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Abstract: This paper investigates battery preheating before fast charging, for a battery electric
vehicle (BEV) driving in a cold climate. To prevent the battery from performance degradation
at low temperatures, a thermal management system has been considered, including a high-
voltage coolant heater (HVCH) for the battery and cabin compartment heating. Accordingly,
an optimal control problem (OCP) has been formulated in the form of a nonlinear program
(NLP), aiming at minimising the total energy consumption of the battery. The main focus here
is to develop a computationally efficient approach, mimicking the optimal preheating behavior
without a noticeable increase in the total energy consumption. The proposed algorithm is simple
enough to be implemented in a low-level electronic control unit of the vehicle, by eliminating the
need for solving the full NLP in the cost of only 1 Wh increase in the total energy consumption.

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Lithium-ion (Li-ion) batteries have been recently a pre-
dominant cell chemistry in the battery electric vehicle
(BEV) market, due to their advantageous physical charac-
teristics, such as high power and energy density, low self-
discharge rate, long cycle life, and environmental friend-
liness Zhang et al. (2022). Nevertheless, the performance
of Li-ion batteries is severely deteriorated when operated
in extreme climates. Particularly at low temperatures,
the battery power is reduced significantly, resulting in re-
duced driving range and exacerbated range anxiety among
BEV drivers Hao et al. (2020). Also, regenerative braking
is limited or completely switched off in extremely cold
weather, due to the phenomena of lithium plating that can
strengthen potential safety hazards and decrease battery
lifetime Waldmann et al. (2018). The reduced power avail-
ability at low battery temperatures is a major issue during
fast charging, leading to significantly increased stop-over
times, especially for BEVs with large batteries Zeng et al.
(2021).

To address the aforementioned issues, different efforts have
been made at the battery operational level, by developing
an adequate battery thermal management system. A com-
prehensive review of previous research efforts on thermal
management of Li-ion batteries is provided in Zichen and
Changging (2021) and the references therein. Among the
thermal management techniques, preheating the battery
from very low temperatures to a desired high temperature,

especially before departure and/or fast charging, is known
as an effective approach Zhang et al. (2017a); Perez et al.
(2017); Wang et al. (2018); Wu et al. (2020); Wang et al.
(2022). The preheating have traditionally been performed
through (1): internal heating scheme by applying a current
to a battery and thus, generating a heat to warm up the
battery because of the internal resistance; (2): external
heating scheme by transferring the heat generated by a
component, e.g. high-voltage coolant heater (HVCH), via
a medium, e.g. coolant, to the battery pack Peng et al.
(2019). To preheat the battery before departure, several
attempts have been conducted in the technical literature Ji
and Wang (2013); Damay et al. (2013); Zhu et al. (2013). Tt
is also possible to apply various preheating strategies while
driving, as presented in Zhang et al. (2017b); Hamednia
et al. (2022b,a). Our earlier results in Hamednia et al.
(2022b) show that it is more energy-optimal to not preheat
the battery at home, but rather only some time period
prior to the arrival at the charging station, using HVCH at
maximum power. Despite recent studies on the preheating
before fast charging, to the best of our knowledge a com-
putationally efficient algorithm has not been developed to
be applicable on a real vehicle.

This paper addresses battery preheating of a BEV before
reaching a planned fast-charging station, where the bat-
tery is soaked to cold ambient before the vehicle’s depar-
ture. The main idea is to devise a simple approach that
mimics the optimal behavior obtained from our previous
investigations, while providing a proper trade-off between
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Fig. 1. Schematic diagram of the studied electric powertrain,
including battery, electric machine, power electronic devices,
transmission system, and thermal management system.

optimality and computational burden. Such approach is
much easier and cheaper to industrialize. Accordingly, the
proposed strategy consists of a forward and a backward
simulations of the vehicle system dynamics. In the forward
simulation, the system dynamics are rolled out starting
from a given battery temperature and state of charge
(SoC), where the HVCH is not used for heating the battery
throughout the vehicle’s trip. Conversely in the backward
simulation, the reverted system dynamics are simulated
backwards, starting from a target battery temperature
and SoC, where the HVCH is used to actively heat the
battery, at maximum power. The backward simulation
continues until to a step, in which the resultant battery
temperature value from the backward simulation is equal
the one belonging to the forward simulation.

The remainder of this paper is organized as follows: the
system modelling including the vehicle powertrain, and
electrical and thermal modellings are given in Section 2.
Section 3, corresponds to the OCP formulation and de-
veloping the computationally efficient algorithm. In Sec-
tion 4, simulation results are presented. Finally, Section 5
concludes the paper.

2. MODELLING

This section addresses the modelling of a BEV. Primarily,
a brief overview of key BEV powertrain components is
given. Later, electrical and thermal governing dynamics of
the powertrain are described.

2.1 Vehicle Powertrain

As depicted in Fig. 1, the studied powertrain consists
of battery, electric machine (EM), power electronic (PE)
devices, transmission system, and thermal management
system. Depending on operating mode of the EM, the
electric power flow between the battery and EM is bidi-
rectional. Accordingly, the electrical energy from the EM
is stored in the battery during the EM’s generating mode.
On the other hand, the EM when operated in motoring
mode receives electrical power from the battery and pro-
vides propulsion power via the transmission system to the
wheels through a mechanical path. Thus, the EM torque
and rotational speed are respectively translated to traction
force and vehicle speed.
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In addition to the traction force, multiple forces are
applied to a longitudinal motion of the vehicle, such as
aerodynamic drag, rolling resistance, and gravitational
load. Thus, the net force exerted on the vehicle can be
obtained for a given set of the aforementioned forces, using
Newton’s second law of motion. An example of formulating
the longitudinal dynamics is carried out in Hamednia et al.
(2022b). In this paper, we assume that the propulsion
power demand for the entire driving cycle is given as a
trajectory input over a number of segments, instead of
modelling the longitudinal dynamics. Likewise, the vehicle
speed is supplied for each segment of the drive cycle, i.e. it
is assumed that these trajectories are provided by the trip
planning functionality of the on-board navigation system.

2.2 FElectrical Modelling

In order to describe how the battery SoC changes over
time, an equivalent circuit is used for electrical modelling
of the battery pack. The circuit consists of an open-circuit
voltage U, and an internal resistance R. The open-circuit
voltage is generally a nonlinear increasing function of SoC.
Also, the internal resistance is usually proportional to the
inverse of battery temperature Zhu et al. (2018). The
battery SoC dynamics is given by
__B® (1)
CyUsc(soc)

where t is trip time, P, is battery power including internal
resistive losses, and C} is maximum battery capacity.
According to (1), P, is negative when charging, and is
positive while discharging. Also, P; is battery power after
internal resistive losses.

soc(t) =

The battery power available while discharging and charg-
ing is limited as functions of battery temperature and SoC
as

P, (t) € [Pl;?clﬁg(soq Tb)’ gilc?;(hg(socv Tb)L (2)
where P75, > 0 is maximum battery power (discharg-
ing) and ngciﬂg < 0 is minimum battery power (charg-
ing). Note that soc and T}, are functions of trip time
in (1), (2), and the equations hereafter. However, the
explicit dependence is not shown for brevity. Also, the
power limits demonstrated in Fig. 2 are representative,
but generic data, from a vehicle original equipment man-
ufacturer (OEM). According to Fig. 2, maximum battery
power (discharging) peaks at high SoC and battery tem-
perature, and drops as they decrease. Discharge power
limit is of significant interest while driving as it can directly
limit the provided propulsion power. On the contrary, the
highest absolute power (charging) is observed when SoC is
low while battery temperature is high, and drops as SoC
increases and battery temperature decreases. Thus, for a
cold battery it is desirable to warm up the battery pack to
a suitable temperature prior to charging, in order to allow
high-power charging, thereby reducing the charging time.

2.8 Thermal Modelling

The thermal management system in question is illustrated
in Fig. 3, including two thermal loops, i.e. battery and
electric drivetrain (ED) loop and cabin loop. PE devices
and EM are the two major heat generating components
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Fig. 2. Normalised absolute value of battery discharge and charge power limits for a given pair of battery temperature
and SoC. These figures are taken from Hamednia et al. (2022b).

within the ED. The two loops represent two thermal
subsystems with different heat sinks and sources. Heat
transfer between the loops is performed through a coolant
circulated by multiple pumps. The consumed power by the
pumps is included in the auxiliary power consumption. For
cold ambient operation, the heat from the ED components
is assumed to always be available for heating of the
battery. The HVCH is also used for heating the cabin
and/or battery. Depending on the desired amount of the
heating, the valve V is adjusted to accommodate only
cabin heating, only battery heating, or their mix. Note
that in warm ambient operation, the heat from the ED
components may cause excessive heating of the battery,
beyond operating limits. Thus, it is most likely desirable
to separate the ED components from the battery thermal
loop, in order to cool the battery, using air conditioning
system and/or heat pump. The ED components can also
be cooled by a radiator.

According to the fundamental thermodynamic principle,
the battery pack’s thermal dynamics is described as

Cpiﬂb (nhvchP}?VCh (t) + ’V(t) (Tamb (t) _ Tb (t))

T (t) =
3)
+ QJoule(t) + Qed(t))v

where c;, is specific heat capacity of the battery pack, my, is
total battery mass, Pffvch is HVCH power converted with
the efficiency of nnyen for heating the battery pack, v is
parasitic coefficient of heat transfer between the battery
and the ambient, Ty, is ambient temperature, and Q joule
is irreversible ohmic Joule heat induced by the battery
internal resistive losses given by

PR()
Ugcb(soc) ’ )

Furthermore, Q.q is the heat generated from ED power
losses defined as

Qea(t) = 7731(1 - nid(% F))Pprop(t)v (5)

where 7721 is the efficiency of ED power loss conversion
to thermal power for heating the battery, nS; is the EM’s
lumped efficiency, which is dependent on the vehicle speed
v and traction force F. Also, Ppop is propulsion power
including the internal losses of the powertrain.

QJoule (t> = R(Tb)

Cabin Loop

HVCH

= coolant

Cabin

Battery & EDLoop |  _LJI————— ___1

Battery

Fig. 3. Schematic diagram of thermal system, consisting of two
thermal loops, i.e. battery and ED loop and cabin loop. Heat
exchange between the two loops is facilitated by the valve V.
3. BATTERY PREHEATING BEFORE FAST

CHARGING

Consider a BEV driving until it reaches a planned fast-
charging station, as in Fig. 4, where the trip starts from
point A with a fully-charged battery. The battery is soaked
to cold ambient before the vehicle’s departure. The battery
temperature is changed by the aforementioned heating
sources within the powertrain. Also, it is assumed that the
cabin heat demand is always fulfilled by HVCH throughout
the trip.

3.1 Optimal Control Problem Formulation

In the following, an optimisation problem is formulated to
achieve optimal battery preheating before fast charging,
by minimising the total energy consumption of the vehicle
during the entire mission, as

te
min / Py(t)dt (6a)
Pllrvch’Pb to
subject to:
soc(t) = ——2o(®) (6b)

B ChUsc(s00)
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Fig. 4. Studied scenario; a BEV is driving until reaching a planned
fast-charging occasion. The vehicle starts its mission from point
A with a battery soaked to cold ambient before the vehicle’s

departure.

t) = o (e PRn(®) + 5(0) Taan(8) = (1)

+ QJoule (t) + Qed (ﬂ)

(6c)
2

PO = RO o + Pl Fha®) g0

+ Puas(®) + Propl)
soc(t) € [S0Cmin, SOCmax] (6e)
T (t) € [T (1), T5"(t)] (6£)
Pl?vch( ) [0 P}?\lziﬁ thch (t)] (Gg)
Pb( ) [Pénél?g(bocv Tb)’ ngghg(soc’ Tb)] (6h)
Tb (to) = Tbo, SOC(t()) = SOCg (61)

Ty (te) > Tot, soc(ts) > soce (6))

where ty and ¢ are initial and final trip time, respectively,
P,ux is auxiliary load demand, Py, is ambient dependent
HVCH power demand used for heating cabin, P %% and is
the maximum deliverable HVCH power, SoCyin and soCpyax
are the bounds on the battery SoC, Ty™™ and T{™** are
the battery temperature limits, T},o and Ty are 1n1t1al and
final battery temperatures, respectively, socy and socy are
initial and final SoC, respectively.

3.2 Computationally Efficient Algorithm

The problem (6) is a nonlinear program (NLP) with soc
and Ti, defined as the state variables, and Pﬁ)vch and
P, defined as the control input and measured output,
respectively. For the purpose of an offline analysis, the
NLP can be solved on a PC, by commonly used nonlinear
optimisation tools, e.g. CasADi Andersson et al. (2019).
However, in order to solve problem (6) online in a vehicle,
it is essential to significantly reduce the computational
burden. To do so, the knowledge from the offline analysis
in Hamednia et al. (2022b,a) can preferably be utilized.
According to our observations, it is usually optimal to use
HVCH at its maximum available power just some period
before reaching the fast charging station, in order to take
the battery temperature to the desirable value, e.g. 25°C,
at the arrival of charging station. By such an approach,
the energy waste in the form of the thermal leakage to
ambient from early battery heating is avoided.

To reduce the computational complexity, we propose a
heuristic approach, which consists of forward and back-
ward simulations of the system dynamics. To do so, pri-
marily the system dynamics (1) and (3) are discretized,
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Fig. 5. Battery temperature versus time; T}, is an example trajectory
of battery temperature (obtained by solving problem (6)), Tb,fw
and Tb,bk denote the battery temperature derived from forward
and backward simulations, respectively.

using the first-order Euler method. In the forward simu-
lation, given in Algorithm 1, the system dynamics are
rolled out towards the end, starting from socy and Ty,
where the HVCH power demand for heating the battery is
always zero. Later in Algorithm 2, the system dynamics
are reverted and simulated backwards, starting from socy
and Tpe, where the HVCH power demand for heating
the battery is set to the maximum available amount. In
the remainder of the paper, the variables notated with
subscripts/superscripts ‘fw’ or ‘bk’, represent the previ-
ously introduced variables that now belong specifically to
the forward or backward simulation, respectively. Further-
more, the variables obtained from applying the heuristic
algorithm are displayed with the hat (") symbol. Note that
in the backward simulation, we use the SoC and battery
temperature at instant k+ 1, when calculating the battery
current at instant k. This is a reasonable approximation
if the sampling interval is short enough, as the SoC and
battery temperature only change very slightly between two
consecutive instants due to their large time constants. The
backward simulation continues until to a time step k, in
which 7\ =
battery temperature Ti, and SoC soc for the whole mission
are obtained, respectively as

7 = [T(l k) k1 N+1)}

Té?}v, as shown in Fig. 5. The estimated

bfw » 4 b,bk
_ soel) gpelkHINFD)
s6¢ = [socg, ", s0Cy) 1,

where N + 1 is the number of state samples.

Algorithm 1: Forward simulation
(1)

80Cg, = SOCQ € [SOCmin, SOCmax]

7, = Tio € frgin, 7™

for k=1,...,N do
Pt(lgx?v Péﬁ}‘ + P}fvch(k) + Péfgp
70 _ Doeuw(s0¢f)) =/ U2 (50¢()) —4 R (T2 PR
v 2Ren (T,10)
A (k)

socgfvﬂ) = tcb Av 4 oc(k)

k41 k k
Té,fw = cpAnib< k )(Ta(m)b Té,fiv)

~ 2 ~
+wa(T1§ fzn)fb,fw(k) + Q«i’ccl)) + Tlg,kf)w

B9, = PR+ Ren (T2 ) o™

end
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Algorithm 2: Backward simulation

. (N+1
soc](DkJr ) = S0Ct € [SOCmin, SOCmax]
A(N‘H) _ min max
Tork  =Tor € [T, Trex]
for k=N,...;1do
H(k) _ p(k) c (k pb (k (k)
Pt,bk - Paux + [)hvch( ) + P)hvch( ) + PPTOP
pk)  _
Ib,bk =
Oocomic(s6eiy )= /02 (s6ei ) —4 ki (B P,
QRbk(Téﬁll))
k) AU (e
socyy = o + s0Cy

~ (K S (k1) A (k1
Tkg,b)k = f(TkE,bk )7socl(ak+ ))

. . L . 2
B = PO+ R T ) T i
so (k) (k)
if Tork == Ty ¢y

= ~(1:k) (k+1:N+1
Ty = [Té,fw)7T1§,bk )]

stop the for loop
end
end

4. RESULTS

In this section, the performance of the heuristic proposed
algorithm is evaluated, by comparing the heuristic solution
with the solution obtained from solving the NLP (6).

The simulations are performed for a BEV that starts its
trip with a battery soaked to cold ambient at —7°C.
The cabin heating demand is considered as a fixed value,
given a constant low ambient temperature throughout the
vehicle’s trip. Also, the vehicle speed profile for 60 min
(73km) of the vehicle’s drive has been provided based
on real-world measurements. We assume a planned fast-
charging station at the 60" km. The vehicle and simulation
parameters are provided in Table 1. The NLP (6) is dis-
cretized using the Runge-Kutta 4" order method Butcher
(1976), with a sampling interval of 30s. The discretized
problem is solved in Matlab with the solver IPOPT, using
CasADi Andersson et al. (2019).

4.1 NLP Solution versus Heuristic Solution

In Fig 6, the obtained trajectories from solving the heuris-
tic algorithm are illustrated together with the correspond-
ing trajectories by solving the NLP (6), where unsur-
prisingly the heuristic solution (states and control input)
overlaps the NLP solution. The battery temperature in-
creases significantly over the course of the trip, due to the
Joule heating, ED circuit heating, and using HVCH. As
mentioned earlier, the optimal solution shown in Fig. 6(b)
starts using the HVCH for battery heating 28 min prior
to arrival at the fast charging station, and leveling out
the temperature at target temperature 25°C at the des-
tination. The power corresponding to the thermal leakage
to ambient in Fig. 6(d) is always non-positive as the bat-
tery temperature is never below the ambient temperature
during the vehicle’s trip. The gradual battery depletion in
terms of SoC is also translated into total battery energy

Ahad Hamednia et al. / IFAC PapersOnLine 56-2 (2023) 6630—6635

Table 1. Vehicle and Simulation Parameters

Maximum batt. capacity Cp =200 Ah
Time sampling interval At =30s

EM max power 350 kW

Max. battery power (discharging) P dehe = 350kW
Min. battery power (charging) Pithe = —150 kW
Auxiliary load Paux = 0.5 kW
HVCH power for heating cabin Peo = 1.978 kW
EM efficiency neq = 90%

ED thermal efficiency ngd =80%
HVCH power to heat rate efficiency  npyen = 87 %
HVCH power to heat rate efficiency  npyen = 87 %
Initial battery temperature Tyo = —7°C
Ambient temperature Tomp = —7°C
Initial battery state of charge soco = 90 %
Terminal battery state of charge socs = 60 %

Table 2. Energy Consumption [Wh]

Eng. component ‘ NLP sol. ‘ Heuristic sol.

Joule heating 361.4 345.1
ED heating 1504 1504
HVCH bat. heating 2019.2 2038.9
Ambient leakage -526.1 -525.8
Total bat. eng. 23888 23889

consumption, indicating that about 23kWh is utilized
throughout the trip. In Table II, the details of energy usage
for the battery heating and leakage to ambient are reported
for both the NLP and heuristic solutions. Note that the
thermal energy due to the ED losses is the same value for
both the NLP and heuristic solution, as the driving cycle is
the same for both cases. The overall increase, i.e. 1 Wh, in
energy consumption by the heuristic approach is negligible
for the investigated route.

5. CONCLUSION

In this paper, the battery preheating has been addressed
for a BEV driving in a cold weather towards a planned
fast-charging station. To do so, a simple algorithm has
been devised, by imitating the optimal battery preheating
behaviour. According to the simulation results, the compu-
tational burden has been reduced significantly by applying
the proposed approach, in the cost of only 1 Wh increase
in the total energy consumption. Such a fast strategy can
be implemented on lower level control unit with limited
performance, as the need for solving an NLP has been
lifted. It is worth mentioning that the current research is
a proof of concept in terms of achieving a computationally
efficient algorithm. The thorough investigations for various
target battery temperatures and driving cycles can be
readily carried out in future studies.
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