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Abstract
General-purpose robotics require adaptability to environmental variations and,
therefore, need effective representations for programming them. A common
way to acquire such representations is through machine learning. Machine
learning has shown great potential in computer vision, natural language pro-
cessing, reinforcement learning, and robotics. However, this success relies on
the availability of large datasets. It is hard to generate data for most robotic
tasks; therefore, robotics requires data efficiency. This licentiate presents our
initial progress on learning effective representations for robotics using a low
amount of data. Specifically, we have used neural fields as our choice of gen-
erative models, and we have shown that we can learn local surface models for
grasp synthesis and joint scene-motion models for motion generation. In the
former work, we use local surface models as correspondences for grasp trans-
fer. Unlike previous work, our method can transfer grasps demonstrated on
a single object to novel objects, including ones from unseen categories, while
acquiring higher spatial accuracy. The latter work shows we can model scenes
and motions as smooth joint functions of shared embeddings. Unlike previ-
ous work, our approach requires less expert demonstration yet still generates
precise motion trajectories.

Keywords: Grasping, Robot Manipulation, Robot Learning, Data-efficient
Representation Learning, Learning from Demonstration, Neural Fields, Gen-
erative Modeling.

i



ii



List of Publications
This thesis is based on the following publications:

[A] Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin Bekiroglu,
“Grasp Transfer based on Self-Aligning Implicit Representations of Local Sur-
faces”. IEEE Robotics and Automation Letters (RA-L), vol. 8, no. 4, Oct.
2023.

[B] Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin Bekiroglu,
“Neural Field Movement Primitives for Joint Modelling of Scenes and Mo-
tions”. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2023, Detroit, USA.

Other publications by the author, not included in this thesis, are:

[C] Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin Bekiroglu, “Af-
fordance Transfer based on Self-Aligning Implicit Representations of Local
Surfaces”. Workshop on implicit representations for robotic manipulation at
Robotics: Science and Systems (RSS), 2022, New York, USA, (Hybrid).

[D] Yiting Chen, Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin
Bekiroglu, “Sliding Touch-based Exploration for Modeling Unknown Object
Shape with Multi-finger Hands”. IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2023, Detroit, USA.

[E] Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin Bekiroglu,
“Neural Field Movement Primitives for Joint Modelling of Scenes and Mo-
tions”. Learning meets model-based methods for manipulation and grasping
workshop at IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2023, Detroit, USA.

[F] Ahmet Ercan Tekden, Aykut Erdem, Erkut Erdem, Tamim Asfour,
Emre Ugur, “Object and relation centric representations for push effect pre-
diction”. Robotics and Autonomous Systems, 2024.

iii



iv



Acknowledgments
I would like to express my heartfelt gratitude to my supervisor, Yasemin
Bekiroglu, for her unwavering support during my doctoral studies. Her valu-
able advice, encouragement, and motivation were instrumental in my academic
success. I am also deeply grateful to Peter Marc Deisenroth for co-supervising
my research and providing invaluable insights. I also would like to thank my
examiner, Torsten Wik for his support throughout my PhD.

My sincerest gratitude to Albert Skegro, Attila Lischka, Remi Lacombe,
Stefan Kojchev, and others for their friendship, joyful lunch breaks and fikas.
Your friendship made the academic journey all the more enjoyable. I ex-
tend my appreciation to Muhammad Faris, Godwin Peprah, Gabriel Arslan
Waltersson, Rita Laezza, Maximilian Diehl and Mattia de Lazzari for both
academic and casual discussions and chats.

A heartfelt thank you to Alper Ahmetoglu, Alper Sarıalan, Safa Andac and
Mete Tuluhan Akbulut for their enduring friendship and virtual connection.
Your willingness to engage in both academic and casual conversations has
been truly appreciated.

Lastly, my deepest gratitude goes to my parents and brothers for their
unwavering support and encouragement throughout my entire life. Their in-
fluence has been pivotal in my educational journey, and I would not have been
able to persevere without their love and guidance.

Acronyms

1-D: One Dimensional

2-D: Two Dimensional

3-D: Three Dimensional

6-D: Three Dimensional

LfD: Learning from Demonstration

MLP: Multilayer Perceptron

v



NeRF: Neural Radiance Fields

ReLU: Rectified Linear Unit

RGB: Red Green Blue

SE(3): Special Euclidean groups in three dimensions

SDF: Signed Distance Function

vi



Contents

Abstract i

List of Papers iii

Acknowledgements v

Acronyms v

I Overview 1

1 Introduction 3
1.1 Robot Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Data-Efficiency in Robotics . . . . . . . . . . . . . . . . . . . . 5
1.3 Learning From Demonstration . . . . . . . . . . . . . . . . . . . 7
1.4 Generative Modeling . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Neural Fields 13
2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Generative Modeling with Neural Fields . . . . . . . . . . . . . 17

Acquisition of latent vector z . . . . . . . . . . . . . . . . . . . 17

vii



Conditioning of Neural Field with latent vector z . . . . . . . . 18
2.3 Training Neural Fields and Test Time Optimization . . . . . . 19
2.4 Spectral Bias and Positional Encodings . . . . . . . . . . . . . 20

Coarse-to-fine Approximation . . . . . . . . . . . . . . . . . . . 21

3 Local Surface Models as Correspondences 25
3.1 Shape Models in Robotics . . . . . . . . . . . . . . . . . . . . . 26
3.2 Local Surface Modeling with Neural Fields . . . . . . . . . . . 28

SE(3) Group and Pose Alignment . . . . . . . . . . . . . . . . 28
Local Surface Modeling . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Local Surfaces as Correspondences . . . . . . . . . . . . . . . . 29

4 Joint Modeling of Scenes and Motions 31
4.1 Learning Scenes and Motions as Smooth Functions . . . . . . . 33
4.2 Shared Embeddings for Joint Modeling of Scenes and Motions . 34

5 Summary of included papers 37
5.1 Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Paper B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Concluding Remarks and Future Work 39

References 41

II Papers 49

A Grasp Transfer based on Self-Aligning Implicit Representations of
Local Surfaces A1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A3
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . A6
3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A7

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . A8
3.2 Pose Alignment of Shapes . . . . . . . . . . . . . . . . . A9
3.3 Local Surface Modeling . . . . . . . . . . . . . . . . . . A10
3.4 Grasp Transfer . . . . . . . . . . . . . . . . . . . . . . . A10
3.5 Local Surface Prediction on Point clouds . . . . . . . . . A12

viii



4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A12
4.1 Shape Alignment . . . . . . . . . . . . . . . . . . . . . . A13
4.2 Spatial Precision of Grasp Alignments . . . . . . . . . . A14
4.3 Grasp Transfer . . . . . . . . . . . . . . . . . . . . . . . A16
4.4 Real Robot Experiments . . . . . . . . . . . . . . . . . . A18

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A20
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A20

B Neural Field Movement Primitives for Joint Modelling of Scenes
and Motions B1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . B7
3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B9

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . B9
3.2 Neural Fields . . . . . . . . . . . . . . . . . . . . . . . . B9
3.3 Positional Encodings . . . . . . . . . . . . . . . . . . . . B10
3.4 Scene-motion Embeddings . . . . . . . . . . . . . . . . . B10
3.5 Deformation and Template Fields . . . . . . . . . . . . . B11
3.6 Test Time Optimization . . . . . . . . . . . . . . . . . . B12

4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . B13
5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B14

5.1 Shape and Position Based Generalization . . . . . . . . B15
5.2 Multi-valued Trajectory Generation . . . . . . . . . . . B18
5.3 Shape-based motion generation . . . . . . . . . . . . . . B20

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B20
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B21

ix





Part I

Overview

1





CHAPTER 1

Introduction

Robots greatly benefit people and have widespread use in manufacturing, lo-
gistics, healthcare, agriculture, and many other areas. Robots can perform
tasks more accurately, efficiently, and cheaply than humans. Furthermore,
they do not need to rest. However, designing robot skills that can adapt
to environmental variations is challenging. Because of this, general-purpose
robotics is still an active research field. Currently, robots require setting up the
environment specifically for their usage. This is because robot setups require
programming robots with pre-defined movements, often by experienced soft-
ware developers with expertise in robot programming. To operate in unstruc-
tured natural environments, such as our homes, robots need to understand
the world around them and be able to adapt their actions to variations in the
environment. This can be achieved by acquiring effective representations of
the underlying environments and actions of the robot.

A promising approach to acquiring representations that allow the robot
to generalize to different environments is through machine learning. Robots
can learn from available data and through their own interactions with the
environment. From the data, they can learn effective representations that
allow the robot to generalize its actions according to the scene changes. For
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Chapter 1 Introduction

learning effective representations, the choice of input data and how the input
is processed is important. Depending on these design choices, the machine
learning method may require a higher amount of data and/or show limited
generalization capabilities.

In this thesis, we investigate how to learn effective representations for grasp-
ing and manipulation 1 that can generalize to various scene and sensor modal-
ities while keeping the data requirement low.

1.1 Robot Learning
Robot learning refers to algorithms and techniques that allow a robot to learn
from data, feedback, and environment interactions, often using machine learn-
ing. It deals with key robotics problems such as model learning [1], [2], imita-
tion and apprenticeship learning [3], reinforcement learning [4], perception [5]
and their various combinations to teach complex behavior to robots efficiently
and robustly [6]. Robot learning has become an important topic because of
the following reasons: (i) Many robotic skills are hard to program, (ii) robots
have to deal with unknown and partial information, (iii) the world is dynamic,
and environments keep changing between different trials [7].

Some common applications for robot learning are:

1. Grasp Synthesis: Grasp synthesis refers to the generation of grasp
poses that allow robots to hold and safely pick up objects [8]. Robot
learning provides a direct strategy for grasp synthesis where scene obser-
vations, often images or point-clouds, are mapped to grasp poses. These
methods are particularly effective when object geometry is unknown or
objects are densely placed in the scene [9].

2. Robot Motion Generation: Motion generation refers to generating
trajectories or control vectors that enable robots to complete their tasks.
With robot learning, this process is often performed through reinforce-
ment learning or supervised learning [6]. Robot learning provides a
flexible way to generate motions that adapt to variations in the environ-
ment.

1Manipulation refers to how a robot can interact with objects in its environment through
grasping, moving, and rotating objects to achieve its goals.
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1.2 Data-Efficiency in Robotics

3. Learning Object Dynamics: Learning object dynamics refers to
learning machine learning models for predicting the effects of the robot’s
action on the environment. In robot learning, robots can use such mod-
els to plan the best set of actions [10].

Robot learning provides a flexible way for robots to perform their tasks.
For this reason, robot learning is now widely used for programming robots.

1.2 Data-Efficiency in Robotics
The field of machine learning is growing rapidly. It has yielded impressive
results in the fields of natural language processing, computer vision, and
robotics. However, robotics overall lags behind in many robotic applications
compared to the other major fields. The main reason for this is the lack of data
since robotic data collection is challenging. Machine learning is relatively more
successful for robotic applications, such as grasp synthesis, affordance learn-
ing, and other tasks where autonomous data collection is possible. However,
for many robotic applications, data collection is difficult due to the following
reasons:

• Robot hardware is expensive, so deploying robotics in the real world
is costly. It requires constant monitoring. Yet, during data collection,
robot hardware can still break down and require repair. Furthermore,
it can be dangerous for robots to collect data in natural environments.
In addition, exploratory policies require enforcing safety constraints, as
robot actions can have irreversible consequences [11].

• Real-world environments are complex and unstructured. Therefore, cap-
turing all possible scenarios and edge cases for different tasks is difficult.

• Data annotation requires manual labor. Furthermore, robotics often
requires manual labor to be handled by experts. This makes data an-
notation at scale hard. Moreover, it takes a long time to collect data
samples.

• Robotic data is noisy and not consistent between different setups. For
example, even when two robotic labs share identical robotic setups, the
data distributions collected in these labs can differ.
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Chapter 1 Introduction

Figure 1.1: Local Surface Models for Grasp Transfer. Many objects share geomet-
rically similar parts. We can utilize local surface models to identify
such parts to transfer grasp experiences across object categories.

For these reasons, robotics requires data-efficient learning methods and
smarter data generation methods. Prof. Kaelbling argues that to learn gen-
eralizable representation efficiently, inductive biases should be incorporated
into learning algorithms in the form of prior knowledge and structure [12]. In
this thesis, we employ two forms of inductive bias: Using local shape informa-
tion, such as object parts, to learn compositional representations and using
the spectral bias of neural fields to learn smooth representations.

Humans decompose environments into objects and parts and use them for
physical reasoning [13], [14]. Compositional representations, e.g. describing
object parts, allow higher transferability as they are often shared between
different categories of objects; for example, the handle used for grasping is
shared between many household objects. Consequently, compositionality can
provide data efficiency to representation learning. We have employed this idea
for modeling local surfaces to transfer grasp poses across object categories, as
shown in Paper A. An illustration of our method is shown in Figure 1.1.

Spectral bias refers to the type of bias in the neural networks in which the
network prioritizes learning less complex mappings between input and output
features [15]. In Paper B, spectral bias has allowed us to model scenes and
motions as smooth functions of shared embeddings using neural fields. The
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1.3 Learning From Demonstration

Figure 1.2: Joint Modeling of Scenes and Motions. We can model scenes and mo-
tions as smooth functions of shared embeddings. After training, we
can reconstruct the images and trajectories corresponding to the un-
seen intermediate plastic container locations by interpolating between
the learned embeddings of expert demonstrations shown on top.

acquired representations have allowed for generalizing to the scene variations
in a data-efficient way and generating precise motion trajectories. This is
illustrated in Figure 1.2.

1.3 Learning From Demonstration
Humans often do not learn tasks from scratch but use their prior information.
Similarly, we can incorporate prior information to train robots in a more
efficient way. For this, we can employ learning from demonstration (LfD). LfD
involves utilizing instructions and/or demonstrations provided by humans to
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Chapter 1 Introduction

ease the learning of new tasks [16], [17]. Some applications of LfD are as
follows [18]:

• Movement Primitives: These are policy representations that encode
continuous joint or state trajectories [19]–[23]. They are often used to
teach robots complex motor skills efficiently using LfD data.

• Behavioral Cloning: Behavioral cloning (BC) refers to the supervised
learning technique that learns the mapping between input states and
actions using LfD data provided as state-action pairs [24], [25]. This
allows the agent to mimic the expert demonstrator.

• Correspondence Learning: Learning from demonstration can be uti-
lized to provide correspondences on the scene, which can be used as task
waypoints to solve the tasks. Common examples of these correspon-
dences are affordance heatmaps [26] and keypoints [27]–[29].

This project uses LfD for learning part-level shape correspondences (Pa-
per A) and movement primitives (Paper B). In the former work, we provide
a single grasp demonstration to learn part correspondences that can be used
in grasping. For the latter work, we show that we can learn scene-trajectory
mappings with neural fields using LfD data using a low number of demonstra-
tions.

1.4 Generative Modeling
Generative modeling is a field within machine learning in which a model is
trained to capture the underlying data distribution of a dataset to produce
data samples similar to those observed in the dataset [30]. Ideally, the model
will capture physical and semantic rules regarding the trained dataset and
allow the generation of samples that follow these rules. For example, consider
the handwritten number generation task, illustrated in Figure 1.3. We train
this model only with images labeled 6. Our model can capture the underlying
distribution and can generate novel images with label 6.

To understand the benefit of generative modeling for robotics, we will com-
pare it with discriminative modeling. Discriminate models aim to find the
decision boundaries between data classes in the training dataset using the

8
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Figure 1.3: Illustration of a generative model for number generation. After train-
ing, we can generate novel images that look similar to training data by
sampling random Gaussian noises.

provided class labels. A visualization of the comparison between these mod-
eling types is shown in Figure 1.4.

To illustrate this comparison further, we compare these two approaches to
modeling using classification as a benchmark. Discriminative modeling scales
better than generative modeling; however, it will require more labeled data,
including data samples from edge cases. Generative modeling, however, will
reach a low error value faster [31]. This is mainly because generative modeling
handles missing and partial data better [32], as illustrated in Figure 1.5. Note
that classification using generative models typically requires iteratively finding
a good fit for the given observation, making it slower than discriminative
models. In this thesis, we use neural fields, a generative model, for modeling
scenes and motions. Chapter 2 will give more details on neural fields.

1.5 Contributions
This licentiate presents our initial progress for the project learning data effi-
cient representations for robotics and manipulation. In this project, we have
extensively used neural fields since they provide a versatile way to model
scenes and motions, which will be discussed in Chapter 2. We explore how to
model scenes and motions and demonstrate our approach for grasp synthesis
and modeling movement primitives.

For grasp synthesis, we have shown that we can model local surfaces and
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Chapter 1 Introduction

Figure 1.4: Generative and discriminative modeling of data. Generative methods
are tasked to find the underlying distribution of the given data, while
discriminative models are optimized to find the decision boundaries.

Figure 1.5: Generative and discriminative modeling for classification. Generative
methods handle missing and partial data better compared to discrim-
inative models.

use them as correspondences for grasp transfer, which will be explained in
Chapter 3 and Paper A. In our experiments, we have shown that grasp poses
generated by our method are more spatially precise and have higher grasp
accuracy compared to the baseline. For modeling movement primitives, we
have shown that we can jointly model scenes and motions as smooth functions
of shared embeddings, which will be described in Chapter 4 and Paper B. Our
method outperforms the baseline architecture in motion generation. Further-
more, for both of these tasks, our methods require few expert demonstrations,
unlike the baseline methods.

Overall, we have shown that we can learn effective scene and motion rep-
resentations that perform well in grasp synthesis and modeling movement
primitives. The thesis outline is as follows:

10
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• Chapter 2: Background on Neural Fields.

• Chapter 3: Using Local Surfaces as Correspondences for Grasp Trans-
fer.

• Chapter 4: Joint Modeling of Scene and Motions.

• Chapter 5: Brief Summaries of the Papers Included in this Thesis.

• Chapter 6: Conclusion and Future work.
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CHAPTER 2

Neural Fields

Visual computing requires models capable of reconstructing, synthesizing, and
manipulating scenes, objects, and shapes. Field is a concept from physics
widely used in modeling such representations to continuously parameterize
them with respect to time and space [33]. Fields are scalar physical quantities
defined in spatial and temporal coordinates, e.g. magnetic and gravitational
fields. By modeling fields as functions, they can represent images by mapping
pixel locations to their RGB values or 3-D shapes by mapping 3-D locations to
their occupancy values. However, in practice, the field generation process does
not have a known analytical form and, therefore, is performed by handcrafting
or learning the underlying parameters for functions that model these fields.

One way to acquire representations for fields is through neural fields,
which are coordinate-based neural networks that take spatial or temporal
coordinates and parameterize fields [33]. These neural representations are
intuitive to use and, therefore, have been used to represent scenes [34], 3-D
shapes [35], [36], and images [37]. Furthermore, we have shown them to be
strong representations for motion generation in Paper B. Neural fields have
the following benefits:

• They can represent signals with arbitrary input/output dimensions [33].

13



Chapter 2 Neural Fields

• They can be designed to be infinitely differentiable, allowing them to
be optimized and used for objectives that involve higher-order deriva-
tives [37].

• The reconstruction process is often modality independent and, therefore,
allows for representing signals from different modalities [38], [Paper B].

• They can automatically handle complex geometry processes such as fil-
tering [39], deformation [40], and alignment [41], [Paper A].

In general, neural fields are versatile and powerful tools, and we have used
them to model scenes and motions. In the rest of this section, we will first
present the formulation of neural fields and explain some of their application
domains. Then, we will discuss how neural fields are used as generative mod-
els. Finally, we will detail how they are trained and how spectral bias affects
neural field training.

2.1 Formulation
Neural fields are neural networks that model smooth functions of spatio-
temporal coordinates [33]. Given a field φ : X → Y , they learn function
mapping from coordinates x ∈ X to scalar values y ∈ Y . These mappings
can be defined in the reconstruction or sensor domain. In the reconstruc-
tion domain, the neural field maps world coordinates to the corresponding
physical quantity, e.g. occupancy values. In the sensor domain, the neural
field maps from sensor coordinates, such as pixel locations, to the correspond-
ing measurement, such as RGB values. Due to their flexibility, neural fields
can represent a wide range of scene and motion representations, as shown in
Figure 2.1.

• Scenes: Scenes are modeled with neural fields often using radiance
fields [34]. These are called neural radiance fields (NeRF). NeRF learns
the R5 → R4 mapping between 3-D location and 2-D viewing direction
to 3-D color values, RGB, and 1-D volume density. Using differentiable
volume rendering techniques, these values are composited into images.
This allows optimizing NeRFs using rendering loss with images captured
from different viewing directions. At inference time, NeRFs allow render-
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2.1 Formulation

Figure 2.1: Neural Fields can model images, 3-D shapes, trajectories, and many
more scene and motion representations.
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Chapter 2 Neural Fields

ing images from novel viewing directions as long as they are trained with
densely collected images. For more details, please refer to NeRF [34].

• 3-D Shapes: A way to model 3-D shapes is by modeling their underly-
ing implicit surface functions [35], [36], [42], i.e., f(x) = 0 for 3-D spatial
coordinates x on the modeled surface. Using marching cubes [43], we
can reconstruct 3-D shapes from implicit surface functions. Implicit
surfaces can represent all rigid shapes, including ones with sharp edges
and holes. One of the popular implicit surface representations is signed
distance functions (SDF). SDF maps each spatial coordinate x ∈ X to
the shortest signed distance value between the modeled surface and x:
SDF yields negative values if x is inside the surface and positive values
if x is outside the surface. This is shown in Figure 2.1A. In our work,
we employ SDF for modeling shapes through neural fields.

• Images: Images are common visual representations easily acquired us-
ing cameras. We can model images as functions by mapping 2-D pixel
locations to RGB values [37], R2 → R3.

• Motion Trajectories: Motion trajectories are joint angles or end ef-
fector pose sequences. In this project, we model motion trajectories as
mappings between temporal coordinates to corresponding n-dimensional
joint or pose states, R1 → Rn.

• Cost Function: Cost function evaluates the performance of a system
for given data. For robot control, the cost function evaluates the error
value on the given state of the robot. Through gradient-based optimiza-
tion, cost functions can be minimized to generate motion trajectories
that move the robot to the goal locations.

Cost functions have been commonly modeled as fields for robot control.
For example, artificial potential fields have been used for obstacle avoid-
ance [44]. Cost functions allow modeling motion as implicit functions,
allowing multi-valued trajectory generation for tasks with multiple solu-
tions [25]. In this project, we use neural fields to model tasks with cost
functions estimated from LfD trajectories.
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2.2 Generative Modeling with Neural Fields

2.2 Generative Modeling with Neural Fields
The representations used for modeling scenes should be able to handle varia-
tions in the scenes. This is critical for robot grasping and manipulation. In
traditional generative modeling, the goal is to obtain the generator function g

that maps samples z, often referred to as latent vector or embedding, from a
tractable distribution Z, to samples Y 1 from an intractable distribution D,
which we refer to as training data [45]. In neural fields, the spatial or temporal
coordinates X of each sample Y are part of the generative modeling, which
leads to the extended generator function g(z, X) = Y . This parameterization
of the generator function allows for the generation of samples with arbitrary
resolution and the application of different transformations to the input coor-
dinates [33], such as deformation [40], [46] and alignment [41], [Paper A]. In
this section, we will first describe how z ∈ Z is acquired and then detail how
it is used in conditioning neural fields.

Acquisition of latent vector z

In deep learning, latent vectors z ∈ Z are generally acquired through encoder
neural networks. In these architectures, the latent vector is generated by
passing the observation of the scene through a neural network-based encoder
z = E(O). Depending on data type, Pointnet-based [47], [48] and ConvNet-
based [49] architectures, such as ResNet [50], are used as encoder networks for
point-cloud and image input, respectively. However, these methods require a
large amount of data or various, often task-specific, data augmentation tech-
niques to learn generalizable latent representations. Neural fields also employ
an alternative way of acquiring latent vector z: through auto-decoders [35].
In our work, we have employed auto-decoders for modeling scene and motion
representations.

In auto-decoders, at training time, each observation is assigned a latent vec-
tor often generated from a normal distribution with a small variance. These
latent vectors are also called embeddings 2 as they are not intermediate rep-
resentations of a network. These latent vectors are then optimized together
with the network parameters with gradient descent during training through
back-propagation. Network weights are fixed at inference time, and latent

1X is defined implicitly for Y , e.g. images with fixed resolution.
2The terms "latent vector" and "embedding" are often used interchangeably in deep learning
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Chapter 2 Neural Fields

vectors for novel observations are found iteratively through optimization by
back-propagating the reconstruction loss. In a way, the optimization step per-
forms the encoding operation on the observations [33]. For a more detailed
comparison between auto-decoders and auto-encoders, readers are referred to
the supplementary material of DeepSDF [35].

Auto-decoders are slow compared to encoder-based architectures since they
require iterative optimization for inference. However, they are not limited by
observation format. In addition, we have found that they allow for acquiring
representations that are easier to generalize through our experiments. When
the changes in the modeled scene are smooth, auto-decoder-based architec-
tures can generalize within the convex hull of the variations present within
observed scenes by interpolating between the training embeddings. This is
demonstrated in Paper B. Encoder-based architectures require more densely
sampled training data to achieve the same results.

Conditioning of Neural Field with latent vector z

Given latent vectors z, there are multiple ways of conditioning neural fields.
Two common ways are concatenation-based conditioning and using hypernet-
works [51]. Note that neural fields are neural networks that take coordinates
as input. Concatenation-based conditioning is through direct concatenation
of coordinate and latent vectors [35], [36]. In our initial experiments for shape
modeling, we have found that it is harder to optimize such neural fields. For
example, the trained neural field for modeling mugs failed to capture shape de-
tails, such as holes in their handles. Instead, we have employed hypernetworks
for modeling neural fields in our project.

Hypernetworks [51] are neural networks that predict the weights of another
neural network. Hypernetworks allow learning smoother generator networks
while requiring fewer trainable parameters to optimize than concatenation-
based conditioning [52]. Hypernetworks provide additional modularity for
the trained neural field by allowing each different shape, image, etc., to be
represented as separate generator functions parameterized via hypernetwork.
We have employed hypernetworks to condition neural fields for both papers
included in this thesis. Compared to direct concatenation, hypernetworks
have allowed us to model neural fields using multilayer perceptrons (MLP)
with fewer layers. In Paper A, we use a 5-layer ReLU MLP for the generator
network and multiple 2-layer ReLU MLPs for Hypernetwork. In comparison,
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DeepSDF architecture employs a 12-layer MLP.

2.3 Training Neural Fields and Test Time
Optimization

Neural field training used in our project is mostly very similar to the standard
neural network training, with a few differences: (i) Due to auto-decoder archi-
tecture, it requires explicit handling of latent vector initialization, optimiza-
tion, and usage; (ii) Since neural fields represent the modeled scene/motion
based on coordinates, during training it requires coordinate sampling (Using
all coordinates at each iteration may require a very high number of forward
passes depending on the resolution of the observation. For example, an im-
age with 256x256 resolution requires 65536 forward passes). Accordingly, this
leads to the following changes in neural field training:

1. Initializing Embeddings: Initialize zi ∈ Z for each observation i from
the training dataset D.

2. Coordinate Sampling: Sample random subset of coordinates (Xi, Yi) ∈
D where Xi and Yi are coordinates and their field values, respectively,
for the observation with index i. For example, for shape observations,
Xi corresponds to 3-D spatial coordinates, and Yi corresponds to SDF
values at these coordinates.

3. Prediction: For observation with index i, pass zi to hypernetwork to
predict the parameters of the generator network. Pass x ∈ Xi to the
generator network to predict ŷ ∈ Ŷi.

4. Optimization: Optimize zi along with the hypernetwork parameters,
and also the generator network parameters if it is only partially param-
eterized by hypernetwork, by minimizing the reconstruction loss between
ŷ ∈ Ŷi and y ∈ Yi

Auto-decoder lacks encoders; therefore, it requires estimating ẑ iteratively
at inference time by minimizing the reconstruction loss, i.e.,

ẑ = argminẑ Lrec(gẑ(X), Y ), (2.1)
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Chapter 2 Neural Fields

Figure 2.2: Illustration of spectral bias on image modeling. Neural fields are bi-
ased to learn low-frequency details of the observations when positional
encodings are not used.

where gẑ is the generator function parameterized by embedding ẑ. This is
called test time optimization. At inference time, all network parameters are
fixed, and ẑ embedding is estimated similarly to how it is optimized during
training.

2.4 Spectral Bias and Positional Encodings
Neural networks are biased towards learning simpler mappings between given
input-output pairs in training, and this is called spectral bias [15]. ReLU MLPs
have been shown to prioritize learning low-frequency features first [53]. A way
to overcome this is through positional encodings [54]. Positional encodings
map spatial coordinates, x ∈ Rn, to higher-dimensional inputs. This allows
neural fields to model complex signals more easily. A visualization of this
phenomenon is shown in Figure 2.2. In this project, we have employed the
positional encoding map

Γ(x) = [X, Γ0(x), Γ1(x), . . . , ΓL−1(x)] ∈ Rn+2nL,

where Γm(x) = [cos(2mπx),sin(2mπx)] ∈ R2n is the mth frequency band.
However, there are benefits of using low-frequency positional encodings as
well. Since they learn low-frequency features first, they are better at model-
ing smooth changes. However, high-frequency positional encodings are good
at capturing fine details. Using these characteristics of positional encodings
allows representations that are easier to generalize, as shown in Paper B, and
handling geometry processing operations automatically, as shown in Paper A
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with pose alignment. For this, in both of our works, we have employed coarse-
to-fine approximation, as it allows utilizing the mentioned characteristics of
positional encodings.

Coarse-to-fine Approximation
Low-frequency positional encodings are better for modeling large changes in
the scene, and high-frequency positional encodings are better at capturing
details. Therefore, there is a trade-off between modeling scenes with high-
or low-frequency positional encodings. In our work, we use coarse-to-fine
approximation to balance this trade-off.

In coarse to fine approximation, at training, low-frequency positional en-
codings are used first. Higher-frequency positional encodings are gradually
introduced to optimization during training. This benefits our work in two
ways:

• It allows the pose alignment process to be performed automatically.
During initial optimization steps, it is easier to perform pose alignment
of shapes with low-frequency shape information. As higher-frequency
positional encodings are introduced, object poses are further refined with
additional shape details. This is shown in Paper A.

• Coarse-to-fine approximation allows the learned representations to be
smoother. This allows the scene representation process to be performed
with less data. This is shown in Paper B.

A simple illustration of pose alignment is shown in Figure 2.3 where we
train three different models on pose-perturbed images with label 6 from the
MNIST dataset [55]. The model with no positional encodings reconstructs the
images in an overly smooth way, and the model with high-frequency positional
encodings fails to perform the pose alignment task. However, the model that
utilizes coarse-to-fine approximation manages to capture image details while
aligning the poses of images, acquiring the best performance among these
models. Note that no additional loss function aiding the alignment of the
image is utilized during the training of these models.

We adopt the coarse-to-fine approximation method proposed in bundle ad-
justed radiance fields [41]. Coarse-to-fine approximation is achieved by apply-
ing a smoothing mask to the positional encodings. We multiply each frequency
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Figure 2.3: Illustration of effect of coarse-to-fine approximation for pose alignment.
Coarse-to-fine approximation allows utilization of both low- and high-
frequency positional encodings and acquires the best pose alignment
and image reconstruction performance.
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band term in the positional encoding map with a dynamically changing weight
according to the current training iteration, i.e.,

Γm(x; α) = wm(α) · [cos(2mπx), sin(2mπx)]

where α ∈ [0, L] is a controllable parameter and weight wm is given by:

wm(α) =


0, if α < m
1 − cos((α − m)π)

2 , if 0 ≤ α − m < 1

1, if α − m ≥ 1

During training, we slowly increase α according to the current epoch of the
training. Eventually, α = L, and the training continues with full positional
encodings.
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CHAPTER 3

Local Surface Models as Correspondences

In computer vision, correspondences refer to matching features across different
scene observations, such as images or point-clouds. Ideally, these features
should be unique and reliable to identify. They are usually used in tracking,
object detection, image registration, and many more tasks.

Correspondences also play a crucial role in many robotics tasks, such as 3-D
scene reconstruction, visual servoing, grasp synthesis, and simultaneous local-
ization and mapping. However, the success of these tasks relies on the quality
of the correspondence. Ideally, correspondences should be stable, reliable,
distinctive, and accurate. When there is a camera pose or an illumination
change, correspondences should stay stable, and their positions should not
fluctuate, disappear, or change.

Correspondences are often defined in the form of key points that are es-
timated from images or point-clouds. Common ways to acquire such key
points are through classical computer vision techniques, such as SIFT [56] or
SURF [57] features, or deep learning-based ones, such as dense visual descrip-
tors [58], [59]. The advantage of the former methods is that they do not need
training; however, they generate a high number of key points, and it may be
hard to identify the relevant ones. Furthermore, such methods cannot reli-
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ably estimate accurate key points in poorly textured scenes. In comparison,
the latter methods map each pixel in the observed image to feature vectors.
By minimizing the difference between feature vectors, these methods provide
a more straightforward process for identifying relevant key points. However,
key points for both types of methods are defined based on pixels, leading to
ambiguity in orientation estimation, which is crucial for accurate robot ma-
nipulation. Previously, this ambiguity has been resolved in two ways: by
mapping each key point to multiple 3-D points [29] or by mapping key points
to 3-D shapes [60]. These methods allow for more accurate key point esti-
mation; however, they rely on category-level information, i.e., they rely on
object categories and cannot generalize to novel object types.

Instead, we propose defining correspondences based on local surface models
and using these correspondences to transfer grasp poses. Defining key points
based on local surfaces allows transferring grasp poses across object categories
that have geometrically similar surfaces/parts. For example, the grasp pose
defined on the handle or rim of a mug can be transferred to objects such as bags
or bowls, as illustrated in Figure 3.1. Compared with previous approaches that
use correspondences, estimated grasp poses are more spatially accurate and
transferable across object categories, as shown in Paper A.

In the rest of this chapter, we will first give a brief background on how shape
models have been utilized in robotics and the limitations of existing methods.
Then, we explain how we model local surfaces in a way that allows aligning
and estimating their poses automatically. Finally, we finish the chapter by
discussing how local surface models can be used as correspondences in grasp
transfer tasks and beyond.

3.1 Shape Models in Robotics
Shape modeling is pivotal in robotics due to its connection with 3-D percep-
tion. For example, we can identify shape models that match with a given
point cloud scene observation. Since shape model and scene observation share
modalities, the quality of the match is connected directly to how well the model
fits the observation, and this metric is interpretable. Therefore, shape mod-
els have been utilized in grasp modeling in the form of shape primitives [61],
[62], smooth differentiable functions (e.g. Grasp Moduli Spaces [63], [64]),
and prototype parts [65]. However, these shape models provide limited gener-
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Figure 3.1: Local surface models as correspondences. We can use local surface
models to identify local surfaces that are geometrically similar to the
modeled ones and then use identified surfaces for grasp transfer.

alization, and they struggle when the observations deviate significantly from
the provided primitives or are partial. Finally, neural object descriptors have
been used for mapping point-cloud inputs to shape models [60]. However, it
was limited to the object category of the training shapes.
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3.2 Local Surface Modeling with Neural Fields
Due to the explained reasons, we model 3-D shapes on the local surface level
using neural fields. Neural fields allow geometry processes to be integrated
into the optimization procedure, as explained in Chapter 2. This is necessary,
as object parts do not appear in datasets in their canonical poses. As a
solution, we perform pose alignment using Special Euclidean groups in three
dimensions (SE(3)) as part of the optimization process.

SE(3) Group and Pose Alignment
Special Euclidean is a Lie group, and Lie Groups are topological groups that
combine the structure of a group with that of a differentiable manifold. This
means that its elements are smoothly parameterized and each element has an
inverse. Furthermore, it allows operations such as multiplication [66].

SE(3) group is a smooth manifold and can be used in end-to-end optimiza-
tion. Each element in SE(3) group, SE(3) transformation, has an associ-
ated Lie algebra, se(3), which are 6D vectors. We can map Lie algebras to
SE(3) transformations using the exponential map se(3) → SE(3) that con-
tinuously lie on SE(3) manifolds [66]. Given β = ⟨ω, t⟩ ∈ se(3) a vector in
Lie algebra, where ω ∈ R3 and t ∈ R3 are 3-dimensional vectors, ω and t

parameterize rotation and translation, respectively. The corresponding trans-
formation T for β is estimated using the Rodrigues formula. More specifically,
T =

[
R3×3 v3×1

]
∈ SE(3) with v = V t; and R and V are written as

R = e[ω] = I3 + sin θ

θ
[ω] + 1 − cos θ

θ2 [ω]2, (3.1)

V = I3 + 1 − cos θ

θ2 [ω] + 1 − sin θ

θ3 [ω]2, (3.2)

where [ω] is the skew-symmetric matrix created from the vector ω using the
hat operator (Eq. 7.4 on [66]), and θ = ∥ω∥. To estimate this transforma-
tion matrix T , the Taylor series expansion is used for linearization. This
formulation is well defined, surjective, and allows for estimating the align-
ment transformation through gradient-based optimization of β. At β = 0, T

corresponds to the identity transformation.
Consider the neural field-based generator function g(z, X) = Y . The trans-

formation operation can be performed by applying transformation T to X by
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X ′ = (T
[

X 1
]T )T . Then the final generator function becomes g(z, X ′) =

Y and optimization process becomes

(ẑ, β̂) = argmin(ẑ,β̂) Lrec(g(ẑ, X ′), Y ) (3.3)

During the training of the shape models, a β vector is assigned to each instance
in the training dataset, and these vectors are optimized along with the network
parameters. This leads to reconstructed surfaces that are well-aligned with
each other, as shown in Paper A.

Local Surface Modeling
A Training dataset that consists of object parts is required for training local
surface models. However, such datasets are not readily available. Instead,
existing category-level shape datasets can be utilized to learn local surface
models. The main idea is that objects from the same category will contain
parts that are geometrically similar at the same relative poses with respect to
the center of the object, given these objects are in their canonical poses.

We employ one reference frame given in the form of a grasp demonstration
on a representative instance of an object dataset. Note that such reference
frames can be provided in other ways using other waypoints (e.g. bottle-
necks [67]) in demonstrated trajectories. The reference frame is then used to
extract local surfaces from the given shape categories. We assume that the
extracted surfaces will be similar, yet we consider that they may not align well
with each other. These surfaces are then used for training the neural fields.

3.3 Local Surfaces as Correspondences
The learned local surface models are used as correspondence for identifying
geometrically similar surfaces on novel objects for grasp transfer, which is
shown in detail in Paper A. However, note that our process is generic and,
therefore, can use different ways of acquiring reference frames. For example,
previous works acquire waypoints from demonstration by considering when
the robot slows down or makes contact with the objects [68]. Furthermore,
correspondences can be used for tasks beyond pick and place. In the future, we
will explore how we can use shape models to learn more complex manipulation
skills.
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CHAPTER 4

Joint Modeling of Scenes and Motions

Grasping is just one aspect of robot manipulation. Robots are required to
perform diverse manipulation skills, including lifting, rotating, throwing, and
more, while navigating through various obstacles to complete their tasks. For
this reason, many robotic tasks require motion modeling in addition to per-
ception, often by coupling perception and control. As described in Chapter 2,
motion can also be modeled with neural fields.

Motion modeling is commonly achieved through task parameters and im-
ages. However, both task parameter-based and image-based modeling have
their limitations. Task parameters are required to describe the scene suffi-
ciently. They have to be provided by the user or need to be estimated, which
requires further engineering effort. Modeling motion with images requires sig-
nificantly more data to generalize to variations in the scene. The data need
to be densely sampled compared to using task parameters.

For example, consider the wall avoidance task shown in Figure 4.1. In this
task, the robot has to go from the left or right of the obstacles in the middle
and drop the cube into the container. The obstacle’s width and the container’s
location vary in different scenes. We can model this task with obstacle width
and container location. However, a feature extractor model or the user must
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Figure 4.1: Wall avoidance task. The task parameters are on the left, and motion
trajectories are shown on the right.

provide these task parameters. Alternatively, we can directly use the scene
observations in the form of images to remove this requirement. However, this
requires collecting additional robotic data with various obstacle widths and
container locations.

We can jointly model scenes and motions using a generative approach with
neural fields to get the best of both worlds. As described in Chapter 2, in
generative modeling, the goal is to obtain a generator function g that maps
latent vectors sampled from a tractable distribution z ∈ Z to scene obser-
vations/motion trajectories from an intractable distribution D, which is the
training dataset. In addition, utilizing the spectral bias of neural fields allows
learning scenes and motions as smooth functions of embeddings z. This is
going to be described in more detail in upcoming sections.

In this project, we have used LfD to acquire datasets of observation-trajectory
pairs for different tasks and use these datasets to model the movement prim-
itives with neural fields. Movement primitives [19]–[23] are policy representa-
tions that encode continuous joint or state trajectories. They are often used
for LfD [16], [17] to teach robots complex motor skills efficiently. In the rest
of this chapter, we explain how we achieve data efficiency by modeling scenes
and motions as smooth functions. Then, we discuss how to jointly model
scenes and motions with shared embeddings.
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4.1 Learning Scenes and Motions as Smooth
Functions

We consider LfD tasks where it is possible to model corresponding scenes
and motions with task parameters p. Accordingly, we can represent these
scenes and motions with neural field-based generator functions fp(Xscene) and
gp(Xmotion), respectively, where the parameterization of the generator func-
tions rely on task parameters. Xscene ∈ Rm corresponds to spatial coordinates
of the scene observations, such as pixels of images. As for motions, we can
either model trajectories directly or model them as the minimization of cost
functions. Xmotion will correspond to temporal coordinates for the former
case, Xmotion ∈ R1, joint angles/end effector positions for the latter case,
Xmotion ∈ Rn, respectively. For more scene and motion modeling details,
please refer to Chapter 2.

Neural fields behave differently depending on the frequency of positional
encodings. Low-frequency positional encodings are good for representing the
scene changes smoothly. However, they cannot capture the details necessary
to reconstruct scene observations. Higher frequency positional encodings al-
low for representing such details. However, they require a higher number of
training data to generalize. To get the best of both worlds, we separate our
neural fields into deformation and template fields that use low-frequency and
high-frequency positional encodings, respectively. This allows for capturing
the details necessary to represent the scene while preserving the smoothness
provided by the low-frequency positional encodings. In this formulation, the
template neural field models the canonical scene T (x), and the deformation
field models the deformation in canonical scene Dp(x) = ∆x:

fp(x) = T (x + Dp(x)).

Note that only the deformation field is parameterized and not the template
field. For this reason, modeling the deformation field with low-frequency posi-
tional encodings allows generalization with fewer scene observations. Further-
more, modeling the template field with high-frequency positional encodings
allows for capturing fine details. This is illustrated in Figure 4.2. In this figure,
the first row illustrates ground truth images, where images with red borders
are not seen during training. Row b) and c) show images reconstructed with-
out deformation fields, where the underlying models use low-frequency and
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Figure 4.2: This figure illustrates the advantage of using deformation fields for
scene modeling. Ground truth training images are marked with a green
border, and unseen ones are marked with a red border in row a). Row
b) and c) show the reconstructed images using neural fields with low-
and high-frequency positional encodings, respectively. Row d) shows
the images reconstructed using low-frequency deformation field and
high-frequency template fields.

high-frequency positional encodings, respectively. Row b) fails to capture
details, and row c) cannot model scene changes smoothly. However, using de-
formation fields and template fields with low- and high-frequency positional
encodings, we can model smooth scene changes while still capturing fine de-
tails, as illustrated in row d).

4.2 Shared Embeddings for Joint Modeling of
Scenes and Motions

Identifying and estimating task parameters for any given scene is not trivial.
Finding the exact value of task parameters could be challenging even during

34



4.2 Shared Embeddings for Joint Modeling of Scenes and Motions

Figure 4.3: Illustration of how latent manifold maps to scene and motion observa-
tions. The trained network can correctly map to corresponding scene
and motion observations within the convex hull of training embeddings.
However, outside of the convex hull, this is not guaranteed.

training data collection. Instead, we can use the auto-decoder framework
presented in Chapter 2. Accordingly, we assign an embedding z ∈ Rk to each
demonstration. During training, these embeddings are optimized together
with network parameters. This allows obtaining scene and motion functions
parametrized with these embeddings. In short, we can model a task with an
unknown task parameter vector p with learned task embeddings. With this
new formulation, tasks are equivalently represented with neural fields Fz(x)
and Gz(t) parameterized by z embedding:

(Fz(x), Gz(t)) ≡ (fp(x), gp(t)) (4.1)

With this formulation, ideally, the mapping between the embeddings z ∈ Z
and observations for scene and motion should be one-to-one. However, this is
not guaranteed and can lead to the embeddings z ∈ Z to map to unrelated
scene and motion observations. However, this can be mitigated by sampling
z embeddings from the convex hull of the embeddings utilized in the training
process. A visualization of this phenomena is shown in Figure 4.3. Note that
regardless of where we sample z ∈ Z, the neural fields generate scenes and
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motions similar to the ones seen in the training dataset; therefore, this is not
an issue when we are not concerned with joint modeling.

To constrain z to the convex hull of embeddings utilized in the training
dataset, we change the optimization problem as follows. If there are n demon-
strations in the training dataset, the optimization problem becomes:

argminα Lscene(Fz, X) where z =
n−1∑
i=0

αizi, (4.2)

where α = [α0, ..., αn−1],
∑i=n−1

i=0 αi = 1, and αi ≥ 0. zi corresponds to the
learned embedding of the expert demonstration i. With this equation, z is
not directly optimized but estimated as the weighted sum of demonstration
embeddings.

In summary, we can train neural fields to generate scene observations and
motion trajectories from the shared embeddings of the corresponding expert
demonstrations. Using these neural fields, we can then generate accurate
motion trajectories for novel scenes by identifying embeddings that accurately
reconstruct the scene. This is shown in Paper B.
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Summary of included papers

This chapter provides a summary of the included papers.

5.1 Paper A
Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin Bekiroglu
Grasp Transfer based on Self-Aligning Implicit Representations of Local
Surfaces
IEEE Robotics and Automation Letters, vol. 8, no. 4, Oct. 2023.
©2023 IEEE DOI: 10.1109/LRA.2023.3306272 .

This paper presents a grasp transfer method that allows transferring a
grasp experience or a demonstration to a novel object that shares local sur-
face similarities with objects the robot has previously encountered. For this,
we propose an approach based on neural fields that allow us to model local
surfaces. The method is trained entirely in simulation and validated in simu-
lation and real-world experiments. The simulation experiments show that the
grasp transfer is spatially precise and has a higher grasp accuracy compared
to the baseline. Furthermore, in both simulation and real-world experiments,

37



Chapter 5 Summary of included papers

we show that the proposed method can perform grasp transfer to novel objects
from unseen categories.

5.2 Paper B
Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin Bekiroglu
Neural Field Movement Primitives for Joint Modelling of Scenes and
Motions
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS),2023, Detroit, USA.
©2023 IEEE .

This paper presents a learning from demonstration method where we pro-
pose jointly modeling scenes and motions using a generative approach with
neural fields. Our model learns to generate each scene and motion trajectory
from the shared embedding of the corresponding expert demonstration. At
inference time, it generates accurate motion trajectories for novel scenes by
identifying embeddings that accurately reconstruct the scene. Our method is
evaluated in two simulation and two real-world experiments. Our simulation
experiments show that our method outperforms the baseline approaches and
generalizes to novel scenes. Our real-world experiments demonstrated that
our method can successfully model multi-valued trajectories, is robust to the
distractor objects introduced at inference time, and can generate 6D motions.
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Concluding Remarks and Future Work

This thesis presents our progress on learning efficient data representations
for robotics and manipulation. We have used neural fields as our choice
of representations and explored how to model scenes and motions. More
specifically,

• we use a single expert demonstration to extract local surfaces from an
object category. Using extracted surfaces, we trained local surface mod-
els and associated each local surface model with different grasp types.
We show that we can use learned local surface models to transfer grasp
poses to novel objects in a data-efficient way. This approach has proven
effective in transferring grasp across object categories both in simulation
and real-world environments despite being trained only with synthetic
objects. Furthermore, it is shown that the predicted grasp poses are
more spatially precise and have a higher grasp accuracy compared to
the baseline.

• we show that we can jointly model scenes and motions to model move-
ment primitives. The proposed method uses a small number of ex-
pert demonstrations compared to baseline approaches while not requir-

39



Chapter 6 Concluding Remarks and Future Work

ing task parameters to be provided. Our experiments show that our
method performs better than baseline approaches, is flexible and can
model multi-valued trajectories, is robust to distractor objects, and can
use SDF-based scene representations.

In future work, we plan to study learning multi-finger manipulation skills
and utilization of different sensor and task modalities. Furthermore, we would
like to investigate how we can attain even higher data efficiency. More specif-
ically, the planned future work is as follows:

• How to learn multi-finger manipulation skills in a data-efficient way.
Specifically, (i) we would like to explore how to map shape models to
fingertip locations and (ii) investigate how to model dexterous manipu-
lation skills.

• We plan to increase the data efficiency of our methods further by utiliz-
ing compositionality.

• We plan to investigate how we can use tactile feedback and effect-based
conditioning for trajectory generation.
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