
thesis for the degree of doctor of philosophy

On intelligent automation systems

Methods for preparation, control, and testing

Endre Erős

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2024

On intelligent automation systems
Methods for preparation, control, and testing
Endre Erős

Copyright © 2024 Endre Erős
All rights reserved.

ISBN: 978-91-8103-003-7
Series number: 5461
ISSN: 0346-718X

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000
www.chalmers.se

Printed by Chalmers Reproservice
Gothenburg, Sweden, January 2024

Great relationships don’t just happen, they are built.

On intelligent automation systems
Methods for preparation, control, and testing
Endre Erős
Department of Electrical Engineering
Chalmers University of Technology

i

Abstract
Developing automation systems that are capable of handling dynamic and
unpredictable situations is a challenging task, as it requires adapting to a
changing environment and managing potentially unforeseen action outcomes.
In contrast to traditional automation, where control code is explicitly pro-
grammed, a model-based approach might be a more appropriate solution for
automating such systems. Such an approach allows for integrating planning
algorithms, which can enable the generation of control sequences that consider
the system’s state. This capability is essential in enabling human-robot col-
laboration and handling error recovery and restart. We refer to such a model-
based and goal-oriented approach to automation as Intelligent Automation
Systems (IAS). To bridge the gap between research and practical utilization,
this thesis aims to facilitate the development of IAS by investigating methods
for their preparation, control, and testing.

A framework for preparation and virtual commissioning of IAS is presented,
which compiles the necessary methods into a high-level structure, aiming to
streamline the IAS development process. As part of the preparation process,
an effort to explain the unsolvability of some planning problems by localiz-
ing potential faults in behavior models is presented. Furthermore, this thesis
investigates planning and SAT solving methods aimed at improving the effi-
ciency of planning, thereby enhancing the responsiveness and adaptability of
IAS. A planning and execution framework for IAS is presented, with a focus on
handling dynamic and unpredictable systems. Finally, an iterative method for
the verification of IAS is presented, where methods such as supervisory con-
trol theory, model checking, unit and integration testing, and property-based
testing play key roles in ensuring the correct behavior of IAS. Connected to
verification, a criterion for assessing the test coverage of IAS is presented.

This research contributes to the field of intelligent automation by providing
solutions for the development, control, and verification of systems designed for
complex and unpredictable environments, aiming to bridge the gap between
theory and practice.

Keywords: Automation, virtual preparation and commissioning, auto-
mated planning, modeling, robot operating system, testing and coverability.

ii

List of Publications
This thesis is based on the following publications:

[A] Endre Erős, Martin Dahl, Kristofer Bengtsson, Petter Falkman and Knut
Åkesson, “Virtual preparation and commissioning of ROS2 based intelligent
automation systems”. Submitted for possible journal publication.

[B] Endre Erős, Kristofer Bengtsson and Knut Åkesson, “Fault localiza-
tion for intelligent automation systems”. IEEE International Conference on
Emerging Technologies and Factory Automation vol. 29, pp. 1-8, ETFA 2023.

[C] Endre Erős, Martin Dahl, Petter Falkman and Kristofer Bengtsson,
“Evaluation of high level methods for efficient planning as satisfiability”. IEEE
International Conference on Emerging Technologies and Factory Automation
vol. 26, pp. 1-8, ETFA 2021.

[D] Martin Dahl, Endre Erős, Kristofer Bengtsson, Martin Fabian and Petter
Falkman, “Sequence Planner: A Framework for Control of Intelligent Automa-
tion Systems”. Applied Sciences vol. 12, 12(11):5433. MDPI 2022.

[E] Endre Erős, Kristofer Bengtsson and Knut Åkesson, “Structural cover-
ability for intelligent automation systems”. IEEE International Conference on
Automation Science and Engineering vol. 19, pp. 1-6, CASE 2023.

Other publications by the author, not included in this thesis, are:

[F] Endre Erős, Martin Dahl, Atieh Hanna, Per-Lage Götvall, Petter Falk-
man and Kristofer Bengtsson, “Development of an Industry 4.0 demonstrator
using Sequence Planner and ROS2”. Robot operating system (ROS): The
complete reference, vol. 5, pp. 3-29, Springer 2021.

[G] Endre Erős, Martin Dahl, Petter Falkman and Kristofer Bengtsson, “To-
wards compositional automated planning”. IEEE International Conference on
Emerging Technologies and Factory Automation vol. 25, pp. 416-423, ETFA
2020.

[H] Endre Erős, Martin Dahl, Atieh Hanna, Anton Albo, Petter Falkman
and Kristofer Bengtsson, “Integrated virtual commissioning of a ROS2-based

iii

collaborative and intelligent automation system”. IEEE International Confer-
ence on Emerging Technologies and Factory Automation, vol. 24, pp. 407-413,
ETFA 2019.

[I] Endre Erős, Martin Dahl, Kristofer Bengtsson, Atieh Hanna and Petter
Falkman, “A ROS2 based communication architecture for control in collabo-
rative and intelligent automation systems”. Procedia Manufacturing, vol. 38,
pp. 349-357, 2019.

[J] Martin Dahl, Christian Larsen, Endre Erős, Kristofer Bengtsson, Mar-
tin Fabian and Petter Falkman, “Interactive formal specification for efficient
preparation of intelligent automation systems”. CIRP Journal of Manufactur-
ing Science and Technology, vol. 38, pp. 129-138, 2022.

[K] Martin Dahl, Endre Erős, Atieh Hanna, Kristofer Bengtsson, Martin
Fabian and Petter Falkman, “Control components for Collaborative and In-
telligent Automation Systems”. IEEE International Conference on Emerging
Technologies and Factory Automation vol. 24, pp. 378-384, ETFA 2019.

[L] Martin Dahl, Endre Erős, Atieh Hanna, Kristofer Bengtsson, Petter
Falkman, “Sequence Planner - Automated Planning and Control for ROS2-
based Collaborative and Intelligent Automation Systems”. arXiv cs.RO, 2019.

[M] Atieh Hanna, Kristofer Bengtsson, Martin Dahl, Endre Erős, Per-Lage
Götvall and Mikael Ekström, “Industrial Challenges when Planning and Prepar-
ing Collaborative and Intelligent Automation Systems for Final Assembly Sta-
tions”. IEEE International Conference on Emerging Technologies and Factory
Automation, vol. 24. pp. 400-406, ETFA 2019.

[N] Elinor Jernheden, Carl Lindström, Rickard Persson, Max Wedenmark,
Endre Erős, Sabino Francesco Roselli and Knut Åkesson, “Comparison of
Exact and Approximate methods for the Vehicle Routing Problem with Time
Windows”. IEEE International Conference on Automation Science and Engi-
neering vol.16, pp. 378-383, CASE 2020.

iv

Acknowledgments

This research is supported by Chalmers University of Technology, Volvo GTO,
Swedish Research Council (VR) under the project SyTeC (contract nr. 2016-
06204), and Vinnova under the projects UNIFICATION (contract nr. 2017-
02245), UNICORN (contract nr. 2017-03055), AIToC (contract nr. 2020-
01947), and AIHURO (contract nr. 2022-03012).

Over the past five years, I had the pleasure of experiencing different super-
vision styles from several mentors. Thank you Kristofer Bengtsson for your
time and effort, which you have spent plenty of, working and coding together
with me. Thank you Knut Åkesson for your patience and dedication. Taking
on the supervision of a fourth-year PhD student is no small feat, but you
have managed the challenge exceptionally well. Thank you Petter Falkman
for your words and sincerity, you always know what to say to encourage and
inspire. I am very grateful to all of you.

Thank you Martin Fabian for being a great boss. Due to our DK meetings,
study circles, social events, and Hindås days, our Automation group tran-
scended the typical definition of colleagues. Thank you Bengt Lennartson for
your courses, and for stopping by my office from time to time for a chat, it was
always a pleasure. Thank you Christine Johansson for always being helpful.

Thank you Atieh Hanna and Per-Lage Götvall for our rewarding collabora-
tion over the past seven years, and thank you for accepting me at AB Volvo
all those years ago. It has been a turning point in my life.

I am grateful to my colleagues who provided a stimulating academic envi-
ronment. The coffee breaks, lunches, and afterworks, wouldn’t be the same
without you Ludvig, Julius, Sabino, Constantin, Zahra, Mattias, Alvin, Ze,
Kristian, Remi, Ektor, Ahmet, Ashfaq, Adnan, Ramin, Stefan, Carl-Johan,
Nishant, Rita, Gabriel, and Erik.

A special thanks to Martin Dahl, Anton Albo, and Rikard Karlsson, for
being such good people and the best colleagues one can hope for. I have
learned so much from you over the years, and I still hope to do so in the years
to come. Thank you Gabrijela, Anna, Felix, Elin, Lucia, Carlos, and Chiara
for all the good times we had together. I am looking forward for more!

To my friends back home, Elena, Mina, Jovana, Aleksandra, Kristina, Jo-
vana, Emil, Stefan, Vladimir, Atila, Aleksandar, Ivan, Miloš, Janko, Miško,
Luka, and Milan, I am grateful for having you in my life and for growing up
with you. Many of you have been a part of my life for nearly three decades,

v

and I look forward to treasure our friendship for many more decades to come.
Thank you Erika, Zoltán, Dávid, and Oszkár for your unwavering support

and encouragement. It has been a source of strength throughout this journey.
I am forever grateful. I extend my appreciation to my extended family, Zita,
Siniša, Zoltán, Ana, Andrej, Marta, Alen, Andrej, Barbara, Brigita, Mária,
and Rozália, thank you for standing by me with your kindness.

Nastasja, this thesis is a testament to our shared journey. Through its
highs and lows, it has solidified into a reminder that our path is now set on a
positive trajectory. It invites us to embrace the promising future ahead. We
have spent many days together, and I look forward to spending the rest of my
days with you, loving you, and growing with you. I am eternally grateful for
the love and warmth you have brought into my life, and I am excited about
the future chapters that we will write together.

vi

Acronyms

IAS: Intelligent Automation System

SP: Sequence Planner

ROS: Robot Operating System

VC: Virtual Commissioning

PLC: Programmable Logic Controller

SAT: Propositional Satisfiability

SMT: Satisfiability Modulo Theories

SUT: System Under Test

DT: Digital Twin

AMR: Autonomous Mobile Robot

AGV: Automated Guided Vehicle

LTL: Linear Temporal Logic

DES: Discrete Event System

SCT: Supervisory Control Theory

MC: Model Checking

BMC: Bounded Model Checking

MC/DC: Modified Condition/Decision Coverage

PBT: Property Based Testing

PDDL: Planning Domain Definition Language

CDCL: Conflict Driven Clause Learning

EFA: Extended Finite Automata

vii

Contents

Abstract ii

List of Papers iii

Acknowledgements v

Acronyms vii

I Overview 1

1 Introduction 3
1.1 Preparation and virtual commissioning 5

State of the art . 5
Problem and motivation . 8
Research question and contribution 9

1.2 Planning and execution . 10
State of the art . 11
Problem and motivation . 14
Research question and contribution 14

1.3 Verification and coverability . 15
State of the art . 17

ix

Problem and motivation . 18
Research question and contribution 19

1.4 Research approach . 19
1.5 Industrial use-cases . 20
1.6 Outline . 22

2 Preparation and virtual commissioning 23
2.1 Preparation and commissioning of IAS 25

The Robot Operating System 26
The Framework . 26

2.2 Fault Localization Support . 28

3 Planning and execution 33
3.1 Modeling . 33
3.2 Planning . 36
3.3 Solving . 38

The CDCL algorithm and low-level methods for SAT planning 38
High-level methods for SAT planning 42

3.4 Encoding . 45
3.5 Execution . 46

4 Verification and coverability 49
4.1 Verification of IAS . 50

Formal methods . 51
Unit testing . 52
Integration testing . 53
Property-based testing . 54
Test Coverability . 55

5 Summary of included papers 59
5.1 Paper A . 60
5.2 Paper B . 60
5.3 Paper C . 61
5.4 Paper D . 62
5.5 Paper E . 62

6 Concluding remarks and future work 65
Future work . 68

x

References 69

II Papers 87

A Virtual preparation and commissioning of ROS2 based intelligent
automation systems A1
1 Introduction . A3
2 Literature review . A5

2.1 Related work . A7
2.2 Simulation software . A10
2.3 Robot Operating System A11
2.4 Research gap and questions A11

3 Preliminaries . A12
3.1 Intelligent automation systems A12
3.2 Modeling and executing behavior A12
3.3 Virtual commissioning A15
3.4 Formal verification . A16
3.5 Testing . A16
3.6 Automated planning . A17

4 An industrial use-case . A18
5 The framework . A19

5.1 Virtual preparation stage A21
5.2 Constructive commissioning stage A26
5.3 Emulation stage . A30
5.4 The software-in-the-loop stage A34
5.5 The reality-in-the-loop stage A37
5.6 Physical commissioning A39

6 Discussion . A41
7 Conclusion . A44
References . A47

B Fault localization for intelligent automation systems B1
1 Introduction . B3
2 Preliminaries . B6
3 Example . B8
4 Operations . B8

xi

5 Fault Localization . B10
6 Evaluation . B18
7 Conclusion . B21
References . B22

C Evaluation of high level methods for efficient planning as satisfi-
ability C1
1 Introduction . C3
2 Planning methods . C4

2.1 Incremental vs. sequential base C5
2.2 Invariants vs. explicit model C8
2.3 Equality vs. propositional logic C10
2.4 Skipping steps . C14
2.5 Subgoaling . C17
2.6 Shortening the plan length C18
2.7 Benchmarks . C21

3 Discussion . C21
4 Conclusion . C22
References . C24

D Sequence Planner:
A Framework for Control of Intelligent Automation Systems D1
1 Introduction . D3

1.1 Contribution . D6
1.2 Outline . D6

2 The Sequence Planner control framework D6
2.1 Resources . D7
2.2 Operations . D11
2.3 Resource specifications D14
2.4 Intentions . D15
2.5 Transition runner . D17
2.6 Operation planner . D18
2.7 Transition planner . D20
2.8 Non-determinism . D22

3 Application to an industrial demonstrator D22
3.1 Human operator . D23
3.2 Resources . D24

xii

3.3 Operations . D24
4 Results . D25

4.1 Planning performance D25
4.2 Rate of plan computation D26
4.3 Plan complexity . D27

5 Conclusion . D28
References . D29

E Structural coverability for intelligent automation systems E1
1 Introduction . E3
2 Preliminaries . E5
3 Example . E8
4 Operations . E9
5 Structural coverability . E11
6 Testing . E13
7 Evaluation . E15
8 Conclusion . E17
References . E18

xiii

Part I

Overview

1

CHAPTER 1

Introduction

Final assembly and material handling are some of the sectors in discrete pro-
duction that face challenges such as shorter product lifetimes, just-in-time
manufacturing, product customization, increased product complexity, and
variation in demand. These challenges can partially be alleviated [1] by in-
troducing Intelligent Automation Systems (IAS), which can change the pace
of production, adapt to different products and manufacturing scenarios, react
to dynamic environments, and enable safe human-robot interaction.

To practically address these challenges, a solution involves enabling the co-
operation of Autonomous Mobile Robots (AMRs), collaborative robots, and
human operators within a shared workspace. Within this shared environment,
AMRs are responsible for transporting assembly equipment and parts to their
designated destinations at the appropriate times, while collaborative robots
are assigned to perform assembly and kitting tasks, and are able to work
alongside human operators. The operators are tasked with handling intricate
tactile operations, complex restart scenarios, and they have the flexibility to
move between workstations to balance the workload. Because of the collab-
orative setting and the nature of tasks that are performed, such systems can
be characterized as dynamic and unpredictable.

3

Chapter 1 Introduction

In a dynamic system, external input can independently change the state
of the system. This state change can occur during the execution of tasks,
which can make the current sequence of tasks obsolete. For example, an AMR
might not be able to pass through an assembly station because of a temporary
obstruction, or a human operator can independently perform a task that is
not planned by the control system.

In an unpredictable system, the tasks performed can have different out-
comes. For example, a common task like grasping can often be unsuccessful,
resulting in failures such as failing to pick up a part, dropping a carried part,
picking up two parts instead of one, colliding on the way to the part, etc.

To successfully manage a dynamic and unpredictable system, a shift in
the automation approach is required. Rather than relying on explicitly pro-
grammed control code and manually defined sequences, adopting a model-
based approach can be beneficial. Such an approach focuses on declaring
what a system can do rather than specifying how it should be done, contrast-
ing traditional control code programming with if-then-else statements. We
refer to this model-based and goal-oriented approach as intelligent automa-
tion, which can be complemented with methods such as automated planning,
verification, and virtual commissioning.

Many initiatives, both in academia and industry, have pushed for smarter
automation, however, these initiatives often lack clear guidance regarding
practical implementation. Developing and deploying such automation sys-
tems is a challenging task, and there is often a discrepancy between methods
developed in academia and those applied in industrial settings.

The lack of a structured development method for IAS that addresses both
the necessary high-level steps and the low-level implementation challenges is
identified as an important gap between research and utilization. To address
this disparity, this thesis presents a synthesis of methods aimed at facilitat-
ing the development of IAS. These methods are inspired by, or are relying
on, established methods such as virtual commissioning (VC) [2], automated
planning, and verification, and can be grouped into:

1. Preparation and virtual commissioning

2. Planning and execution

3. Verification and coverability

4

1.1 Preparation and virtual commissioning

In the following sections, we discuss the state of art, industrial practice, and
the research contributions to each of these groups. Since this thesis consists of
included papers, we will make references to the included papers below. These
included papers are introduced and summarized in Chapter 5.

1.1 Preparation and virtual commissioning
Production preparation involves preparing a production system for manufac-
turing by selecting processes, tools, interfaces, and standards for a specific
production scenario [3]. To simplify the preparation process, part of it can
be done virtually, by using simulations and simulation supported automation
engineering called Virtual Commissioning (VC) [2].

The purpose of VC is to expose the control system to simulations, in or-
der to enable the control logic to be verified in a virtual environment before
physical commissioning. The overall goal of performing VC is to reduce the
implementation time and cost by finding potential faults before the system is
physically implemented, as seen in Figure 1.1.

For VC to be effective across various projects, it should be applied during
all development stages by all relevant personnel, and not be restricted to spe-
cialists or niche researchers. To achieve that, the engineering workflow should
include the development of a Digital Twin (DT), which is essentially a virtual
representation of a corresponding physical entity. Beyond VC, such DTs can
be used for conceptual development, online diagnostics, virtual sensors, pre-
dictive maintenance, and more. In the next section, we present the state of
art for VC.

State of the art
VC has the potential to increase production engineering efficiency while also
reducing on-site implementation time [2]. Although it forms the foundation
for state-of-the-art production systems, it is not yet widely used [4]. The
following text provides an overview of current scientific approaches and use
cases for VC.

In [5], a methodology based on VC is presented for integrating DTs into
manufacturing systems, where the potential of DTs to enhance manufacturing
efficiency and competitiveness in dynamic conditions is demonstrated.

5

Chapter 1 Introduction

Figure 1.1: A comparison between a traditional implementation approach, and an
approach that includes VC. It can be seen that the traditional approach
has a higher expected implementation effort and a longer physical com-
missioning phase compared to an approach that includes VC.

To address the need for comprehensive behavior models for DTs, [6] in-
troduces a real-time co-simulation platform for VC. This platform integrates
technology-specific simulation solutions and employs real-time co-simulation
techniques, including partitioning, parallelization, synchronization, and data
exchange mechanisms.

In [7], challenges and strategies surrounding the implementation of VC in
the context of the ongoing industrial revolution are discussed. The paper
emphasizes the importance of coordination across organizational layers and
technical disciplines, both internally and externally. It highlights the role of
standards and common language practices in establishing sustainable business
models and reducing lead time, commissioning time, and technical issues.

An approach to enhance production management by focusing on virtual-
physical convergence and information integration in manufacturing is pre-
sented in [8]. The approach introduces DTs as a key technology to achieve this
integration. The study also demonstrates the use of AutomationML through
a parts machining cell model.

For implementing DTs in manufacturing, [9] introduces an implementation
framework that leverages container technology for self-contained packaging

6

1.1 Preparation and virtual commissioning

and uses cloud services to externalize intelligence, achieving scalability and
plug-and-play functionality.

In [10], an architecture for DT implementation for real-time monitoring
and evaluation of large-scale smart manufacturing systems is presented. [11]
utilizes DT technology to establish a virtual prototype of computerized nu-
merical control machine tools. The paper introduces a DT-based VC method
that supports dynamic commissioning and kinematic commissioning functions
to detect potential errors in the servo system and numerical control programs.

Similarly, [12] presents a DT-driven VC method for computerized numer-
ical control machine tools. This approach constructs a DT model using a
multi-domain unified modeling language and a virtual-real mapping strategy
to describe response characteristics.

To facilitate model-driven engineering for distributed Cyber-Physical Sys-
tems (CPS) using the Robot Operating System (ROS), [13] introduces an
approach to automatically generate embedded software, aiding rapid proto-
typing and system component implementation in complex industrial systems.

[14] explores the use of model-driven engineering to transform production
system models into flat files compatible with general-purpose planning tools.
This enables the computation of plans and their integration back into the
production system model to enhance formalized knowledge.

Moreover, in [15], a model-based approach using Petri-nets [16] is presented
to represent control structures in virtual production models. This method
aims to enhance VC by providing a clear and interpretable representation of
control-related behavior models.

Lastly, [17] discusses the integration of tools such as model checking for
off-line verification of controller specifications and VC for on-line functional
testing. The paper also highlights the role of tools like PLC Checker and
guidelines such as PLCopen in enhancing standardization, readability, relia-
bility, and modularity of PLC code. Efforts like [17] resonate well with the
methods presented in this work.

Industrial practice

In the past, VC was primarily accessible to niche experts. However, today’s
powerful modeling tools and compatible information standards have made VC
available to manufacturers of all sizes.

One of the initial challenges in VCs was bridging the gap between different

7

Chapter 1 Introduction

models and connecting simulation tools from different domains. Traditionally,
physical plant simulations occurred on separate platforms from the logic-based
PLC design systems. This led to the creation of the Functional Mock-up In-
terface (FMI) [18] standard, which aimed to enhance the exchange of simula-
tion models between suppliers and original equipment manufacturers (OEMs).
The FMI facilitates seamless import and export across various software tools.
Advanced tools can now create DTs and export them as Functional Mock-up
Units (FMUs) with the required data for automation tools. With widespread
support for the FMU standard, engineers can now connect other FMUs with
simulation tools and enabling them to connect with PLC code.

This allows virtual models and virtual PLC code to coexist in a unified
environment, streamlining testing procedures. Engineers may even consider
omitting specific physical sensors in the final product, relying on the DT to
provide the necessary data. Some well known discrete even simulation and
VC software are, for instance, WinMOD®, Technomatix® by Siemens, and
Delmia® by Dassault Systems, however, there are many more tools like this
on the market.

Problem and motivation
Based on a performed literature review in Paper A, an identified research gap
is the lack of practical implementation insights and specific steps required to
develop and deploy IAS. This research gap hinders the effective utilization
and implementation of VC for model-based automation systems, and there is
a need for comprehensive guidelines and procedures to bridge the gap between
research and practical application.

The motivation for this part of the work is the need to streamline the
implementation of IAS. Because of the dynamic and unpredictable nature
of systems addressed by IAS, explicitly programming control code and per-
forming virtual verification for mostly topologically static and fully automatic
robotic cells is not an appropriate method for their preparation and VC. In-
stead, the preparation and VC of IAS entails the use of behavior modeling,
planning, scheduling, control, and testing algorithms, as well as virtual model-
ing, preparation, commissioning, and verification tools which are not yet fully
integrated in the automation systems development tool-chain.

Most of these insights and lessons learned originate from developing in-
dustrial demonstrators and solving the surfacing challenges. One of the re-

8

1.1 Preparation and virtual commissioning

curring challenges during such implementations is potentially overlooking or
incorrectly modeling behavior and constraints. This can result in unsolvable
planning problems or plans that are invalid for other reasons. When plans
are unsolvable, developers receive no feedback, which makes the model prepa-
ration and adjustments a difficult and time-consuming task. In some cases,
a fault localization technique can be applied to explain why a problem was
unsolvable.

Research question and contribution
Based on the research problem discussed above, we formulate the first research
question:

RQ1 How can the development of IASs be supported by methods such as prepa-
ration, virtual commissioning, and fault localization, in order to facili-
tate the adoption of model-based automation?

Due to the lack of structured frameworks for preparation and virtual
commissioning, there is a lack of integrated methods which can support
the development of virtual and behavior models in IAS. This hinders
the effective utilization and implementation of VC, and there is a need
for comprehensive guidelines and procedures to bridge the gap between
research and practical application.

Contribution

A preparation and VC framework for IAS, inspired by the traditional VC
methodology is presented. This framework relies on a range of techniques,
such as testing, automated planning, formal methods, reachability analysis,
code generation, and resource simulations. This framework presents an iter-
ative and structured approach to apply these techniques to ensure efficient
implementation of IAS.

However, faults can sometimes be introduced during the preparation of IAS.
The types of faults that Paper B focuses on are modeling faults which result in
unsolvable planing problems. As these results give no feedback to developers,
except of the fact that finding a plan has failed, this paper presents algorithms
which can in some cases simplify fault localization in behavior models by
identifying and suggesting suspicious variables and operations.

9

Chapter 1 Introduction

1.2 Planning and execution

Because of the dynamic and unpredictable nature of IAS, many tasks can
have several outcomes. Executing sequences can fail, and planned sequences
can become obsolete mid-execution. One way to handle this is to model
the behavior of IAS using non-deterministic models [19], which can express
different outcomes a task can have.

For example, the action of a dice throw can have six possible outcomes,
where none of the outcomes can be considered nominal [19]. Such behavior
can be captured with non-deterministic models, however, such models are not
perfect models of the world. Even if we model the six outcomes of the dice
throw, the thrown dice can run off the playing board and end up under the
table, or the dice can hit a pen on the table and end up stopping on its edge.

The meaning of this story is that we can never fully capture all the possible
outcomes of real-world actions. Instead of trying to describe how an action
could fail with non-deterministic models, the models describing the behavior
of IAS are deterministic. Such models do not express the different possible
outcomes an action can have, implying that no randomness is involved in the
development of future states of the system. This design choice allows us to
avoid models which can become challenging to handle, both conceptually and
computationally. However, this design choice strongly depends on the ability
of the control system to quickly re-calculate sequences of operations based on
constant observations of the current state of the system. Such calculations
can be made by automated planning algorithms.

Automated planning is a deliberative decision making process which yields
sequences of actions that drive state change towards a goal [19], and it is
the deliberative core of IAS. Using planning in conjunction with acting, the
control system is able to automatically adapt and re-plan based on the current
state, virtually embedding the ability to restart. A control system based
on automated planning is model-based and goal-oriented, always trying to
calculate the necessary sequence of actions to reach the goal.

Such sequences are executed by an execution algorithm, which communi-
cates with the system’s resources, receives constant sensor data, evaluates
guards, and executes actions to follow the planned sequence. Execution also
takes care of synchronizing the state with the resources and the DT, initiat-
ing re-planning when necessary, and blocking execution when certain safety
conditions are not met. The high-level planning and execution architecture,

10

1.2 Planning and execution

Figure 1.2: The high-level planning and execution architecture of IAS.

which is used in this work is shown in Figure 1.2.
In this work we make use of Robot Operating System 2 (ROS2) [20] to

implement the planning and execution framework. This design choice is mo-
tivated by its communication protocol, easily distributable nodes, supporting
simulation and visualization tools, and years of documented experiences and
examples by the ROS community. In the following text, we summarize the
current state of the art in planning and execution frameworks for IAS.

State of the art
While ROS can give support with regards to integrating different software
libraries and drivers, as well as provide a base layer for communication, chal-
lenges remain. One big challenge is the coordination of different devices,
including cameras, PLCs, robotic arms, and AGVs, especially when uncertain
human behavior needs to be taken into consideration.

In the literature, several frameworks have been proposed that aim to aid in
planning and execution of robot actions. One example is ROSPlan [21] that
uses PDDL-based models for automated task planning as well as handling plan
execution. Another is SkiROS [22] which is based on defining an ontology of
skills to help design and execute the high-level skills of an hybrid behavior-
deliberative architecture. MaestROB [23] adds natural language processing

11

Chapter 1 Introduction

and machine learning to teach robots skills that are executed using ontology
based planning, CoSTAR [24] is based on Behavior Trees that are used to
manually define complex behavior, combined with a way of defining computer
perception pipelines, and eTaSL/eTC [25] which defines a task specification
language based on constraints. Applications that use planning of robot skills
have seen successful experimentation in industrial settings [26], [27].

A Belief-Desire-Intention (BDI) toolkit based on ROS2 is presented in [28],
showcasing its effectiveness in a scenario where autonomous robots cooper-
ate to sort and move boxes. This toolkit combines BDI architecture with
integrated planning, enabling adaptable agents to collaborate efficiently in
dynamic environments. A model-based approach for automatically generat-
ing executable C++ code for ROS is presented in [29]. The approach involves
three phases: modeling robot behaviors as timed automata, formalizing and
verifying safety requirements, and generating executable code.

A plug & produce system using standardized Open Platform Communica-
tions Unified Architecture (OPC UA) skills for industrial workcells is intro-
duced in [30]. By extending OPC UA discovery services, the system adapts to
component changes, demonstrating reduced changeover times in robot-based
assembly, particularly beneficial for small lot production.

Middleware for Intelligent Automation (MIA), a platform addressing In-
dustry 4.0 challenges is presented in [31]. MIA acts as a bridge between field
devices, databases, and Decision Support Systems (DSSs), ensuring real-time
data management and interoperability.

A software architecture for autonomous service robots operating in human
environments is presented in [32]. It integrates deep learning-based perception,
knowledge representation, symbolic task planning, and motion planning, to
perform tasks by a real robot without human intervention.

A decentralized framework for multi-robot task and path planning is pre-
sented in [33]. It uses Markov Decision Processes (MDPs) and Mixed Ob-
served Markov Decision Processes (MOMDPs) to model tasks and employs
the max-sum algorithm for decentralized task allocation.

A skill-based architecture is compared to a traditional component-based
hierarchical approach for flexible manufacturing systems in [34]. The evalua-
tion criteria includes execution time, modularity, readability, and reusability.
The study finds that the skill-based architecture, though more complex, offers
greater flexibility, making it suitable for adaptable production plants.

12

1.2 Planning and execution

A framework for integrating collaborative and roaming robots into indus-
trial automation alongside human operators is presented in [35]. It is based on
model-based design and control, where interactive formal specification enable
efficient preparation of IAS.

A ROS2 based planning system that converts plans into Behavior Trees
(BTs) to enhance plan execution in mobile service robots is presented in [36].

Finally, PlanSys2 is presented in [37], which is a symbolic planning frame-
work designed for autonomous robots operating in complex environments.
PlanSys2 is built on ROS2, and offers features like BTs for efficient plan exe-
cution and a novel action auction protocol for multi-robot planning.

However, these systems listed here are mainly robot-oriented (in contrast
to automation-oriented) and often focus on a single robot. It seems that a
framework for combining both high-level robotic tasks with more traditional
automation tasks (low-level execution and state management of a variety of
different devices) is missing.

Industrial practice

Over the last two decades, many methods have emerged with the aim to
improve the efficiency of automated planning, and satisfiability (SAT) solving
[38]. The frontiers of automated planning and SAT solving are improved
and tested on a yearly basis during the international planning 1 and SAT 2

competitions. Additionally, by coupling a SAT solver with theory solvers, for
example theories such as linear arithmetic, bit vectors, or arrays, Satisfiability
Modulo Theory (SMT) based planning techniques [39] can encode and tackle
real-world scenarios and complex application domains [40].

Methods developed in academic context are not always found in industry.
However, many tools and methods are becoming available to manufacturers
of all sizes. Planning, synthesis, model checking, and optimization tools are
increasingly more present in the industry, for example, NuXmv [41], Z3 [42],
Supremica [43], Uppaal [44], Kissat [45], Gurobi, Cplex, and Xpress [46],
Madagascar [47], and MiniSat [48].

1https://www.icaps-conference.org/competitions/
2http://www.satcompetition.org/

13

Chapter 1 Introduction

Problem and motivation
Current trends in automation involve the integration of collaborative robots
and AMRs into workflows, often working alongside human operators to create
more adaptable automation solutions. However, such an automation system
must possess the capability to anticipate and respond to both its environment
and the actions of individual subsystems.

Tasks which handle perception and grasping tasks, may not guarantee a
100% success rate [49], [50], [51], leading to an increase in expected unsuc-
cessful operations. Effectively managing these failures as a natural part of au-
tomation introduces complexity to the software. To handle such complexity,
difficult modeling tasks can be off-loaded to control logic synthesis algorithms
and the specifics of execution to an online planning system.

Consequently, real-time algorithms for task planning need to be sufficiently
efficient to be applicable in the industry. Since planning efficiency can con-
tribute to making a system adaptive and responsive, investigating planning
methods and decision-making choices is necessary to determine the most ap-
propriate methods for specific situations. Such insights can then be used to
design or adapt automated planners and solvers for specific problems.

Research question and contribution
Based on the problems raised above, we can formulate the second research
question that this thesis will attempt to answer:

RQ2 How can the planning and execution processes in IASs be implemented,
in order to ensure reactive and adaptive systems?

To deliver a robust solution, the automation system must possess the
capability to both anticipate and react to the actions of the environment,
which means that online planning algorithms have to be a part of the
automation system. Moreover, such planning algorithms have to be
able to quickly calculate new plans, allowing the automation system to
re-plan and adapt to the changing environment when necessary.

Contribution

In IAS where control sequences are constantly calculated, fast re-planning
plays a key role. To assess which algorithms can enhance planning perfor-

14

1.3 Verification and coverability

mance, paper C delves a bit deeper into planning, in order to assess and
compare various high-level modeling and planning methods using a set of
standard benchmarks. This paper focuses on planning as satisfiability, which
is considered the leading approach for solving challenging planning problems.

In order to have responsive control in an IAS, the execution system has to
be able to react quickly. Paper D presents a modeling, planning, and execu-
tion system, called Sequence Planner (SP), which is built with a hierarchical
architecture, making it easier to handle larger systems in comparison to our
previous non-hierarchical attempts. SP enables responsiveness with fast re-
planning, which is achieved by dividing the planning work into two levels.

1.3 Verification and coverability
Verification is a family of methods whose goal is to assure that systems satisfy
the expected requirements. It is a crucial element in the development process
of control software and plays a key role in ensuring the reliability, functionality,
and performance of automation systems. During different stages of develop-
ment, parts of the system can undergo formal verification which is used to
prove that such parts adhere to the specified requirements. For example, in
model checking [52], temporal properties are verified by exploring the state
space using a set of initial states and transitions. The goal of model checking
is to prove that a user defined temporal specification always holds. If it cannot
be proven, a counterexample is produced.

Although formal verification can benefit subsystems in automated systems,
the behavior model only captures certain discrete deterministic behavior of the
system and does not consider the details of dynamics, robot motions, uncer-
tainties, communication, latency, timeouts, failures, error handling, restarts,
etc. Such a lack of formal models makes it generally impractical to use model
checking to verify a complete implementation.

Another way to ensure that the system behaves as intended is to apply
some form of testing, while measuring the coverage of such tests to ensure
that an adequate portion of the system has been exercised. Although testing
can be costly, it doesn’t depend on formal models and it can be applied in
real conditions such as on the target hardware or operating system. It also is
important to note that formal verification and testing complement each other,
and that both methods should be applied when possible.

15

Chapter 1 Introduction

The development and testing process of IAS can be represented with an
interpretation of the V-model from [53], as seen on Figure 1.3. Starting from
the left side with the Concept Development Phase, the high-level system re-
quirements are defined, which describe the project objectives and guide the
development and verification process. In the Constructive Phase, concrete
software components are developed such as the virtual model, the DT, and
various drivers, interfaces, and controllers.

Figure 1.3: A high-level model-based development and verification method for IAS
based on the V-model from [53].

The behavior model is developed in the Control Logic Design Phase, during
which certain parts of the model can be subjected to formal methods. If the
formal verification process produces a counterexample which violates a certain
specification, the behavior model can be re-iterated. This phase of part of the
Verification Phase can be sometimes referred to as Model-in-the-Loop (MiL),
since the verification if performed directly on the behavior model.

When a software component (unit) is created, for example a driver, in-
terface, or controller, the next step is to create unit tests to assert that the
component works as expected. After several components have been created,
they can be tested in a virtual environment to verify that the interface and

16

1.3 Verification and coverability

interaction between the components work as expected. This phase is referred
to as integration testing. Both unit and integration testing can be performed
virtually, using a virtual model or a DT, i.e. Software-in-the-Loop (SiL).

After the developed components have been virtually verified, hardware com-
ponents can gradually be included in the verification procedure, which can
then be referred to as Hardware-in-the-Loop (HiL) verification. In the final
stage of the presented model, certain system-level properties can be tested,
after which the system is ready for the Production Integration Phase.

State of the art
Various studies investigate the challenges of testing in an industrial setting.
For example, [54] investigates the challenges of testing robotic systems, while
[55] presents the practical insights and lessons learned for automated test-
ing of industrial automation software. Additionally, [56] discusses test case
generation approach for industrial automation systems.

A review of simulation-based approaches for verification of embedded con-
trol systems is given in [53], with an overview of of traditional and advanced
modeling, testing, and verification techniques. Additional state of the art re-
views for software engineering and testing in an industrial automation setting
can be found in [57] and [58].

For ROS-specific systems, a notable verification framework is the High-
Assurance ROS (HAROS) [59]. HAROS uses static analysis to extract models
from source code, enabling various analyses like model checking and runtime
verification. Other methods can be integrated with HAROS to verify ROS
based systems. For instance, a method to automatically generate property-
based test (PBT) scripts for ROS configurations is presented in [60]. By
applying PBT and the HAROS framework, the method streamlines testing,
ensuring dependable robotics software for safety-critical applications.

Another lightweight formal verification technique for assessing system-wide
safety properties in ROS-based robotic applications is introduced in [61]. The
approach formalizes ROS architecture and node behavior using Electrum, a
formal specification language, and integrates seamlessly with HAROS.

Finally, a pattern-based modeling and Uppaal-based verification approach
is introduced in [62]. It addresses latency and buffer overflow concerns in
distributed robotic systems employing ROS2.

Based on the available verification methods, we are utilizing a four step

17

Chapter 1 Introduction

verification approach for IAS based on the V-model from [53] as shown on
Figure 1.3, which is further discussed in Chapter 4.

Industrial practice

A common practice in the industry is assessing the extent to which the code
has been is exercised during testing [63]. One coverage criterion that is
widely used in the automotive and aerospace industries, is the Modified Con-
dition/Decision Coverage (MC/DC) [64]. For example, the highest level of
safety assurance in the automotive industry, ASIL D in ISO 26262 [65], rec-
ommends the use of MC/DC coverage as a criterion for software verification.
Naturally, MC/DC has also seen adoption in industrial automation systems
[66].

Criteria like MC/DC exist to ensure that the testing provides sufficient
coverage of the System Under Test (SUT) [67], otherwise the test has failed
to exercise parts of the SUT. High coverage can help minimize the risk of
unexpected software failures and ensure that the system performs as expected.
Therefore, coverage metrics might be beneficial to assess the adequacy of the
testing process and determine if more tests are necessary [63]. The list of
available testing tools includes Quickcheck [68], Hypothesis [69], Proptest [70],
and Breach [71].

Problem and motivation

The process of testing is a crucial element in the development of control soft-
ware and plays a key role in ensuring the reliability, functionality, and perfor-
mance of automation systems [72], [73]. It is essential to implement and utilize
a comprehensive testing strategy that can identify software defects before de-
ploying the system [74]. Despite its significance in ensuring system reliability,
determining the appropriate level of required testing is a common challenge.

In retrospect, the sprints conducted in the days leading up to the final imple-
mentation and demonstration phase underscored the significance of thorough
testing and comprehensive test coverage. It became evident that proper test-
ing and assessment of our systems could have mitigated numerous challenges
and complications.

18

1.4 Research approach

Research question and contribution
RQ3 How can IASs be verified with formal methods and testing, and how can

the adequacy of such testing be assessed?

Testing is a crucial activity when developing IASs. Combined with a test
coverage criteria, it can be ensured that the testing process delivers suf-
ficient coverage of the System Under Test (SUT). Failure to achieve this
coverage signifies that the conducted test has not effectively exercised
portions of the SUT.

Contribution

Inspired by the modified condition/decision coverage (MC/DC) criterion, pa-
per E introduces an approach to analyze the structural coverability of behavior
models for intelligent automation systems. Paired with a testing procedure,
this approach allows each test case to influence both the controller and the
simulated environment by injecting specific states. Consequently, the pro-
posed coverability criterion can identify segments of the model that require
more testing and recommend additional test cases to enhance coverability.

1.4 Research approach
The purpose of research is to generate new knowledge that is valuable both
to academia and to current engineering practices. However, deciding how to
perform research can sometimes be a challenging task, as it depends on the re-
search topic, objectives, scope, available resources, ethical considerations, etc.
To address this challenge, a number of research methods have been devel-
oped for the engineering design research field. Some of these methods are the
Theory of Technical Systems [75], Domain Theory [76] [77], Theory of Inven-
tive Problem Solving [78], Axiomatic Design [79], CK-Theory [80], Function-
Behavior-Structure framework [81], and Mathematical Theory of Design [82].

The work presented in this thesis is motivated by industrial challenges,
and as such, the presented research is experimental and application oriented.
Industrially motivated research typically begins with a real-world problem and
gradually evolves to encompass both industrial objectives and research that
is academically viable. As such, developing and showcasing demonstrators is

19

Chapter 1 Introduction

Figure 1.4: Overview of the stages of the research method used.

a crucial activity for bridging the gap between the industry and academia.
The research method used in this work draws inspiration from the Design

Research Methodology [83] and it adheres to the Systems Engineering Re-
search Methods [84], as seen on Figure 1.4.

1.5 Industrial use-cases
During the past several years, we have been participating in several projects,
out of which the following two are the most relevant to this thesis.

Collaborative engine assembly

This demonstrator is the result of the transformation of an existing truck
engine manual assembly station, into a collaborative robot assisted assembly
station. The key challenge is on how the tasks are executed, as they can be
carried out independently by the robot, the human operator, or collabora-
tively, see Figure 1.5. Additionally, some of the tools are available to both

20

1.5 Industrial use-cases

Figure 1.5: The Unification industrial demonstrator.

the robot and operator. To tackle this complex undertaking effectively, the
automation system has to calculate a sequence which it can execute together
with a human operator, not restricting its movement or compromising safety.

Robot assisted material handling

This demonstrator investigates using a collaborative robot on a gantry to
support the operators that use a pick-to-light system to assemble kits onto
a trolley, see Figure 1.6. The robot employs can equip itself with a struc-
tured light scanner to locate items in blue boxes and selects tools for different
tasks. The goal is to enable cooperation between operators and robots in a
shared workspace, picking materials and transferring them to an assembly sta-
tion. Challenges include precise scanning, collision prevention, rapid failure
response, and balancing task speed with safety.

Figure 1.6: The Robot in the air industrial demonstrator.

21

Chapter 1 Introduction

1.6 Outline
This thesis is comprised of two parts. Part I serves as an introduction to the
field, placing the appended papers into context. Part II contains the appended
papers. Part I is organized as follows: Chapter 2 contains an introduction to
Virtual Commissioning (VC), and a motivation for applying a VC inspired
method for developing and deploying IAS. Chapter 3 gives an overview of the
modeling, planning, and execution methods for IAS, and discusses planning
as satisfiability as a leading method to perform planning. Chapter 4 describes
how IAS are verified with formal methods and testing, and how the coverage
of such tests can be assessed. The main results of the appended papers, the
closing remarks, and directions for future work, are summarized in Chapter
5. Chapter 6 holds a summary of the appended papers.

22

CHAPTER 2

Preparation and virtual commissioning

The purpose of VC is to enable the control software, which controls and co-
ordinates different devices in a production station, to be tested and validated
before physical commissioning. Over the years, the VC community has spec-
ified several commissioning configurations [85], [2] that resulted in terms like
Hardware-in-the-Loop, Reality-in-the-Loop and Constructive Commissioning,
which is also sometimes referred to as Software-in-the-Loop or Model-in-the-
Loop commissioning. As shown in Fig. 2.1, these specifications are defined
by combinations of components being real or virtual.

Testing and integrating the physical production system with the real control
system has been traditionally referred to as physical commissioning. However,
in order to reduce the amount of on site man-hours during physical commis-
sioning [86], the real control system is coupled with a simulation model of the
production system creating a Hardware-in-the-Loop setup. This configuration
is commonly known as VC [2].

When designing a new control system, the natural way is to start with
offline programming where all components are simulated. This configuration
is also known as Constructive Commissioning [2].

In cases where debugging the control system is needed, the physical pro-

23

Chapter 2 Preparation and virtual commissioning

Figure 2.1: Traditional commissioning classification from [2] .

duction system can be controlled by a emulated controller in a setup known
as Reality-in-the-Loop. In this stage, specific resource behavior can be tested
before connecting the actual resources to the controller.

Performing VC can potentially reduce testing and integration time [2], as
well as help detect undesired behavior before physical commissioning. How-
ever, it is usually the case that creating simulation models requires extensive
modelling effort. Because of the cost associated with this effort, it is crucial
that the created models provide as much additional value as possible.

Some of the expected benefits of VC are:

1. Reducing Time-to-Market: VC allows for the validation and optimiza-
tion of industrial systems before physical deployment, significantly short-
ening the time it takes to bring products and systems to market.

2. Minimizing Costs: VC helps identify and rectify design flaws, system er-
rors, and operational inefficiencies early in the development cycle. Con-
sequently, it reduces the need for expensive on-site modifications and
troubleshooting during physical commissioning.

3. Enhancing Safety and Reliability: Through exhaustive testing and simu-
lation, VC contributes to the enhanced safety and reliability of industrial
systems, reducing the risk of accidents and downtime once systems are
operational.

24

2.1 Preparation and commissioning of IAS

4. Bringing what-if scenarios to life: VC facilitates comprehensive testing
scenarios, including normal operation, fault simulations, and emergency
situations, ensuring that systems are thoroughly validated before de-
ployment.

5. Accurate Predictions: DTs and advanced simulation software provide
highly accurate predictions of system behavior, enabling engineers to
foresee potential issues and make informed decisions.

6. Innovation Acceleration: VC fosters innovation by allowing engineers to
experiment with new ideas and configurations without the constraints
of physical prototypes, driving the development of new technologies.

7. Reduced Environmental Impact: Fine-tuning and optimizing systems
in a virtual environment can lead to more energy-efficient operations,
reducing an organization’s environmental footprint.

8. Training and Skill Development: VC serves as an effective platform for
training operators and maintenance personnel, enabling them to gain
hands-on experience with complex systems in a controlled setting.

Simulation of production systems is a well adopted practice, and using meth-
ods for designing control systems and performing VC has become a standard
in industry. Because of the lack of practical implementation insights and
specific steps required to develop and deploy IAS, the following two sections
introduce two contributions that aim to address this gap. A structured devel-
opment method for IAS which discusses the necessary high-level steps, as well
the low-level implementation challenges is presented in paper A, and a fault
localization support system for detecting modeling errors during development
is presented in paper B.

2.1 Preparation and commissioning of IAS
Here we summarize paper A, which presents a framework for virtual prepara-
tion and commissioning of IAS. The framework is based on iteratively develop-
ing and using a DT representation of the demonstrator for different activities,
such as early simulation, reachability analysis, behavior model development,
commissioning, and control. The effectiveness of this framework is exemplified
by developing an industrial demonstrator.

25

Chapter 2 Preparation and virtual commissioning

The Robot Operating System
Systems based on ROS rely on a set of nodes which communicate between
themselves in order to achieve a desired collective behavior. Wrapping code
into nodes which execute different specific tasks, enables users to maintain
a good structure, as well as to distribute code on different machines. For
example, if a specific piece of software has to run on a dedicated machine,
wrapping it in a ROS node will enable this software to be integrated into the
network and used in conjunction with other software and ROS based tools
like tf [87], moveit[88] and rviz.

The framework presented in paper A is based on the ROS2 [20], and it is
implemented in Rust [89] using the async Rust bindings for ROS2 [90]. In this
framework, the control algorithms, resources, and corresponding drivers are
distributed across a set of computational nodes. In order to achieve control
over the system, these nodes must communicate with each other through a
network, utilizing message-passing protocols. The framework presented in
here is connected to our previous work from [91].

The Framework
Now we introduce a framework, which aims to facilitate effective preparation,
implementation, and commissioning of IAS for discrete event control. The
framework encompasses several key components:

1. Virtual Model: The virtual model represents the system’s arrangement,
capturing information about resource geometries, frames, topologies,
and hierarchies.

2. Behavior Model: The behavior model defines the possible system be-
haviors using variables, transitions, and operations, and can include
invariants and specifications to constrain these behaviors.

3. Planner : The controller incorporates a planner algorithm that calculates
sequences of operations necessary to move the system from the current
state to a desired goal state.

4. Controller : The controller node communicates with the system’s re-
sources, evaluates guards, and executes actions to follow the planned
sequence.

26

2.1 Preparation and commissioning of IAS

5. Drivers: Driver nodes act as local controllers for the real and simulated
resources, facilitating communication between the main controller and
the resources.

6. Dummies: Dummy control nodes are used to test specific resource be-
haviors during the constructive commissioning and reality-in-the-loop
stages.

7. Emulators: Emulator nodes capture very simple, interfacing behavior
of real resources and their drivers, aiding in the initial phases of virtual
commissioning.

8. Simulators: Simulators are software tools that simulate resources, cap-
turing their internal behavior to some extent. They can be proprietary
or developed specifically for virtual commissioning.

The framework, shown in Figure 2.2, has six stages, starting with the vir-
tual preparation stage. In this stage, the virtual model is constructed by
collecting or specifying virtual geometries, frames, and layouts. The virtual
model is then used in subsequent stages, including system simulation, layout
verification, reachability analysis, and post-commissioning activities like path
planning, obstacle avoidance, position tracking, and operator safety.

During the constructive commissioning stage, simulators and drivers for the
resources are implemented and tested iteratively using dummy control nodes
that mimic specific resource control.

Simultaneously, in the emulated commissioning stage, an initial behavior
model is prepared by iteratively implementing and testing variables, transi-
tions, operations, and invariants with the controller, using emulated resources.

The next step, known as the software-in-the-loop stage, involves using the
real controller to test and refine the model developed in the emulation stage,
using the drivers and simulators from the constructive commissioning stage.
This stage serves as a crucial transition from testing the initial model to
implementing it for controlling the actual physical resources.

Before testing the model with the actual resources, dummy control nodes
are once again employed in the reality-in-the-loop commissioning stage to em-
ulate specific resource behavior and further iterate the drivers and the model.
Finally, the model undergoes further improvement in the physical commission-
ing stage, where the controller is used to control the actual resources. Details
of this framework are presented in Paper A.

27

Chapter 2 Preparation and virtual commissioning

Figure 2.2: A high-level view of the preparation and VC framework from paper A.

2.2 Fault Localization Support
A model-based approach comes with its own set of challenges. While modeling
a system, developers may introduce faulty behavior and constraints, or simply
forget to specify certain behavior, resulting in unsolvable planning problems
or anomalous planning results. Even with a test-driven development (TDD)
approach [92], where developers iteratively test the model, it is often hard to
identify the root cause of why a test failed.

Automated planning and synthesis can be achieved using various approaches.
For example, a commonly used method is the planning-as-model-checking ap-
proach [93] where the planning problem is transformed into a verification
problem. In this approach, the negation of the planning problem’s goal is
established as a safety property to be verified. If it is possible to violate the
safety property, the MC will generate a counterexample that can be used as
the plan to reach the goal. Otherwise, if the MC determines that no counter-
example exists, it serves as evidence that no feasible plan can be found. How-
ever, explaining the unsolvability of a planning problem is a challenging task
even with this approach, since there is no usable counterexample that can
explain why no plan exists.

Related work for explaining that no plan exists includes detecting the un-
solvability of a plan [94], [95], generating certificates or proofs of unsolvability
[96], [97], and identifying adjustments to the planning problem that could
render the problem solvable [98]. In [98] work, the focus is on investigat-

28

2.2 Fault Localization Support

ing the initial state as the reason behind the inability to find a plan. This
approach assumes the correctness of the models, thereby making the modifi-
cation of the initial state a feasible option. In [99], the authors address this
issue by capturing the user’s expectations through considering abstractions
of the given problem. More specifically, the authors use state abstractions to
produce potential solutions and sub-goals at higher levels of abstraction.

However, none of the aforementioned research considers the inability to find
plans due to modeling mistakes introduced by the model developers them-
selves. Such faults are inadvertently incorporated during model development.
The purpose of iterative testing is to catch and correct such mistakes as early
as possible, which can be done by unit testing the model, i.e. evaluating
different initial and goal states with a planning algorithm. Such evaluations
might reveal that a plan is valid, anomalous, or unsolvable. Passing a test al-
lows the developer to continue refining the model. Anomalous results are not
desirable, however they still offer developers valuable feedback. Sometimes, a
test can quickly demonstrate that a goal state has been achieved in a manner
that violates certain user-defined specifications. This allows a developer to
identify potential flaws or shortcomings of the model.

The problem that we are addressing here is to enhance the feedback provided
to the developer after failing to generate a plan. This situation typically arises
when the developer has inaccurately modeled the system’s behavior. Such
mistakes are typically easier to detect and handle in the early design phases.

To do so, we took inspiration from software fault localization techniques
[100], which have been extensively studied and applied in the field of software
engineering. For example, a technique based on combinatorial testing sep-
arates input parameters into faulty-possible and healthy-possible to identify
minimal failure-inducing combinations of parameters [101], [102]. Moreover,
predicate switching [103] is a program fault localization technique that involves
altering program states to force execution along different branches during a
failed run. If switching a predicate results in a successful program execution,
such predicate is identified as critical. Finally, model-checking approaches to
fault localization also exist [104], [105], where a MC can provide a counterex-
ample if a program fails to meet its specification.

More specifically, we draw inspiration from delta debugging techniques [106]
[107] which identify the cause of software failures by comparing the program
states between successful and failed tests. Suspicious variables are identified

29

Chapter 2 Preparation and virtual commissioning

by replacing their values from the successful test with their corresponding
values from the same point in the failed test and then executing the pro-
gram again. If the same failure occurs, the variable is considered suspicious,
otherwise, it is no longer considered as a potential cause of the failure.

However, we do not directly apply such techniques to behavior models of in-
telligent automation systems. Instead, we define modeling abstractions called
operations and resources, and test them for suspiciousness in a three-step
approach. Firstly, we test the failed problems with relaxed versions of the
model, where we remove complete resources in an effort to isolate potentially
problematic ones. Depending on the outcome of the test, this might give an
indication of which resources are incorrectly modeled. Next, we iteratively
test the relaxed versions of the model by removing and adding back variables
from suspicious resources, which provides us with a list of suspicious variables.
However, this does not indicate where the problem in the model might be, so
in the next step we identify operations that update the suspicious variables.
Finally, we provide a list of achievable initial-goal state combinations to it-
eratively reduce the list of operations that were not triggered during random
testing [108].

The main contribution of this effort is a fault localization method for aiding
the development of intelligent automation systems, Figure 2.3. This method
can be used to identify certain faults in the behavior model during testing and
TDD. The effectiveness of this approach is exemplified by a use-case consisting
of a robotic manipulator, a gantry, a structured light scanner, and a gripper.
Details of this approach, can be found in Paper B.

30

2.2 Fault Localization Support

Figure 2.3: The fault localization procedure presented in Paper B.

31

CHAPTER 3

Planning and execution

The function of planning is to find a sequence of actions that will move the
system from an initial state into a desired goal state, while satisfying various
given constraints. In this context, execution refers to the ability to handle
the execution of a plan, while continuously evaluating the current state and
reacting to unexpected state changes.

3.1 Modeling
Modeling a planning and control system depends on design choices and specific
use-cases. The representation of the planning domain, be it through state-
space graphs or other logical formalisms, is a design choice that attempts to
balance expressiveness and efficiency. This choice also depends on the specific
application, whether it’s for robotics automation, healthcare, transportation,
manufacturing systems, or other domains. A common way to model plan-
ning problems is by using the Planning Domain Definition Language (PDDL),
which can be seen as an effort to establish standardized languages for AI plan-
ning, building upon the concepts of the Stanford Research Institute Problem
Solver language (STRIPS) and the Action Description Language (ADL).

33

Chapter 3 Planning and execution

In this work, we utilize a more automata-centric approach for modeling au-
tomation systems. The main reasons for such an approach include a more
explicit behavior modeling approach compared to PDDL, as well as the pos-
sibility to extend transitions with non-formal guards and actions which are
considered only during execution. The motivations and consequences of this
decision choice are listed below:

1. A finite state space.

2. A dynamic environment, which assumes the changes occurring as a re-
sponse to control actions, as well as unexpected external input.

3. No concurrency during planning, meaning that a plan is a strict sequence
of actions, where a previous action ends before the next starts. In some
designs though, it is practical to allow non-interfering actions to pre-start
(during execution) before the previous have finished.

4. Deterministic models, which assume with certainty which state will be
produced if an action is taken. This design choice allows us to avoid using
non-deterministic models and their associated conceptual and compu-
tational complexities. However, this design choice considers that uncer-
tainties and errors are handled by constant re-planning.

Instead of trying to describe how an action could fail with nondeterministic
models, the models describing the behavior of IAS are deterministic, and do
not express the different possible outcomes an action can have. The definitions
below outline the components of modeling and execution of such systems:

d1: A variable v is a named unit of data that can be assigned a value x from
a finite domain V .

d2: A state S is a set of tuples S = {⟨vi, xi⟩}, where vi is a variable with
domain Vi and xi ∈ Vi is a value.

d3: A predicate is an equality logic formula F that evaluates to either true
or false.

d4: An equality logic formula F is defined with the following grammar:

F : F ∧ F | F ∨ F | ¬F | atom

atom : term == term | true | false

term : variable | value

34

3.1 Modeling

d5: A planning transition t contains a guard predicate g : S → {false, true},
and a set of action functions A, where ∀a ∈ A, a : S → S models
the updates of the state variables. If the guard predicate evaluates to
true, the transition can occur, after which the actions of the transition
describe how the variables are updated. The notation we use to represent
a planning transition is t : g/A.

d6: A running transition tr extends the planning transition with an addi-
tional running guard gr and additional running action Ar. We write
running transitions as tr : g/gr/A/Ar, where g and gr are both guard
predicates and g ∧ gr : S → {false, true}, and A and Ar are both action
functions, where ∀a ∈ A∪Ar, a : S → S model the updates of the values
of the state variables. While planning, only g and A are considered, i.e.
the running transition is evaluated and taken as a planning transition.
When the execution engine is running the plan, it is considering all com-
ponents of tr, i.e. the running transition guard becomes g ∧ gr and the
set of transition actions becomes A ∪Ar.

d7: An operation O captures the behavior of tasks that can take some time
to complete, and it is a convenient modeling abstraction for both plan-
ning and execution. A model of an operation can be in its initial (init)
or executing (exec) state, see Figure 3.1. The precondition is a running
transition associated with the start of the operation, switching it to the
executing state. The operation will be in its executing state until the
guard of the postcondition running transition is satisfied. The satisfac-
tion of the postcondition implies that the operation is completed and
can return to the initial state.

d8: An automatic transitions is a running transition that can be taken at
any time assuming that the corresponding guard predicate is satisfied.
Compared to operations that have to be queued in a plan in order to
be taken, automatic transitions can be taken by the runner immedi-
ately when their guard evaluates to true. These can be used to trigger
some specific behavior, for example triggering safety mechanisms, resets,
timeout behavior, etc.

d9: A behavior model M is a collection of variables, operations, and auto-
matic transitions that model the behavior of that system.

35

Chapter 3 Planning and execution

Figure 3.1: A model of an operation.

d10: A planning problem Ψ is a 4-tuple Ψ = ⟨S, g, M, pmax⟩ where S is the
current state of the system, g is the goal predicate, M is the behavior
model of the system, and pmax is a limit on the plan length.

d11: An operation planner is an algorithm which given a planning problem Ψ,
returns a sequence of operations that takes the system from its current
state to a state where the goal predicate is satisfied. While planning,
the operation planner is avoiding the running guards gr and the run-
ning actions Ar, treating operation preconditions and postconditions as
planning transitions.

d12: A plan P is a sequence of operations.

d13: A runner is an algorithm which executes the plan P based on the model
M , the current state of the system S, and a goal predicate g. While run-
ning, both the planning and running components of guards and actions
of operation pre- and postconditions are evaluated and taken. Moreover,
the runner is taking all automatic transitions that are enabled as soon
as possible, irregardless of the plan.

3.2 Planning
There exists more than a few methods to calculate plans using deterministic
models. Probably the oldest and most used approaches to planning are for-
wards state-space searches, implemented with uninformed algorithms such as
Breadth-First Search (BFS), Depth-First Search (DFS), Iterative Deepening

36

3.2 Planning

(IDS), and Dijkstra’s, or informed algorithms such as A*, Depth-First Branch
and Bound (DFBB), and Greedy Best-First Search (GBFS).

Such methods can be referred to as explicit, since they operate on the state-
transition level of representation, systematically exploring the search space by
explicitly considering individual states. On the other hand, symbolic meth-
ods, based on Binary Decision Diagrams (BDDs), are based on a symbolic
representation of the state by means of propositional variables.

Explicit state-space search is known for the performance in solving problems
with a small number of state variables. On the other hand, symbolic methods
can efficiently represent very-large state spaces but can sometimes be sensitive
to number of variables and the variable ordering. An advantage of SAT-based
methods is that they usually excel in solving hard combinatorial planning
problems with a relatively high numbers of state variables [109]. Additionally,
SAT planners are almost completely based on general purpose SAT solvers,
meaning that every improvement in the solver directly improves planning.

Even though SAT-based planning was first proposed by Kautz and Selman
already in 1992 [110], the interest of planning researchers in SAT-based plan-
ning methods was limited up until relatively recently. One of the main reasons
behind this was the performance advantage of explicit state-space search over
solving early SAT encodings of planning problems [111]. However, modern
planners based on satisfiability now match, and often outperform, planners
based on other search paradigms [112].

A commonly used symbolic method is the planning-as-model-checking ap-
proach [93] where the planning problem is transformed into a verification
problem. In this approach, the negation of the planning problem’s goal is
established as a safety property to be verified. If it is possible to violate
the safety property, the model checking will generate a counterexample that
can be used as the plan to reach the goal. Otherwise, if the model check-
ing determines that no counterexample exists, it serves as evidence that no
feasible plan exists. Since we are concerned with finite-state cases, planning
can be implemented with bounded model checking (BMC), where the model
and specifications are defined as a SAT problem with a bounded size. Such a
bound defines a limit on how many steps from the initial state to search for
counterexamples. At the core of such SAT based planners are SAT solvers,
which solve a SAT problem for each time step, until a satisfiable solution is
found or the step limit is reached.

37

Chapter 3 Planning and execution

3.3 Solving
SAT-based planning relies on SAT solvers to calculate satisfiable assignments
for a Boolean expression that encodes a plan. A Boolean expression is satis-
fiable if there exists a satisfying assignment, which means that variables from
the expression have values such that the expression evaluates to true. A naive
approach to SAT solving is to enumerate all assignments until a satisfiable
assignment is found or no more possible assignments exist; however, this is
not practically feasible.

In the context of this thesis, we are mainly interested in systematic search
methods because they often yield the shortest path to the goal and can deter-
mine if the formula is unsatisfiable. Nevertheless, a comprehensive study on
stochastic search algorithms for SAT can be found in [113]. Moreover, instead
of look-ahead search methods [114], we are mainly interested in the conflict
driven (CDCL) [115] evolution of DPLL [116]. The reason for this is that
CDCL usually performs better on the family of problems we are interested in,
namely planing of industrial problems.

On the other hand, some solvers such as [117] and [118] excel in solving hard
random problem instances. Even if such solvers are usually not competitive
on structured instances generated from real applications [119], some research
indicates that there might be a way to utilize the strengths of both solver
flavours, namely to use look-ahead search as a means to guide a CDCL solver
[120]. Current modern solvers are based on CDCL as they can often solve
hard industrial instances with a large number of variables.

The CDCL algorithm and low-level methods for SAT planning
The CDCL algorithm can be implemented in various ways, where some design
choices can influence the planning speed and plan quality based on the type of
the problem being solved. For example, a solver can be specialized to perform
better on a certain type of problems, which is addressed in [121] with a focus on
planning specific decision heuristics. Generally, the CDCL algorithm consists
of the following procedures, as shown of Figure 3.2:

1. Transformation to CNF: SAT solvers accept the input formula in the
Conjunctive Normal Form (CNF), so it is usually the case that the en-
coded problem has to be transformed into CNF. Every propositional
formula can be transformed into an equisatisfiable CNF formula, and

38

3.3 Solving

Figure 3.2: CDCL: An overview of the conflict-driven clause learning algorithm.

there are number of different methods to do this [38]. For example, a
naive approach is to repeatedly apply De Morgan’s laws and the dis-
tributive property, however, this can potentially lead to an exponential
growth in the size of the formula.

A better way to do this is using Tseitin’s encoding [122], which yields
an equisatisfiable CNF formula with only a linear increase in size. The
expense of Tseitin’s transformation is the generation of n new Boolean
variables, where n is the number of logical gates in the original formula.
As an optimization, the number of clauses generated by Tseitin’s encod-
ing can be significantly reduced [123] if the input formula is in Negation
Normal Form - NNF [124]. However, due to the added overhead from
the need to initially transform the input formula to NNF, empirical data
shows that modern solvers benefit very little from this reduction [125].

Further optimizations involve generating CNF formulas that are optimal

39

Chapter 3 Planning and execution

with respect to the number of clauses [126], [127], a linear time CNF
generation algorithm [128], translation to CNF from Boolean circuits
[129], [130], [131], and introducing new data structures for representing
logic formulas [132], [133].

2. Preprocessing and inprocessing: After CNF transformation, a prepro-
cessing step can be applied to potentially simplify the input formula
[134]. Even if there is no theoretical connection between solving time
and input formula size [128], it is often the case that simplified formulas
take less time to solve, especially when the compared formulas come from
the same set of problems [135]. The formula simplification step that is
performed before the actual solving is referred to as preprocessing.
On the other hand, inprocessing interleaves preprocessing and search,
whilst allowing a limit to be set on the inprocessing time. This feature
is important to reduce the inprocessing time relative to search time so
that it is not very costly when compared. Interleaving preprocessing
and search allows the use costly preprocessors without significantly in-
creasing run-time, and makes the learned unit clauses during the search
available to preprocessing.
Preprocessing techniques can involve subsumption to eliminate logically
redundant clauses from the CNF formula [136], self-subsuming resolu-
tion to resolve two clauses in order to find a resolvent subsuming both
input clauses [135], bounded variable elimination which uses the Davis-
Putnam procedure [137] to remove variables from the formula [135],
[138], blocked clause elimination that removes all blocked clauses from
the formula [139], unhiding that performs Depth First Search (DFS) on
the binary implication graph to find all strongly connected components
which can be removed without affecting the satisfiability of the formula
[140], hidden literal and tautology elimination as a result of the pre-
viously performed DFS, clause vivification which strengthens (vivifies)
the redundant clauses from the original formula [141], [142], and other
techniques such as lazy and hyper binary resolution [143].

3. Unit propagation: The solver spends most of the time in a procedure
called Unit Propagation (UP) which is also sometimes called Boolean
Constraint Propagation. Unit propagation [144] repeatedly applies the
unit clause rule for all unit clauses, either until all implications are ex-

40

3.3 Solving

hausted or a conflict occurs. If no conflict is encountered, the solver
checks whether all variables are assigned. If so, the algorithm can ter-
minate and return SAT.

To perform this procedure quicker, unit propagation can benefit from
an efficient data structure. For example, there are different versions of
adjacency lists where variables keep references to a number of clauses
that contain them [145], head-tail lists which associate two references
with each clause (the head and the tail) [146], a counter based method
[115], and two-watched literals [147].

4. Branching and decision heuristics: If a conflict doesn’t occur during
unit propagation and not all variables are assigned, a decision heuristic
is applied to choose a variable on which the search will branch and the
decision level dl is incremented.

For example, one approach is to simply randomly choose the next branch-
ing variable, however, such a heuristic usually only works well for small
problems. Empirically, one of the most important features of state-of-
the-art solvers is the Variable State Independent Decaying Sum (VSIDS)
[147] heuristic, and its exponential (EVSIDS) [148] and normalized vari-
ants. However, there are other heuristics which might produce a similar
performance, such as Variable Move To Front (VMTF) [149].

Some of the other heuristics include the Dynamic Largest Individual
Sum (DLIS), the Exponential Recency Weighted Average, the Jeroslow-
Wong and 2-Sided Jeroslow-Wong heusristics, and Rintanen’s planning
specific heuristic [150].

5. Conflict analysis: If a conflict does occur during unit propagation, it is
analyzed in order to produce a learned clause. This learned clause is ap-
pended to the original formula to aid the search by narrowing the search
space. The conflict analysis algorithm decides the decision level where
the CDCL algorithm has to backjump to. If a conflict was detected at
the 0-th level, conflict analysis sets dl = −1 and the CDCL algorithm
returns UNSAT in the next step. Otherwise, the algorithm backjumps
to the level dl, or in other words, the assignments made after this level
are unset, after which unit propagation is applied again.

41

Chapter 3 Planning and execution

6. Search restart and heuristics: To prevent being trapped in a single search
space corner, modern SAT solvers initiate a periodic restart midway
through the search process. This involves resetting certain search param-
eters and starting the search again from the top-level. Specific heuristics
have been created to determine when and how frequently to execute this
restart procedure during the search, for instance [151], [152], and [153].

High-level methods for SAT planning
We refer to the methods we have listed while exploring the CDCL algorithm
as low-level methods, since they affect the performance of the solver itself. In
Paper C however, we investigate and compare several methods for planning
as satisfiability, without getting into the detailed tuning of these solvers. In-
stead, we focus on what we call high-level methods to improve the planning
performance, which for example includes the structure of the model and how
to call the solvers. The methods that we investigate are incremental planning
[154], adding planning invariants [155], modeling with equality logic [39] and
solving with SMT solvers [156], skipping planning steps [157], and subgoaling.

These methods and their final results are summarized here, however, for a
more comprehensive study, refer to Paper C, where each subsection explores
some methods and compares their performances on a set of classical planning
benchmarks. The benchmarks that are chosen to test the methods are: grip-
per [158], blocksworld [159], rovers [160], barman [161] and childsnack [162].
These benchmarks are chosen to test different strengths and weaknesses of the
following planning methods:

Incremental planning

The downside of the usual sequential approach to SAT planning is that for
every iteration where an assignment is not found, a new context has to be
created. Gocht and Balyo showed in 2017 [154] that it is possible to achieve a
significant speed-up by using an incremental SAT-solver. Instead of throwing
away the context with all the accumulated data from previous results, the
same context is used and constraints are just added on top. An incremental
planning algorithm utilizes an incremental solver which makes it possible to
add a backtracking point in each step, so that the solver can choose which part
of the context to save, and thus learn from previous attempts. In summary,

42

3.3 Solving

the advantages of an incremental base solver are that learnt clauses are kept,
heuristic data is gathered, and that the overhead from asserting the same
clauses is reduced.

Adding planning invariants

Invariants can be considered both as a modeling aid as well as a performance
increasing method in automated planning. Invariants are specifications that
must hold in every step of the calculated plan. In essence, invariants prune
states from the state space. They can be added to the model to forbid some
undesired behavior, or to enforce tighter constraints and thus derive a more
compact state space representation. In each case, the state space gets reduced
and thus planning is more efficient. For an existing problem, invariants can
sometimes be synthesized to speed up planning [155]. Invariants can also often
be a convenient tool for modelling different problems, but can in some cases
be quite hard to use.

Equality logic and SMT solvers

Coupling a SAT solver with theory solvers, for example theories such as linear
arithmetic, bit vectors, or arrays, SMT-based planning techniques [39] can
encode and tackle real-world scenarios and complex application domains [40].
By using different first-order logic theories to increase expressiveness, some
problems can be modeled in a much more convenient way compared to using
pure propositional logic. In paper C, only equality logic is investigated since
it is appropriate for modelling most classical planning problems. Since both
propositional and equality logic are NP-complete [163], [164], it means that
they can model the same decision problems with not more than a polynomial
difference in variables [125]. Certain problems are more conveniently modeled
in equality logic compared to propositional logic, and for some other problems
the opposite is true. As for efficiency, the high level structure of the input
equality logic formula can potentially be used to make the decision procedure
work faster. This information may be lost if the problem is modelled directly
in propositional logic [125].

43

Chapter 3 Planning and execution

Skipping steps

The planning algorithms increment the plan length by one when an assignment
is not found, after which the encoding for that length is tested for satisfia-
bility. This is a good method when the yielded plan should be of minimal
length. However, calculating the shortest length plan can sometimes be very
slow, as Rintanen showed in [165]. The evaluation cost of an unsatisfiable
formula can be much higher than the evaluation cost of a satisfiable one, even
if the latter is not of shortest length. Especially, when considering the sum of
evaluation costs for all unsatisfiable formulas, the planner can spend a lot of
time trying to find a satisfiable assignment. This is because the cost of eval-
uating the unsatisfiable formulas usually increases exponentially as the plan
length increases [165]. When finding the first satisfiable solution which yields
the plan with the minimal length is not a strict requirement, an improvement
in the planning time can sometimes be achieved. Rather than increasing the
plan length by one after an assignment is not found, this improvement can be
realized by incrementing the plan length by a larger value. This allows us to
skip some hard unsatisfiable instances which take a long time to evaluate.

Subgoaling

When a goal is defined as a conjunction of several predicates, such predicates
can be looked at as subgoals. Instead of asking the planner to reach the mono-
lithic goal in one planning task, multiple planning tasks can be instantiated
to plan for each subgoal. Having a simpler goal shortens the plan length and
thus the planning time. As mentioned before, the cost of evaluating unsatis-
fiable formulas increases exponentially, thus it is usually faster to search for
a large number of shorter plans than the other way around. However, if the
subgoal order is not correct, finding a plan can sometimes be slower or even
impossible. This depends quite much on the nature of the problem itself as
planning problems often exhibit symmetry properties that could be exploited
to speed up their solving.

The benchmarks were ran on an Optiplex 9020 desktop PC with 8GB of
RAM and an Intel Core i7-4790 CPU clocked at 3.60GHz. All algorithms
used in this study were implemented using Z3’s [156] quantifier free finite
domain (QF_FD) theory, which supports propositional logic, bit-vector theo-
ries, pseudo-Boolean constraints, and enumeration data types. Fig. 3.3 shows

44

3.4 Encoding

Figure 3.3: High-level planning methods contribution to performance.

how the studied methods contributed to increased planning performance.

3.4 Encoding
In order use solvers to calculate this plan for us, we have to encode the planning
problem as a satisfiability problem. To do that, we use time steps to mark the
variables, which essentially produces a new set of Boolean variables for each
time step. A simple encoding for a plan of length i looks like this:

Fi = I(0) ∧ (
i−1∧
k=0

δ(Tk,k+1)) ∧G(i)

where I(0) are clauses that encode the initial step, G(i) are clauses that encode
the goal step, and δ(Tk,k+1) are clauses that encode the transitions and the
rules that declare how those transitions can be taken in each step. A simple
encoding δ(Tk,k+1) encodes that exactly one transition is to be taken in one
step. A single transition t for a step i is encoded like this:

ti = t.namei ∧ t.gi ∧ t.ai+1

45

Chapter 3 Planning and execution

where t.namei keeps track of the name of the transition that is taken in a
step, t.gi encodes the guard of the transitions for the current step, and t.ai+1
encodes the effect of the taken transition actions for the next step. Starting
from i = 0, each unsatisfiable encoding results in incrementing the plan length
and encoding a new problem of length i = i + 1. If at one point the solver
returns SAT, the yielded result is parsed to provide a plan. Otherwise, if
the solver can’t find assignments for variables for each step i until the limit
is reached, the planning problem is deemed unsolvable. The following listing
shows the first three steps of incremental SAT planning and the manipulation
of the assertion stack.

s0: add I0 -> Add the intital state assertions for step 0
push bp0 -> Create a local scope (backtracking point)
add G0 -> Add the goal state assertions for step 0
check if SAT return else

s1: pop bp0 -> Revert the local scope (backtrack to bp0)
add T01 -> Add the transition assertions for steps 0 and 1
push bp1 -> Create a local scope (backtracking point)
add G1 -> Add the goal state assertions for step 1
check if SAT return else

s2: pop bp1 -> Revert the local scope (backtrack to bp1)
add T12 -> Add the transition assertions for steps 1 and 2
push bp2 -> Create a local scope (backtracking point)
add G2 -> Add the goal state assertions for step 2
...

3.5 Execution
We control IAS with a number asynchronous tasks, which are independent
non-blocking units of executions. Such tasks are similar to threads, but rather
than being managed by the operating system, they are managed by an asyn-
chronous runtime called Tokio 1. The advantage of designing a control system
this way is the possibility to decouple processes like planning, high-level execu-
tion, sensing, and low-level acting, which makes sure that such processes don’t
block each other. In this design, a crucial element which ensures that data

1https://tokio.rs/

46

3.5 Execution

can be exchanged between such tasks is the shared state. The shared state
is a data structure, in this case a hashmap, which is wrapped in a mutual
exclusion lock in order to protect data from simultaneous access.

Figure 3.4 shows an overview of how IAS are controlled. An Execution task
(runner) is evaluating the state with a certain frequency, and executing the
planned operations and the automatic transitions. This is done by updating
the variable values in the shared state. The runner can also initiate re-planning
by deleting existing plans and setting planning flags in the shared state. When
new plans are calculated by the planning task, they are written into the shared
state which are then again accessed by the runner.

The shared state is accessed by the resource handler tasks, which commu-
nicate using ROS2 with the resource interfaces. The handler tasks are also
asynchronous, meaning that they can independently read from and write to
the shared state which is kept safe by a mutex lock. Figure 3.4 illustrates that
the ROS2 communication with the resource interfaces can be implemented
with a publisher-subscriber, or a request-response mechanism.

On the low-level side, a resource interface is a task that is responsible for
driving the actual resource, which can be actual hardware, a resource simula-
tion, an algorithm, etc. In a distributed system, such resource interface tasks
can be run on the machine in the field, making it part of the environment.

Additionally, a Digital Twin task maintains a virtual copy of the environ-
ment in order to keep track of the positions and orientations of digital geome-
tries. This Digital Twin is updated with a certain frequency, which synchro-
nizes it with the real environment. Such a Digital Twin provides input for
task planning, path planning, online collision avoidance, operator safety, etc.
More details about planning and execution can be found in Paper D, which
presents a hierarchical planning and execution approach.

47

Chapter 3 Planning and execution

Figure 3.4: The high-level view of the execution system.

48

CHAPTER 4

Verification and coverability

Verification is a family of methods whose goal is to assure that a system
satisfies some user specified requirements. The process of verification is a
crucial element in the development of control software and plays a key role in
ensuring the reliability, functionality, and performance of automation systems
[72], [73]. Verification can be formal, which includes methods such as model
checking [166] and SCT [167], or non-formal which includes methods such as
testing [168].

Formal verification is performed on a model level and not on the system
level, which means that a model of the system has to be built. The model of a
system is created using a formal language, and doing so usually involves some
level of abstraction, as it is seldom efficient (or even possible) to build a model
that fully represents the behavior of the system which it models. Instead, a
practical trade-off is to model and formally verify certain aspects of a system,
and to apply testing to verify larger parts or complete systems [169].

Contrary to formal methods such as model checking, testing is seldom ex-
haustive, as it is usually quite costly to cover a reasonable amount of the input
space. This means that it is not possible prove the absence of errors, however,
we can still increase our confidence in the system. With appropriate testing

49

Chapter 4 Verification and coverability

Figure 4.1: A high-level view of the verification activities of IAS.

methods accompanied by coverability criteria, testing can be scalable and us-
able for complex industrial systems [170]. Moreover, testing can be applied
to a program in the conditions in which it is supposed to be run, for example
on the target hardware or with the target operating system and drivers [171].
Figure 4.1 shows the testing-focused view of the V-model discussed in Chapter
1.

4.1 Verification of IAS
Verification of IAS is a process that ensures specific components or subsys-
tems meet their design requirements. To verify IAS, both formal methods
and testing can be applied. As it was discussed in Chapter 3, the behavior
model is built from automatic transitions and operations consisting of a formal
planning part, and a non-formal running part. This design choice allows us

50

4.1 Verification of IAS

to apply formal methods on the planning model, and test the running model,
drivers, interfaces, simulations, etc. An example box scanning operation is
shown below:

operation: scan_box
deadline: 10 seconds
pre: start_scan_box -> precondition

g: scan_req_state == initial && -> planning guard
scan_req_trigger == false &&
box_is_scanned == false

gr: true -> running guard
a: [scan_req_trigger <- true] -> planning actions
ar: [] -> running actions

post: complete_scan_box -> postcondition
g: true -> planning guard
gr: scan_req_state == succeeded -> running guard
a: [scan_req_state <- initial, -> planning actions

scan_req_trigger <- false,
box_is_scanned <- true]

ar: [] -> running actions

Formal methods
Some of the most important families of properties that we would like to verify
are safety properties, and liveness properties. Safety properties declare that
something bad can never happen, for example, simultaneous access to a shared
zone, a wrong assembly order, or reaching a forbidden state. On the other
hand, liveness properties declare that something good will happen eventually,
like always being able to reach a desired goal state [172] without getting stuck
in livelock. Note that safety specifications have finite-length counterexamples,
while liveness specifications have infinitely long counterexamples.

Instead of verifying that a model adheres to a specification, a synthesis ap-
proach can be applied to automatically calculate control rules that are correct
by construction. For developing IAS, SCT [167] can be utilized to directly
compute additional constraints for a system using a guard extraction tech-
nique [173], which ensures that a generated plan does not visit any undesired
states. Using guard extraction, the calculated rules are represented as addi-

51

Chapter 4 Verification and coverability

tional guards on the planning transitions. In other words, this technique is
used to to refine the planning model based on high-level specifications.

Another formal method that can be applied on the planing model is model
checking, which is a technique used to answer to the following question: Does
the model of a system satisfy the given properties? In model checking [52],
temporal properties are verified by exploring the state space using a set of
initial states and transitions. Temporal properties are expressed using exten-
sions of propositional logic, such as Linear Temporal Logic (LTL) [174]. LTL
includes temporal operators like “next state” (⃝), “always” (□), “eventually”
(♢), and “until” (U). For instance, the formula □(x→⃝y) expresses that for
all reachable states it is always true that if x holds in the current state, y will
hold in the next state.

In order to take advantage of the SAT solving methods discussed in Sec-
tion 3, the model and the specifications can be formulated as a SAT problem
with a bounded size. On such a formulation, a BMC [175] method can be
applied, where the bound defines in how many steps from the initial state to
look for counterexamples. Similarly to the iterative encoding of the transi-
tions discussed in Section 3, the negated LTL specifications are encoded up
to the bound which is represented by the current iteration. If the problem is
satisfiable, a specification has been violated, and the resulting assignment can
be used to reconstruct a counterexample.

For example, a property that can be checked on the planning model is:
Always, after the scanner gets a command to scan and the box is not scanned,
the box should eventually be scanned. This is written in temporal logic as:

□ ((scan_req_trigger ∧ ¬ box_is_scanned) → ♢ box_is_scanned)

A weakness of modeling systems by separating planning and running be-
havior is that it does not provide a general way to avoid deadlock situations
during execution. While it is possible to perform guard extraction and model
checking on the planning model, verifying the running model, as well as the
communication, interfaces, drivers, etc., depends on testing activities.

Unit testing
To be able to verify that certain code will behave the way that it was intended
by the programmer, a common practice is to test such code with manually
written unit tests [176]. Such tests are meant to verify or falsify code for

52

4.1 Verification of IAS

chosen and specific known edge case input values, as well as to test previously
known problematic inputs that caused bugs in the past.

In the Test Driven Development (TDD) methodology, unit tests are usually
written before the actual code, which means that the tests keep failing until the
developers implement the code correctly. Each unit is tested independently
in an isolated environment to ensure a lack of dependencies in the code.

Unit testing focuses exclusively on the aspects that are essential to the unit
under examination. This approach promotes a developer’s ability to make
alterations to the source code without affecting other units or the overall
program functionality. For example, the things that we would like to unit test
while developing IAS are the following:

1. Simulations: The simulation receives commands and simulates the re-
source behavior as expected.

2. Functions: The functions and algorithms driving the IAS are working
as expected.

3. Communication: The resource handlers and their corresponding inter-
faces and hardware are exchanging information as expected, using the
correct message types, handling all the message fields, processing com-
mands and responding in time, etc.

4. Drivers: The resource drivers are able to drive the hardware as expected.

To unit test the behavior of the simulators, interfaces, and drivers during
the development of IAS, we propose to create and utilize simple dummy nodes.
These nodes allow us to test specific commands and verify the expected re-
sponses from the simulators, interfaces, and drivers. If the behavior aligns
with the anticipated outcomes for the tested inputs, we can proceed. Other-
wise, we iterate the components until we achieve the desired performance.

Integration testing
When every unit within a system has been tested to a satisfying amount, we
can move on to assess larger sections of a system and the interaction of com-
ponents through integration testing. Integration testing is done incrementally,
where the components are gradually integrated and then tested as a group.

53

Chapter 4 Verification and coverability

In IAS, integration testing is done during virtual commissioning, where
a Digital Twin provides a common ground to test the communication, con-
trollers, simulators and drivers, for all resources. Once such units have been
verified independently, their interaction and collective functionality is tested
together by integrating the controller and the behavior model, and testing
specific scenarios.

Finally, the complete model is included in the test, which includes the run-
ning model and the automatic transitions. Such integration tests will poten-
tially reveal if something is behaving incorrectly for a specific user-defined
case.

Property-based testing
Contrary to unit testing which is checking the system for singular test cases,
and integration testing which is checking the interaction of such units for
singular scenario cases, property-based testing (PBT) [177] tries to verify or
falsify systems by checking if certain properties of its output or behaviour hold
for a large amount of automatically generated input values. When an input
that violates the property is found, techniques such as shrinking can be used
to automatically reduce it to a minimal counterexample. In practice, such a
counterexample is very useful as it directly shows the reason why and how the
property is violated, giving developers precise information on how to modify
the program.

The nature of PBT is usually random [68], and without knowledge about
the previously failed test examples, or seeds, such testing can still miss specific
failing edge cases. Moreover, testing observes only a finite set of finite program
executions, as it is usually the case that it is very costly, or even impossible to
test code for all possible input values. Thus, PBT is best used to complement
traditional unit testing.

To property test IAS, we can start by defining certain properties that must
hold while executing such tests, for example:

1. If the goal is that the object is to be scanned, the object should eventu-
ally be scanned.

2. If scanning fails three times in a row, the scanning should be aborted,
otherwise the object should be re-scanned.

54

4.1 Verification of IAS

3. If scanning fails five times in total, the scanning should be aborted,
otherwise the object should be re-scanned.

4. If scanning times-out two times in a row, the goal should be aborted,
otherwise the object should be re-scanned.

To test IAS for such requirements, a procedure that involves random test
case generation, coverability analysis, and creating finishing test cases is uti-
lized. The testing procedure consists of the following steps, but is shown in
greater detail in Paper E:

1. Specifying rules on how to generate random test cases.

2. Specifying requirements that must be met while achieving these goals.

3. Generating a set of test cases.

4. Executing each test case.

5. Collecting data from runs to determine the coverability of the model.

6. If the coverability is deemed unsatisfactory, identifying parts that have
not been sufficiently covered by the test cases.

7. Creating additional targeted test cases that address the missed areas,
with the aim to increase coverability.

Over the years, a lot of tools for PBT have emerged as it has become a
standard procedure in the industry. A pioneering testing tool that stood out
is QuickCheck [68], which has later inspired other tools such as Hypothesis
[69] and Proptest [70]. In this work, Proptest is used.

Test Coverability
Measuring structural coverability involves quantifying the adequacy of the
testing process and providing insights into the completeness of the test suite.
This can be achieved by defining a set of coverage measures that indicate the
degree to which the system has been exercised during testing. For example,
during the process of testing a system for a given set of requirements, it is
possible to monitor and quantify the frequency and extent to which the behav-
ior model is exercised. This evaluation can offer valuable insights into how to

55

Chapter 4 Verification and coverability

optimize the initial test set and improve the overall coverability. By using this
feedback to refine testing, we can ensure that the system is comprehensively
tested to meet the required standards.

Figure 4.2: An operation and its states while being executed by the runner.

We take inspiration from the MC/DC [64] criterion, however, this crite-
rion cannot be directly applied to evaluate the coverage of behavior models.

56

4.1 Verification of IAS

Therefore, we focus on the operation runner and compile an overview of the
various running states of an operation:

• Initial: The operation is not the next one in the plan.

• Disabled: The operation is the next one in the plan for execution, but
its precondition guard is not yet enabled.

• Executing: The precondition guard is enabled and the actions of the
precondition are taken.

• Timedout: The operation was in the executing state for more time than
its deadline allows.

• Failed: The operations has failed due to an error.

• Completed: The postcondition guard is enabled and the actions of the
postcondition are taken. The operation is successfully completed.

Using this overview, we can start defining a criterion for structural cover-
ability of IAS for a test set as follows:

• Every planned operation in the behavior model has visited its Disabled,
Executing, Timedout, Failed, and Completed, state at least once.

• Every operation has been included in a plan at least once.

• Every automatic transition has been taken at least once.

Fulfilling these criteria for a set of requirements ensures that the behavior
model has been exercised and can be used as a sanity check. Just as with
MC/DC, meeting the requirements of this criterion does not guarantee that
no defects remain. However, failing to meet this criterion indicates that cer-
tain portions of the model have not been sufficiently exercised, highlighting
potential areas of concern. Similarly to MC/DC, this structural coverability
is given as a percentage.

Improving the coverability is an iterative process. When the criteria are
not met, it is necessary to go back to the model and identify the missed parts,
then create specific test cases to cover them. Alternatively, the tester can be
allowed to influence the simulation nodes to cover the missed aspects faster.
After additional tests, the coverability can be reevaluated, and the process
repeated until the desired level of coverage is achieved.

57

CHAPTER 5

Summary of included papers

The presented papers collectively contribute to advancing intelligent automa-
tion systems. Paper A highlights the limitations of traditional virtual commis-
sioning methods and proposes the Integrated Virtual Preparation and Com-
missioning (IVPC) framework for flexible and collaborative systems. Comple-
menting this, Paper B introduces a fault localization support system, support-
ing the model development process. Paper C investigates high-level planning
methods, providing insights for satisfiability-based planners. Paper D intro-
duces the Sequence Planner (SP) framework, addressing modeling and control
challenges in collaborative robotics and autonomous machines, while Paper E
emphasizes the crucial role of testing in ensuring reliability and functionality.
A coverability criterion proposed in Paper E enhances test coverability for
Intelligent Automation Systems. Together, these papers offer a comprehen-
sive view of the development process, covering flexible system design, fault
detection, planning methods, control framework implementation, and testing
strategies for intelligent automation systems.

59

Chapter 5 Summary of included papers

5.1 Paper A
Endre Erős, Martin Dahl, Kristofer Bengtsson, Petter Falkman and
Knut Åkesson
Virtual preparation and commissioning of ROS2 based intelligent au-
tomation systems
Submitted for possible journal publication .

This paper discusses the limitations of applying traditional virtual com-
missioning methods for modern production systems which require flexibility
and collaboration between humans and robots. Intelligent automation offers
a solution by simplifying control logic synthesis and modeling tasks while del-
egating execution specifics to an online planning system. This approach uses
models based on variables, states, transitions, and operations, benefiting from
tools for planning, synthesis, and verification, to ensure system robustness and
safety. This paper bridges the gap between research and application by intro-
ducing a bottom-up approach for creating ROS2-based intelligent automation
systems. It proposes a framework called Integrated Virtual Preparation and
Commissioning (IVPC) for Intelligent Automation Systems, extending tra-
ditional virtual commissioning methodologies. This framework incorporates
additional guidelines and steps for developing flexible, collaborative, and dis-
tributed systems, focusing on simultaneous development of control logic and
virtual plant. The paper’s key contribution is this IVPC framework, which
integrates techniques like testing, automated planning, formal methods, and
resource simulations in a structured, iterative manner. This approach is ex-
emplified through an industrial material handling case, demonstrating the
practical application of the framework.

5.2 Paper B
Endre Erős, Kristofer Bengtsson and Knut Åkesson
Fault localization for intelligent automation systems
Published in conference proceedings of IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA)
vol. 29, pp. 1-8, 2023.
©IEEE 2023
DOI: 10.1109/ETFA54631.2023.10275551 .

60

5.3 Paper C

This paper focuses on a fault localization support system to assist the de-
velopment of intelligent automation systems. The behavior of these systems
is modeled using variables, states, transitions, and operations, facilitating the
application of planning, synthesis, and verification tools to enhance safety and
flexibility. A key challenge in developing such systems is the potential intro-
duction of faulty behavior or constraints by developers, leading to planning
problems that are either unsolvable or produce anomalous results. Traditional
testing methods often struggle to pinpoint the exact reasons for such failures.
This paper draws from software fault localization techniques to address this
issue. The paper proposes a three-step approach to fault localization in the be-
havior models of intelligent automation systems. This method involves testing
with relaxed versions of the model to identify suspicious resources and vari-
ables, and then pinpointing operations modelled by these suspicious variables.
This contribution enhances the ability of developers to detect and correct
faults during the model development phase. The efficacy of this approach is
demonstrated through a use-case, highlighting its potential in improving the
development process of intelligent automation systems.

5.3 Paper C
Endre Erős, Martin Dahl, Petter Falkman and Kristofer Bengtsson
Evaluation of high level methods for efficient planning as satisfiability
Published in conference proceedings of IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA)
vol. 26, pp. 1-8, 2021.
©IEEE 2021
DOI: 10.1109/ETFA45728.2021.9613254 .

The focus of this paper is to investigate and compare various high-level
methods for planning as satisfiability. Instead of delving into the detailed
tuning of solvers, the study emphasizes high-level approaches to improving
planning performance. This includes considerations such as the structure of
the model and how solvers are invoked. For example, the paper compares
and investigates methods such as sequential and incremental solving, using
invariants, modeling with equality and propositional logic, skipping planning
steps, and subgoaling. The paper aims to provide insight for those aiming to
implement systems that rely on satisfiability-based planners.

61

Chapter 5 Summary of included papers

5.4 Paper D
Martin Dahl, Endre Erős, Kristofer Bengtsson, Martin Fabian and
Petter Falkman
Sequence Planner: A Framework for Control of Intelligent Automation
Systems
Published in the Applied Sciences Journal (MDPI) vol. 12, 12(11):5433,
2022.
©MDPI 2022
DOI: 10.3390/app12115433 .

This paper introduces a framework called Sequence Planner (SP) designed
to address challenges in developing automation systems with collaborative
robotics and autonomous machines. These systems rely on online algorithms
for sensing and acting to achieve high flexibility. SP offers a control framework
for both traditional automation equipment and machines with autonomy. The
framework leverages control logic synthesis and online planning algorithms,
implemented with plug-in support for the Robot Operating System (ROS).
The authors present findings from applying SP to an industrial demonstra-
tor, demonstrating its suitability for highly flexible single-station systems. SP
handles complex modeling tasks through control logic synthesis and online
planning, introducing new abstractions like operations and intentions for hi-
erarchical modeling. Experimental results from applying SP to control various
hardware and software components, including real-time motion control algo-
rithms, are presented, showcasing its planning performance and functionality.
The paper builds upon previous publications and contributes new abstractions
to facilitate the handling of larger systems.

5.5 Paper E
Endre Erős, Kristofer Bengtsson and Knut Åkesson
Structural coverability for intelligent automation systems
Published in conference proceedings of IEEE International Conference
on Automation Science and Engineering (CASE) vol. 19, pp. 1-6, 2023.
©IEEE 2023
DOI: 10.1109/CASE56687.2023.10260498 .

62

5.5 Paper E

This paper addresses the role of testing in the development process of con-
trol software for automation systems, emphasizing its importance in ensuring
system reliability, functionality, and performance. Given the impracticality of
using model checking for verifying entire automated systems, the paper advo-
cates for a comprehensive testing strategy to identify software defects before
system deployment. The paper introduces a testing coverability criterion for
Intelligent Automation Systems, inspired by the MC/DC criterion. This ap-
proach aims to enhance the test coverability of the System Under Test (SUT),
which in this context is the behavior model used by the planner. The paper
also references the significance of testing in ROS-based systems and the use
of resource simulations during development to iteratively test and refine the
behavior model. The coverability criterion is central to the proposed testing
procedure allowing state injections into the controller and simulated resources.
This method helps define additional test cases and identify modeling errors, il-
lustrated through a use-case involving a robot manipulator, a structured light
scanner, and a gripper.

63

CHAPTER 6

Concluding remarks and future work

Developing, controlling, and verifying, dynamic and unpredictable systems is
a challenging task. One part of the challenge is that traditional automation
methods might not be adequate for preparation and control of such systems.
Instead, a model-based automation approach, where the behavior of the sys-
tem is described with a model, might be more appropriate. In a model-based
approach, behavior is modelled instead of explicitly programmed, capturing
what a system can do rather than programming how to do it.

The second part of the challenge is that the tools, methods, frameworks,
and examples, to develop model-based automation systems are missing or not
mature yet. Finally, the necessary knowledge, lessons learned, and perspec-
tives, within the industry are not yet established to a level where such methods
can be seamlessly applied.

To address these challenges, we have discussed one way to develop, control,
and verify IAS. Based on our research, we provide the following answers to
the research questions introduced in Section 1:

65

Chapter 6 Concluding remarks and future work

RQ1 How can the development of IASs be supported by methods such as prepa-
ration, virtual commissioning, and fault localization, in order to facili-
tate the adoption of model-based automation?

Preparation and VC are mature industrial methods, which aim to in-
crease production engineering efficiency while also decreasing on-site im-
plementation time. It would appear that applying such methods could
be beneficial to develop IASs.

However, in order to apply preparation and VC on IASs, such methods
have to be adapted to be appropriate for systems which are model-
based, flexible, and collaborative. This is addressed in paper A, where a
framework for preparation and VC of IAS is presented. This framework
has been successfully utilized in the development process of several IAS
demonstrators.

In the development process of model-based systems, the engineering
work is flipped from writing explicit and tractable control code, to writ-
ing behavior models with transitions, operations, and specifications. In
this process, mistakes can be introduced in the model, resulting in un-
solvable planning problems when testing during iterative development.

Addressing such unsolvable planning problems is discussed in paper B,
where a fault localization inspired method is used to find potential mis-
takes in the model, providing some feedback to the developer. Compared
to the result of an unsolvable planning problem where no feedback is
given, this method can provide some help by pointing out suspicious
variables and operations.

RQ2 How can the planning and execution processes in IASs be implemented,
in order to ensure reactive and adaptive systems?

To ensure that IAS are reactive and adaptive while handling dynamic
and unpredictable systems, the planning and execution in IAS must be
able to sense the environment, calculate plans, and act, both quickly and
reliably. To do so, planning can be implemented by using an incremental
satisfiability approach, relying on the strengths of modern SAT solvers.

However, the performance of planning as satisfiability depends on low-
level solver specific methods such as preprocessing and branching heuris-
tics, and high-level modeling and planning specific methods such as

66

incremental planning and subgoaling. In paper C, several high-level
methods have been evaluated on a set of standard planning benchmarks,
which has provided an insight into how to model the problems and how
to call the solvers, in order to increase the planning performance of IAS.

IAS need to be able to adapt to the environment and be able to find
multiple ways to reach the goals. In such a goal-oriented automation
approach, goals can be cancelled or changed, even during an execution
of a process.

However, such an approach demands an execution and planning system
which is fast enough, in order to allow a system that is reactive and
adaptive. In paper D, a hierarchical modeling and planning system
is introduced, which aims to make it easier to handle larger systems
by separating the modeling and planning planning processes into two
levels. This system has been successfully utilized for implementation
and control of several IAS demonstrators.

RQ3 How can IASs be verified with formal methods and testing, and how can
the adequacy of such testing be assessed?

Systems that are addressed by IAS can be unpredictable, which means
that actions can have different outcomes. One way to handle this is
to model all the different outcomes of actions, however, as discussed
in Section 3, this is not always possible. Instead, a design choice for
developing IASs was to model behavior with deterministic models, and
separate the behavior into a formal planning part, and a non-formal
running part.

However, this design choice makes it impossible to formally verify the
complete behavior of the system. Instead, a practical trade-off was to
model and formally verify certain aspects of a system, and to apply
testing to verify larger parts or complete systems.

Connected to the testing process of IAS, paper E presents a coverability
criteria to assess the extent to which the model has been exercised while
testing. This criteria can be used as an indicator to decide if more tests
are needed in order increase the confidence in IASs.

67

Chapter 6 Concluding remarks and future work

Future work
An important future endeavour would be to apply the methods presented
in this paper to more use-cases. While such methods were established and
implemented on several demonstrators, their usefulness on a wider range on
use-cases is yet to be evaluated.

Another aspect connected to use-cases which needs investigation is the scal-
ability of IAS. While the proposed methods presented in this thesis showed to
be useful on several small to medium scale demonstrators, such demonstrators
were relatively small compared to actual industrial production systems.

Modeling behavior for IAS is a challenging task, and while this thesis has
presented methods to assist this task, other methods could prove valuable
for model development. For example, instead of only suggesting suspicious
resources, variables, and operations, a model synthesis approach could be in-
vestigated to automatically synthesize parts of the model based on the existing
model and some user defined requirements.

Furthermore, an effort that could prove useful would be to try to learn
certain parts of the model. For example, after developing and verifying the
formal planning subset of the model, parts of the non-formal running model
could be learnt by interacting with the simulated environment while satisfying
some requirements. It might not be possible to learn the complete model,
however, and investigation could reveal that it might be possible to correctly
learn some parts.

Another improvement that is due is the modeling API and quality of life.
To truly facilitate the adoption of IAS by other users and engineers, effort
has to be spent for improving the accessibility of the modeling, programming,
and graphical interfaces of IAS. Ideally, such interfaces could abstract certain
details for high-level general usability, while allowing complete access to more
experienced users. Moreover, proper tutorials, documentation, and examples,
have to be developed to aid learning engineers.

68

References

[1] G. I. Fragapane, D. A. Ivanov, M. Peron, F. Sgarbossa, and J. O.
Strandhagen, “Increasing flexibility and productivity in industry 4.0
production networks with autonomous mobile robots and smart intral-
ogistics,” Annals of Operations Research, pp. 1–19, 2020.

[2] C. G. Lee and S. C. Park, “Survey on the virtual commissioning of
manufacturing systems,” Journal of Computational Design and Engi-
neering, vol. 1, no. 3, pp. 213–222, 2014, issn: 2288-4300.

[3] P. J. Van Laarhoven and W. H. Zijm, “Production preparation and
numerical control in pcb assembly,” International Journal of Flexible
Manufacturing Systems, vol. 5, no. 3, pp. 187–207, 1993.

[4] T. Lechler, E. Fischer, M. Metzner, A. Mayr, and J. Franke, “Virtual
commissioning–scientific review and exploratory use cases in advanced
production systems,” Procedia CIRP, vol. 81, pp. 1125–1130, 2019.

[5] G. Barbieri, A. Bertuzzi, A. Capriotti, et al., “A virtual commission-
ing based methodology to integrate digital twins into manufacturing
systems,” Production Engineering, vol. 15, pp. 397–412, 2021.

[6] C. Scheifele, A. Verl, and O. Riedel, “Real-time co-simulation for the
virtual commissioning of production systems,” Procedia CIRP, vol. 79,
pp. 397–402, 2019.

[7] A. Albo and P. Falkman, “A standardization approach to virtual com-
missioning strategies in complex production environments,” Procedia
Manufacturing, vol. 51, pp. 1251–1258, 2020.

69

References

[8] J. Bao, D. Guo, J. Li, and J. Zhang, “The modelling and operations
for the digital twin in the context of manufacturing,” Enterprise Infor-
mation Systems, vol. 13, no. 4, pp. 534–556, 2019.

[9] M.-H. Hung, Y.-C. Lin, H.-C. Hsiao, et al., “A novel implementation
framework of digital twins for intelligent manufacturing based on con-
tainer technology and cloud manufacturing services,” IEEE Transac-
tions on Automation Science and Engineering, vol. 19, no. 3, pp. 1614–
1630, 2022.

[10] Y. Qamsane, C.-Y. Chen, E. C. Balta, et al., “A unified digital twin
framework for real-time monitoring and evaluation of smart manu-
facturing systems,” in 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE), 2019, pp. 1394–1401.

[11] W. Shen, T. Hu, Y. Yin, J. He, F. Tao, and A. Nee, “Digital twin
based virtual commissioning for computerized numerical control ma-
chine tools,” in Digital Twin Driven Smart Design, F. Tao, A. Liu,
T. Hu, and A. Nee, Eds., Academic Press, 2020, pp. 289–307, isbn:
978-0-12-818918-4.

[12] J. Wang, X. Niu, R. X. Gao, Z. Huang, and R. Xue, “Digital twin-
driven virtual commissioning of machine tool,” Robotics and Computer-
Integrated Manufacturing, vol. 81, p. 102 499, 2023, issn: 0736-5845.

[13] M. A. Wehrmeister, “Generating ros-based software for industrial cyber-
physical systems from uml/marte,” in 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, 2020, pp. 313–320.

[14] B. Wally, J. Vyskočil, P. Novák, et al., “Flexible production systems:
Automated generation of operations plans based on isa-95 and pddl,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4062–4069,
2019.

[15] B. Illmer, M. Karkowski, and M. Vielhaber, “Petri net controlled vir-
tual commissioning – a virtual design-loop approach,” Procedia CIRP,
vol. 91, pp. 152–157, 2020, Enhancing design through the 4th Industrial
Revolution Thinking, issn: 2212-8271.

[16] T. Murata, “Petri nets: Properties, analysis and applications,” Pro-
ceedings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

70

References

[17] A. Philippot, B. Riera, V. Kunreddy, and S. Debernard, “Advanced
tools for the control engineer in industry 4.0,” in 2018 IEEE Industrial
Cyber-Physical Systems (ICPS), 2018, pp. 555–560.

[18] T. Blochwitz, M. Otter, M. Arnold, et al., “The functional mockup
interface for tool independent exchange of simulation models,” in Pro-
ceedings of the 8th international Modelica conference, Linköping Uni-
versity Press, 2011, pp. 105–114.

[19] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting,
1st. USA: Cambridge University Press, 2016, isbn: 1107037271.

[20] ROS 2, https://index.ros.org/doc/ros2/, [Online; accessed 25-
Feb-2019], 2019.

[21] M. Cashmore, M. Fox, D. Long, et al., “Rosplan: Planning in the
robot operating system,” in Proceedings of the Twenty-Fifth Interna-
tional Conference on International Conference on Automated Planning
and Scheduling, ser. ICAPS’15, Jerusalem, Israel: AAAI Press, 2015,
pp. 333–341, isbn: 978-1-57735-731-5.

[22] F. Rovida, M. Crosby, D. Holz, et al., “Skiros—a skill-based robot
control platform on top of ros,” in Robot Operating System (ROS):
The Complete Reference (Volume 2), A. Koubaa, Ed. Cham: Springer
International Publishing, 2017, pp. 121–160, isbn: 978-3-319-54927-9.

[23] A. Munawar, G. De Magistris, T. Pham, et al., “Maestrob: A robotics
framework for integrated orchestration of low-level control and high-
level reasoning,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), May 2018, pp. 527–534.

[24] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager,
“Costar: Instructing collaborative robots with behavior trees and vi-
sion,” in 2017 IEEE International Conference on Robotics and Au-
tomation (ICRA), May 2017, pp. 564–571.

[25] E. Aertbeliën and J. De Schutter, “Etasl/etc: A constraint-based task
specification language and robot controller using expression graphs,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Sep. 2014, pp. 1540–1546.

71

https://index.ros.org/doc/ros2/

References

[26] C. Schou, R. S. Andersen, D. Chrysostomou, S. Bøgh, and O. Madsen,
“Skill-based instruction of collaborative robots in industrial settings,”
Robotics and Computer-Integrated Manufacturing, vol. 53, pp. 72–80,
2018.

[27] V. Krueger, F. Rovida, B. Grossmann, et al., “Testing the vertical
and cyber-physical integration of cognitive robots in manufacturing,”
Robotics and Computer-Integrated Manufacturing, vol. 57, pp. 213–229,
2019.

[28] D. Dal Moro, M. Robol, M. Roveri, and P. Giorgini, “A demonstration
of bdi-based robotic systems with ros2,” in International Conference
on Practical Applications of Agents and Multi-Agent Systems, Springer,
2022, pp. 473–479.

[29] R. Wang, Y. Guan, H. Song, et al., “A formal model-based design
method for robotic systems,” IEEE Systems Journal, vol. 13, no. 1,
pp. 1096–1107, 2019.

[30] S. Profanter, A. Perzylo, M. Rickert, and A. Knoll, “A generic plug
& produce system composed of semantic opc ua skills,” IEEE Open
Journal of the Industrial Electronics Society, vol. 2, pp. 128–141, 2021.

[31] T. Coito, M. S. Martins, J. L. Viegas, et al., “A middleware platform
for intelligent automation: An industrial prototype implementation,”
Computers in industry, vol. 123, p. 103 329, 2020.

[32] C. Nam, S. Lee, J. Lee, et al., “A software architecture for service
robots manipulating objects in human environments,” IEEE Access,
vol. 8, pp. 117 900–117 920, 2020.

[33] Y. Chen, U. Rosolia, and A. D. Ames, “Decentralized task and path
planning for multi-robot systems,” IEEE Robotics and Automation Let-
ters, vol. 6, no. 3, pp. 4337–4344, 2021.

[34] K. Dorofeev and M. Wenger, “Evaluating skill-based control archi-
tecture for flexible automation systems,” in 2019 24th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA), IEEE, 2019, pp. 1077–1084.

72

References

[35] M. Dahl, C. Larsen, E. Eros, K. Bengtsson, M. Fabian, and P. Falk-
man, “Interactive formal specification for efficient preparation of intel-
ligent automation systems,” CIRP Journal of Manufacturing Science
and Technology, vol. 38, pp. 129–138, 2022, issn: 1755-5817.

[36] F. Martin, M. Morelli, H. Espinoza, F. J. Lera, and V. Matellan, “Op-
timized execution of pddl plans using behavior trees,” arXiv preprint
arXiv:2101.01964, 2021.

[37] F. Martin, J. G. Clavero, V. Matellan, and F. J. Rodriguez, “Plansys2:
A planning system framework for ros2,” in 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), IEEE,
2021, pp. 9742–9749.

[38] S. Alouneh, S. Abed, M. H. A. Shayeji, and R. Mesleh, “A comprehen-
sive study and analysis on sat-solvers: Advances, usages and achieve-
ments,” Artificial Intelligence Review, pp. 1–27, 2018.

[39] J. E. Arxer, “Smt techniques for planning problems,” 2018.
[40] A. Bit-Monnot, F. Leofante, L. Pulina, and A. Tacchella, “Smt-based

planning for robots in smart factories,” in Advances and Trends in Arti-
ficial Intelligence. From Theory to Practice, F. Wotawa, G. Friedrich, I.
Pill, R. Koitz-Hristov, and M. Ali, Eds., Cham: Springer International
Publishing, 2019, pp. 674–686, isbn: 978-3-030-22999-3.

[41] R. Cavada, A. Cimatti, M. Dorigatti, et al., “The nuxmv symbolic
model checker,” in Computer Aided Verification: 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings 26, Springer,
2014, pp. 334–342.

[42] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems, Springer, 2008, pp. 337–340.

[43] K. Akesson, M. Fabian, H. Flordal, and R. Malik, “Supremica-an inte-
grated environment for verification, synthesis and simulation of discrete
event systems,” in 2006 8th International Workshop on Discrete Event
Systems, IEEE, 2006, pp. 384–385.

[44] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,”
Formal methods for the design of real-time systems, pp. 200–236, 2004.

73

References

[45] A. Fleury and M. Heisinger, “Cadical, kissat, paracooba, plingeling and
treengeling entering the sat competition 2020,” SAT COMPETITION,
vol. 2020, p. 50, 2020.

[46] R. Anand, D. Aggarwal, and V. Kumar, “A comparative analysis of
optimization solvers,” Journal of Statistics and Management Systems,
vol. 20, no. 4, pp. 623–635, 2017.

[47] J. Rintanen, “Madagascar: Scalable planning with sat,” Proceedings of
the 8th International Planning Competition (IPC-2014), vol. 21, pp. 1–
5, 2014.

[48] N. Sorensson and N. Een, “Minisat v1. 13-a sat solver with conflict-
clause minimization,” SAT, vol. 2005, no. 53, pp. 1–2, 2005.

[49] E. Solowjow, I. Ugalde, Y. Shahapurkar, et al., “Industrial robot grasp-
ing with deep learning using a programmable logic controller (plc),”
arXiv preprint arXiv:2004.10251, 2020.

[50] D. Morrison, P. Corke, and J. Leitner, “Learning robust, real-time,
reactive robotic grasping,” The International Journal of Robotics Re-
search, vol. 39, no. 2-3, pp. 183–201, 2020.

[51] S. James, P. Wohlhart, M. Kalakrishnan, et al., “Sim-to-real via sim-to-
sim: Data-efficient robotic grasping via randomized-to-canonical adap-
tation networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12 627–12 637.

[52] O. Grumberg, E. Clarke, and D. Peled, Model checking, 1999.
[53] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-

based approaches for verification of embedded control systems: An
overview of traditional and advanced modeling, testing, and verification
techniques,” IEEE Control Systems Magazine, vol. 36, no. 6, pp. 45–64,
2016.

[54] A. Afzal, C. L. Goues, M. Hilton, and C. S. Timperley, “A study on
challenges of testing robotic systems,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST),
2020, pp. 96–107.

74

References

[55] R. Ramler, W. Putschögl, and D. Winkler, “Automated testing of in-
dustrial automation software: Practical receipts and lessons learned,”
in Proceedings of the 1st International Workshop on Modern Software
Engineering Methods for Industrial Automation, 2014, pp. 7–16.

[56] R. Hametner, B. Kormann, B. Vogel-Heuser, D. Winkler, and A. Zoitl,
“Test case generation approach for industrial automation systems,” in
The 5th international conference on automation, robotics and applica-
tions, IEEE, 2011, pp. 57–62.

[57] V. Vyatkin, “Software engineering in industrial automation: State-of-
the-art review,” IEEE Transactions on Industrial Informatics, vol. 9,
no. 3, pp. 1234–1249, 2013.

[58] P. Helle, W. Schamai, and C. Strobel, “Testing of autonomous systems–
challenges and current state-of-the-art,” in INCOSE international sym-
posium, Wiley Online Library, vol. 26, 2016, pp. 571–584.

[59] A. Santos, A. Cunha, and N. Macedo, “The high-assurance ROS frame-
work,” in 2021 IEEE/ACM 3rd International Workshop on Robotics
Software Engineering (RoSE), 2021, pp. 37–40.

[60] A. Santos, A. Cunha, and N. Macedo, “Property-based testing for
the robot operating system,” in Proceedings of the 9th ACM SIG-
SOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation, ser. A-TEST 2018, Lake Buena Vista, FL,
USA: Association for Computing Machinery, 2018, pp. 56–62, isbn:
9781450360531.

[61] R. Carvalho, A. Cunha, N. Macedo, and A. Santos, “Verification of
system-wide safety properties of ros applications,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2020, pp. 7249–7254.

[62] L. Dust, R. Gu, C. Seceleanu, M. Ekström, and S. Mubeen, “Pattern-
based verification of ros 2 nodes using uppaal,” in International Con-
ference on Formal Methods for Industrial Critical Systems, Springer,
2023, pp. 57–75.

75

References

[63] X. Cai and M. R. Lyu, “The effect of code coverage on fault detection
under different testing profiles,” in Proceedings of the 1st International
Workshop on Advances in Model-Based Testing, ser. A-MOST ’05, St.
Louis, Missouri: Association for Computing Machinery, 2005, pp. 1–7,
isbn: 1595931155.

[64] K. Hayhurst and D. Veerhusen, “A practical approach to modified con-
dition/decision coverage,” in 20th DASC. 20th Digital Avionics Sys-
tems Conference (Cat. No.01CH37219), vol. 1, 2001, 1B2/1–1B2/10
vol.1.

[65] M. Born, J. Favaro, and O. Kath, “Application of iso dis 26262 in prac-
tice,” in Proceedings of the 1st Workshop on Critical Automotive Appli-
cations: Robustness and Safety, ser. CARS ’10, Valencia, Spain: Asso-
ciation for Computing Machinery, 2010, pp. 3–6, isbn: 9781605589152.

[66] K. Maruchi, H. Shin, and M. Sakai, “MC/DC-Like structural coverage
criteria for function block diagrams,” in 2014 IEEE Seventh Inter-
national Conference on Software Testing, Verification and Validation
Workshops, 2014, pp. 253–259.

[67] H. Hemmati, “How effective are code coverage criteria?” In 2015 IEEE
International Conference on Software Quality, Reliability and Security,
2015, pp. 151–156.

[68] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs,” SIGPLAN Not., vol. 35, no. 9, pp. 268–
279, Sep. 2000, issn: 0362-1340.

[69] D. R. MacIver, Hypothesis 4.24, https://github.com/HypothesisWor
ks/hypothesis, 2018.

[70] Proptest, https://docs.rs/proptest/latest/proptest/, 2022.
[71] A. Donzé, “Breach, a toolbox for verification and parameter synthesis

of hybrid systems,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22, Springer, 2010, pp. 167–170.

[72] R. Hametner, B. Kormann, B. Vogel-Heuser, D. Winkler, and A. Zoitl,
“Test case generation approach for industrial automation systems,” in
The 5th International Conference on Automation, Robotics and Appli-
cations, 2011, pp. 57–62.

76

https://github.com/HypothesisWor
ks/hypothesis
https://docs.rs/proptest/latest/proptest/

References

[73] D. Winkler, R. Hametner, T. Östreicher, and S. Biffl, “A framework for
automated testing of automation systems,” in 2010 IEEE 15th Confer-
ence on Emerging Technologies and Factory Automation (ETFA 2010),
2010, pp. 1–4.

[74] S. Sebastian, S. Magnus, M. Thron, et al., “Test methodology for vir-
tual commissioning based on behaviour simulation of production sys-
tems,” in 2016 IEEE 21st International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), 2016, pp. 1–9.

[75] V. Hubka and W. E. Eder, Theory of technical systems: a total concept
theory for engineering design. Springer Science & Business Media, 2012.

[76] M. M. Andreasen, T. J. Howard, and H. P. L. Bruun, “Domain theory,
its models and concepts,” An anthology of theories and models of de-
sign: philosophy, approaches and empirical explorations, pp. 173–195,
2014.

[77] M. M. Andreasen, “Design methodology,” Journal of Engineering De-
sign, vol. 2, no. 4, pp. 321–335, 1991.

[78] G. S. Altshuller, The innovation algorithm: TRIZ, systematic innova-
tion and technical creativity. Technical innovation center, Inc., 1999.

[79] N. P. Suh and N. P. Suh, Axiomatic design: advances and applications.
Oxford university press New York, 2001, vol. 4.

[80] A. Hatchuel and B. Weil, “A new approach of innovative design: An
introduction to ck theory.,” in DS 31: Proceedings of ICED 03, the 14th
International Conference on Engineering Design, Stockholm, 2003.

[81] J. S. Gero and U. Kannengiesser, “A function–behavior–structure on-
tology of processes,” Ai Edam, vol. 21, no. 4, pp. 379–391, 2007.

[82] D. Braha and O. Maimon, A mathematical theory of design: founda-
tions, algorithms and applications. Springer Science & Business Media,
2013, vol. 17.

[83] L. T. Blessing and A. Chakrabarti, DRM: A design reseach methodol-
ogy. Springer, 2009.

[84] G. Muller, “Systems engineering research methods,” Procedia Com-
puter Science, vol. 16, pp. 1092–1101, 2013.

77

References

[85] F. Auinger, M. Vorderwinkler, and G. Buchtela, “Interface driven domain-
independent modeling architecture for "soft-commissioning" and "real-
ity in the loop",” in WSC’99. 1999 Winter Simulation Conference Pro-
ceedings. ’Simulation - A Bridge to the Future’ (Cat. No.99CH37038),
vol. 1, 1999, 798–805 vol.1.

[86] N. Shahim and C. Møller, “Economic justification of virtual commis-
sioning in automation industry,” in 2016 Winter Simulation Conference
(WSC), 2016, pp. 2430–2441.

[87] T. Foote, “Tf: The transform library,” in 2013 IEEE Conference on
Technologies for Practical Robot Applications (TePRA), 2013, pp. 1–6.

[88] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE Robotics
and Automation Magazine - IEEE ROBOT AUTOMAT, vol. 19, pp. 18–
19, Mar. 2012.

[89] Rust: A language empowering everyone to build reliable and efficient
software. https://www.rust-lang.org/, Accessed: 2023-03-17.

[90] R2r - easy to use, runtime-agnostic, async rust bindings for ROS2.
https://github.com/sequenceplanner/r2r, Accessed: 2023-03-17.

[91] M. Dahl, E. Erős, K. Bengtsson, M. Fabian, and P. Falkman, “Sequence
planner: A framework for control of intelligent automation systems,”
Applied Sciences, vol. 12, no. 11, 2022, issn: 2076-3417.

[92] D. Astels, Test Driven Development: A Practical Guide. Prentice Hall
Professional Technical Reference, 2003, isbn: 0131016490.

[93] F. Giunchiglia and P. Traverso, “Planning as model checking,” in Re-
cent Advances in AI Planning: 5th European Conference on Planning,
ECP’99, Durham, UK, September 8-10, 1999. Proceedings 5, Springer,
2000, pp. 1–20.

[94] C. Bäckström, P. Jonsson, and S. Ståhlberg, “Fast detection of un-
solvable planning instances using local consistency,” in Proceedings of
the International Symposium on Combinatorial Search, vol. 4, 2013,
pp. 29–37.

[95] J. Hoffmann, P. Kissmann, and A. Torralba, “" distance"? who cares?
tailoring merge-and-shrink heuristics to detect unsolvability.,” in ECAI,
2014, pp. 441–446.

78

https://www.rust-lang.org/
https://github.com/sequenceplanner/r2r

References

[96] S. Eriksson, G. Röger, and M. Helmert, “Unsolvability certificates for
classical planning,” Proceedings of the International Conference on Au-
tomated Planning and Scheduling, vol. 27, no. 1, pp. 88–97, Jun. 2017.

[97] S. Eriksson, G. Röger, and M. Helmert, “A proof system for unsolv-
able planning tasks,” Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 28, no. 1, pp. 65–73, Jun.
2018.

[98] “Coming up with good excuses: What to do when no plan can be
found,” vol. 20,

[99] S. Sreedharan, S. Srivastava, D. Smith, and S. Kambhampati, “Why
can’t you do that hal? explaining unsolvability of planning tasks,” in
International Joint Conference on Artificial Intelligence, 2019.

[100] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineer-
ing, vol. 42, no. 8, pp. 707–740, 2016.

[101] C. Nie and H. Leung, “The minimal failure-causing schema of combi-
natorial testing,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4,
Sep. 2011, issn: 1049-331X.

[102] X. Niu, C. Nie, Y. Lei, and A. T. Chan, “Identifying failure-inducing
combinations using tuple relationship,” in 2013 IEEE Sixth Interna-
tional Conference on Software Testing, Verification and Validation Work-
shops, 2013, pp. 271–280.

[103] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through auto-
mated predicate switching,” in Proceedings of the 28th International
Conference on Software Engineering, ser. ICSE ’06, Shanghai, China:
Association for Computing Machinery, 2006, pp. 272–281.

[104] A. Griesmayer, S. Staber, and R. Bloem, “Fault localization using a
model checker,” Softw. Test. Verif. Reliab., vol. 20, no. 2, pp. 149–173,
Jun. 2010, issn: 0960-0833.

[105] A. Griesmayer, S. Staber, and R. Bloem, “Automated fault localization
for c programs,” Electronic Notes in Theoretical Computer Science,
vol. 174, no. 4, pp. 95–111, 2007, Proceedings of the Workshop on
Verification and Debugging (V&D 2006), issn: 1571-0661.

79

References

[106] A. Zeller, “Isolating cause-effect chains from computer programs,” in
Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of
Software Engineering, ser. SIGSOFT ’02/FSE-10, Charleston, South
Carolina, USA: Association for Computing Machinery, 2002, pp. 1–10,
isbn: 1581135149.

[107] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2,
pp. 183–200, 2002.

[108] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2011.

[109] J. Rintanen, “Search methods for classical and temporal planning,”
Tutorials of the 21th European Conference on Artificial Intelligence
(ECAI 2014), vol. 21, 2014.

[110] H. Kautz and B. Selman, “Planning as satisfiability,” in Proceedings of
the 10th European Conference on Artificial Intelligence, ser. ECAI ’92,
Vienna, Austria: John Wiley & Sons, Inc., 1992, pp. 359–363, isbn:
0471936081.

[111] J. Rintanen, “Planning as satisfiability: Heuristics,” Artificial Intelli-
gence, vol. 193, pp. 45–86, 2012, issn: 0004-3702.

[112] J. Rintanen, “Madagascar: Scalable planning with sat,” Proceedings of
the 8th International Planning Competition (IPC-2014), vol. 21, 2014.

[113] H. Hoos and T. Stützle, “Local search algorithms for sat: An empirical
evaluation,” Journal of Automated Reasoning, vol. 24, pp. 421–481,
Jan. 2000.

[114] M. Heule and H. van Maaren, “Look-ahead based sat solvers.,” Hand-
book of satisfiability, vol. 185, pp. 155–184, 2009.

[115] J. P. Marques-Silva and K. A. Sakallah, “Grasp: A search algorithm for
propositional satisfiability,” IEEE Transactions on Computers, vol. 48,
no. 5, pp. 506–521, 1999.

[116] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” Commun. ACM, vol. 5, no. 7, pp. 394–397, Jul. 1962,
issn: 0001-0782.

[117] A. Anbulagan and C.-M. Li, “Heuristics based on unit propagation for
satisfiability problems,” Jul. 2000.

80

References

[118] O. Dubois and G. Dequen, “A backbone-search heuristic for efficient
solving of hard 3-sat formulae,” Jan. 2001, pp. 248–253.

[119] L. Zhang and S. Malik, “The quest for efficient boolean satisfiability
solvers,” in Proceedings of the 14th International Conference on Com-
puter Aided Verification, ser. CAV ’02, Berlin, Heidelberg: Springer-
Verlag, 2002, pp. 17–36, isbn: 3540439978.

[120] M. J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and
conquer: Guiding cdcl sat solvers by lookaheads,” in Hardware and
Software: Verification and Testing, K. Eder, J. Lourenço, and O. She-
hory, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 50–
65, isbn: 978-3-642-34188-5.

[121] J. Rintanen, “Planning with specialized sat solvers,” in AAAI, 2011.
[122] A. A. Semenov, “About tseitin’s transformation in logical equations,”

Prikladnaya Diskretnaya Matematika, no. 10, pp. 12–13, 2009.
[123] D. A. Plaisted and S. Greenbaum, “A structure-preserving clause form

translation,” J. Symb. Comput., vol. 2, no. 3, pp. 293–304, Sep. 1986,
issn: 0747-7171.

[124] A. Nonnengart and C. Weidenbach, “Computing small clause normal
forms,” in Handbook of Automated Reasoning, ser. Handbook of Au-
tomated Reasoning, A. Robinson and A. Voronkov, Eds., Amsterdam:
North-Holland, 2001, pp. 335–367, isbn: 978-0-444-50813-3.

[125] D. Kroening and O. Strichman, Decision Procedures: An Algorithmic
Point of View, 2nd ed. Springer Publishing Company, Incorporated,
2016, isbn: 978-3-662-50497-0.

[126] T. Boy de la Tour, “An optimality result for clause form translation,” J.
Symb. Comput., vol. 14, no. 4, pp. 283–301, Oct. 1992, issn: 0747-7171.

[127] A. Nonnengart, G. Rock, and C. Weidenbach, “On generating small
clause normal forms,” in Automated Deduction — CADE-15, C. Kirch-
ner and H. Kirchner, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1998, pp. 397–411, isbn: 978-3-540-69110-5.

[128] D. Sheridan, “The optimality of a fast cnf conversion and its use with
sat,” in In SAT [SAT04, 2004.

[129] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge
University Press, 1996.

81

References

[130] M. N. Velev, “Efficient translation of boolean formulas to cnf in formal
verification of microprocessors,” in ASP-DAC 2004: Asia and South
Pacific Design Automation Conference 2004 (IEEE Cat. No.04EX753),
2004, pp. 310–315.

[131] P. Jackson and D. Sheridan, “Clause form conversions for boolean cir-
cuits,” in Proceedings of the 7th International Conference on Theory
and Applications of Satisfiability Testing, ser. SAT’04, Vancouver, BC,
Canada: Springer-Verlag, 2004, pp. 183–198, isbn: 354027829X.

[132] P. Manolios and D. Vroon, “Efficient circuit to cnf conversion,” in Pro-
ceedings of the 10th International Conference on Theory and Applica-
tions of Satisfiability Testing, ser. SAT’07, Lisbon, Portugal: Springer-
Verlag, 2007, pp. 4–9, isbn: 9783540727873.

[133] B. Chambers, P. Manolios, and D. Vroon, “Faster sat solving with
better cnf generation,” in 2009 Design, Automation Test in Europe
Conference Exhibition, 2009, pp. 1590–1595.

[134] R. Arora and M. Hsiao, “Cnf formula simplification using implication
reasoning,” Dec. 2004, pp. 129–134, isbn: 0-7803-8714-7.

[135] N. Eén and A. Biere, “Effective preprocessing in sat through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing, F. Bacchus and T. Walsh, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 61–75, isbn: 978-3-540-31679-4.

[136] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Hand-
book of Satisfiability: Volume 185 Frontiers in Artificial Intelligence
and Applications. NLD: IOS Press, 2009, isbn: 1586039296.

[137] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” J. ACM, vol. 7, no. 3, pp. 201–215, Jul. 1960, issn: 0004-5411.

[138] S. Subbarayan and D. K. Pradhan, “Niver: Non-increasing variable
elimination resolution for preprocessing sat instances,” in Theory and
Applications of Satisfiability Testing, H. H. Hoos and D. G. Mitchell,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 276–
291, isbn: 978-3-540-31580-3.

[139] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
Mar. 2010, pp. 129–144, isbn: 978-3-642-12001-5.

82

References

[140] M. J. H. Heule, M. Järvisalo, and A. Biere, “Efficient cnf simplification
based on binary implication graphs,” in SAT, 2011.

[141] C. Piette, Y. Hamadi, and L. Saıs, “Vivifying propositional clausal
formulae,” in Proceedings of the 2008 Conference on ECAI 2008: 18th
European Conference on Artificial Intelligence, NLD: IOS Press, 2008,
pp. 525–529, isbn: 9781586038915.

[142] C.-M. Li, F. Xiao, M. Luo, F. Manyà, Z. Lu, and Y. Li, “Clause vivifi-
cation by unit propagation in cdcl sat solvers,” Artificial Intelligence,
vol. 279, p. 103 197, 2020, issn: 0004-3702.

[143] M. J. H. Heule, M. Järvisalo, and A. Biere, “Revisiting hyper binary
resolution,” in CPAIOR, 2013.

[144] K. R. Apt, “Some remarks on boolean constraint propagation,” in
New Trends in Constraints, K. R. Apt, E. Monfroy, A. C. Kakas, and
F. Rossi, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 91–107, isbn: 978-3-540-44654-5.

[145] I. Lynce and J. Marques-Silva, “Efficient data structures for backtrack
search sat solvers,” Annals of Mathematics and Artificial Intelligence,
vol. 43, no. 1–4, pp. 137–152, Jan. 2005, issn: 1012-2443.

[146] H. Zhang, “Sato: An efficient propositional prover,” in CADE, 1997.
[147] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,

“Chaff: Engineering an efficient sat solver,” in Proceedings of the 38th
Design Automation Conference (IEEE Cat. No.01CH37232), 2001
, pp. 530–535.

[148] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, E. Giunchiglia and A. Tacchella,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 502–
518, isbn: 978-3-540-24605-3.

[149] L. Ryan, “Efficient algorithms for clause-learning sat solvers,” 2004.
[150] J. Rintanen, “Planning as satisfiability: Heuristics,” Artificial Intelli-

gence, vol. 193, pp. 45–86, 2012, issn: 0004-3702.
[151] J. Huang, “The effect of restarts on the efficiency of clause learning,”

in Proceedings of the 20th International Joint Conference on Artifi-
cal Intelligence, ser. IJCAI’07, Hyderabad, India: Morgan Kaufmann
Publishers Inc., 2007, pp. 2318–2323.

83

References

[152] M. Luby, A. Sinclair, and D. Zuckerman, “Optimal speedup of las vegas
algorithms,” Information Processing Letters, vol. 47, no. 4, pp. 173–180,
1993, issn: 0020-0190.

[153] Y. Guo, B. Zhang, and C. Zhang, “A heuristic restart strategy to speed
up the solving of satisfiability problem,” in 2012 Fifth International
Symposium on Computational Intelligence and Design, vol. 2, 2012,
pp. 423–426.

[154] S. Gocht and T. Balyo, “Accelerating sat based planning with incre-
mental sat solving,” in ICAPS, 2017.

[155] J. Rintanen, “An iterative algorithm for synthesizing invariants,” in
AAAI/IAAI, 2000.

[156] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340, isbn: 978-3-540-78800-3.

[157] J. Rintanen, “Evaluation strategies for planning as satisfiability,” Pro-
ceedings of the 16th European Conference on Artificial Intelligence,
pp. 682–687, 2004.

[158] D. M. McDermott, “The 1998 ai planning systems competition,” AI
Magazine, vol. 21, no. 2, p. 35, Jun. 2000.

[159] F. Bacchus, “Aips 2000 planning competition: The fifth international
conference on artificial intelligence planning and scheduling systems,”
AI Magazine, vol. 22, no. 3, p. 47, Sep. 2001.

[160] D. Long and M. Fox, “The 3rd international planning competition:
Results and analysis.,” J. Artif. Intell. Res. (JAIR), vol. 20, pp. 1–59,
Dec. 2003.

[161] A. Coles, A. Coles, A. Olaya, et al., “A survey of the seventh inter-
national planning competition,” Ai Magazine, vol. 33, pp. 83–88, Mar.
2012.

[162] M. Vallati, L. Chrpa, M. Grześ, et al., “The 2014 international planning
competition: Progress and trends,” AI Magazine, vol. 36, no. 3, pp. 90–
98, Sep. 2015.

84

References

[163] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the Third Annual ACM Symposium on Theory of Com-
puting, ser. STOC ’71, Shaker Heights, Ohio, USA: Association for
Computing Machinery, 1971, pp. 151–158, isbn: 9781450374644.

[164] D. Kozen, “Positive first-order logic is np-complete,” IBM Journal of
Research and Development, vol. 25, no. 4, pp. 327–332, 1981.

[165] J. Rintanen, “Evaluation strategies for planning as satisfiability,” in
Proceedings of the 16th European Conference on Artificial Intelligence,
ser.
ECAI’04, Valencia, Spain: IOS Press, 2004, 682–686
, isbn: 9781586034528.

[166] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model checking: Al-
gorithmic verification and debugging,” Communications of the ACM,
vol. 52, no. 11, pp. 74–84, 2009.

[167] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1,
pp. 206–230, 1987.

[168] A. Orso and G. Rothermel, “Software testing: A research travelogue
(2000–2014),” in Future of Software Engineering Proceedings, 2014,
pp. 117–132.

[169] I. Buzhinsky, C. Pang, and V. Vyatkin, “Formal modeling of testing
software for cyber-physical automation systems,” in 2015 IEEE Trust-
com/BigDataSE/ISPA, IEEE, vol. 3, 2015, pp. 301–306.

[170] J. Zander, I. Schieferdecker, and P. J. Mosterman, Model-based testing
for embedded systems. CRC press, 2017.

[171] X. Rival and K. Yi, Introduction to static analysis: an abstract inter-
pretation perspective. Mit Press, 2020.

[172] A. Sistla, “Safety, liveness and fairness in temporal logic,” Formal As-
pects of Computing, vol. 6, Sep. 1999.

[173] M. Dahl, K. Bengtsson, M. Fabian, and P. Falkman, “Guard extraction
for modeling and control of a collaborative assembly station,” IFAC-
Papers On Line, vol. 53, no. 4, pp. 223–228, 2020, 15th IFAC Workshop
on Discrete Event Systems WODES 2020 — Rio de Janeiro, Brazil, 11-
13 November 2020, issn: 2405-8963.

85

References

[174] A. Pnueli, “The temporal logic of programs,” in 18th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1977), IEEE, 1977,
pp. 46–57.

[175] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without bdds,” in International conference on tools and algorithms for
the construction and analysis of systems, Springer, 1999, pp. 193–207.

[176] P. Runeson, “A survey of unit testing practices,” IEEE software, vol. 23,
no. 4, pp. 22–29, 2006.

[177] G. Fink and M. Bishop, “Property-based testing: A new approach to
testing for assurance,” SIGSOFT Softw. Eng. Notes, vol. 22, no. 4,
pp. 74–80, Jul. 1997, issn: 0163-5948.

86

	Abstract
	List of Papers
	Acknowledgements
	Acronyms
	I Overview
	1 Introduction
	1.1 Preparation and virtual commissioning
	State of the art
	Problem and motivation
	Research question and contribution

	1.2 Planning and execution
	State of the art
	Problem and motivation
	Research question and contribution

	1.3 Verification and coverability
	State of the art
	Problem and motivation
	Research question and contribution

	1.4 Research approach
	1.5 Industrial use-cases
	1.6 Outline

	2 Preparation and virtual commissioning
	2.1 Preparation and commissioning of IAS
	The Robot Operating System
	The Framework

	2.2 Fault Localization Support

	3 Planning and execution
	3.1 Modeling
	3.2 Planning
	3.3 Solving
	The CDCL algorithm and low-level methods for SAT planning
	High-level methods for SAT planning

	3.4 Encoding
	3.5 Execution

	4 Verification and coverability
	4.1 Verification of IAS
	Formal methods
	Unit testing
	Integration testing
	Property-based testing
	Test Coverability

	5 Summary of included papers
	5.1 Paper A
	5.2 Paper B
	5.3 Paper C
	5.4 Paper D
	5.5 Paper E

	6 Concluding remarks and future work
	Future work

	References

	II Papers
	A Virtual preparation and commissioning of ROS2 based intelligent automation systems
	1 Introduction
	2 Literature review
	2.1 Related work
	2.2 Simulation software
	2.3 Robot Operating System
	2.4 Research gap and questions

	3 Preliminaries
	3.1 Intelligent automation systems
	3.2 Modeling and executing behavior
	3.3 Virtual commissioning
	3.4 Formal verification
	3.5 Testing
	3.6 Automated planning

	4 An industrial use-case
	5 The framework
	5.1 Virtual preparation stage
	5.2 Constructive commissioning stage
	5.3 Emulation stage
	5.4 The software-in-the-loop stage
	5.5 The reality-in-the-loop stage
	5.6 Physical commissioning

	6 Discussion
	7 Conclusion
	References

	B Fault localization for intelligent automation systems
	1 Introduction
	2 Preliminaries
	3 Example
	4 Operations
	5 Fault Localization
	6 Evaluation
	7 Conclusion
	References

	C Evaluation of high level methods for efficient planning as satisfiability
	1 Introduction
	2 Planning methods
	2.1 Incremental vs. sequential base
	2.2 Invariants vs. explicit model
	2.3 Equality vs. propositional logic
	2.4 Skipping steps
	2.5 Subgoaling
	2.6 Shortening the plan length
	2.7 Benchmarks

	3 Discussion
	4 Conclusion
	References

	D Sequence Planner: A Framework for Control of Intelligent Automation Systems
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 The Sequence Planner control framework
	2.1 Resources
	2.2 Operations
	2.3 Resource specifications
	2.4 Intentions
	2.5 Transition runner
	2.6 Operation planner
	2.7 Transition planner
	2.8 Non-determinism

	3 Application to an industrial demonstrator
	3.1 Human operator
	3.2 Resources
	3.3 Operations

	4 Results
	4.1 Planning performance
	4.2 Rate of plan computation
	4.3 Plan complexity

	5 Conclusion
	References

	E Structural coverability for intelligent automation systems
	1 Introduction
	2 Preliminaries
	3 Example
	4 Operations
	5 Structural coverability
	6 Testing
	7 Evaluation
	8 Conclusion
	References

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 265; only odd numbered pages
 Trim: none
 Shift: move right by 19.84 points
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20240130092110

 32

 D:20231211115514
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 2462
 349
 Fixed
 Right
 19.8425
 0.0000

 Odd
 1
 SubDoc
 265

 CurrentAVDoc

 None
 99.2126
 Top

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3n
 Quite Imposing Plus 5
 1

 1
 265
 264
 133

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 264; only even numbered pages
 Trim: none
 Shift: move left by 19.84 points
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20240130092134

 32

 D:20231211115514
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 2462
 349

 Fixed
 Left
 19.8425
 0.0000

 Even
 2
 SubDoc
 264

 CurrentAVDoc

 None
 99.2126
 Top

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3n
 Quite Imposing Plus 5
 1

 1
 265
 263
 132

 1

 HistoryList_V1
 qi2base

