
AI/ML-as-a-Service for optical network automation: use cases and
challenges [Invited]

Downloaded from: https://research.chalmers.se, 2024-04-09 13:06 UTC

Citation for the original published paper (version of record):
Natalino Da Silva, C., Panahi, A., Mohammadiha, N. et al (2024). AI/ML-as-a-Service for optical
network automation: use cases and challenges [Invited]. Journal of Optical Communications and
Networking, 16(2): A169-A179. http://dx.doi.org/10.1364/JOCN.500706

N.B. When citing this work, cite the original published paper.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

Research Article 1

AI/ML-as-a-Service for Optical Network Automation: Use
Cases and Challenges [Invited]
CARLOS NATALINO 1,*, ASHKAN PANAHI 2, NASSER MOHAMMADIHA2,3, AND PAOLO MONTI 1

1Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
2Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden
3Ericsson AB, Gothenburg, Sweden
*carlos.natalino@chalmers.se

Authors’ version. Compiled December 19, 2023.

In recent years, artificial intelligence/machine learning (AI/ML) has played a significant role in automating
optical networks. Despite this, the methods for creating, deploying, and monitoring AI/ML models
still rely heavily on human intervention and trial-and-error. AI/ML-as-a-Service aims at automating the
processes associated with AI/ML models, reducing the need for human intervention and thus facilitating
the widespread adoption of AI/ML models. In this paper, we introduce the concept of AI/ML-as-a-
Service in the context of optical network automation and propose an architecture for realizing this concept.
We provide details of a reference implementation that focuses on the model creation stage. The reference
implementation is tested using two use cases related to the quality-of-transmission (QoT) estimation of
optical channels. We demonstrate that models created through AI/ML-as-a-Service are able to achieve
similar performance as manually-tuned models while drastically reducing the need for human involvement.
Finally, we discuss future challenges and opportunities for applying AI/ML-as-a-Service in optical network
automation.
https://doi.org/10.1364/JOCN.500706

1. INTRODUCTION

Traditionally, optical networks have been built using single-
vendor solutions, i.e., open line systems (OLSs) including de-
vices and controlling software. These networks operate with
a mostly-static traffic matrix that provides transport for aggre-
gated traffic of digital services. With the introduction of 5G
and the expected requirements for 6G, network operators have
been moving away from this traditional approach. Modern
optical networks are anticipated to handle per-service require-
ments, and disaggregated solutions. More importantly, optical
networks are expected to provide individualized/customized
transport for service-specific demands in a dynamic and agile
fashion [1]. Therefore, conventional methods of controlling and
managing optical networks must be reconsidered. This involves
a more detailed and frequent monitoring system [2], as well as
autonomous operations. Artificial intelligence/machine learn-
ing (AI/ML) is one of the key methods to realize autonomous
operations of optical networks [3].

Automating the operation of optical networks can be
achieved through a wide variety of use cases, usually taking
advantage of AI/ML models. When provisioning an optical
channel (OCh), two specific use cases come to light: quality-of-
transmission (QoT) regression and QoT classification [4, 5]. In
QoT regression, the optical software-defined networking (SDN)

controller (O-SDNc) uses AI/ML to estimate, from the network
and OCh configuration, a numerical representation of the signal
quality, e.g., signal-to-noise ratio (SNR) and/or its variations
[6, 7], error vector magnitude (EVM) [8]. In QoT classification,
the O-SDNc uses AI/ML to determine whether or not a given
OCh configuration would work given the current network state
[9, 10]. AI/ML models have also been studied for a broad range
of use cases for the scenarios where an OCh is already deployed.
For instance, soft-failure detection, identification [11], and local-
ization [12] methods can be used to prevent the interruption of
optical services by an AI/ML-assisted analysis of optical per-
formance monitoring (OPM) data. Visual representations of the
OCh status, such as constellation diagrams, can be used to iden-
tify modulation format [13] and anomalies [14]. AI/ML can also
be used for detecting and identifying physical layer breaches
[15].

All the use cases mentioned above share the common re-
quirement of using contextualized data, such as topology- or
OCh-specific data, for both training and testing purposes. Op-
erating a medium to large-scale optical network may require
hundreds or even thousands of AI/ML models to achieve com-
plete autonomous network operation. The use of contextual-
ized models presents a challenge to the widespread integra-
tion of AI/ML models for automating optical networks. This

https://orcid.org/0000-0001-7501-5547
https://orcid.org/0000-0003-2085-7127
https://orcid.org/0000-0002-5636-9910
https://doi.org/10.1364/JOCN.500706

Research Article 2

is because the creation and maintenance of such models cur-
rently rely on human involvement and empirical processes. For
example, when developing models, it is typical to make em-
pirical decisions on which model to utilize, such as artificial
neural networks (ANNs) or support vector machines (SVMs).
This is made evident by the performance comparison among
AI/ML models usually adopted in the literature, which assesses
several models to find the most suitable one [4, 9, 15]. Moreover,
hyperparameters play a crucial role in the performance of the
models, and their tuning is done manually and based on em-
pirical knowledge. As a consequence, building AI/ML models
becomes time-consuming, onerous, and dependent on empirical
knowledge and trial-and-error. The tasks of training complex
models, selecting the best model and hyperparameters tuning,
require extensive computational resources. The need for spe-
cialized practitioners and resources for AI/ML models impede
their widespread adoption, thereby hindering the full potential
of autonomous optical network operation. A solution to this
challenge is to automate the AI/ML lifecycle itself.

AI/ML-as-a-Service is a way to outsource the tasks related
to building and maintaining AI/ML models [16]. AI/ML-as-a-
Service is based on the cloud computing service model known
as “Something-as-a-Service”, where resources are provided in a
timely and scalable manner over the Internet [17]. AI/ML-as-a-
Service focuses on automating the stages of creating, adapting,
and operating AI/ML models by utilizing a set of standard in-
terfaces that allow communication between a client system and
the AI/ML-as-a-Service framework. Internally, the AI/ML-as-a-
Service framework includes a series of automated procedures
that enable it to construct AI/ML models based on the specifi-
cations provided by the client system. AI/ML-as-a-Service has
already been utilized in various fields such as electricity de-
mand prediction, health, and software engineering. A subset
of AI/ML-as-a-Service functionalities (mainly encompassing
AI/ML model operations) has also been applied to wireless net-
works [18, 19]. It has shown encouraging outcomes in terms of
reduction in human involvement, enhanced reproducibility, and
faster model creation [16].

This paper examines the concepts and tasks related to ap-
plying the AI/ML-as-a-Service concept in automating optical
network operations. More specifically, it focuses on how to in-
corporate the model creation and deployment capabilities of
AI/ML-as-a-Service into a traditional O-SDNc and evaluates
the advantages of AI/ML-as-a-Service in two typical use cases,
i.e., QoT regression and classification. We are not aware of any
research on the use of AI/ML-as-a-Service for automating op-
tical networks, apart from the initial investigation mentioned
in [20]. In particular, we extend the work in [20] by: (i) for-
mally introducing the concept of AI/ML-as-a-Service and its
associated requirements, specifying the stages that compose the
AI/ML model lifecycle; (ii) describing the main interfaces of the
AI/ML-as-a-Service framework and and their interaction with
the O-SDNc; and (iii) demonstrating the suitability of the model
creation stage and assessing the performance of the proposed
implementation versus traditional manually-tuned ANNs. The
performance analysis of the model operation and adaptation
phases are not in the scope of this paper.

The performance assessment shows that the models gener-
ated by a AI/ML-as-a-Service pipeline achieve results compara-
ble with the ones achieved by manually-tuned ANNs. More im-
portantly, the process of creating AI/ML models is streamlined
by reducing the need for trial-and-error experiments. Upon
full integration with an O-SDNc, AI/ML models can be gen-

erated with minimal human involvement. Nonetheless, it is
important to highlight that this work does not advocate to com-
pletely remove human involvement from the process of creating
AI/ML models, but rather to reduce the tedious, repetitive, time-
consuming, and onerous part.

2. “-AS-A-SERVICE” SERVICE MODEL

Before we formally introduce the proposed AI/ML-as-a-
Service framework, it is important to understand what the ser-
vice model (i.e., Something-as-a-Service) entails. The suffix “-as-a-
Service” was defined in the late 2,000s in the context of cloud com-
puting service offerings [21]. In this service model, providers
offer a product -as-a-Service to their customers. In cloud comput-
ing, the three traditional products are Infrastructure-as-a-Service,
Platform-as-a-Service, and Software-as-a-Service.

There is no consensus as to which is the definitive list of
requirements for a product to be considered -as-a-Service, but
five requirements are always present:

• Controllable through the Web with an application
programming interface (API): customers can re-
quest/adjust/release the service through an API. This
enables the automated, programmatic, and unmanned use
of the service. For instance, a customer can request a new
virtual machine (VM) by simply sending a request to a Web
endpoint.

• Available through the Web: the services offered -as-a-
Service are delivered through the Web. Upon request, the
customer receives an address/endpoint through which the
requested service can be accessed. For instance, if you re-
quest a VM, it will be accessible through a public Internet
protocol (IP) address.

• On-demand: the service will be available at any time
shortly after the request is received. With the short time
between the request and the service being available, cus-
tomers can now only order when (or shortly before) the
need arrives. For instance, a VM only takes the boot time
(i.e., a few seconds or minutes) from the request to the time
it is ready.

• Pay-as-you-go: the customer only pays for the service dur-
ing the time in which the service is accessible. There are
zero costs associated when the customer has not requested
any service. For instance, a VM only generates monetary
charges while it is being executed and there are processing
resources associated with it.

• No-Code: the customer is not required to write any code
(i.e., in a programming language) to have access or ma-
nipulate the service. For instance, a VM can be requested
through a Web user interface or by sending a request to an
endpoint.

Over the years, several other products have been proposed by
academia and industry, but the five aforementioned characteris-
tics have remained fundamental for the products to be consid-
ered -as-a-Service.

3. AI/ML-AS-A-SERVICE PIPELINE

Nowadays, the design and development of AI/ML models re-
main largely dependent on empirical knowledge and trial-and-
error experiments performed by AI/ML experts. The process of

Research Article 3

AI/ML-as-a-ServiceExpert-driven AI/ML

Input
Domain-specific platform

• Use case
• Data acquisition
• Performance metrics &

thresholds

• Pre-processing
• Model creation
• Model deployment

Feedback
loop

Input
Domain-specific platform

• Use case
• Data acquisition
• Performance metrics &

thresholds

Feedback
loop

• Pre-processing
• Model creation
• Model deployment

AI/ML-as-a-Service

• Model adaptation
• Model

adaptation

• Model URL

Fig. 1. AI/ML pipeline built by experts (left) and built using AI/ML-as-a-Service (right).

developing AI/ML models can be expensive due to the time and
computational resources required for each trial-and-error round
carried out by experts in the field. As a result, many companies
face challenges in building their own AI/ML models, either due
to a lack of expertise or resources [22]. Given the increasing
success of AI/ML in several areas, automating this lifecycle is a
necessary step toward enabling the widespread use of AI/ML.

AI/ML-as-a-Service is a relatively new area that focuses on
streamlining the entire lifecycle of AI/MLmodels,and has re-
cently gained increased interest [16]. The process of automating
the AI/ML lifecycle entails developing a series of algorithms
that can replicate the steps involved in creating, adapting, and
operating AI/ML models. However, achieving full realization
of AI/ML-as-a-Service involves two challenging tasks: (i) the
development of a large and complex system, and (ii) modify-
ing the platforms that use AI/ML models to take advantage
of the AI/ML-as-a-Service. In the following, we first present
a high-level overview of how AI/ML-as-a-Service reduces the
complexity of the required human interaction, followed by a
description of related concepts and previous works.

Fig. 1 illustrates the differences between using a traditional,
expert-driven, AI/ML pipeline and a pipeline leveraging the
AI/ML-as-a-Serviceconcept. Generally, an AI/ML pipeline fol-
lows three main stages. To begin, the process requires an input
describing the use case. This description requires the acquisition
of the data that will be utilized to train the AI/MLmodel, the
applicable performance metrics, and the expected performance
thresholds (e.g., minimum accuracy in the case of a classifier).
Second, the model creation stage generates a model that is de-
ployed. Finally, the deployed model should be monitored for
performance degradation (based on the defined performance
thresholds) and model adaptation.

Three differences can be observed between the two cases
illustrated in Fig. 1. The first one is observed when it comes to
processing the input. The way information is presented in an
expert-driven pipeline can vary, but for AI/ML-as-a-Service, the
input needs to follow a specific structure to allow for automatic
processing. Sec. 5 will present an example of a formal input.

The second difference lies in the responsibilities of the experts
involved. In the traditional approach, experts are responsible
for the complete pipeline, which includes data acquisition, pre-
processing, model creation, model deployment, and eventually
model adaptation. However, in the AI/ML-as-a-Service ap-
proach, human involvement is mainly required for preparing
the formal description of the pipeline and making sure that
needed data is available (i.e., data acquisition).

The third difference is related to where the model is de-
ployed. In the traditional approach, the AI/ML model is de-
ployed within the domain-specific platform that uses it. Infer-
ence can be performed by invoking the model locally. On the
other hand, with a AI/ML-as-a-Service framework, the model is
deployed within the AI/ML-as-a-Service platform. The AI/ML-

as-a-Service provides an uniform resource locator (URL) that can
be used by the domain-specific platform to invoke model infer-
ence through the network. By generating the model independent
of the domain-specific platform, the architecture becomes more
flexible.

There are various techniques for the automation of the model
creation and adaptation processes. For example, there are recent
attempts to combine different steps into a unified pipeline, lead-
ing to the emergence of the automated ML (AutoML) research
field [23]. AutoML focuses on automating the AI/ML model
creation process by integrating many of the steps shown in the
upper part of Fig. 2 and described (except for domain adapta-
tion) in Sec. 4.A. Following our definition of AI/ML-as-a-Service,
AutoML is an integrating part of AI/ML-as-a-Service. AutoML
does not however cover the critical aspects such as the definition
of APIs, no-code model creation, operational aspects of running
ML models, etc.

Another important discipline related to AI/ML-as-a-
Service is machine learning operations (MLOps), also referred to
as ML DevOps (ML Development and Operations). MLOps pri-
marily concentrates on the comprehensive lifecycle management
of AI/ML models, encompassing their development, deploy-
ment, serving, monitoring, and maintenance [24]. This dis-
cipline emphasizes the automation of essential processes in-
volved in building and operating AI/ML models. MLOps tools
and practices are integrated as part of AI/ML-as-a-Service to
deliver the required level of automation. As the natural de-
ployment of AI/ML-as-a-Service is on cloud infrastructure,
AI/ML-as-a-Service provides functionalities beyond the ones
offered by MLOps by providing accessible and scalable cloud-
based platforms that simplify the integration and deployment of
AI/ML models. MLOps services offer pre-built AI/ML models,
API, and a managed infrastructure, reducing the complexity for
users who may not possess extensive AI/ML expertise.

There are a few works in the literature targeting a subset of
AI/ML-as-a-Service functionalities. In [18], the authors consider
a pre-trained model, and analyze the challenges in on-boarding,
deploying, and invoking AI/ML models. In [19], the authors
consider a workflow where the model is already defined (i.e.,
decision tree), and trained based on contextual data. However, a
full realization of AI/ML-as-a-Service requires additional stages
and tasks.

4. AI/ML-AS-A-SERVICE: STAGES AND TASKS

Fig. 2 presents a breakdown of the stages and steps involved
in the proposed AI/ML-as-a-Service pipeline. The pipeline is
divided into two main stages: model creation/adaptation and model
operation. During the model creation/adaptation stage, a suitable
AI/ML model is generated based on the provided dataset and a
formal specification of the problem that the model is meant to
address. After creation/adaptation, the AI/ML model becomes

Research Article 4

AI/ML-as-a-Service

Model creation and adaptation

Model
definition

Hyperparameter
tuning

Model operation

Runtime
adaptation

Model
scaling

Feature
engineering

Performance
assessment

Degradation
detection

Model
generation

…

…

Model ready Model degraded

Domain
adaptation

Model
deployment

Fig. 2. Main stages and tasks involved in the AI/ML-as-a-Service pipeline.

available for use during the operation stage. The model is acces-
sible and monitored according to the thresholds outlined in its
specification.

A. Model Creation and Adaptation
The model creation and adaptation stage is responsible for receiving
a model specification and outputting a trained AI/ML model.
The model specification comprises a dataset with the definition
of inputs and target feature, the AI/ML task (e.g., classification,
regression), the performance metric(s) to be considered (e.g.,
mean squared error (MSE) for regression or accuracy for clas-
sification), and corresponding thresholds. First, the model to
be used needs to be defined/selected among several options,
e.g., ANNs, SVMs, and/or decision trees. Some properties of
the dataset can be used to narrow down the number of potential
models, but in the end, the decision is mostly empirical.

Feature engineering is the task responsible for pre-processing
the dataset, selecting which features are relevant and which ones
can be disregarded. The main objective of this task is to remove
features that do not contribute, and sometimes even degrade,
the performance of the resulting model. As a consequence of
this task, data acquisition and the model itself can be simplified
by keeping only the relevant features as input to the model.
Usually, feature engineering strategies can be generalized for
several models [25].

Hyperparameter tuning focuses on refining the model or its
training parameters selected during model definition. The pro-
cess involves finding the right hyperparameters with minimal
computing resources. However, it can be quite expensive as the
model needs to be trained multiple times with different hyperpa-
rameters. In the literature, there are several algorithms targeting
hyperparameter tuning [26].

Once the the dataset has been pre-processed by the feature
engineering task, and the model has been configured by hy-
perparameter tuning task, model training takes place. This task
is closely associated with the particular model in use. For in-
stance, ANNs are usually trained using backpropagation and
gradient descent. On the other hand, decision trees (DTs) can be
trained using a variety of methods, e.g., entropy gain, variance
reduction.

Sometimes, it is important to modify a model that has dete-
riorated and is no longer delivering satisfactory performance,
i.e., no longer meets the specified performance thresholds. Alter-
natively, if the model has only been trained on simulation data,
it may need additional training with real-world data from the
field [27]. Rather than creating a new model, another option is
to adapt the existing model to the new data, a process known
as domain adaptation [28]. Domain adaptation is performed by
further training the model with the new/updated data. Alter-
natively, in optical networks, the learning from one model may

need to be transferred to another model due to changes in, e.g.,
network topology [29]. In this case, the domain adaptation task
can take advantage of transfer learning techniques [30].

Finally, performance evaluation is responsible for assessing the
suitability of the model for the AI/ML task at hand. Depend-
ing on the task at hand, one can use a variety of metrics either
individually or in combination when evaluating the goodness
of an AI/ML model. When it comes to binary classification
(i.e., between two classes), binary cross-entropy is a common
choice to drive model updates, while accuracy and f1-score are
used for human interpretation purposes. In the case of multi-
class classification (i.e., among three or more classes), categorical
cross-entropy is commonly used to update a model, while ac-
curacy and confusion matrices are used as more interpretable
metrics. When it comes to regression tasks, several error met-
rics can be used, such as mean absolute error (MAE), MSE, and
root mean squared error (RMSE) [31]. The metric chosen for an
AI/ML task depends on its purpose and how the model will be
used. While default settings are available, it is best for an expert
to consciously select a specific option.

B. Model Operation
Once the model is ready, the model operation stage is responsible
for two main aspects of the model lifecycle: (i) making the model
available for the domain-specific platform, and (ii) monitoring
the model performance. The runtime adaptation is an optional
task responsible for adapting the model to the intended platform
where the model is running (e.g., instruction set, operating sys-
tem). Depending on the case, runtime adaptation can be also a task
of the model creation stage, or even characterize a constraint to
which models are suitable for the particular use case. The task is
only required if the platform for deploying the model is different
from the one where it was created. It involves taking the model
from the previous stage as input and generating a version that is
suitable for deployment on the intended platform. Sometimes,
a model is designed/trained with the x86 instruction set but
needs to be used on an ARM platform. Similarly, a model may
be created using graphical processing units (GPUs) but needs
to run on a standard central processing units (CPUs). Another
reason to adjust a model is to optimize it for the intended plat-
form, such as compiling it into a native binary for easier and
more efficient deployment.

Model deployment is the task responsible for making the model
available for the customer. Ideally, the AI/ML-as-a-Service in-
frastructure contains specialized hardware that can be used to
accelerate the execution of AI/ML models. Another way to
improve the efficiency of the model is by compiling it to a na-
tive binary that can take advantage of specialized instructions
of modern processors. For instance, when deploying ANNs, a
common and efficient solution is to use TensorFlow-Serving [32],

Research Article 5

which provides a URL invoking model inference through the
network. For example, models are commonly made available
through representational state transfer (REST) or gRPC remote
procedure call (gRPC) interfaces.

Model scaling involves adjusting the resources accessible to
the model to ensure that its inference time stays within a set
limit. One method is to increase resources by scaling vertically,
meaning more resources are allocated to the environment where
the model runs. Alternatively, this can be done by horizontally
scaling the resources, i.e., creating multiple replicas of the model
and using a load balancer among the replicas [7, 33].

Finally, degradation detection is responsible for monitoring
the model performance against the specified thresholds as the
model is used over new data. This is done by considering the
thresholds specified during the model specification, and trigger-
ing an alarm when any of the performance metrics fall outside
the thresholds. There are various factors that can affect the per-
formance of the model, including data drift or concept drift
[34]. In optical networks, these drifts may be caused by equip-
ment aging, changes in network load, or the replacement of
faulty equipment. When degradation is detected, the AI/ML-
as-a-Service framework should initiate the stage of creating and
adapting the model to accommodate the new data.

5. AI/ML-AS-A-SERVICE FOR OPTICAL NETWORK AU-
TOMATION

This section introduces the proposed AI/ML-as-a-Service frame-
work and its integration with traditional optical network au-
tomation platforms. Fig. 3 illustrates a traditional architecture
and workflow for the adoption of AI/ML models in the con-
trol plane of optical networks. Additionally, the figure depicts
how the control plane can be modified to utilize the suggested
AI/ML-as-a-Service framework. Note that the O-SDNc in Fig. 3
represents the domain-specific platform mentioned in Fig. 1.

In the figure, the architecture is divided into three main
planes. In the data plane, we consider an optical network com-
posed of elements such as fiber links, reconfigurable optical
add-drop multiplexers (ROADMs), Erbium-doped fiber ampli-
fiers (EDFAs), and transceivers. In the control plane, the opti-
cal network automation platform is responsible for establish-
ing/maintaining/terminating OChs by controlling the elements
in the data plane, following a traditional SDN approach. The
inventory and monitoring component consists of a database that
stores tabular and time-series data on the services operating in
the network and the monitoring of both services and infrastruc-
ture. The AI/ML plane is accountable for creating, operating,
and monitoring AI/ML models.

The control plane illustrated in Fig. 3 shows a simplified
view of the internal components typically found in an optical
SDN platform. The management of optical services from start
to finish falls under the end-to-end optical service management
responsibility. This includes the provisioning and operation of
OChs throughout their lifetime. To accomplish this goal, the
control plane performs a number of tasks related to the OCh
lifetime, leveraging AI/MLmodels. Among the most common
tasks, we can mention QoT estimation, traffic prediction, soft-
failure detection, and network sensing. Each of these tasks (and
sometimes each OCh) has its own dedicated AI/MLmodels.

A traditional architecture and workflow are illustrated in
Fig. 3a. In this process, human experts handle all tasks related
to the AI/ML pipeline. The process begins with an external
event triggering the need for a new AI/ML model to be built

manually (step 1). Acquisition of relevant data from O-SDNc’s
inventory and monitoring database is performed in step 2. The
data is then pre-processed, and a new AI/ML model is trained
and validated (step 3). The newly generated model is deployed
within the O-SDNc (step 4) and can be invoked by the end-to-end
optical service management component (step 5). The interface
with the model is hard-coded in the O-SDNc implementation
and must be compatible with the programming language used.
After step 5, the model monitoring starts. The outputs given by
the AI/ML models is monitored (step 6), and later compared to
the experienced values (step 7). If a degradation is detected, the
model adaptation is requested (step 8), triggering a new loop
(step 2).

The diagram in Fig. 3b demonstrates how the O-SDNc can
utilize an AI/ML-as-a-Service framework with minimal adjust-
ments. One change involves requesting a new model (step 1).
With a standardized model descriptor, the O-SDNc can auto-
matically request a new AI/ML model when needed. Listing
1 provides an example of a model descriptor that can be auto-
matically populated by the O-SDNc. In step 2, the AI/ML-as-a-
Service framework acquires data related to the model by directly
querying the O-SDNc. After creation, the model is deployed
within the AI/ML-as-a-Service framework (step 3). The O-SDNc
receives a model description (step 4), enabling it to invoke model
inference through the network (step 5). It is essential to note
that the with this approach, the model no longer has to be de-
ployed within the O-SDNc. It can be deployed in a separate
logical execution platform (e.g., a virtual machine or container),
or even in a separate datacenter. This provides extra flexibility in
terms of model deployment options (i,e., potentially allowing for
the optimization of other important parameters such as energy
consumption) and eliminates the requirement of the O-SDNc to
support an AI/ML execution platform. The degradation detection
module monitors the inference results (step 6), and obtains the
experienced values (step 7). If any performance threshold is
violated, the module triggers model adaptation (step 8).

In this section, we focused on providing an overview of
how an AI/ML-as-a-Service platform can be integrated with
an O-SDNc. In the following section, we focus on the model
creation and operation stages, which encompasses steps 1-5 of
Fig. 3b. Steps 6-8 are outside of the scope of the presented
implementation.

Listing 1. Example of YAML content of a model request.
task: classification
dataset:

provider: http
format: pickle
identifier: http://localhost:32000/dataset01.h5

configuration:
time_budget_for_this_task: 480

performance:
metrics:

accuracy:
threshold: 0.98

6. PERFORMANCE ASSESSMENT

This section evaluates the performance of a reference implemen-
tation of the model creation and operation stages of the AI/ML-
as-a-Service framework introduced in the previous section. For

Research Article 6

Optical SDN controller

AI/ML modelsEnd-to-end
optical service
management

Optical Network

D
at

a
p

la
n

e
C

o
n

tr
o

l p
la

n
e

A
I/

M
L

p
la

n
e

Expert-driven AI/ML

Input
1

2

3

46

Q
o

T
es

ti
m

at
io

n

Tr
af

fi
c

p
re

d
ic

ti
o

n

So
ft

-f
ai

lu
re

d

et
ec

ti
o

n

Se
n

si
n

g

Q
o

T
es

ti
m

at
o

r

Tr
af

fi
c

p
re

d
ic

to
r

So
ft

-f
ai

lu
re

d

et
ec

to
r

Se
n

si
n

g
in

fe
re

n
ce

5

Degradation
detection

6

8

Inventory and
monitoring

7

(a) Conventional AI/ML workflow

AI/ML-as-a-Service

Optical SDN controller

Model operation

End-to-end
optical service
management

Inventory and
monitoring

Optical Network

D
at

a
p

la
n

e
C

o
n

tr
o

l p
la

n
e

A
I/

M
L

p
la

n
e

1

2

3
Model creation and

adaptation

4

Q
o

T
es

ti
m

at
io

n

Tr
af

fi
c

p
re

d
ic

ti
o

n

So
ft

-f
ai

lu
re

d

et
ec

ti
o

n

Se
n

si
n

g

Q
o

T
es

ti
m

at
o

r

Tr
af

fi
c

p
re

d
ic

to
r

So
ft

-f
ai

lu
re

d

et
ec

to
r

Se
n

si
n

g
in

fe
re

n
ce

D
eg

ra
d

at
io

n

d
et

ec
ti

o
n

5

6

7

8

(b) Workflow based leveraging on AI/ML-as-a-Service

Fig. 3. A traditional architecture and workflow of AI/ML-based optical network automation compared with the one adopting the
proposed AI/ML-as-a-Service framework.

this purpose, we first introduce the details of the reference imple-
mentation. Then, we describe the setup and datasets used in this
evaluation. We present the performance results for two use cases,
i.e., QoT regression and estimation, followed by an analysis of
the inference performance of the reference implementation.

A. Reference Implementation

The AI/ML-as-a-Service framework illustrated in Fig. 3b can
be implemented with any technology of choice. This section de-
scribes the languages and tools that we selected for our reference
implementation of the proposed AI/ML-as-a-Service framework
which focuses on the model creation and operation stages. A
custom Python component (herein denoted as coordinator) is
responsible for coordinating the main steps of the framework.
The coordinator provides a REST API that the O-SDNc can use
to send model requests. These model requests are expected to
be in YAML format, as shown in Listing 1.

When a model request is received, the coordinator downloads
the referred dataset. Currently, only Python Pickle format is
supported, although other formats such as Xarray and Scikit-
Learn’s Bunch can be considered. The expected format should
be a tuple with six elements, where three of them indicate the
inputs and the other three indicate the outputs for the training,
validation, and testing sets.

After the dataset is downloaded, the coordinator invokes the
model creation stage. For this purpose, we have utilized the
Auto-Sklearn framework [35, 36] as our engine. Auto-Sklearn
utilizes the machine learning models implemented in the well-
known Scikit-Learn library to construct an ensemble.

For feature pre-processing, Auto-Sklearn uses a set of meth-
ods, e.g., principal component analysis (PCA). For the regres-
sion tasks, the framework evaluates various models, such as
AdaBoost, decision trees, Gaussian process, k-nearest neighbors,
multi-layer perceptron (MLP) ANNs, random forest, and logistic
regression with stochastic gradient descent (SGD) training. For
the classification tasks, in addition to the previously mentioned
models, the framework also evaluates linear discriminant analy-

sis (LDA) and quadratic discriminant analysis (QDA). Models
are initialized randomly and go through the process of succes-
sive halving. Successive halving allocates a given amount of
time to all models. After the time is up models with low perfor-
mance are pruned, and models with high performance are given
more resources (i.e., more training time). We refer the reader to
[35, 36] for more details on the Auto-Sklearn framework.

The model creation stage adheres with the time budget spec-
ified in the request (if any), as illustrated in Listing 1. If no
suitable model can be found within the allocated time budget,
the model request fails. Since we are focusing on model creation,
the definition of a threshold is not necessary. The generated
ensemble model can be utilized during the inference phase to
calculate a weighted average of the output from all the models
that make up the ensemble. The resulting model is saved into a
file system shared with the model operation stage.

The model operation stage is implemented as a custom
Python component. The component utilizes Flask to offer a
REST API that can process JavaScript Object Notation (JSON)
format data. This allows the O-SDNc to invoke the model’s
inference through Web requests by specifying the model, the ver-
sion, and the samples to execute the inference on. By adopting
JSON, controllers that are written in any modern programming
language can interact seamlessly with the model inference API.
The model operation component can detect new models within
the file system and load them accordingly. Once an inference
request is received, the appropriate model is selected, and the
inference is performed, with the result returned.

B. Setup and Datasets

In this section, we test the performance of the proposed AI/ML-
as-a-Service framework using two use cases detailed in the
following subsections: QoT regression and QoT classification.
The goal is to determine if models generated by the AI/ML-
as-a-Service framework perform similarly to manually-tuned
models. QoT regression is relevant when the O-SDNc needs
an AI/ML model to estimate the Optical Signal-to-Noise Ratio

Research Article 7

(OSNR) of a new OCh based on past statistics. The OSNR estima-
tion can be used to define which modulation format to be used
or whether or not the margins are within the desired bounds
[37]. QoT classification is relevant when the O-SDNc needs to
know in advance (i.e., prior to OCh deployment) whether or not
a given OCh configuration will work. This can be used by the
O-SDNc to decide the best OCh configuration [9, 10]. In addi-
tion, we assess the runtime performance of the model generated
by the AI/ML-as-a-Service framework versus an ANN under
realistic usage conditions.

For both the classification and regression tasks, we adopt
the four datasets reported in [10] and made available upon re-
quest in [38]. We refer to them as datasets 01–04. These datasets
contain samples that represent OCh configurations as features.
The datasets are obtained using the GNM analytical model from
[39]. While analytical models do not capture completely the
physical phenomena typical of real-world deployments, their
performance shows relatively good accuracy. Moreover, adopt-
ing an open dataset enables other researchers to reproduce and
improve upon the results presented in this paper.

For the QoT regression task, we used the OSNR value of the
OChs as the target feature. For the QoT classification task, we
used the information about the OCh status, i.e., working and not
working, as the target feature. From each dataset, we selected
100,000 balanced samples, i.e., with the same number of working
and not working OCh configurations. Out of the 35 features de-
scribed in [10] (Table 4), we ignored only the information about
the connection identifier. All the other features were adopted.
Each dataset was split using 70%, 20%, and 10% of the data for
training, validation, and testing purposes, respectively. For the
ANN, the features are pre-processed by subtracting the mean
and scaling to unit variance, the same approach adopted in [10].
For the AI/ML-as-a-Service , dataset pre-processing is not nec-
essary since the AI/ML-as-a-Service pipeline already contains a
built-in pre-processing stage. The results presented below were
obtained through the use of an AMD Ryzen Threadripper 3960X
24-Core Processor, which was running Ubuntu 22.04.

We used Keras and TensorFlow to implement the ANNs.
Since the inputs to the ANN are the same for the regression and
classification problems, we adopted the same architecture and
hyperparameters. The ANN has 34 inputs, 256 neurons using a
tanh activation function in the hidden layer, and a single output
neuron. For the regression use case, the output neuron uses a
linear activation function. For the classification use case, the
output neuron uses a sigmoid activation function, similar to [10].
Both ANNs are trained using RMSprop with a learning rate of
0.01.

C. Use Case 1: QoT Regression
In this use case, the O-SDNc needs an AI/ML model to estimate
the OSNR of a new OCh based on past statistics. We adopt mean
absolute error (MAE), mean squared error (MSE), and root mean
squared error (RMSE) to characterize the performance of the
models. Both ANN and AI/ML-as-a-Service use the RMSE as
the loss function, i.e., the training objective is to minimize the
RMSE. Listing 2 shows the YAML descriptor used to trigger
the AI/ML-as-a-Service pipeline for this use case. Both models
were given a 1,440 seconds budget for the training. This number
was chosen based on an empirical experiment that observed the
convergence time over dataset 01 with a budget of two hours.

Table 1 summarizes the performance of the ANN and AI/ML-
as-a-Service model. In terms of MAE, the models have relatively
close performance. The AI/ML-as-a-Service model achieves

Listing 2. YAML file used to trigger the regression pipeline for
dataset 01.
task: regression
dataset:

provider: http
format: pickle
identifier: http://localhost:32000/ds01_reg.h5

configuration:
time_budget_for_this_task: 1440
loss: mean_squared_error

Table 1. Regression performance using the testing dataset.

Dataset Metric ANN AI/MLaaS

01

MAE 0.061 0.061

MSE 0.006 0.006

RMSE 0.100 0.003

02

MAE 0.061 0.060

MSE 0.007 0.077

RMSE 0.087 0.006

03

MAE 0.104 0.041

MSE 0.017 0.051

RMSE 0.131 0.002

04

MAE 0.089 0.058

MSE 0.012 0.073

RMSE 0.111 0.005

slightly better performance in datasets 02, 03, and 04, while the
ANN performs better in dataset 01. When it comes to MSE,
the trend is the opposite, with the ANN having better perfor-
mance except for dataset 01. RMSE shows the highest differences
between the two models, with the AI/ML-as-a-Service model
performing the best across all datasets. In summary, the perfor-
mance of the two models is relatively close, and the difference
in accuracy should result in minimal differences in performance
when the models are deployed and used during network opera-
tion.

Figure 4 shows the accuracy of the trained model over the
testing set of dataset 01. We can observe that with an OSNR
range of 15 to 25 dB, the two models present similar accuracy
performance, with the AI/ML-as-a-Service doing slightly better.
However, in the 25 to 35 dB OSNR range, the ANN is not able
to estimate the OSNR value precisely. Analyzing Fig. 4 and
Table 1, we can observe that only the RMSE metric captured
the degraded performance of the ANN in the higher OSNR
range. This justifies the use of several metrics to characterize the
performance of AI/ML models in regression tasks.

Table 2 shows the Scikit-Learn models that compose the final
ensemble selected by our AI/ML-as-a-Service implementation
for the regression use case. The cost is measured in terms of the
loss function, i.e., RMSE in this case. The weight represents how
much a specific model impacts the final output of the ensemble.
The ensembles are composed of one or two models. In most
cases, gradient boosting was the best model found. However,

Research Article 8

15 20 25 30 35
True value

15

20

25

30

35

Pr
ed

ic
te

d
va

lu
e

(a) Artificial neural network (ANN)

15 20 25 30 35
True value

15

20

25

30

35

Pr
ed

ic
te

d
va

lu
e

(b) AI/ML-as-a-Service

Fig. 4. Predicted OSNR [dB] using the testing samples in
dataset 01.

note that even if the ensemble has two gradient boosting mod-
els, they have different hyperparameters, and may contribute
differently to the final performance. Finally, for dataset 04, an
Ada Boost model was used in addition to gradient boosting.

In summary, we can observe that model resulting from the
proposed AI/ML-as-a-Service framework has performance close
to the ones presented by manually-tuned ANNs. However,
AI/ML-as-a-Service does not require any human intervention in
the model selection, training, and validation phases.

D. Use Case 2: QoT Classification

In this use case, the AI/ML model estimates whether or not
a particular OCh configuration will work. This task can be
mapped to a binary classification problem. We adopt accuracy
as the only metric to characterize the performance of the models
under exam. During training and testing, we also measured
precision, recall, and f1 score, which showed similar trends as ac-
curacy. Listing 3 shows the YAML descriptor used to trigger the
AI/ML-as-a-Service framework for this use case. Both models
were given 480 seconds budget for the training. Similarly to the
regression use case, this number was chosen based on empirical
experiments that observed the convergence time over dataset 01
with a budget of two hours.

Table 3 summarizes the accuracy of the models. We also
include the results reported by [10] (Table 6) for comparison
purposes. We highlight that the results from [10] cannot be
directly compared to the ones obtained in our experiments due

Table 2. Models comprised in the regression ensemble built
by the AI/ML-as-a-Service framework.

Dataset Rank Model Cost Weight

01
1 HGBCT* 0.0037 0.74

2 HGBCT* 0.0040 0.26

02 1 HGBCT* 0.0058 1.0

03
1 HGBCT* 0.0026 0.84

2 HGBCT* 0.0029 0.16

04
1 HGBCT* 0.0057 0.7

2 Ada Boost 0.0070 0.3

* HGBCT: Histogram-based Gradient Boosting Classification Tree

Listing 3. YAML file used to trigger the classification pipeline
for dataset 01.
task: regression
dataset:

provider: http
format: pickle
identifier: http://localhost:32000/ds01_class.h5

configuration:
time_budget_for_this_task: 480

to potential differences in the samples used for the experiments.
Nevertheless, the results obtained by our ANN follow the same
trend as the ones reported in [10], i.e., the relative accuracy
between datasets is the same. We observe that in most cases, both
models achieve classification accuracy above 99%. However, we
observe that for dataset 01, the model resulting from the AI/ML-
as-a-Service framework achieves 99% accuracy, while the ANN
is unable to achieve the same accuracy level.

Table 4 shows a representative set of the Scikit-Learn models
that compose the final ensemble selected by our AI/ML-as-a-
Service implementation. The cost is measured as the loss func-
tion, i.e., binary cross-entropy in this case. The weight represents
how much each model impacts the final output of the ensemble.
Unlike the regression case, in the classification use case, the en-
semble is composed of at least 6 models. They include gradient
boosting, extra trees, and stochastic gradient descent classifiers.
For the sake of space, Table 4 includes only the three models
with the highest weight. For dataset 01, the final ensemble is
composed of ten models. For datasets 02 and 03, eight models
composed the final ensemble. For dataset 04, only six models
were used in the ensemble.

In summary, the results show that the models resulting from
the AI/ML-as-a-Service implementation are equivalent to the
ones resulting from manually-tuned models. Moreover, the
implementation takes advantage of several AI/ML models to
achieve suitable performance.

E. Inference Performance
Having good accuracy is only one of the attributes that make
a AI/ML model suitable for real-world applications. Another
important attribute is its inference performance, i.e., how much
time it takes to perform an inference. To assess the performance
of the generated models in this respect, we designed a test to

Research Article 9

Table 3. Summary of the classification performance for the
testing dataset.

Dataset ANN [10] ANN AI/MLaaS

01 0.984 0.976 0.990

02 0.994 0.994 0.997

03 0.990 0.991 0.993

04 0.991 0.992 0.996

Table 4. Top three models comprised in the classification
ensemble built by the AI/ML-as-a-Service framework.

Dataset Rank Model Cost Weight

01

1 HGBCT* 0.011 0.18

2 HGBCT* 0.151 0.16

3 SGD** 0.377 0.12

02

1 Extra Trees 0.003 0.28

2 SGD** 0.267 0.10

3 HGBCT* 0.003 0.06

03

1 SGD** 0.135 0.64

2 HGBCT* 0.007 0.06

3 Extra Trees 0.007 0.04

04

1 HGBCT* 0.004 0.22

2 Extra Trees 0.004 0.20

3 HGBCT* 0.031 0.12

* HGBCT: Histogram-based Gradient Boosting Classification Tree

** SGD: Stochastic Gradient Descent

measure their inference time. We used the QoT classification
model with 10,000 samples from the testing set of dataset 01. In
real deployments, it is unlikely that multiple OCh requests will
arrive at the same time. As a result, few inferences are needed
over time. To replicate this scenario, we introduced a random
pause between inferences whose value is drawn uniformly in
the range of (0, 1) seconds to represent a realistic provisioning
scenario. We then measured the time taken by each inference.

On average, the ANN inference takes 40 ms given the avail-
able hardware. This time could be further improved if the infer-
ences were made in batches using an accelerator such as a GPU,
but for our use case, inferences will be sparse over time. The
model returned by the AI/ML-as-a-Service framework takes on
average 553 ms per inference. This represents a 14× increase
in inference time. When the inference is executed over the net-
work through the REST API running in the same computer, we
observe an overhead of 10ms for both models. Note that none
of the models were fine-tuned for performance, hence there ex-
ist optimizations that can be done to increase their inference
performance.

Part of this higher time taken by the model generated by our
implementation is explained by the ensemble of models. The en-
semble executes several internal inferences before a final output

is computed. Another reason is that the model generated by our
implementation runs using Python, i.e., it has not been compiled
to native code. On the other hand, the ANN is executed using a
native implementation below the Python front end. One way to
optimize the output of the AI/ML-as-a-Service implementation
is to implement a similar ensemble in a language that compiles
to a native binary. Then, the ensemble could be imported to the
native implementation by adopting the same hyperparameter
values. Nevertheless, these AI/ML-as-a-Service models are ex-
pected to be used over the network, e.g., as illustrated in Fig. 3b.
This means that the O-SDNc and the AI/ML-as-a-Service server
might be running far away from each other. Therefore, infer-
ence time might experience a high network latency, reducing the
relative contribution of the model inference time.

7. OPEN CHALLENGES

To the best of our knowledge, this is the first paper to introduce
the concept of AI/ML-as-a-Service for optical network automa-
tion. The results obtained illustrate that AI/ML-as-a-Service has
has potential. On the other hand, several challenges still remain
open.

The first challenge is related to the availability of data, which
impacts not only the study of AI/ML-as-a-Service, but the
study of general AI/MLapplied to optical networks. While the
datasets in [10] are helpful for QoT regression and classification,
we need more datasets for essential tasks such as anomaly and
soft-failure detection, prediction and localization. Moreover, it is
crucial to have datasets collected from real-world deployments.

The second challenge is related to the explainability and trust-
worthiness required for the widespread adoption of AI/ML.
Nowadays, the explainability of AI/ML is already an key aspect
to be explored. AI/ML-as-a-Service will add another layer be-
tween the AI/ML model and the network operator, increasing
the need for explainability. This means that not only AI/ML-as-
a-Service needs to generate explainable models, but it also needs
explainability for its internal processes.

Moreover, the inference performance results show that there
is a gap in performance for the models generated with the pro-
posed AI/ML-as-a-Service framework. Further improvements
can be made via runtime adaptation and/or taking advantage
of AI/ML accelerators.

Another open challenge is the study of degradation detection
and model adaptation. These operations are challenging due to
the scarcity of suitable datasets. Moreover, different use cases
may require different thresholds and strategies to detect model
degradation. Finally, different AI/ML models will require dif-
ferent strategies to reduce the overhead of model adaptation.

Finally, the reference implementation presented in this paper
has been tested over datasets with input composed of a few tens
of numerical features. Adding to the implementation the ability
to process graphical representations of the optical signal (e.g.,
eye diagrams) and/or time series data remain a challenge and
are left for future work.

8. FINAL REMARKS

This paper proposed an AI/ML-as-a-Service framework aim-
ing at streamlining the process of creating and operating arti-
ficial intelligence/machine learning (AI/ML) models used by
optical network automation platforms. We detailed the main
concepts related to AI/ML-as-a-Service, and the specific tasks
involved in the AI/ML model pipeline. The integration and

Research Article 10

interfaces necessary to integrate the proposed framework with
existing optical network automation platforms have been de-
scribed. Focusing on the model creation and operation stages,
the performance of the proposed framework was benchmarked
using two representative use cases in optical networks: quality-
of-transmission (QoT) regression and QoT classification. The
accuracy performance results show that the models generated by
the AI/ML-as-a-Service framework have performance equiva-
lent to the ones achieved by manually-tuned artificial neural
networks (ANNs). The inference performance results show
that optimizations made in the ANN inference make it hard
for unoptimized models (such as the ones from our AI/ML-as-
a-Service implementation) to reach such a performance. On the
other hand, a degradation of a few ms does not represent a crit-
ical aspect of the model. It is important to highlight, however,
that human intervention is still necessary for a few steps in the
process, such as data acquisition.

FUNDING

This work was supported by Chalmers’ ICT-AoA seed project
“Auto5G” and by Sweden’s innovation agency VINNOVA,
within the framework of the EUREKA cluster CELTIC-NEXT
project AI-NET-PROTECT (2020-03506).

DISCLOSURES

The authors declare no conflict of interest.

REFERENCES

1. R. Casellas, R. Martinez, R. Vilalta, R. Munoz, A. Gonzalez-Muniz,
O. G. de Dios, and J.-P. Fernandez-Palacios, “Advances in SDN
control and telemetry for beyond 100g disaggregated optical net-
works [invited],” J. Opt. Commun. Netw. 14, C23–C37 (2022). DOI:
10.1364/JOCN.451516.

2. F. Paolucci, A. Sgambelluri, F. Cugini, and P. Castoldi, “Net-
work telemetry streaming services in SDN-based disaggregated
optical networks,” J. Light. Technol. 36, 3142–3149 (2018). DOI:
10.1109/JLT.2018.2795345.

3. D. Rafique and L. Velasco, “Machine learning for network automation:
overview, architecture, and applications [invited tutorial],” J. Opt. Com-
mun. Netw. 10, D126–D143 (2018). DOI: 10.1364/JOCN.10.00D126.

4. S. Aladin, A. V. S. Tran, S. Allogba, and C. Tremblay, “Qual-
ity of transmission estimation and short-term performance fore-
cast of lightpaths,” J. Light. Technol. 38, 2807–2814 (2020). DOI:
10.1109/JLT.2020.2975179.

5. L. Zhang, X. Li, Y. Tang, J. Xin, and S. Huang, “A survey on QoT pre-
diction using machine learning in optical networks,” Opt. Fiber Technol.
68, 102804 (2022). DOI: 10.1016/j.yofte.2021.102804.

6. M. Ibrahimi, H. Abdollahi, C. Rottondi, A. Giusti, A. Ferrari, V. Curri,
and M. Tornatore, “Machine learning regression for QoT estimation
of unestablished lightpaths,” J. Opt. Commun. Netw. 13, B92–B101
(2021). DOI: 10.1364/JOCN.410694.

7. C. Manso, R. Vilalta, R. Munoz, N. Yoshikane, R. Casellas, R. Martinez,
C. Wang, F. Balasis, T. Tsuritani, and I. Morita, “Scalability analysis
of machine learning QoT estimators for a cloud-native SDN controller
on a WDM over SDM network,” J. Opt. Commun. Netw. 14, 257–266
(2022). DOI: 10.1364/JOCN.449009.

8. Y. Fan, X. Pang, A. Udalcovs, C. Natalino, L. Zhang, V. Bobrovs,
R. Schatz, X. Yu, M. Furdek, S. Popov, and O. Ozolins, “Feedforward
neural network-based EVM estimation: Impairment tolerance in coher-
ent optical systems,” IEEE J. Sel. Top. Quantum Electron. 28, 1–10
(2022). DOI: 10.1109/JSTQE.2022.3177004.

9. C. Rottondi, L. Barletta, A. Giusti, and M. Tornatore, “Machine-
learning method for quality of transmission prediction of unestab-
lished lightpaths,” J. Opt. Commun. Netw. 10, A286–A297 (2018).
DOI: 10.1364/JOCN.10.00A286.

10. G. Bergk, B. Shariati, P. Safari, and J. K. Fischer, “ML-assisted QoT
estimation: a dataset collection and data visualization for dataset
quality evaluation,” J. Opt. Commun. Netw. 14, 43–55 (2022). DOI:
10.1364/JOCN.442733.

11. S. Shahkarami, F. Musumeci, F. Cugini, and M. Tornatore, “Machine-
learning-based soft-failure detection and identification in optical net-
works,” in Optical Fiber Communications Conference and Exposition
(OFC), (2018), p. M3A.5.

12. T. Panayiotou, S. P. Chatzis, and G. Ellinas, “Leveraging statistical ma-
chine learning to address failure localization in optical networks,” J. Opt.
Commun. Netw. 10, 162–173 (2018). DOI: 10.1364/JOCN.10.000162.

13. F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau,
“Modulation format identification in coherent receivers using deep ma-
chine learning,” IEEE Photonics Technol. Lett. 28, 1886–1889 (2016).
DOI: 10.1109/LPT.2016.2574800.

14. C. Natalino, A. Udalcovs, L. Wosinska, O. Ozolins, and M. Furdek,
“Spectrum anomaly detection for optical network monitoring using deep
unsupervised learning,” IEEE Commun. Lett. 25, 1583–1586 (2021).
DOI: 10.1109/LCOMM.2021.3055064.

15. C. Natalino, M. Schiano, A. Di Giglio, L. Wosinska, and M. Furdek,
“Experimental study of machine-learning-based detection and identifi-
cation of physical-layer attacks in optical networks,” J. Light. Technol.
37, 4173–4182 (2019). DOI: 10.1109/JLT.2019.2923558.

16. R. Philipp, A. Mladenow, C. Strauss, and A. Völz, “Machine learning
as a service: Challenges in research and applications,” in Proc. 22nd
International Conference on Information Integration and Web-Based
Applications & Services, (New York, NY, USA, 2021), iiWAS ’20, pp.
396–406. DOI: 10.1145/3428757.3429152.

17. U. Moghe, P. Lakkadwala, and D. K. Mishra, “Cloud computing: Sur-
vey of different utilization techniques,” in CSI Sixth International Con-
ference on Software Engineering (CONSEG), (2012), pp. 1–4. DOI:
10.1109/CONSEG.2012.6349524.

18. H. Lee, J. Cha, D. Kwon, M. Jeong, and I. Park, “Hosting AI/ML work-
flows on O-RAN RIC platform,” in IEEE Globecom Workshops (GC Wk-
shps), (2020), pp. 1–6. DOI: 10.1109/GCWkshps50303.2020.9367572.

19. J. Baranda, J. Mangues-Bafalluy, E. Zeydan, C. Casetti, C. F. Chi-
asserini, M. Malinverno, C. Puligheddu, M. Groshev, C. Guimarães,
K. Tomakh, D. Kucherenko, and O. Kolodiazhnyi, “Demo: AIML-as-
a-Service for SLA management of a digital twin virtual network ser-
vice,” in IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), (2021), pp. 1–2. DOI: 10.1109/INFOCOMWK-
SHPS51825.2021.9484610.

20. C. Natalino, N. Mohammadiha, and A. Panahi, “Machine-learning-
as-a-service for optical network automation,” in 2023 Optical Fiber
Communications Conference and Exhibition (OFC), (2023), p. W4G.3.
DOI: 10.1364/OFC.2023.W4G.3.

21. B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in Fifth International Joint Conference on INC,
IMS and IDC, (2009), pp. 44–51. DOI: 10.1109/NCM.2009.218.

22. M. Ribeiro, K. Grolinger, and M. A. Capretz, “MLaaS: Machine learn-
ing as a service,” in IEEE 14th International Conference on Ma-
chine Learning and Applications (ICMLA), (2015), pp. 896–902. DOI:
10.1109/ICMLA.2015.152.

23. X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-
of-the-art,” Knowledge-Based Syst. 212, 106622 (2021). DOI:
10.1016/j.knosys.2020.106622.

24. D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine learning operations
(MLOps): Overview, definition, and architecture,” IEEE Access 11,
31866–31879 (2023). DOI: 10.1109/ACCESS.2023.3262138.

25. J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and
H. Liu, “Feature selection: A data perspective,” ACM Comput. Surv. 50
(2017). DOI: 10.1145/3136625.

26. L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing. 415, 295–
316 (2020). DOI: 10.1016/j.neucom.2020.07.061.

27. L. Velasco, B. Shariati, F. Boitier, P. Layec, and M. Ruiz, “Learn-
ing life cycle to speed up autonomic optical transmission and net-
working adoption,” J. Opt. Commun. Netw. 11, 226–237 (2019). DOI:

https://doi.org/10.1364/JOCN.451516
https://doi.org/10.1109/JLT.2018.2795345
https://doi.org/10.1364/JOCN.10.00D126
https://doi.org/10.1109/JLT.2020.2975179
https://doi.org/10.1016/j.yofte.2021.102804
https://doi.org/10.1364/JOCN.410694
https://doi.org/10.1364/JOCN.449009
https://doi.org/10.1109/JSTQE.2022.3177004
https://doi.org/10.1364/JOCN.10.00A286
https://doi.org/10.1364/JOCN.442733
https://doi.org/10.1364/JOCN.10.000162
https://doi.org/10.1109/LPT.2016.2574800
https://doi.org/10.1109/LCOMM.2021.3055064
https://doi.org/10.1109/JLT.2019.2923558
https://doi.org/10.1145/3428757.3429152
https://doi.org/10.1109/CONSEG.2012.6349524
https://doi.org/10.1109/GCWkshps50303.2020.9367572
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484610
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484610
https://doi.org/10.1364/OFC.2023.W4G.3
https://doi.org/10.1109/NCM.2009.218
https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1109/ACCESS.2023.3262138
https://doi.org/10.1145/3136625
https://doi.org/10.1016/j.neucom.2020.07.061

Research Article 11

10.1364/JOCN.11.000226.
28. A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, “A brief

review of domain adaptation,” in Advances in Data Science and Infor-
mation Engineering, R. Stahlbock, G. M. Weiss, M. Abou-Nasr, C.-Y.
Yang, H. R. Arabnia, and L. Deligiannidis, eds. (Springer International
Publishing, Cham, 2021), pp. 877–894.

29. J. Yu, W. Mo, Y.-K. Huang, E. Ip, and D. C. Kilper, “Model transfer of QoT
prediction in optical networks based on artificial neural networks,” J. Opt.
Commun. Netw. 11, C48–C57 (2019). DOI: 10.1364/JOCN.11.000C48.

30. F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,
“A comprehensive survey on transfer learning,” Proc. IEEE 109, 43–76
(2021). DOI: 10.1109/JPROC.2020.3004555.

31. T. Panayiotou, M. Michalopoulou, and G. Ellinas, “Survey on ma-
chine learning for traffic-driven service provisioning in optical net-
works,” IEEE Commun. Surv. & Tutorials 25, 1412–1443 (2023). DOI:
10.1109/COMST.2023.3247842.

32. C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-
jashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving: Flexible,
high-performance ML serving,” arXiv preprint arXiv:1712.06139 (2017).

33. C. Natalino, L. Gifre, F.-J. Moreno-Muro, S. Gonzalez-Diaz, R. Vilalta,
R. Munoz, P. Monti, and M. Furdek, “Flexible and scalable ML-based
diagnosis module for optical networks: a security use case,” J. Opt.
Commun. Netw. 15, C155–C165 (2023). DOI: 10.1364/JOCN.482932.

34. D. M. Manias, A. Chouman, and A. Shami, “Model drift in dy-
namic networks,” IEEE Commun. Mag. pp. 1–7 (2023). DOI:
10.1109/MCOM.003.2200306.

35. M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and robust automated machine learning,” in Proc.
of NeurIPS, (2015).

36. M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter,
“Auto-Sklearn 2.0: Hands-free AutoML via meta-learning,” J. Mach.
Learn. Res. 23, 1–61 (2022).

37. M. Lonardi, J. Pesic, T. Zami, E. Seve, and N. Rossi, “Machine learning
for quality of transmission: a picture of the benefits fairness when
planning WDM networks,” J. Opt. Commun. Netw. 13, 331–346 (2021).
DOI: 10.1364/JOCN.433412.

38. G. Bergk, B. Shariati, P. Safari, and J. K. Fischer, “QoT dataset collec-
tion,” https://www.hhi.fraunhofer.de/networkdata (2022).

39. P. Poggiolini, “The GN model of non-linear propagation in uncompen-
sated coherent optical systems,” J. Light. Technol. 30, 3857–3879
(2012). DOI: 10.1109/JLT.2012.2217729.

https://doi.org/10.1364/JOCN.11.000226
https://doi.org/10.1364/JOCN.11.000C48
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/COMST.2023.3247842
https://doi.org/10.1364/JOCN.482932
https://doi.org/10.1109/MCOM.003.2200306
https://doi.org/10.1364/JOCN.433412
https://www.hhi.fraunhofer.de/networkdata
https://doi.org/10.1109/JLT.2012.2217729

	Introduction
	``-as-a-Service'' Service Model
	AI/ML-as-a-Service Pipeline
	AI/ML-as-a-Service: Stages and Tasks
	Model Creation and Adaptation
	Model Operation

	AI/ML-as-a-Service for Optical Network Automation
	Performance Assessment
	Reference Implementation
	Setup and Datasets
	Use Case 1: QoT Regression
	Use Case 2: QoT Classification
	Inference Performance

	Open Challenges
	Final Remarks

