at several points, as well as the
total radiated sound power for given surface velocity data.
The corresponding acoustic transfer functions are available
online [16].

2 Calculating the 3D sound field from a 2D BE
solution

This section introduces the first approach to reducing
the numerical cost and presents a validation.

2.1 Method

The approach to calculating the 3D sound field is based
on the 2.5D BE method [8]. The 2.5D BE method is well
suited for geometries that are approximately constant in
one dimension. The constant geometry in the cross-section
allows discretising the sound field in the wavenumber
domain and reduces the 3D BE problem to 2D problems
at each wavenumber.

Figure 1 shows the cross-section of a rail located in the y,
z-plane, which is assumed to be constant along the x direc-
tion. A wavenumber vector K0 in the air is indicated by
the orange arrow. It can be expressed as the sum of the vec-
tors of the component in the plane (a) and the component in
the x-direction (j0). A second wavenumber vectorKn is indi-
cated in green, with the same projection on the y, z-plane
and a component along the x-direction jn. The 2D Helm-
holtz integral equation for an unbounded exterior problem is

C Pð Þp Pð Þ ¼ �
Z
C

jxqvnWþ p
@W
@n

� �
dC; ð1Þ

in which the integral is evaluated over the boundary C,
with the density in air q, the surface normal velocity vn,
the surface pressure p, and the angular frequency
x = 2pf. The variable W represents the fundamental solu-
tion to the 2D Helmholtz equation at the point P, with

W ¼ � j
4
H 2ð Þ

0 arð Þ; ð2Þ

and its derivative in the surface normal direction n,

@W
@n

¼ � ja
4
H 2ð Þ

1 arð Þ @r
@n

; ð3Þ

where H 2ð Þ
0 is the Hankel function of the second kind and

order zero and H 2ð Þ
1 is of first order. The coefficient C(P)

is equal to 1 for P in the acoustic domain and 1/2 on
a smooth boundary. The integral equation is solved
element-by-element by discretisation and collocation.
Detailed derivation and implementation strategies are
presented, for example, by Wu [17].

The two terms in the Helmholtz integral equation, eval-
uated on an element-by-element basis, form two matrices
H andG with one column per element and one row per col-
location point. These form the global system of equations,

C~p þH~p ¼ G~vn ; ð4Þ
with the vectors~p and~vn collecting the nodal pressures and
normal surface velocities, one of which is known for each
node. The system of equations is sorted according to the
known and unknown boundary conditions. The combined
Helmholtz integral equation formulation (CHIEF) is used
to avoid cavity resonances, leading to additional equations.
The system is solved using a least-squares solver.

In the standard implementation of this method, this
2D BE problem is solved for each combination of frequency
f and wavenumber jn. The resolution and limits for the
f- and j-spectra are chosen based on the desired temporal
and spatial limits and resolution. However, this requires
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solving many 2D BE problems, which is inefficient and, for
large geometries, infeasible at high frequencies. Using the
relationship between the wavenumber in the air and its pro-
jection in the 2D plane for each wavenumber and frequency,
this need can be eliminated when neglecting absorption and
only considering acoustically hard surfaces. For each fre-
quency f, the magnitude of the wavenumber vector in the
air K is

K ¼ 2pf
c

: ð5Þ

As shown in Figure 1, for each wavenumber along the track
j, this wavenumber vector in air K can be expressed as a
component a in the 2D plane that contains the y- and
z-axes,

a2 ¼ K2 � j2; ð6Þ
and a component j in x-direction along the waveguide.
Notice that the wavenumber vector in air K and the
longitudinal wavenumber j are independent, as they are
a consequence of the chosen discretisation of the frequency
and wavenumber domains, respectively.

For each combination of j and the wavenumber vector
in the airK, there is exactly one a in the 2D plane. However,
a given a can be the result of infinitely many combinations
of j and K. Figure 1 shows two combinations of j and
K (j0, K0 and jn, Kn) which share the same a. This is true if

K2
0 � j2

0 ¼ K2
n � j2

n; ð7Þ

or, using equation (5) and rearranging for f0,

f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
n � j2

n � j2
0

� �
c2

2pð Þ2
s

: ð8Þ

This relation can be used by first evaluating equation (4)
for a dense frequency spectrum in combination with a small

wavenumber j0. Then, for higher wavenumbers jn,
equation (8) maps any frequency to a frequency in the dense
original spectrum at which the a in the 2D plane is identical.
The calculated frequency f0 is likely not part of the precalcu-
lated dense spectrum, and an interpolation operation is nec-
essary in the frequency domain. In other words, at each
wavenumber except for the lowest wavenumber, the opera-
tion of solving the 2D BE problem for each frequency in the
spectrum can be replaced by a complex interpolation opera-
tion. Note that a sufficiently dense original frequency spec-
trum is necessary, even when evaluating only at a few
frequency lines per octave band, as equation (8) non-
linearly maps to frequency lines in between the original ones.

A standard implementation of the complex quadratic
interpolation is used, interpolating the real and imaginary
part seperately (see, e.g., interp1 in MATLAB or
interp in Numpy). Only real-valued frequencies are used
as query points. Introducing absorption would require
introducing complex frequencies as query points. In that
case, the original spectrum would need to be precalculated
for half the complex plane defined by 0 � real(f0) � fmax

and �fmax � imag(f0) � fmax. Since this approach is less
efficient (cf. Sect. 4.1), we here focus on acoustically hard
surfaces.

To avoid extrapolation, any query point at which to
evaluate the interpolation needs to lie between the limits
of the original spectrum. Conveniently, this requirement is
already fulfilled by the method itself. Figure 2 visualises
the relationship between fn and f0 for the whole wave-
numbers from 0 rad/m to 10 rad/m in the frequency range
0–1000 Hz. From equation (8) follows that for jn > j0, the
frequency f0 is strictly smaller than a frequency fn with the
same a in the 2D plane. Therefore, a frequency spectrum
at any higher wavenumber maps to smaller frequency
lines, and thus the upper bound is fulfilled. The lower
bound is limited by the physical properties of sound radia-
tion. Figure 2 shows that for increasing wavenumbers,
increasing frequencies get mapped to 0 Hz in the f0 spec-
trum. Physically, this is because for these combinations of
kn and Kn, the wavenumber in the air is smaller than the
wavenumber along the track, so no projection on the 2D
plane is possible. Mathematically, this is a consequence of
the expression under the root in equation (8), which
becomes negative for

Figure 2. Mapping between fn and f0 for selected whole
wavenumbers jn 0 rad/m to 10 rad/m.

Figure 1. Projection of two wavenumbers K0 and Kn in air on
the y, z-plane and the corresponding longitudinal components j0
and jn, respectively.
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2pfn
c

� �2

< j2
n � j2

0; ð9Þ

which for k20 < k2n can not be fulfilled for real j. For imag-
inary wavenumbers j, radiation occurs only in the near
field, and no sound power is radiated. These wavenumbers
are excluded from further calculations.

The method described above establishes a relationship
between a given a and combinations of j andK. For a given
a, the phase relation between all the source elements and
the receiver points is established in the BE formulation.
However, there is a relevant frequency-dependent scaling
of the magnitude in the 2D Helmholtz integral equation
(Eq. (1)), as the first term of the integral contains the factor
jx and the normal velocity vn. A scaling of the boundary
element equation (4) is proposed,

C~p þH~p ¼ GH~vHn ¼ G
jx

~vnjx; ð10Þ

such that this frequency dependency is instead included in
the normal velocity. The scaling of ~vHn can be introduced
before or after the solution of the BE problem. Scaling
does not affect the type of boundary conditions that can
be used. If boundary conditions other than the Neumann
boundary condition are used, the elements in the result
vector corresponding to a normal velocity need to be
scaled accordingly.

In summary, the 3D sound field of a structure with con-
stant cross-section can be calculated in the frequency-wave-
number domain by
1. describing the acoustic boundaries and -domain by

standard 2D boundary elements,
2. selecting an appropriate discretisation of the

wavenumber and frequency domain,
3. solving the 2D BE problem for each frequency in the

selected spectrum at the lowest wavenumber in the
spectrum k0,

4. for each larger wavenumber kn and for each frequency:

(a) calculating the frequency f0 in the original spec-
trum that shares the projection of K on the
cross-section according to equation (8),

(b) interpolating the original spectrum at f0,
(c) scaling the result according to equation (10).

This first approach makes it possible to solve the 2D BE
problem for only one wavenumber at every frequency in a
dense frequency spectrum and then generates solutions
at higher wavenumbers by interpolation and frequency-
dependent magnitude scaling of the result. A 2D inverse
Fourier transform of the form

pðx; tÞ ¼ 1
4p2

Z 1

�1

Z 1

�1
pðj;xÞejðjx�xtÞdjdx; ð11Þ

is used to calculate the signal in spatial and temporal
domain. Note that positive and negative j produce iden-
tical values for a in equation (6), which means that for a

symmetric excitation spectrum (vn(j) = vn(�j)), the
pressure spectrum p(j) is also symmetric in j.

2.2 Validation of the method

To investigate the validity of the described modelling
approach, comparisons are made with the standard
2.5D BE method and an analytical solution for the case
of a breathing cylinder. Figure 3 presents the cross-section
of the geometry. The analytical model is based on a breath-
ing line source, located at (0.5, 0.5) m. Assuming a unit
pressure excitation, the pressure produced by this source
at any location in the field is given by

p ¼ � j
4
p̂H ð2Þ

0 ðarÞ; ð12Þ

where r describes the distance between source and receiver
and p̂ ¼ 1Pa.

The radiating surface in the 2.5D BE method model
consists of a cylinder with 1 m radius centred at (0, 0) m,
enclosing the line source. Its normal surface velocity Vn in
each element of this cylinder is prescribed such that it
matches the velocity in the sound field created by the
breathing cylinder,

V n ¼ a
4xq

Hð2Þ
1 ðarÞ @r

@~n
; ð13Þ

where r is the distance from the breathing line source to
the element, n is the unit normal vector on the boundary.
In this way, the pressure on and outside the surface of the
cylinder calculated with the 2.5D BE method model and
the analytical model should be identical up to numerical
precision and within the general limitations of the Bound-
ary Element method. Finally, the BE model is used to
solve the 2D BE problem described in equation (1) for
j0 = 1 l rad/m and a frequency spectrum from 0 Hz to
1000 Hz and a resolution of 2 Hz. The sound pressure at
other wavenumbers kn is then calculated on the surface
and in the field using the method introduced above.

Figure 3. Cross-section of the setup for the validation calcu-
lation. The thick blue dot marks the location of the line source.
The smaller, orange circle represents the surface of the BE
structure while the larger, green circle of points are positions at
which the sound pressure is evaluated.
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One twenty receiver points are arranged in a circle with
20 m radius centred at (�5, 0) m. At each point, sound
pressure spectra are calculated for three different wavenum-
bers. First, the sound pressure in one such receiver is
compared for the three methods in Figure 4. The three
models produce very similar results. At j = 3.3 rad/m
and j = 6.6 rad/m, no radiation into the far field occurs
below 182 Hz and 364 Hz, respectively.

Figure 5 shows the absolute difference in the predicted
sound pressures between the numerical approaches and
the analytical model as an average over all receiver points.
Both methods predict the analytical result with high accu-
racy. At high frequency, the accuracy of both methods
decreases, which is expected due to the finite resolution of
the BE mesh. Since both lines are almost identical, the inac-
curacy of both numerical approaches must be a result of the
limitations of the 2.5D BE method. One can conclude that
the suggested approach is a suitable extension to the
2.5D BEmethod when acoustic absorption can be neglected.

3 Precalculation of the acoustic transfer
functions

Acoustic transfer functions from the surface vibration of
the track to the sound pressure in a defined set of receiver posi-
tions enable the efficient prediction of the sound pressure for
various vibration inputs. This section describes the method
and gives specific examples of these transfer functions.

3.1 Method

For solving the BE problem, either the pressure, the
velocity, or the impedance at each boundary node needs
to be prescribed. If no backcoupling between the air and
the structure occurs (i.e., the radiation impedance in the
air has a negligible effect on the vibration of the structure),
the surface normal velocity due to structural vibrations can
be calculated independently of the boundary element prob-
lem. Often, several calculation cases share an acoustic
geometry but use different normal velocities as input.
Examples of this are studies that involve changing track
parameters or altering the surface roughness of the rail or

wheel in a pass-by simulation of a wheel to calculate rolling
noise. The following discussion is thus limited to changing
the Neumann boundary condition.

Acoustic transfer functions can be precalculated taking
advantage of the integral nature of the boundary element
formulation. The linear equation system 10 becomes

A~p ¼ GH~vHn ; ð14Þ
when combining the C and H matrices into the A matrix.
In this discretised problem formulation, the sound pres-
sure at any receiver position is the sum of the contribu-
tions of each source element. The contribution of each
source element, in turn, consists of an acoustic transfer
function, scaled with the surface normal velocity of this
source element. The acoustic transfer functions of a source
element are calculated by setting its surface normal veloc-
ity to 1 m/s and 0 m/s otherwise in ~vHn . Solving equation
(14) for one such case produces transfer functions to all
receiver points. The solution requires solving the large,
potentially overdetermined, and dense matrix system
once for every source element, which is a significant initial
computational effort. The total number of elements can
be large, especially when investigating the radiation from
a railway track and including a train or noise barriers in
the geometry. However, often only a small part of the
geometry actually contributes to the radiation in the cal-
culation, such as the rail and parts of the slab surface.
These are described by only a fraction of the total number
of boundary nodes, and so the precalculation can be lim-
ited to these areas. Examples for which acoustic transfer
functions have been evaluated are described below.

3.2 Description of the precalculated transfer functions

The presented transfer functions describe the sound pres-
sure produced in a set of receiver points for a unit normal
velocity at the vibrating surface nodes of the structure.
Figure 6 shows the four geometries presented in the follow-
ing. Figure 7 shows the setup used in geometry (d). The other
geometries can be derived by removing the respective compo-
nents. All surface nodes, field points, and CHIEF points used
in the calculation are presented in Figure 7. The surface

Figure 4. Calculated field point pressure at one field point. The wavenumber j along the structure is given in the top right corner.
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nodes for which the transfer functions have been calculated
are indicated in green. Other (passive) surface nodes are
coloured blue. All surface nodes are spaced with 7.5 mm to
achieve 6 elements per wavelength up to 7.5 kHz. Figure 7c
shows the surface normal direction for each active surface
node on the rail and on the surface below.

A total of 21 CHIEF points are distributed in the rail,
slab, and train cross-sections. CHIEF points are marked
with an X. Black dots represent receiver positions or field
points. In addition to the pass-by measurement positions
defined in the standard ISO 3095 (7.5 m and 25 m from
the track centre, 1.2 m and 3.5 m above the rail head), four
half-circles of points around the track centre with radii
2.5 m, 5 m, 10 m, and 20 m and one half-circle with radius
1.2 m centred at the rail are included. Additional points are
added depending on the geometry. More detailed informa-
tion can be found in the online resources [15, 16]. Additional
positions are included to provide higher flexibility for micro-
phone positioning when, for example, using the transfer
functions for a comparison to measurements.

The precalculated transfer functions describe the sound
pressure created by each source element on all surface and
field nodes, for the wavenumber j0 = 10�6 rad/m and a
frequency spectrum with 1 Hz resolution up to 7.5 kHz.
Complex frequencies are not considered. As an example,

the transfer functions corresponding to geometry (a) are
investigated in the following, focussing specifically on the
transfer functions from the 92 source nodes on the rail sur-
face to 100 receiver points located in a circle with 20 m
radius around the rail. The data is three-dimensional
(92 � 100 � nf), where nf is the number of frequency lines
in the precalculated spectrum. Thus, the transfer functions
are only visualised for selected frequencies. Figure 8 demon-
strates how the transfer functions are visualised. Each row
in the surface plot describes the contribution of a unit nor-
mal velocity at one source node to all receiver points. The
position of the source nodes on the rail surface is indicated
by the grey lines. Analogously, the position of the receivers
is indicated by the grey lines below the 2D plot. The colour
range is adjusted to cover a 20 dB sound pressure level
range, normalised with the largest sound pressure level at
any receiver node at that frequency. In the selected exam-
ple, a diagonal trend is visible, indicating that, in general,
a surface velocity on the left side of the rail contributes
mainly to the receiver points on its left side, and vice versa.
At the vertical line marking 90�, the radiation is almost
entirely dominated by the right side of the rail. Large parts
of the rail surface, with the exception of the rail foot and
part below the rail head, contribute to the sound pressure
in the vertical direction.

Figure 6. Boundary element geometries for which the acoustic transfer-functions were precalculated.

Figure 5. Comparison of the average difference in sound pressure at all field points.
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Figure 9 shows analogous 2D plots for five other fre-
quencies. A distinct interference pattern is visible. Note that
the pattern does not arise from the interaction of several
sources but rather from the wave field created by a single
source and the reflexions on the acoustically hard rail sur-
face. Below 500 Hz, the wavelength in the air is large com-
pared to the dimensions of the rail. Therefore, the geometry
of the rail does not significantly influence the radiation pat-
tern, and the transfer function of all surface nodes to all
receiver points is similar, that is, the dynamic range of
the 2D plot is low. With increasing frequency, the geometry
of the rail becomes more influential, and the dynamic range
increases. Distinct squares are visible in locations that cor-
respond to the sides of the rail. This can be interpreted such
that a vibration in any part of this concave rail section
focusses the radiation towards lateral receiver positions.
Thus, a lateral bending wave would produce a dipole char-
acteristic in which each lobe is produced by vibration on the
corresponding side of the rail.

A comparable analysis can be performed using the rail
surface nodes themselves as receiver points. This is shown
in Figure 10. The source node is expectedly the main con-
tributor to the sound pressure at its position (thus the diag-
onal line). A surface velocity in the concave section
produces comparatively high pressure at other nodes in
the concave section. Again, a frequency-dependent interfer-
ence pattern can be observed.

To calculate the total radiated sound pressure produced
by a vibrating rail at a receiver point, each transfer function

needs to be multiplied by the corresponding surface veloc-
ity. The result is a vector of complex pressures describing
the individual contributions of each surface section to the
receiver point. The sum of these complex pressures is equiv-
alent to the Rayleigh integral on the radiating surface. The
method is demonstrated in Section 4.2.

4 Results and applications

This section presents some considerations with respect
to computational efficiency and presents some example
applications of the modelling approach.

4.1 Efficiency considerations

The first approach addresses the necessary number of 2D
BE solutions. The necessary computing time for one such
solution depends on the geometry considered and the avail-
able computing resources but is typically on the order of up
to a few minutes. The computational advantage can be esti-
mated by considering the number of BE solutions.

To calculate the pass-by sound pressure in the time
domain via moving Green’s functions, impulse responses
of the sound pressure at regularly spaced positions along
the track are necessary. To obtain these via the inverse
Fourier transform, frequency and wavenumber spectra need
to be appropriately discretised. This is illustrated in the
following example, in which impulse responses of length
T = 1 s with a sampling frequency of fs = 15 kHz are

Figure 7. Setup (d) (cf. Fig. 6) for which the acoustic transfer functions are evaluated. a) Overview including circular receiver
positions and train hull; b) detail view between train hull and slab; c) normal direction of the BE-elements on the rail (light green) and
the slab surface (dark green).
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desired. Furthermore, the spatial resolution along the track
should be such that a vehicle moving at v = 180 km/h trav-
els one spatial sample in each time step, that is, dx = v dt.
The resolution in the frequency domain is given by
df = 1/T = 1 Hz, and analogously, the resolution in the
wavenumber domain is given by dj = 2p/Xmax. The
upper limit of the relevant wavenumber grid is given by
js = 2p/dx, or by jair, the wavenumber in the air. Such
a regular grid is presented in Figure 11, in which also
jair and k0 are indicated. For readability, the grid is pre-
sented as less dense than calculated.

In the case presented and the standard approach, every
black dot in Figure 11 represents a 2D BE solution. The
approach presented in Section 2.1 requires the calculation
of the cases along the red line with a high frequency resolu-
tion, after which all other cases can be derived via interpo-
lation. This gain in efficiency is largest if many such 2D BE
solutions are necessary, that is, if the wavenumber resolu-
tion is high. This, in turn, is the case if the maximum
required distance Xmax is large. Figure 12 presents the count
of the necessary 2D BE solutions over this distance Xmax.
All other parameters are as described above. The 1 Hz

Figure 8. Transfer function magnitude between each source element on the rail and receiver point on a circle with 20 m radius
around the the rail. The displayed transfer functions are calculated at 1100 Hz, which is typically close to the pinned-pinned
frequency. The receiver angle 0� corresponds to a position vertically above the rail and increasing numbers indicate clockwise rotation.

Figure 9. Transfer function from surface velocity on each individual node on the rail surface (vertical axis) to the sound pressure in
circle with 20 m radius around the rail (horizontal axis), displayed as the relative difference to the largest contribution, in dB. Left to
right: 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, and 7500 Hz. The orientation is identical to Figure 8.
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resolution of the frequency spectrum leads to 7501 BE prob-
lems that must be solved in the new approach. Assuming a
minute calculation time for each BE problem, this corre-
sponds to over 5 days of calculations on a single machine.
However, if the problem needed to be solved for each com-
bination of frequency and wavenumber, the computational
effort would be several magnitudes higher for Xmax > 10.
On the contrary, if absorption was to be included and the
complex half-plane needed to be precalculated as indicated
in Section 2.1, the number of calculations would be in the
order of 108.

The precalculation of the acoustic transfer functions has
a computational advantage if the functions are used often
enough. Initially, a 2D BE problem needs to be solved for
each source node, each frequency, and one wavenumber.
Given that there are about 90 source nodes in the rail
boundary, this can take up to a month on a cluster running
12 computations in parallel. However, the precalculation is
worth the effort as soon as the acoustic transfer functions
are reused more often than the number of source nodes in
the geometry. Once these transfer functions are available,
the sound field can be calculated at a relatively small cost.
With the transfer functions provided in [16], the calculation
of the pass-by sound pressure in the above example can be
achieved in a few minutes.

4.2 Application examples

To exemplify possible applications of the presented
calculation approach, the sound field radiated by one rail-
way rail is briefly demonstrated in the following. In this
example, the transfer functions calculated for setup
(c) (cf. Fig. 6) are used.

The surface vibrations of the rail are calculated using a
discretely supported UIC60 rail based on the waveguide
Finite Element (2.5D FE) method. The 2.5D FE approach
is not described further here, but more details can be found
in the literature [8, 18, 19]. The discrete support of the rail is
achieved by coupling the rail in 119 rail seats to analytical
spring-mass-spring systems representing the rail pads, sup-
ported by sleepers on ballast with the parameters presented
in Table 1.

Figure 10. Transfer function from the velocity at each individual surface node (vertical axis) to the sound pressure at each surface
nodes (horizontal axis), displayed as the relative difference to the largest contribution, in dB. Left to right: 25 Hz, 500 Hz, 1000 Hz,
2000 Hz, 4000 Hz, and 7500 Hz.

Figure 12. Number of computations necessary when evaluat-
ing all grid points or only the dense frequency spectrum at j0,
depending on the maximum distance of interest.

Figure 11. Illustration of combinations of wavenumber and
frequency at which a 2D BE solution is necessary to produce a
regular grid in time and spatial domains.

Table 1. Track parameters.

Parameter Vertical Lateral

Ballast stiffness 58 kN/mm 5 kN/mm
Ballast loss factor 0.8 0.7
Sleeper mass 150 kg 150 kg
Rail pad stiffness 115 kN/mm 14.4 kN/mm
Rail pad loss factor 0.2 0.1
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The 2.5D FE method allows for calculating the surface
normal velocity in three dimensions. The rail is coupled to a
spring-mass-spring system in each rail seat. The rail head is
excited with a unit harmonic force at the location x = 0 m
above a sleeper. The force is introduced vertically, but

slightly off centre on the rail head, so that lateral and
vertical motion is excited in the rail.

Figure 13 shows the normalised sound pressure level dis-
tribution on a half-cylinder with 5 m radius around the
track centre for an excitation at 120 Hz. It is visible that

Figure 13. Normalised sound pressure level distribution on a half-cylinder with 5 m radius around the track created by a vibrating
UIC60 rail. The rail is excited vertically by a harmonic unit force at 120 Hz.

Figure 14. Normalised sound pressure level distribution on a half-cylinder with 5 m radius around the track created by a vibrating
UIC60 rail. The rail is excited vertically by a harmonic unit force at the pinned-pinned resonance 1170 Hz.
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a section of about 20 m produces the largest sound pressure
levels in the top 10 dB range. The highest pressure levels are
observed vertically above the excitation position, likely due
to the mostly vertical motion of the rail. In the lateral direc-
tion, there are instead two peaks at a distance of about 5 m
from the excitation position. The different radiation direc-
tivity along the rail is due to the radiation from bending
waves. The frequency 120 Hz is below the cut-on frequency
of vertical bending waves for this setup, and so only radia-
tion into the near-field occurs. The bending stiffness in the
lateral direction is lower, and so is the cut-on frequency for
lateral bending waves. As a result, the sound is radiated at
an angle from the excitation point and arrives at the half-
cylinder at the observed distance.

Figure 14 presents the same setup, but with a different
excitation frequency. Here, the system is excited at 1070 Hz,
which is close to the pinned-pinned frequency of the rail.
The decay of bending waves on the rail is and the sound
pressure level is quite similar over a long distance. The
sound pressure level in the lateral direction is relatively
low, as vertical vibration dominates the sound radiation.

5 Conclusion

Two approaches for significantly reducing the effort
required to predict the 3D sound field radiated by railway
track vibration have been presented, both based on the
2.5D BE method. In the standard 2.5D BE method, a 2D
BE problem must be solved for each combination of
wavenumber and frequency for a given surface velocity.

This first approach avoids the need to solve this BE
problem for every combination of wavenumber and fre-
quency by employing a geometric relation between
wavenumbers at different frequencies. This effectively cre-
ates a 3D description of the sound field for the cost of solv-
ing a 2D solution plus an interpolation. The first approach
is limited to sound radiation into the far field. This approx-
imation is often used, since only far-field radiation con-
tributes to the radiated sound power (see, e.g., [8]). A
perhaps more significant limitation of the method is that
the increased efficiency can only be achieved with acousti-
cally hard surfaces. However, when calculating the sound
radiation from the slab tracks as done here, most surfaces
in direct proximity to the rail can be modelled acoustically
hard.

The second approach reduces the computational cost
when the sound field is predicted for several different cases
of structural vibration. By precalculating acoustic transfer
functions for common geometries, the complex sound pres-
sure at a receiver position is calculated by a multiplication
and summation operation. The acoustic transfer functions
for four of these acoustic geometries have been presented.

Combining the two proposed approaches has the poten-
tial to describe the sound field created by a railway track
with arbitrary resolution in the spatial domain, at a reduced
computational cost compared to 3D Boundary Element
formulations and even the standard 2.5D BE method. An
efficient calculation of the railway track radiation is a

prerequisite for physically modelling the pass-by noise gen-
erated by a force moving on a rail. The calculation proce-
dure and the precalculated acoustic transfer functions are
documented and made available online in an open source
Python package [15, 16].
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