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A B S T R A C T   

Automatic Identification System (AIS) data holds immense research value in the maritime in-
dustry because of its massive scale and the ability to reveal the spatial–temporal variation pat-
terns of vessels. Unfortunately, its potential has long been limited by traditional methodologies. 
The emergence of machine learning (ML) offers a promising avenue to unlock the full potential of 
AIS data. In recent years, there has been a growing interest among researchers in leveraging ML to 
analyze and utilize AIS data. This paper, therefore, provides a comprehensive review of ML ap-
plications using AIS data and offers valuable suggestions for future research, such as constructing 
benchmark AIS datasets, exploring more deep learning (DL) and deep reinforcement learning 
(DRL) applications on AIS-based studies, and developing large-scale ML models trained by AIS 
data.   

1. Introduction 

Automatic Identification Systems (AIS) have become a critical component of the maritime industry, providing real-time infor-
mation about vessel positions, speed, and other important navigational details. The pervasive application of AIS has enabled a massive 
amount of data to be generated, which presents both chances and challenges for maritime research. On the one hand, this wealth of 
data offers an unprecedented opportunity for improved decision-making and a better understanding of vessel behaviors. On the other 
hand, processing and analyzing such a vast amount of data is not easy and requires advanced data processing and analysis techniques. 
In the early days, traditional methods such as statistical analysis were widely used to investigate massive AIS data (Ristic et al., 2008). 
While these methods offer good interpretability, they are notably limited in terms of generalization and efficiency. With the expo-
nential growth of data scale and the development of unmanned surface vehicles (USVs), traditional methods are struggling to meet the 
requirements. The sheer volume and complexity of the data generated by AIS and other sources have surpassed the capabilities of 
conventional techniques. Additionally, the emergence of USVs necessitates the development of novel methods capable of efficiently 
processing and analyzing large amounts of data to support real-time decision-making and autonomous functionalities. 

Fortunately, advancements of artificial intelligence (AI) has paved the way for machine learning (ML) to emerge as a powerful and 
promising tool for unlocking valuable insights from AIS data. ML algorithms have revolutionized the analysis process, enabling 
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researchers to extract a wealth of information that was previously inaccessible or time-consuming to obtain. By harnessing the ca-
pabilities of ML, researchers can delve into AIS data to uncover intricate vessel behavior patterns, identify collision risks, and evaluate 
the environmental impact of maritime activities. However, the majority of research in this field remains in the exploratory stage. 
Hence, it is crucial to conduct a comprehensive review of the existing relevant studies, which can help identify potential gaps and 
opportunities, thereby setting the groundwork for further exploration and innovation in this area. 

To date, there have been several review papers that either provided a general overview of the use of AIS data or focused on specific 
topics in maritime research. For instance, Yang et al. (2019) conducted a review of studies regarding applications of AIS data and 
identified seven application fields. Similarly, Svanberg et al. (2019) offered a structured overview of how AIS data is utilized across ten 
identified areas. Furthermore, there are also review papers centered around specific research topics, including trajectory prediction 
(Gan et al., 2022; Zhang et al., 2022a; Cao et al., 2023; Choudhry & Qian, 2023; Dai et al., 2023), collision avoidance (Chai et al., 2022; 
Sarhadi et al., 2022; Fang et al., 2022; Xu et al., 2022; Rawson & Brito, 2023), anomaly detection (Yan & Wang, 2019; Wolsing et al., 
2022), and energy efficiency (Yan et al., 2021a; Barreiro et al., 2022). Additionally, some researchers have paid attention to emerging 
approaches in maritime research (Tu et al., 2018; Munim et al., 2020; Yan et al., 2021b). These review papers have provided valuable 
insights and discussions on their respective topics. However, there are relatively fewer studies that comprehensively review the ap-
plications of ML on AIS data. Given the potential benefits of cross-topic learning and idea generation, it is important to conduct a 
comprehensive review that includes multiple ML applications on AIS data. 

In this review paper, we explore the potential of ML in enhancing AIS data quality, and its applications for data-driven maritime 
research. Specifically, we examine various types of ML techniques that have been used in maritime research and their impact on AIS 
data processing and analysis. We also discuss challenges and limitations associated with the use of ML in the maritime domain and 
identify opportunities for future research. Overall, this review paper aims to provide a comprehensive overview of the potential 
benefits of ML for AIS data-driven maritime research and highlights the current state-of-the-art and future directions in this field. 

2. AIS overview & application 

With copious static and dynamic information of vessels, AIS data contain tremendous potential that can be applied in solving 
various scientific problems related to the maritime industry. This section brings a detailed interpretation of AIS data structure and 
mainstream applications in vessel trajectory prediction and upper-level topics about maritime safety & sustainability. 

2.1. Automatic Identification system 

Developed in the 1990 s, AIS is a short-range automatic tracking system designed to provide identification and positioning in-
formation for both vessels and shore stations. According to the Safety of Life at Sea (SOLAS) Convention, vessels weighing 300 gross 
tonnages (GT) or more involved in international voyages, cargo ships weighing 500 GT or more not involved in international voyages, 
and passenger ships of any size are obligated to have AIS installed onboard (International Maritime Organization, 2002). The specific 
purposes of equipped AIS include identifying ships, assisting in target tracking, assisting in search and rescue (SAR) operations, 
simplifying information exchange, and providing additional information to assist situational awareness (International Maritime Or-
ganization, 2015). Through the Very High Frequency (VHF) maritime band, the information from onboard AIS devices can be 
transmitted from ship to ship, ship to shore stations, and ship to satellite, as shown in Fig. 1. 

Fig. 1. AIS communication architecture. Sources: https://shipping.nato.int/nsc/operations/news/2021/ais-automatic-identification- 
system-overview. 
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Among all navigational aids, AIS is perceived as one of the most significant developments since radar was introduced. This system 
improves the performance of collision avoidance by continuously broadcasting vessel identity, position, speed, and course along with 
other relevant information to all other AIS-equipped vessels within reception range. Satellites equipped with AIS receivers are now 
able to receive AIS data worldwide, although the reception range of transmitted information was only limited to 10–20 nautical miles 
before 2008 (Yang et al., 2019). AIS not only enables vessels to perceive each other but also brings more valuable information to the 
Vessel Traffic Service (VTS), which enhances maritime surveillance for authorities to reduce navigational risk in coastal waters. 

The main AIS information sent by ships is summarized in Table 1. These messages are mainly created in three ways: set on 
installation, automatically updated, and manually entered (International Maritime Organization, 2015). For instance, navigational 
status has to be manually entered by the officer of the watch (OOW), including underway by engines, underway by sail, at anchor, not 
under command, restricted in ability to maneuver, moored, constrained by draught, aground, engaged in fishing, etc. Additionally, 
update rates of AIS data may differ depending on the message type, movement status and shipborne equipment type. For example, 
static and voyage-rated information is updated every 6 min or upon request; for ships equipped with Class A shipborne equipment, 
dynamic information is automatically transmitted every 2–10 s while underway and every 3 min while at anchor and traveling at less 
than 3 knots; for ships equipped with Class B shipborne equipment, dynamic information is autonomously sent every 3–30 s while 
underway and every 3 min when traveling at less than 2 knots. Notably, Class B equipment is primarily installed on crafts not subject to 
the SOLAS carriage requirements. In the system, Class A equipment is given preference over Class B devices which operate at a lower 
reporting rate or when available time slots are open. 

Note:  

• Set on installation is represented as SOI  
• Select from the pre-installed list is represented as SFPL  
• Automatically updated is represented as AU  
• Manually entered is represented as ME 

Table 1 
Main information included in AIS messages.  

Field name Generation More information 

Static (Updated every 6 mins or on request) 
MMSI, call sign, ship name SOI Might need amending when the ship changes ownership 
IMO Number SOI Unique number for the ship 
Length and beam SOI Might change if the ship size is changed 
Ship type SFPL – 
Dynamic (Depending on speed and course alteration) 
Position AU Longitude and Latitude, accuracy is approximately 10 m 
Timestamp AU Timestamp for the position in UTC 
COG, SOG, ROT AU Might not be available 
Heading AU – 
Navigational status ME – 
Voyage-related (Updated every 6 mins or on request) 
Draught ME Amended as required 
Destination and ETA ME Kept up to date as necessary  

Fig. 2. Visualized raw AIS data with blank segments and outliers (Liu et al., 2021a).  
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2.2. Data quality consideration 

Although AIS contributes a lot to the creation of convenient and powerful databases (e.g., MarineTraffic, VesselFinder, and Spire) 
for researchers and practitioners in the maritime industry, it is important to note that deletions, inaccuracies and errors still exist 
within the raw AIS data (Wolsing et al., 2022). For instance, some of the MMSI numbers, which should be unique to each vessel, are 
shared by multiple ships (Watson et al., 2015). In addition, numerous irregular blank segments and outliers can be found in AIS 
trajectories (Liu et al., 2021a), as shown in Fig. 2. 

It is foreseeable that directly using such raw AIS data to train collision avoidance prediction models will greatly reduce the reli-
ability of the prediction results. Most such studies need to pre-process raw AIS data before using it in training models (Zhang et al., 
2023). In addition, the outliers may lead to biased spatial distribution when visualizing ship emissions based on AIS data (Weng et al., 
2020b). 

According to previous studies, quality issues in AIS data are generally caused by the following reasons:  

• Manually entered information (e.g., draught, navigational status, destination, ETA) may have issues like ambiguous errors or 
inconsistent data formats.  

• Information automatically updated by sensors might be unreliable if the position-fixing system is not functioning or is improperly 
connected to the AIS equipment (Zhang et al., 2022a).  

• As a radio signal, parts of the AIS messages could get lost or scrambled affected by meteorology and magnetics.  
• Although AIS transceivers should always be in operation when ships are underway or at anchor, there is a possibility that they 

might be intentionally turned off, resulting in missing data problems (Iphar et al., 2019).  
• AIS signals can be easily spoofed and manipulated by attackers or parties willing to obscure their locations (Androjna et al., 2021).  
• Update rates of AIS data vary from 2 s to 3 min, making the data too untidy to use. 

Considering the inherent unreliability of AIS data, it is necessary to identify and deal with these data quality problems to ensure 
accurate and reliable results. Interpolation and resampling techniques are generally used to address these data quality problems, which 
can help to fill in gaps and reduce the impact of outliers or noisy data points (Capobianco et al., 2021; Ikonomakis et al., 2022). Regular 
expression as a popular text extraction tool is also helpful to extract text information from AIS data field with inconsistent formats, for 
instance, the destination of voyage. 

2.3. AIS application 

According to the Review of Maritime Transport 2022, there are more than 100,000 sea-going merchant vessels in the total fleet 
(UNCTAD, 2022). Assuming all these ships transmit AIS data every 10 s, approximately 300 billion AIS records can be generated across 
a year. Such vast quantities of global AIS data not only hold considerable research value, but bring many challenges. Research topics 
related to AIS data can be divided into two levels, as shown in Fig. 3. Studies directly focused on vessel trajectories can be treated as 
basic-level research topics. Advanced-level research topics contain further applications of AIS data, mainly related to maritime safety 
and marine sustainability. There are also studies utilizing AIS data on other topics, for instance, trade analysis, port efficiency analysis, 
etc (Yang et al., 2019). 

2.3.1. Vessel trajectory 
A vessel trajectory refers to the path or route followed by a vessel, which can be described by a group of scattered points in AIS data 

Fig. 3. Main research topics using AIS data.  
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containing information such as position, speed, heading, and other relevant parameters about the ship and voyage. Vessel trajectories 
are fundamental units and play an essential role in a variety of research topics, including marine safety and sustainability. Most 
research topics concerning vessel trajectories revolve around areas like trajectory clustering, trajectory prediction, trajectory quality 
improvement. The dynamic and unpredictable nature of water currents and weather conditions lead to high complexity and irregular 
shapes of vessel trajectories. Therefore, clustering similar trajectories from messy AIS data could be a benefit for further studies in 
trajectory prediction, route planning, etc (Arguedas et al., 2018). By forecasting a short-term future trajectory of a ship, trajectory 
prediction not only helps to detect potential threats during the voyage but also improves the quality of historical trajectory datasets. 
Sometimes the basic data-cleaning process for AIS data is not enough to address all the data quality problems, which needs to be 
considered from a trajectory perspective (Liu et al., 2021a). 

2.3.2. Marine safety 
Collision avoidance: As the main application scenario of AIS, collision avoidance has been investigated by many researchers based 

on available AIS data. One basic concept for collision avoidance is ship domain which was first defined by Goodwin (1973) to ensure 
the safety of ships during encounters. AIS data can be helpful to construct effective ship domains. With AIS data in a specific water area, 
collision risk can be estimated based on the overlapping of ship domains (Qu et al., 2011; Chai et al., 2019). The ship domain is also a 
crucial factor used to evaluate the capacity of waterways for efficient vessel traffic flow and reduced collision risk (Liu et al., 2016; 
Kadarsa et al., 2017; Weng et al., 2020a). Christian & Kang (2017) identified different encounter situations (e.g., head-on, crossing, 
overtaking) and visualized waters with high collision risks based on AIS data. 

Anomaly detection: Anomalies in AIS records can reveal important safety and security events, as noted by Wolsing et al. (2022). 
Therefore, anomaly detection using AIS data is crucial to ensure navigational safety, including VTS monitoring, risk evaluation, and 
SAR. Coastal waters typically require high-level maritime surveillance, making it advantageous for maritime authorities to utilize AIS 
anomaly detection to enhance surveillance efforts (Kowalska & Peel, 2012). Additionally, anomalies in AIS data can also signify illegal 
activities at sea, such as drug trade, piracy, and illegal fishing. Given that fishing vessels pose a significant threat to maritime safety and 
marine ecosystems, many researchers have been focusing on identifying illegal, unreported and unregulated (IUU) fishing activities 
from AIS data (Vespe et al., 2016; Ford et al., 2018). 

2.3.3. Marine sustainability 
The maritime industry has a significant environmental footprint primarily associated with both water and air pollution resulting 

from shipping activities. Water pollution, primarily caused by ship collisions leading to oil spills, constitutes a sporadic but significant 
hazard. Since vessels predominantly rely on fossil fuels for propulsion, they release a range of pollutants during the voyages, including 
sulfur oxides (SOx), particulate matter, and greenhouse gases (GHGs) like nitrogen oxides (NOx) and carbon dioxide (CO2). These 
emissions have persistent adverse effects on public health and the environment. Efforts to address the environmental challenges 
stemming from maritime activities include the estimation of ship emissions and optimizing energy efficiency. Calculating ship 
emission inventories helps in gaining a comprehensive understanding of pollution sources and their magnitudes, thereby aiding in 
effective mitigation strategies. Simultaneously, energy efficiency optimization offer practical solutions to minimize pollutant emis-
sions to the greatest extent possible. 

Emission estimation: Containing both static and kinematics information of vessels, AIS data serves as one of the best sources for 
estimating emission inventories, enabling an accurate assessment of emissions. The “bottom-up” ship emission estimation method that 
relies on AIS data offers greater spatial and temporal resolution when compared to the “top-down” estimation method solely based on 

Fig. 4. A flowchart for AIS-based ship emission estimation by Weng et al., (2020b).  
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fuel consumption and fuel-based emission factors (Li et al., 2016). This is because the “bottom-up” method takes into consideration the 
dynamic information of vessels, such as velocity and location. For ship information not available through AIS data, supplementary 

details can be obtained from ship databases. A classic “bottom-up” approach for emission estimation is the Ship Traffic Emission 
Assessment Model (STEAM) developed by Jalkanen et al. (2009). The model computes pollutant emissions through the multiplication 
of engine power, load factor, operating time, and emission factor. Meanwhile, the emissions are also affected by the engine type, fuel 
type, and navigational status, most of which can be identified in AIS data. A flowchart by Weng et al., (2020b) demonstrated how AIS 
data can be used to estimate emission inventories, as shown in Fig. 4. 

Energy efficiency: Aiming to reduce energy consumptions and emissions, AIS data could also be utilized to optimize sailing speed 
and enhance energy efficiency (Lee et al., 2018). Location, speed, and ETA from AIS data are the primary factors that need to be 
considered in energy efficiency studies. Reducing anchorage time is one way to improve energy efficiency (Jia et al., 2017). To this 
end, Watson et al. (2015) applied an integrated information system to optimize sailing speed for minimum anchorage time. Andersson 
and Ivehammar (2017a) proposed a speed adjustment method and validated it using AIS data from port waters. Route planning is 
another way to improve energy efficiency (Andersson and Ivehammar, 2017b; Praston, 2023). For instance, He et al. (2019) developed 
a route planning method based on historical routes from AIS data. Determining turning points is the basis of route planning. After 
turning point selection by clustering the historical routes, the Dijkstra algorithm and the ant colony algorithm were applied to generate 
and optimize the routes. Shorter routes with fewer turning points have been generated after route optimization, which can reduce 
energy consumption accordingly. 

Although current studies still require a lot of effort to pre-process AIS data and extract effective trajectories, it is undeniable that 
those data have brought a lot of outstanding research works to the maritime industry, especially on collision avoidance, anomaly 
detection, emission estimation, and energy efficiency. However, as the explosive growth of data volume, the value of AIS data can 
hardly been maximized by traditional methods. Meanwhile, the blooming AI technologies has also put forward more intelligent re-
quirements for the shipping industry. ML methods are becoming a reliable alternative solution for efficiently exploiting AIS data. 

3. Machine learning-powered AIS application 

In recent years, numerous ML-based solutions for classic topics in the maritime field have emerged to challenge traditional 
methods, especially in trajectory prediction, collision avoidance, anomaly detection, and energy efficiency. To get an in-depth un-
derstanding of current attempts, this section first brings detailed problem definitions for each topic, and then provide further dis-
cussions about different ML solutions in according subsections. 

3.1. Vessel trajectory prediction 

Among all the AIS applications, vessel trajectory prediction is the first to be discussed because it is considered to be one of the most 
essential topics in ensuring safety, intelligence and efficiency in maritime transportation. In this subsection, we first introduce the 
definition of trajectory and trajectory prediction. Following that, we review and introduce the ML methods mainly used in this topic. 
Finally, we further analyze what efforts the reviewed studies have made to improve their model performance. 

3.1.1. Problem definition 
A trajectory can be abstracted into a set of points containing spatial, temporal, and other information. Therefore, a series of tuples, 

{xt ,t ∈ T}, xt = (s, t, o), is generally used to express a vessel trajectory, where s refers to the geo-location of the point, t is the timestamp 
of the point, o represents other attributes of the point (e.g., SOG, COG, heading.), and T stands for the set of timestamps {1, 2, 3, …, t}. 
It should be noted that s and t are necessary elements to represent a trajectory, while o is an optional one that depends on the need of 
the study. All these elements can be extracted from AIS data. Generally, given a fully observed trajectory from timestamp 1 to t, 
denoted by X = {x1,x2,x3,⋯,xt}, trajectory prediction refers to predicting its following trajectory in a short-term future after time-
stamp t, denoted by Y = {xt+1,xt+2,xt+3,⋯,xt+a}, where a stands for the prediction horizon. Besides predicting trajectories as point sets, 
some studies transform trajectories into grids or probability distributions for predictions (Nguyen et al., 2018; Dalsnes et al., 2018). 

3.1.2. ML methods for trajectory prediction 
3.1.2.1. Methods. Both basic ML and deep learning (DL) methods have been widely applied in traffic prediction (Liu et al., 2019a). 

Basic ML methods for trajectory prediction include Principal Component Analysis (PCA), k-Nearest Neighbors (k-NN), Support Vector 
Machine (SVM), Artificial Neural Network (ANN), Back-Propagation Neural Network (BPNN), and Extreme Learning Machine (ELM) 
(Zhang et al., 2022b). DL methods for trajectory prediction include Long Short-Term Memory (LSTM), Recurrent Neural Network 
(RNN), Encoder-Decoder Architecture, Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), Transformer, Generative 
Adversarial Network (GAN), and Deep Neural Network (DNN). 

Some of these studies explored the application of basic ML methods in this task. For example, PCA can be used to reduce the 
dimension of the features from AIS data that describe the trajectories (Murray & Perera, 2019). Thinking of vessel trajectory prediction 
as a classification problem, Duca et al. (2017) utilized a k-NN classifier to predict trajectories based on AIS data around Malta. The 
problem can also be regarded as a regression task, k-NN regressor (Virjonen et al., 2018), SVM and its variants can be employed to 
predict trajectories (Liu et al., 2019b; Liu et al., 2020). In addition, some researchers have investigated the performance of simple ANN 
(Volkova et al., 2021; Gan et al., 2016), BPNN (Zhou et al., 2019; Zhang et al., 2020) and ELM (Tu et al., 2020) for vessel trajectory 
prediction. Remarkably, ELM is considered to be a fast and robust ML algorithm with good generalization ability (Mao et al., 2018). 
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In order to explore methods with better performance in vessel trajectory prediction, more studies have leveraged state-of-the-art DL 
models. The architecture of DL models typically consists of multiple layers of nonlinear transformations, which together create a 
hierarchy of representations. Each level of representation is obtained by transforming the previous level into a higher and more ab-
stract one. These transformations allow DL algorithms to learn complex relationships from observed trajectory samples (Fei et al., 
2024; LeCun et al., 2015). Since trajectory samples contain timestamps, trajectory prediction can also be considered as time series 
prediction. Therefore, the LSTM network and its variants (e.g., GRU) are the most frequently used approaches (i.e., 73.68 %) for 
predicting vessel trajectory (Tang et al., 2019; Wang et al., 2020; Zhang et al., 2020). In addition, other researchers managed to 
compare the trajectory prediction task to the image inpainting/generation task. DL frameworks designed for image-related tasks, such 
as CNN and GAN, are also proven effective for vessel trajectory prediction (Kim & Lee, 2018a; Wang & He, 2021). 

3.1.2.2. Highlights. This subsection summarizes the highlights of these related papers and identifies four main perspectives worthy 
of discussion. 

Data input: In addition to the location and timestamps of ships, some studies tried to include more input features relevant to AIS 
data for their proposed trajectory prediction models. Among various features, SOG and COG are the most popular ones considered, 
while heading and ship type are sometimes also included for predicting vessel trajectories. To accurately predict trajectories at in-
tersections, the destination of the voyage is also regarded as an important indicator (Capobianco et al., 2021). The popularity of these 
features may primarily depend on their correlation and integrity. Except for AIS data, some other studies also make use of supple-
mentary data sources, for instance, shoreline shapefiles, meteorological data, and satellite images (Venskus et al., 2021; Mehri et al., 
2021; Dijt & Mettes, 2020; Duca et al., 2017). 

Clustering: Clustering is a popular choice for assisting trajectory prediction, which can be used either to remove irrelevant data 
and extract routes (Liu et al., 2021a), or to group trajectories that share similar characteristics (Murray & Perera, 2020; Murray & 
Perera, 2021). Extracting routes with the clustering technique is beneficial for acquiring high-quality training data. On the one hand, as 
mentioned in section 2.2, AIS data may contain error messages (e.g., wrong position) due to various reasons, making it difficult to 
identify through regular data cleaning processes. On the other hand, trajectory data generated when ships are at anchor or exhibiting 
irregular movement patterns are not ideal high-quality input samples, which should also be filtered out. Moreover, grouping and 
training trajectories by similar characteristics can significantly ease model training and enhance the robustness of trajectory predic-
tion. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a well-known clustering method that can effectively 
extract trajectories and captures key characteristics of vessel movement patterns (Li et al., 2019). It can be applied to eliminate un-
necessary data or group trajectories with similar patterns for prediction. 

Model complexity: Amongst all the efforts to enhance model performance, the most common way is to explore more complex 
model architectures. For example, variants of LSTM such as bidirectional LSTM (Bi-LSTM) and bidirectional GRU (Bi-GRU) are widely 
used to improve prediction accuracy, due to their ability to consider the effectiveness from both historical and future time-series data 
(Gao et al., 2018; Wang et al., 2020). The attention mechanism can be incorporated to allow different focuses on the different parts of 
hidden information of the Bi-LSTM network (Liu & Guo, 2019). In recent years, generative models are also developed for trajectory 
prediction. A GAN architecture consists of a generator and a discriminator that are trained to compete with each other (Tedjopurnomo 
et al., 2022), where the role of a generator network is to generate a data distribution while the role of a discriminator is to determine 
whether this generated sample is from the real distribution or not (Goodfellow et al., 2014). For trajectory prediction tasks, the 
generator is usually formed by an LSTM encoder-decoder. According to relevant studies, generative models could also provide 
remarkable predictions compared with Sequence to Sequence models (Wang & He, 2021). 

Loss function: The loss function is a crucial component in evaluating model performance and updating model parameters during 
the training process. Which loss function to use depends on the type of data and problem being addressed. In the case of trajectory 
prediction, it is typically chosen as the geographical distance between predicted and ground-truth trajectories. The AIS coordinates 
commonly expressed in Spherical Coordinate System (SCS) employ different distance measures such as Haversine distance, Vincenty 
distance, and Equirectangular distance (Zhang et al., 2019; Murray & Perera, 2018; Sekhon & Fleming, 2020). Some studies have 
adopted Cartesian Coordinate System (CCS), whereas others still use non-geographical distance measures to define the loss function. 
Since trajectory prediction is usually regarded as a regression problem, metrics like Root Mean Square Error (RMSE), Mean Square 
Error (MSE), and Mean Absolute Error (MAE) are frequently used to evaluate performance. 

3.2. Vessel collision avoidance 

Collisions have received the most attention among all types of maritime accidents due to the high frequency and severe conse-
quences. The deployment of USVs can significantly decrease the dependence on human operators by replacing human decision-making 
with an automated intelligent collision avoidance system. Therefore, state-of-the-art ML methods have been adopted for vessel 
collision avoidance in recent years. With reliable AIS data, emerging techniques are mainly applied to ship encounter recognition, ship 
domain learning, collision risk assessment, collision avoidance decision-making, etc. This subsection first defines the problem of 
collision avoidance and then reviews the ML methods proposed to avoid ship collisions. 

3.2.1. Problem definition 
To fully understand collision avoidance and the contribution of ML in this area, it is necessary to clarify the following basic concepts 

first: 
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• Ship domain: The fundamental idea for collision avoidance is the ship domain, which refers to the minimum safety zone sur-
rounding a ship, enabling navigators to promptly respond and prevent any potential collisions. The size and shape of the ship 
domain are mainly affected by ship size, SOG & COG, traffic density, current & weather, etc (Tu et al., 2018). Considering the 
dynamic complexity of determining appropriate ship domains, ML could be a valuable tool to generate ship domains in real time.  

• Encounter situation: The International Regulations for Preventing Collisions at Sea 1972 (COLREGs) have defined three basic 
types of encounter situations: crossing, head-on and overtaking, and crossing includes large-angle crossing and small-angle crossing 
(Chai et al., 2019). ML could help to classify encounter situations from a large amount of AIS data, and identify non-accident events 
such as near misses with ship domains.  

• Closest Point of Approach (CPA) analysis: The concept of the CPA pertains to the proximity between two vessels assuming they 
maintain identical speed and course, which can be calculated based on AIS data. In collision risk evaluation, the distance to CPA 
(DCPA) and the time to CPA (TCPA) serve as fundamental parameters (Huang et al., 2020). Additional details on computing DCPA 
and TCPA can be found in the paper by Sarhadi et al. (2022). 

3.2.2. ML methods for collision avoidance 
3.2.2.1. Subtasks-oriented model. This part introduces ML applications for the subtasks of collision avoidance, for instance, ship 

encounter recognition, ship domain learning, collision risk assessment. Each subtask plays a vital role in successfully developing an 
automated intelligent collision avoidance system. The capability of automatically identifying encounter situations of ships is of 
paramount importance. Chen et al. (2021) proposed a Semi-Supervised Convolutional Encoder-Decoder Network (SCEDN) for ship 
encounter situation classification based on AIS data. The reason for adopting a semi-supervised learning method is that it can share 
training parameters with unlabelled data, which accounts for a large proportion of the training dataset. In their study, relevant dis-
tance, relevant speed, TCPA, and DCPA were selected as the features to train the encounter situation classification model. Accuracy and 
F1 score were chosen as the performance evaluation metrics similar to other classification tasks. Ship encounter recognition could 
efficiently recognize and label encounter situations for large amounts of unlabelled AIS data, which is beneficial to ship domain 
learning and collision risk assessment. 

Empirical ship domain development tends to lack generalization because it can only consider several predefined situations. 
Learning ship domain with ML methods could be more flexible and self-adaptive, which can consider different influencing factors. 
Rawson & Brito (2021) applied a Random Forest (RF) algorithm to predict the size and shape of the ship domain by taking advantage of 
encounters from historical AIS data. Nine features were selected to describe the encounters for domain distance prediction, including 
bearing, encounter type, distance from shore, SOG, vessel size, vessel type, near traffic separation scheme (TSS), near port, wind speed, 
and day/night. The domain shape was then determined by the distance predicted in each direction. The learned ship domain could thus 
be applied to measure collision risk. 

ML methods have been found to have a trade-off between accuracy and responsiveness for vessel collision risk assessment. Trit-
sarolis et al. (2022) proposed a Multi-Layered Perceptron (MLP) model to evaluate collision risk using a large-scale AIS dataset. Their 
model outperformed the traditional kinematic-based approach. Furthermore, AIS data can also be used to model non-accident events, 
such as near misses, which are useful in expressing collision risks. Kim & Lee (2018b) developed an MLP architecture to predict near- 
collision risks of ships, which can be integrated into VTS systems to reduce the workload of officers. In addition to collision risk 
assessment, Zhang et al. (2022b) proposed a risk evaluation model for grounding accidents. The model incorporated not only basic 
features extracted from AIS data but also ship drafts, an essential element for grounding risk assessment. The study also used hydro- 
meteorological data and bathymetry data. For model construction, K-means clustering, dynamic time warping, and Douglas-Peucker 
(DP) algorithms were employed. 

3.2.2.2. Decision-making oriented model. Other than the aforementioned subtasks of collision avoidance where ML has a role to play, 
there are also studies focused on decision-making in collision avoidance. One example is using ML techniques to learn effective 
collision avoidance strategies from extensive historical AIS data. For instance, Shi & Liu (2020) developed a double GRU-RNN model to 
identify collision avoidance patterns in ship encounter AIS data and generated appropriate collision avoidance decisions for various 
navigational scenarios. The DP algorithm was utilized to prepare the AIS data for training the model, and collision risk was assessed 
based on the predefined ship domain. This ML-based approach has potential applications in autonomous collision avoidance for USVs. 

To enhance real-time collision avoidance capabilities for USVs, deep reinforcement learning (DRL) is commonly employed for 
decision-making. Zhao & Roh (2019) developed a DRL algorithm for collision avoidance among multiple USVs. The model utilized a 
two-layer MLP with a proximal policy optimization (PPO) learning algorithm. The reward function considers reaching the goal, 
heading error, cross-tracking error, drift, collision to obstacles, and COLREGs. Meyer et al. (2020) likewise applied a DRL algorithm 
with PPO for controlling an autonomous agent (i.e., USVs) to follow a predetermined path while avoiding collisions with other vessels 
in accordance with the COLREGs. AIS data from an inlet of the Norwegian Sea were used to evaluate the agent’s ability to navigate 
challenging marine terrain and realistic vessel encounters. The proposed reward function can be divided into two parts: path following, 
influenced by cross-tracking error and speed, and collision avoidance, considered separately for static and dynamic obstacles. Jiang 
et al. (2022) proposed an attention-based DRL method for human-like collision avoidance, with a collision risk assessment module and 
a motion planning module included. Simulation scenarios, including static obstacles, dynamic multi-ship encounters, and dynamic and 
static obstacle coexistence, were designed to validate the effectiveness of the method. 

3.3. Vessel anomaly detection 

As AIS data becomes increasingly accessible, there is a rising demand for identifying abnormal AIS data. However, manually 
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extracting suspicious ship activities from massive AIS data is impractical. According to recent studies on vessel anomaly detection, ML 
approaches have gained more popularity in automatically detecting various abnormal ship tracks. This subsection first introduces the 
problem definition of anomaly detection and then reviews the ML methods used to detect anomalies. 

3.3.1. Problem definition 
Anomalies in AIS tracks refer to behaviors that deviate from the norm or are unexpected during typical operations. In the context of 

vessel traffic, this may include sudden changes in ship velocity or uncommon travel routes that are not in line with standard practices. 
General forms of anomalous behaviors of ships include deviation from normal routes, discontinuous trajectories, unexpected port 
arrivals, close approach anomalies, and zone entry anomalies (Lane et al., 2010): 

• Deviation from normal routes: A deviation from a straight route in open seas or from straight paths between predefined way-
points in complex waters may indicate an anomaly.  

• Discontinuous trajectories: Intentional on–off switching of AIS equipment or other intentional behaviors may cause AIS signal 
loss, which could potentially obscure malicious actions.  

• Unexpected port arrivals: Vessels may arrive at unexpected ports due to various illegal reasons (e.g., illegal fishing). These 
anomalies can be identified using voyage-related information from AIS data, such as destination port, ETA, and corresponding 
waypoints. 

• Close approach anomalies: Close approaches between vessels that last a long time are uncommon, except in emergency situa-
tions. Such motion patterns may suggest illegal activities at sea (e.g., exchange of contraband or drugs).  

• Zone entry anomalies: Vessels entering a restricted area (e.g., marine protected areas) for a considerable period should be 
considered an abnormal activity. 

Ship anomaly can also be classified into three types from a kinematical perspective (Tu et al., 2018):  

• Position anomalies: A ship appears in an unexpected position (e.g., restricted area, forbidden area).  
• Speed anomaly: The speed of a ship is significantly higher or lower than normal status for a long time.  
• Time anomaly: The visiting time of a ship is unexpected. 

3.3.2. ML methods for anomaly detection 
According to the reviewed papers, 90 % of the studies focus on deviation anomalies. These studies also often incorporate machine 

learning methods for various other types of anomalies. Therefore, the anomaly type discussed in the following subsections is deviation 
anomalies by default. Studies focused on other anomaly types will also be mentioned in the review. 

3.3.2.1. Clustering-based model. Clustering is highly effective for distinguishing abnormal and normal trajectories from unlabeled 
AIS data. DBSCAN is a particularly useful clustering algorithm for detecting anomalies in AIS data because it can effectively recognize 
key characteristics of vessel movement patterns, as mentioned in 3.1.2.2. Sometimes K-means clustering is also applied to detect 
anomalies in AIS data (Guo et al., 2021). For example, Pallotta et al. (2013) developed a method called Traffic Rout Extraction and 
Anomaly Detection (TREAD) using DBSCAN. TREAD enabled unsupervised learning of a statistical model from AIS data and the 
extraction of valuable information for decision-making. In addition to the position of the ships, kinematical features like SOG and COG 
can be incorporated as additional features for anomaly detection. Hierarchical reasoning was employed to further improve the TREAD 
by identifying off-route vessels with only positional information and detecting anomalies of on-route vessels with heading and speed 
information (Pallotta & Jousselme, 2015). Later, TREAD was further applied by Arguedas et al. (2018) for developing a Maritime 
Traffic Knowledge Discovery and Representation System, which contributes to real-time traffic monitoring, anomaly detection, and 
situation prediction. 

In addition, there is another way to cluster ship tracks considered kinematical features. To identify ship-moving & stopping areas, 
Liu et al. (2014) proposed an extension of DBSCAN, termed DBSCANSD, which incorporates SOG and COG as non-spatial features. To 
improve detection accuracy, the model was further refined by extending it into three division distances based on position, speed, and 
direction (Liu et al., 2015). On the basis of DBSCANSD, Wang et al. (2014) developed an anomaly detection framework that combined 
both unsupervised learning and supervised learning methods. They applied DBSCANSD to pre-cluster the data points as an initial step 
in anomaly detection. Normal and abnormal clustered ship tracks were then distinguished and labeled leveraging expert knowledge. 
Finally, a parallel meta-learning (PML) algorithm was trained based on the labeled data to detect anomalies automatically. Other types 
of features sometimes could also be included into specific anomaly detection schemes. For example, Radon et al. (2015) proposed a 
DBSCAN-based framework to filter false alarms in anomaly detection. Contextual information like weather information was also 
accounted for in the framework. Massive AIS data from U.S. Coast Guard were used to demonstrate that the proposed method can adapt 
to new contextual information. 

3.3.2.2. Neural Network-based model. Unlike the clustering-based methods that are more suitable for anomaly detection from his-
torical AIS data, neural network-based methods are more apt for real-time anomaly detection. In earlier studies, a Fuzzy ARTMAP 
neural network that took real-time AIS data as input could learn the motion patterns of vessels and detect anomalies in real-time 
(Bomberger et al., 2006). To simplify the motion pattern, this paper categorized COG into four directions (i.e., north, south, east, 
and west) and SOG into three levels (i.e., slow, medium, and fast). A grid neural network consisting of nodes (i.e., junctions) and 
synaptic connections (e.g., grid edges) was established. The future position of the ship is predicted by the weight of connections that 
stem from its current location. Any deviation of the route from the expected paths will end up being identified as anomalous. Although 
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it is a dynamic unsupervised learning model that can detect anomalies from real-time unlabeled AIS data, it requires a large amount of 
historical data and appropriate grid size to learn the weights of the network and achieve satisfactory prediction accuracy. 

In recent years, some researchers have been trying to explore the possibility of using DL methods for anomaly detection. Singh et al. 
(2020) developed a multi-class ANN-based anomaly detection framework to identify intentional and non-intentional AIS on–off 
switching anomalies. A four-dimensional vector consisting of latitude, longitude, SOG and COG was extracted from AIS data as the 
training and validation set. A bi-class (i.e., normal, abnormal) and a tri-class (i.e., normal, power outage, abnormal) anomaly detection 
models were trained separately and achieved an overall accuracy of 99.9 %. Nguyen et al. (2021) proposed a DL scheme called 
GeoTrackNet for detecting anomalies from AIS streams. The model comprises a variational RNN for identifying complex and het-
erogeneous motion patterns of vessels, and a contrario detector designed for evaluating the likelihood of an AIS trajectory. More than 
4.2 million AIS records were utilized to train this model. The aforementioned DBSCAN-based method TREAD was chosen as the 
baseline in this study. The proposed GeoTrackNet has been proven to outperform the baseline model and could monitor AIS trajectories 
deviating from maritime routes—something DBSCAN-based models struggle with. 

3.4. Vessel energy efficiency 

As society becomes more stringent in reducing the energy consumption of ships, traditional methods of measuring energy efficiency 
are insufficient to meet the requirements considering the complex and dynamic nature of navigation conditions. In addition, the 
advancement of USVs necessitates automatic optimization of energy efficiency. Thus, with the aid of extensive AIS data, ML methods 
have emerged as an effective approach for optimizing energy efficiency. This subsection begins by introducing the related definitions 
of energy efficiency and then examines how ML applications can improve it. 

3.4.1. Problem definition 
In the marine sector, energy efficiency refers to the measurement of how efficiently a ship utilizes energy to transport goods or 

people by sea. Energy efficiency can be improved through a variety of means, including the use of more efficient engines, the opti-
mization of ship design and operations, and the adoption of alternative fuels and propulsion systems. Improving energy efficiency in 
shipping can reduce fuel consumption, decrease greenhouse gas emissions, and improve the sector’s overall sustainability. 

The International Convention for the Prevention of Pollution from Ships (MARPOL) has put forth many indexes to measure energy 
efficiency, which can be used to optimize energy efficiency both at the design stage and the operational stage. These indexes include 
Energy Efficiency Design Index (EEDI), Energy Efficiency Operational Index (EEOI), Ship Energy Efficiency Management Plan 
(SEEMP). New amendments expected to enter into force in 2023 include Energy Efficiency Existing Ship Index (EEXI), and Carbon 
Intensity Indicator (CII). For detailed definitions of these indexes, we direct the reader to the paper by Barreiro et al. (2022). 

Understanding estimation of energy consumption and emission is quite helpful before delving into energy efficiency. In general, 
three crucial elements for calculating fuel consumption and emissions are engine power, fuel type, and ship dynamic data obtained 
from AIS records. The majority of a ship’s engine power can be obtained from Lloyd’s database. Gross tonnage serves as a critical 
indicator that can help estimate missing engine power (Weng et al., 2020b). Fuel types are closely associated with the type of engines 
used. Typically, the main engine primarily consumes residual oil, while the auxiliary engine predominantly uses marine distillate oil. 
More detailed information regarding fuel types can be found in the relevant policies specific to particular maritime areas. When 
estimating emissions, it is essential to apply emission factors that indicate the relationship between ship dynamics and emissions per 
unit of various pollutants. For a deeper understanding of emission estimation, please refer to subsection 2.3.3. 

3.4.2. ML methods for energy efficiency 
To achieve better energy efficiency at the operational stage, the majority of the studies focus on vessel fuel consumption, often 

regarded as the basis of speed optimization and route planning. With the development of state-of-the-art techniques, ML has become a 
mainstream solution for fuel consumption prediction. In addition, ML methods have also been applied to develop Energy Management 
Systems (EMS) for hybrid vessels. 

3.4.2.1. Fuel consumption prediction. ML models have gained popularity in predicting fuel consumption under different environ-
ments, owing to the challenging task that involves intricate interrelations among ship factors (e.g., engine, hull), kinematical factors (e. 
g., SOG, COG), and environmental factors (e.g., wind, wave, current, and temperature). According to the reviewed papers, the most 
popular ML model for energy consumption prediction is ANN (e.g., Du et al., 2019; Farag & Ölçer, 2020; Le et al., 2020). Other ML 
methods applied to this topic include tree-based models, Least Absolute Shrinkage and Selection Operator (LASSO) regression, Ridge 
regression, SVM regressors, Self-Organizing Maps (SOM), and Gaussian Mixture Model (GMM) (Barreiro et al., 2022). Apart from ML 
models, DL models like RNN, LSTM, and Elman Neural Network (ENN) (e.g., Panapakidis et al., 2020; Yuan et al., 2021) have also been 
employed in some studies. 

While the aforementioned studies have proposed various solutions to predict energy consumption rates, it remains unclear which 
methods perform better or which data sources utilized lead to better prediction accuracy. + To address this question, Du et al., (2022a) 
evaluated the performance of eleven ML models widely used for energy consumption prediction, using nine specifically constructed 
datasets. These datasets were constructed based on voyage report data, AIS data, and meteorological data related to eight mega 
containerships. The eleven selected ML models include ANN, SVM, Ridge, LASSO, Decision Tree (DT), Extremely randomized Trees 
(ET), RF, AdaBoost (AB), Gradient tree Boosting (GB), XGBoost (XG), and LightGBM (LB). To measure the performance of these models, 
R2, RMSE, and MAE were adopted. According to their experimental results, the combination of the three mentioned data sources 
resulted in notable benefits for model prediction. More importantly, tree-based models, including ET, AB, GB, and XG, were found to 
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have superior performance over the best datasets. To deep dive into how data fusion and ML methods can help predict ship fuel ef-
ficiency, they also attempted to bring more data sources in their other studies, for instance, sensor data, which offered more possible 
ML solutions on this topic (Du et al., 2022b; Li et al., 2022). Nonetheless, due to the absence of a benchmark dataset, it is not possible to 
validate and compare the performance of fuel consumption prediction models across various studies. Having publicly accessible high- 
quality AIS data that includes concrete evidence of fuel consumption as training/testing data could facilitate the establishment of a 
standard for assessing the performance of future models. Once the model has been trained using the benchmark dataset, its perfor-
mance can be compared with that of other studies, which also employ the same benchmark dataset for training their models. 

3.4.2.2. Energy management system. For the development of green energy-powered ships, a basic need is to construct EMS to manage 
energy consumption from fuel and battery. To achieve near-optimal average voyage cost, Wu et al. (2020) proposed a Double Deep Q- 
Network (DDQN)-based EMS to mitigate the high cost of energy consumption following cost-effective energy management strategies. 
The double Q agent was trained on operational ship data from a coastal ferry, including both propulsive and auxiliary loads, and was 
validated using a dataset collected from another period. The results showed that these strategies can achieve near-optimal cost per-
formance (96.9 %) without any advance information regarding future power demands, as opposed to those obtained through dynamic 
programming using the same state space resolution. According to the DRL-based EMS, the authors developed a holistic optimization 
approach for solving the power source sizing issue in the system, utilizing constrained mixed-integer multi-objective optimization in 
the outer layer (Wu & Bucknall, 2020). They conducted simulations replicating previous journeys and proved that using the hybrid 
system for case studies could result in a minimum of 65 % reduction in GHG emissions. In a follow-up study, Wu et al. (2021) 
introduced another DDQN approach to enhance the performance of energy management, resulting in an additional 5.5 % decrease in 
costs and a 93.8 % reduction in training time. A further EMS utilizing ML techniques was developed by Planakis et al. (2022). They 
suggested hierarchical clustering to identify the loading patterns of ships and used a Feedforward Neural Network (FNN) to anticipate 
future engine speed references for the EMS. In the experiment, the use of the developed EMS resulted in a 6 % reduction in fuel 
consumption and an 8.5 % reduction in NOx emissions for the ship based on a specific hybrid powertrain. 

4. Challenges & future directions 

After conducting a thorough review of existing research about ML applications on AIS data, the following perspectives from data 
usage and each research topic are further discussed to identify gaps and potential future directions. 

4.1. Data usage  

• Benchmark datasets: As noted in subsection 2.2, AIS data can suffer from a variety of quality issues for due to different reasons. 
While the majority of previous studies have typically conducted initial pre-processing on the raw AIS data, there is an absence of a 
unified standard to guide the cleaning process. Consequently, utilizing such varied data for ML applications could result in sub-
jective assessments of their applicability. Moreover, although existing research on ML methods has shown promising outcomes, 
these studies are confined to specific datasets, such as particular water areas or ship types. This limitation reduces transparency and 
hinders the ability to determine the superiority of one ML method over another (Du et al., 2022a). Evaluating methods based on 
data from different water areas or with different pre-processing standards fails to establish a meaningful comparison. Therefore, it 
is crucial for future research to create a sufficiently large and high-quality AIS database. This will allow researchers to more 
confidently assess which ML methods are appropriate for particular tasks, even across different research teams. To accomplish this 
goal, it is highly recommended to create standardized AIS datasets and guidelines for AIS data pre-processing, similar to the 
practices observed in other fields (e.g., MNIST, ImageNet). These standardized benchmarks will provide an objective framework for 
ML tasks in the maritime sector.  

• Data fusion: Significant efforts has been made to explore the use of multi-source data in the maritime field, rather than relying 
solely on AIS data. These varied data sources include satellite imagery, radar and Electronic Navigation Chart (ENC) images, 
meteorological data, hydrological data, and other data collected from shipboard sensors. The aim of incorporating these data 
sources is to enhance the performance of ML tasks, such as vessel trajectory prediction and energy consumption prediction. 
However, the identification and integration of these multi-modal data sources pose a critical challenge in supporting specific ML 
tasks. Each task may require the fusion of AIS data with different data sources, each with its own unique characteristics. Conse-
quently, the complexity of the problem escalates. For example, when combining data from various sources, it is necessary to align 
them based on the lowest resolution among the diverse data sources. Techniques such as aggregation, resampling, and interpolation 
may be employed during the data fusion process. Furthermore, future research should provide guidelines for effectively fusing AIS 
data with other data sources, promoting standardized practices in this area. 

4.2. Trajectory prediction 

Firstly, the utilization of DL approaches for vessel trajectory prediction has experienced a notable surge, as evident from our 
reviewed papers. This growing adoption can be attributed to the successful application of forecasting techniques in land trans-
portation, sparking interest in maritime applications. Emerging techniques like DRL show potential in enhancing the reliability of 
trajectory prediction (Zhang et al., 2022a), making them worthy of being pursued. Secondly, the main challenge with AIS data lies in 
the presence of irregular gaps in trajectory data, as discussed in subsection 2.2. While mainstream research on ship trajectory pre-
diction predominantly focuses on forecasting future trajectories, there is limited exploration of utilizing this technology for addressing 
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missing data issues. However, in the realm of image inpainting, researchers have already investigated the use of partial convolution 
methods to handle irregularly missing image data (Liu et al., 2018). It is thus anticipated that similar DL methods will be developed to 
address irregularly missing issues and reconstruct trajectory data, enabling the generation of higher-quality vessel trajectories for 
advanced-level studies. 

4.3. Collision avoidance 

Firstly, the ship domain plays a critical role in ensuring collision avoidance. In most studies, predefined fixed-shape domains, such 
as circular or elliptical, are commonly utilized due to technical and data constraints. However, with the advancement of ML tech-
niques, there is growing interest in exploring learning-based domains as a promising solution for the next generation of ship domains. 
These learning-based domains have the potential to incorporate various influencing factors and adapt dynamically (Tu et al., 2018). To 
enhance the accuracy and effectiveness of ship domains, it would be more meaningful to leverage real-time AIS data along with other 
relevant data sources, such as meteorological data. By integrating these diverse datasets, we can train ML models to learn the dynamic 
shape of ship domains, allowing them to adapt to changing environmental conditions instead of assuming a constant domain shape that 
disregards the impact of environmental factors. Only a limited number of studies have contributed to learning-based domains ac-
cording to our review. Secondly, DRL is found to be a prevailing approach to support decision-making for collision avoidance. This 
popularity could be attributed to its strong compatibility with control tasks. However, one major obstacle to utilizing DRL is the design 
of the reward function. Defining the reward and determining the appropriate weights for its indices can become a complex and 
intricate task (Sarhadi et al., 2022). 

4.4. Anomaly detection 

Firstly, the reviewed papers primarily focus on offline anomaly detection, utilizing historical AIS data for training and testing 
detection models. However, with the rise of USVs in maritime transportation, integrating AIS track anomaly detectors directly into 
vessels on sail becomes increasingly crucial for improving safe automated navigation (Wolsing et al., 2022). Despite the fact that some 
studies have made efforts to develop online anomaly detection models using AIS data streams, there’s still a need for more effective 
real-time anomaly detection algorithms and systems capable of identifying online vessel abnormal behaviors. Secondly, many existing 
anomaly detection models primarily focus on the kinematic attributes of vessels, such as SOG, COG, and location. However, it is also 
important to recognize that static information, such as vessel type, size and flag, as well as environmental factors like traffic density 
and weather conditions, can also influence vessel behaviors (Yan & Wang, 2019). Incorporating these factors in the training of anomaly 
detection models could enhance the accuracy of detection. 

4.5. Energy efficiency 

Firstly, current fuel consumption prediction models lack generalizability as they are mainly tailored to specific ships. Developing 
unified models applicable across different vessels would overcome this limitation. Although tree-based models like RF show superior 
performance, they may require adjustments for direct fuel consumption prediction due to their discontinuous output. Secondly, the 
issue of endogeneity is often overlooked in energy consumption predictions. The complexity of vessel propulsion and environmental 
factors lead to endogeneity in fuel consumption models. In addition, ML-based fuel consumption prediction models rely heavily on 
feature engineering, which involves selecting valid features, constructing new ones, encoding and processing features, and identifying 
feature importance (Yan et al., 2021a,b). As a result, the prediction step is often treated as a black box where all processed features are 
fed into ML models, with little attention given to endogeneity. Future research should focus on exploring potential strategies for 
addressing endogeneity in fuel consumption prediction models. 

4.6. Ais-based large ML model 

The advent of Chat-GPT has captivated global attention due to its exceptional capabilities (OpenAI, 2023). As the popularity of 
Chat-GPT soars, large-scale ML models are emerging as the solution for the next generation of generative AI (Liu et al., 2023; Qu et al., 
2023). Among various domains that stand to benefit, the maritime industry holds great potential for constructing a valuable and 
promising AIS data-based large ML model. Our review highlights a variety of significant research avenues that can be explored using 
AIS data as a foundation. Given its capacity to analyze extensive historical AIS data, a large ML model can reveal valuable insights and 
facilitate diverse predictive analytics mentioned before, thereby supporting decision-making processes within the maritime sector. 
Nevertheless, several crucial factors must be carefully addressed when building such a large ML model, including issues related to data 
quality, data privacy & security, sufficient computational resources, and expert domain knowledge. 

5. Concluding remarks 

This paper presents a comprehensive review of machine learning applications grounded in AIS data in the maritime industry. The 
review encompasses multiple aspects, starting with an overview of AIS data and its utilization in maritime research. Existing research 
topics related to AIS data and the ML approaches developed to tackle relevant issues are summarized. In this review, AIS-related 
research is classified into two levels: the basic level focusing on vessel trajectory, and the advanced level that delves into maritime 
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Table A1 
Abbreviations.  

Abbreviation Full name 

Maritime-related 
AIS Automatic Identification System 
CII Carbon Intensity Indicator 
COG Course Over Ground 
COLREGs International Regulations for Preventing Collisions at sea 
CPA Closest Point of Approach 
DCPA Distance to Closest Point of Approach 
EEDI Energy Efficiency Design Index 
EEOI Energy Efficiency Operational Index 
EEXI Energy Efficiency Existing Ship Index 
EMS Energy Management System 
ENC Electronic Navigation Chart 
ETA Estimated Time of Arrival 
GT Gross Tonnage 
IMO International Maritime Organization 
IUU Illegal, Unreported, and Unregulated 
MARPOL International Convention for the Prevention of Pollution from Ships 
MMSI Maritime Mobile Service Identity 
OOW Officer of the Watch 
ROT Rate of Turn 
SAR Search and Rescue 
SEEMP Ship Energy Efficiency Management Plan 
SOG Speed Over Ground 
SOLAS Safety of Life at Sea 
TCPA Time to Closest Point of Approach 
TSS Traffic Separation Scheme 
USV Unmanned Surface Vehicle 
VHF Very High Frequency 
VTS Vessel Traffic Service 
ML-related 
AB AdaBoost 
AI Artificial Intelligence 
ANN Artificial Neural Network 
Bi-GRU Bidirectional Gated Recurrent Unit 
Bi-LSTM Bidirectional Long Short-Term Memory 
BPNN Back-Propagation Neural Network 
CNN Convolutional Neural Network 
DBSCAN Density-Based Spatial Clustering of Applications with Noise 
DL Deep Learning 
DNN Deep Neural Network 
DT Decision Tree 
DP Douglas-Peucker 
DRL Deep Reinforcement Learning 
ELM Extreme Learning Machine 
ENN Elman Neural Network 
ET Extremely randomized Trees 
FNN Feedforward Neural Network 
GAN Generative Adversarial Network 
GB Gradient tree Boosting 
GRU Gated Recurrent Unit 
LASSO Least Absolute Shrinkage and Selection Operator 
LB LightGBM 
LSTM Long Short-Term Memory 
k-NN k-Nearest Neighbors 
MAE Mean Square Error 
ML Machine Learning 
MLP Multi-Layered Perceptron 
MSE Mean Square Error 
PCA Principal Component Analysis 
PML Parallel Meta-Learning 
PPO Proximal Policy Optimization 
RF Random Forest 
RMSE Root Mean Square Error 
RNN Recurrent Neural Network 
SOM Self-Organizing Maps 
SVM Support Vector Machine 
XG XGBoost 
Others 

(continued on next page) 
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safety and sustainability. Within these levels, four main topics are explored in depth: trajectory prediction, collision avoidance, 
anomaly detection, and energy efficiency. 

The paper further highlights the challenges and opportunities of data usage and each research topic.  

• Regarding limitations on data usage, the review highlights deficiencies in the quality of data employed in contemporary studies. To 
promote the advancement of ML-driven solutions within the maritime sector, it is imperative to focus on two critical and chal-
lenging areas: the creation of benchmark AIS datasets for training ML models and the integration of AIS data with other informative 
data sources.  

• In the context of trajectory prediction, one of the primary challenges lies in dealing with irregular patterns of missing data in ship 
trajectories. To enhance the training of effective prediction models, it is recommended to employ techniques designed for handling 
irregularly missing image data, such as partial convolution, which can be applied to reconstruct ship trajectories.  

• For collision avoidance, a notable constraint is the incapability of current static ship domains to assess real-time risks. A promising 
way is the development of dynamic ship domains that adapt based on learning. This endeavor might involve the integration of AIS 
data and other real-time data sources, such as meteorological information. The paper also proposes the exploration of DL models, 
including DRL techniques, to aid in decision-making for collision avoidance. This endeavor may require meticulous design of 
reward functions to be effective.  

• It is recommended to enhance the efficiency of anomaly detection algorithms and align them with real-time detection needs. 
Furthermore, it is advisable to incorporate ship-related information and environmental factors into the anomaly detection process 
to elevate its overall performance.  

• Previous studies have acknowledged that endogeneity is a primary limitation in predicting fuel consumption. Addressing this issue 
may require a meticulous selection of valid features. Furthermore, it is advisable to enhance the generalizability of fuel con-
sumption prediction models to ensure they can effectively accommodate various vessel types.  

• The advent of large ML models trained on AIS data holds promise as a transformative solution for revolutionizing intelligent 
maritime management. Such models have the potential to provide all-encompassing solutions for a wide range of research areas 
based on AIS data.  

• In addition to the studies reviewed by this paper, emerging AI technology from other fields should also be noticed to boost the 
development of intelligent maritime solutions (Liu et al., 2021b; Liu et al., 2022; Lin et al., 2023; Qin and Liao, 2022; Shen et al., 
2023; Wang et al., 2023; Zeng et al., 2023; Zheng et al., 2023). 

The insights provided in this review are intended to benefit researchers, practitioners, and policymakers in the maritime industry, 
with the aspiration of inspiring further research and development in this field. 
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Table A1 (continued ) 

Abbreviation Full name 

CCS Cartesian Coordinate System 
GHG Greenhouse Gas 
SCS Spherical Coordinate System  
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Appendix 

(See Table A1.). 
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