
Lupremica - Lua Scripting for Supremica

Downloaded from: https://research.chalmers.se, 2024-03-20 12:14 UTC

Citation for the original published paper (version of record):
Fabian, M., Malik, R., Mohajerani, S. (2023). Lupremica - Lua Scripting for Supremica.
IFAC-PapersOnLine, 56(2): 6099-6104. http://dx.doi.org/10.1016/j.ifacol.2023.10.704

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

IFAC PapersOnLine 56-2 (2023) 6099–6104

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.10.704

10.1016/j.ifacol.2023.10.704 2405-8963

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Lupremica – Lua Scripting for Supremica ⋆

Martin Fabian ∗ Robi Malik ∗∗ Sahar Mohajerani ∗

∗ Chalmers University of Technology, Gothenburg, Sweden
(e-mail: {fabian, mohajera}@chalmers.se).

∗∗ University of Waikato, Hamilton, New Zealand
(e-mail: robi@waikato.ac.nz)

Abstract: Supremica is a software tool that implements several state-of-the-art algorithms
to manipulate discrete-event systems, such as different types of compositions and compositional
supervisor synthesis. Lua is a light-weight programming language suitable as a scripting language
embedded into other applications. This paper describes the use of Lua as a scripting language for
Supremica. To this end, the LuaJ interpreter is added to Supremica as a bridge between the
Java-based implementation of Supremica and the Lua scripts. In this way, Supremica’s entire
Java API is made available to Lua scripts. Thus, scripts can automatically create automata,
and manipulate them with all the algorithms available in Supremica and further manipulate
the result with new algorithms implemented by Lua scripts. This opens up a new world of
possibilities to try out new ideas and to extend the power of Supremica.

Keywords: Discrete-Event Systems, Synthesis, Verification, Scripting, Lua

1. INTRODUCTION

Discrete-Event Systems (DES) (Cassandras and Lafor-
tune, 2008) are a modeling paradigm useful to model many
engineered systems, such as manufacturing systems, traffic
systems, and software controlled systems. DES occupy at
each time instant one out of a finite number of states, and
evolve by transiting between the states on the occurrences
of events. Interaction between DES can be described by
various types of synchronous composition, which require
some events to occur simultaneously in two or more par-
ticipating DES.

The Supervisory Control Theory (SCT) (Wonham and
Cai, 2019) is a general approach to automatically compute,
that is synthesize, control functions for DES. Given a plant
to control and a specification of the desired controlled
behavior, a supervisor can be synthesized that interacts
with the plant and guarantees that the specification is
always fulfilled. This correct-by-construction guarantee
is a major advancement in development of DES, as it
helps engineers managing the ever-increasing complexity
of these types of systems (Goorden et al., 2021). To fully
reap this benefit, tools able to handle industrial-sized
systems have to be available, and these tools have to be
user-friendly and customizable.

There exists a multitude of tools and library packages
that implement manipulation of DES, including supervisor
synthesis and verification (TC on DES, 2022). While
many of these present full-fledged user interfaces, others
implement a set of library functions meant to be used
by user-implemented code. Both of these approaches have

⋆ This work was supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, and the Swedish Research Council
(VR) under grant number 2016-06204 (SyTeC).

their advantages and drawbacks, and implementing both
in a single tool, as some do, is a great benefit.

This paper is organized as follows. Section 2 briefly de-
scribes Supremica, and Section 3 briefly describes Lua.
Then, Section 4 describes LuaJ, the Lua-Java bridge em-
bedded in Supremica. Section 5 is the main section de-
scribing and exemplifying several Lua scripts and their
execution in Supremica. Finally, Section 6 concludes the
paper and suggests some future enhancements.

2. SUPREMICA

Supremica (Malik et al., 2017; Supremica Developers,
2022b) is a tool for modeling, analyzing, synthesizing and
verifying discrete-event control systems. Though Suprem-
ica includes many standard SCT and DES algorithms, its
main advancement is the abstraction-based compositional
synthesis algorithms (Mohajerani et al., 2014) that can in
a few seconds compute supervisors for systems of more
than 1017 reachable states. For well-structured systems,
such as the Transfer Line of Wonham and Cai (2019),
these algorithms manage to find and exploit the structure
to compute supervisors for systems of more than 101505

reachable states.

Supremica supports ordinary “flat” Finite-State Ma-
chines (FSM), as well as Extended Finite-State Ma-
chines (EFSM) (Sköldstam et al., 2007), which allow
compact models due to the inclusion of bounded discrete
variables, and guards and actions over these variables
associated to the transitions. Supremica can convert from
EFSM to equivalent FSM representations by “flattening”,
and thus all the algorithms available for FSM can be used
for EFSM (Malik et al., 2017).

Supremica provides an integrated development environ-
ment (IDE) that makes available all the actions to cre-

Lupremica – Lua Scripting for Supremica ⋆

Martin Fabian ∗ Robi Malik ∗∗ Sahar Mohajerani ∗

∗ Chalmers University of Technology, Gothenburg, Sweden
(e-mail: {fabian, mohajera}@chalmers.se).

∗∗ University of Waikato, Hamilton, New Zealand
(e-mail: robi@waikato.ac.nz)

Abstract: Supremica is a software tool that implements several state-of-the-art algorithms
to manipulate discrete-event systems, such as different types of compositions and compositional
supervisor synthesis. Lua is a light-weight programming language suitable as a scripting language
embedded into other applications. This paper describes the use of Lua as a scripting language for
Supremica. To this end, the LuaJ interpreter is added to Supremica as a bridge between the
Java-based implementation of Supremica and the Lua scripts. In this way, Supremica’s entire
Java API is made available to Lua scripts. Thus, scripts can automatically create automata,
and manipulate them with all the algorithms available in Supremica and further manipulate
the result with new algorithms implemented by Lua scripts. This opens up a new world of
possibilities to try out new ideas and to extend the power of Supremica.

Keywords: Discrete-Event Systems, Synthesis, Verification, Scripting, Lua

1. INTRODUCTION

Discrete-Event Systems (DES) (Cassandras and Lafor-
tune, 2008) are a modeling paradigm useful to model many
engineered systems, such as manufacturing systems, traffic
systems, and software controlled systems. DES occupy at
each time instant one out of a finite number of states, and
evolve by transiting between the states on the occurrences
of events. Interaction between DES can be described by
various types of synchronous composition, which require
some events to occur simultaneously in two or more par-
ticipating DES.

The Supervisory Control Theory (SCT) (Wonham and
Cai, 2019) is a general approach to automatically compute,
that is synthesize, control functions for DES. Given a plant
to control and a specification of the desired controlled
behavior, a supervisor can be synthesized that interacts
with the plant and guarantees that the specification is
always fulfilled. This correct-by-construction guarantee
is a major advancement in development of DES, as it
helps engineers managing the ever-increasing complexity
of these types of systems (Goorden et al., 2021). To fully
reap this benefit, tools able to handle industrial-sized
systems have to be available, and these tools have to be
user-friendly and customizable.

There exists a multitude of tools and library packages
that implement manipulation of DES, including supervisor
synthesis and verification (TC on DES, 2022). While
many of these present full-fledged user interfaces, others
implement a set of library functions meant to be used
by user-implemented code. Both of these approaches have

⋆ This work was supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, and the Swedish Research Council
(VR) under grant number 2016-06204 (SyTeC).

their advantages and drawbacks, and implementing both
in a single tool, as some do, is a great benefit.

This paper is organized as follows. Section 2 briefly de-
scribes Supremica, and Section 3 briefly describes Lua.
Then, Section 4 describes LuaJ, the Lua-Java bridge em-
bedded in Supremica. Section 5 is the main section de-
scribing and exemplifying several Lua scripts and their
execution in Supremica. Finally, Section 6 concludes the
paper and suggests some future enhancements.

2. SUPREMICA

Supremica (Malik et al., 2017; Supremica Developers,
2022b) is a tool for modeling, analyzing, synthesizing and
verifying discrete-event control systems. Though Suprem-
ica includes many standard SCT and DES algorithms, its
main advancement is the abstraction-based compositional
synthesis algorithms (Mohajerani et al., 2014) that can in
a few seconds compute supervisors for systems of more
than 1017 reachable states. For well-structured systems,
such as the Transfer Line of Wonham and Cai (2019),
these algorithms manage to find and exploit the structure
to compute supervisors for systems of more than 101505

reachable states.

Supremica supports ordinary “flat” Finite-State Ma-
chines (FSM), as well as Extended Finite-State Ma-
chines (EFSM) (Sköldstam et al., 2007), which allow
compact models due to the inclusion of bounded discrete
variables, and guards and actions over these variables
associated to the transitions. Supremica can convert from
EFSM to equivalent FSM representations by “flattening”,
and thus all the algorithms available for FSM can be used
for EFSM (Malik et al., 2017).

Supremica provides an integrated development environ-
ment (IDE) that makes available all the actions to cre-

Lupremica – Lua Scripting for Supremica ⋆

Martin Fabian ∗ Robi Malik ∗∗ Sahar Mohajerani ∗

∗ Chalmers University of Technology, Gothenburg, Sweden
(e-mail: {fabian, mohajera}@chalmers.se).

∗∗ University of Waikato, Hamilton, New Zealand
(e-mail: robi@waikato.ac.nz)

Abstract: Supremica is a software tool that implements several state-of-the-art algorithms
to manipulate discrete-event systems, such as different types of compositions and compositional
supervisor synthesis. Lua is a light-weight programming language suitable as a scripting language
embedded into other applications. This paper describes the use of Lua as a scripting language for
Supremica. To this end, the LuaJ interpreter is added to Supremica as a bridge between the
Java-based implementation of Supremica and the Lua scripts. In this way, Supremica’s entire
Java API is made available to Lua scripts. Thus, scripts can automatically create automata,
and manipulate them with all the algorithms available in Supremica and further manipulate
the result with new algorithms implemented by Lua scripts. This opens up a new world of
possibilities to try out new ideas and to extend the power of Supremica.

Keywords: Discrete-Event Systems, Synthesis, Verification, Scripting, Lua

1. INTRODUCTION

Discrete-Event Systems (DES) (Cassandras and Lafor-
tune, 2008) are a modeling paradigm useful to model many
engineered systems, such as manufacturing systems, traffic
systems, and software controlled systems. DES occupy at
each time instant one out of a finite number of states, and
evolve by transiting between the states on the occurrences
of events. Interaction between DES can be described by
various types of synchronous composition, which require
some events to occur simultaneously in two or more par-
ticipating DES.

The Supervisory Control Theory (SCT) (Wonham and
Cai, 2019) is a general approach to automatically compute,
that is synthesize, control functions for DES. Given a plant
to control and a specification of the desired controlled
behavior, a supervisor can be synthesized that interacts
with the plant and guarantees that the specification is
always fulfilled. This correct-by-construction guarantee
is a major advancement in development of DES, as it
helps engineers managing the ever-increasing complexity
of these types of systems (Goorden et al., 2021). To fully
reap this benefit, tools able to handle industrial-sized
systems have to be available, and these tools have to be
user-friendly and customizable.

There exists a multitude of tools and library packages
that implement manipulation of DES, including supervisor
synthesis and verification (TC on DES, 2022). While
many of these present full-fledged user interfaces, others
implement a set of library functions meant to be used
by user-implemented code. Both of these approaches have

⋆ This work was supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, and the Swedish Research Council
(VR) under grant number 2016-06204 (SyTeC).

their advantages and drawbacks, and implementing both
in a single tool, as some do, is a great benefit.

This paper is organized as follows. Section 2 briefly de-
scribes Supremica, and Section 3 briefly describes Lua.
Then, Section 4 describes LuaJ, the Lua-Java bridge em-
bedded in Supremica. Section 5 is the main section de-
scribing and exemplifying several Lua scripts and their
execution in Supremica. Finally, Section 6 concludes the
paper and suggests some future enhancements.

2. SUPREMICA

Supremica (Malik et al., 2017; Supremica Developers,
2022b) is a tool for modeling, analyzing, synthesizing and
verifying discrete-event control systems. Though Suprem-
ica includes many standard SCT and DES algorithms, its
main advancement is the abstraction-based compositional
synthesis algorithms (Mohajerani et al., 2014) that can in
a few seconds compute supervisors for systems of more
than 1017 reachable states. For well-structured systems,
such as the Transfer Line of Wonham and Cai (2019),
these algorithms manage to find and exploit the structure
to compute supervisors for systems of more than 101505

reachable states.

Supremica supports ordinary “flat” Finite-State Ma-
chines (FSM), as well as Extended Finite-State Ma-
chines (EFSM) (Sköldstam et al., 2007), which allow
compact models due to the inclusion of bounded discrete
variables, and guards and actions over these variables
associated to the transitions. Supremica can convert from
EFSM to equivalent FSM representations by “flattening”,
and thus all the algorithms available for FSM can be used
for EFSM (Malik et al., 2017).

Supremica provides an integrated development environ-
ment (IDE) that makes available all the actions to cre-

Lupremica – Lua Scripting for Supremica ⋆

Martin Fabian ∗ Robi Malik ∗∗ Sahar Mohajerani ∗

∗ Chalmers University of Technology, Gothenburg, Sweden
(e-mail: {fabian, mohajera}@chalmers.se).

∗∗ University of Waikato, Hamilton, New Zealand
(e-mail: robi@waikato.ac.nz)

Abstract: Supremica is a software tool that implements several state-of-the-art algorithms
to manipulate discrete-event systems, such as different types of compositions and compositional
supervisor synthesis. Lua is a light-weight programming language suitable as a scripting language
embedded into other applications. This paper describes the use of Lua as a scripting language for
Supremica. To this end, the LuaJ interpreter is added to Supremica as a bridge between the
Java-based implementation of Supremica and the Lua scripts. In this way, Supremica’s entire
Java API is made available to Lua scripts. Thus, scripts can automatically create automata,
and manipulate them with all the algorithms available in Supremica and further manipulate
the result with new algorithms implemented by Lua scripts. This opens up a new world of
possibilities to try out new ideas and to extend the power of Supremica.

Keywords: Discrete-Event Systems, Synthesis, Verification, Scripting, Lua

1. INTRODUCTION

Discrete-Event Systems (DES) (Cassandras and Lafor-
tune, 2008) are a modeling paradigm useful to model many
engineered systems, such as manufacturing systems, traffic
systems, and software controlled systems. DES occupy at
each time instant one out of a finite number of states, and
evolve by transiting between the states on the occurrences
of events. Interaction between DES can be described by
various types of synchronous composition, which require
some events to occur simultaneously in two or more par-
ticipating DES.

The Supervisory Control Theory (SCT) (Wonham and
Cai, 2019) is a general approach to automatically compute,
that is synthesize, control functions for DES. Given a plant
to control and a specification of the desired controlled
behavior, a supervisor can be synthesized that interacts
with the plant and guarantees that the specification is
always fulfilled. This correct-by-construction guarantee
is a major advancement in development of DES, as it
helps engineers managing the ever-increasing complexity
of these types of systems (Goorden et al., 2021). To fully
reap this benefit, tools able to handle industrial-sized
systems have to be available, and these tools have to be
user-friendly and customizable.

There exists a multitude of tools and library packages
that implement manipulation of DES, including supervisor
synthesis and verification (TC on DES, 2022). While
many of these present full-fledged user interfaces, others
implement a set of library functions meant to be used
by user-implemented code. Both of these approaches have

⋆ This work was supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, and the Swedish Research Council
(VR) under grant number 2016-06204 (SyTeC).

their advantages and drawbacks, and implementing both
in a single tool, as some do, is a great benefit.

This paper is organized as follows. Section 2 briefly de-
scribes Supremica, and Section 3 briefly describes Lua.
Then, Section 4 describes LuaJ, the Lua-Java bridge em-
bedded in Supremica. Section 5 is the main section de-
scribing and exemplifying several Lua scripts and their
execution in Supremica. Finally, Section 6 concludes the
paper and suggests some future enhancements.

2. SUPREMICA

Supremica (Malik et al., 2017; Supremica Developers,
2022b) is a tool for modeling, analyzing, synthesizing and
verifying discrete-event control systems. Though Suprem-
ica includes many standard SCT and DES algorithms, its
main advancement is the abstraction-based compositional
synthesis algorithms (Mohajerani et al., 2014) that can in
a few seconds compute supervisors for systems of more
than 1017 reachable states. For well-structured systems,
such as the Transfer Line of Wonham and Cai (2019),
these algorithms manage to find and exploit the structure
to compute supervisors for systems of more than 101505

reachable states.

Supremica supports ordinary “flat” Finite-State Ma-
chines (FSM), as well as Extended Finite-State Ma-
chines (EFSM) (Sköldstam et al., 2007), which allow
compact models due to the inclusion of bounded discrete
variables, and guards and actions over these variables
associated to the transitions. Supremica can convert from
EFSM to equivalent FSM representations by “flattening”,
and thus all the algorithms available for FSM can be used
for EFSM (Malik et al., 2017).

Supremica provides an integrated development environ-
ment (IDE) that makes available all the actions to cre-

Lupremica – Lua Scripting for Supremica ⋆

Martin Fabian ∗ Robi Malik ∗∗ Sahar Mohajerani ∗

∗ Chalmers University of Technology, Gothenburg, Sweden
(e-mail: {fabian, mohajera}@chalmers.se).

∗∗ University of Waikato, Hamilton, New Zealand
(e-mail: robi@waikato.ac.nz)

Abstract: Supremica is a software tool that implements several state-of-the-art algorithms
to manipulate discrete-event systems, such as different types of compositions and compositional
supervisor synthesis. Lua is a light-weight programming language suitable as a scripting language
embedded into other applications. This paper describes the use of Lua as a scripting language for
Supremica. To this end, the LuaJ interpreter is added to Supremica as a bridge between the
Java-based implementation of Supremica and the Lua scripts. In this way, Supremica’s entire
Java API is made available to Lua scripts. Thus, scripts can automatically create automata,
and manipulate them with all the algorithms available in Supremica and further manipulate
the result with new algorithms implemented by Lua scripts. This opens up a new world of
possibilities to try out new ideas and to extend the power of Supremica.

Keywords: Discrete-Event Systems, Synthesis, Verification, Scripting, Lua

1. INTRODUCTION

Discrete-Event Systems (DES) (Cassandras and Lafor-
tune, 2008) are a modeling paradigm useful to model many
engineered systems, such as manufacturing systems, traffic
systems, and software controlled systems. DES occupy at
each time instant one out of a finite number of states, and
evolve by transiting between the states on the occurrences
of events. Interaction between DES can be described by
various types of synchronous composition, which require
some events to occur simultaneously in two or more par-
ticipating DES.

The Supervisory Control Theory (SCT) (Wonham and
Cai, 2019) is a general approach to automatically compute,
that is synthesize, control functions for DES. Given a plant
to control and a specification of the desired controlled
behavior, a supervisor can be synthesized that interacts
with the plant and guarantees that the specification is
always fulfilled. This correct-by-construction guarantee
is a major advancement in development of DES, as it
helps engineers managing the ever-increasing complexity
of these types of systems (Goorden et al., 2021). To fully
reap this benefit, tools able to handle industrial-sized
systems have to be available, and these tools have to be
user-friendly and customizable.

There exists a multitude of tools and library packages
that implement manipulation of DES, including supervisor
synthesis and verification (TC on DES, 2022). While
many of these present full-fledged user interfaces, others
implement a set of library functions meant to be used
by user-implemented code. Both of these approaches have

⋆ This work was supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, and the Swedish Research Council
(VR) under grant number 2016-06204 (SyTeC).

their advantages and drawbacks, and implementing both
in a single tool, as some do, is a great benefit.

This paper is organized as follows. Section 2 briefly de-
scribes Supremica, and Section 3 briefly describes Lua.
Then, Section 4 describes LuaJ, the Lua-Java bridge em-
bedded in Supremica. Section 5 is the main section de-
scribing and exemplifying several Lua scripts and their
execution in Supremica. Finally, Section 6 concludes the
paper and suggests some future enhancements.

2. SUPREMICA

Supremica (Malik et al., 2017; Supremica Developers,
2022b) is a tool for modeling, analyzing, synthesizing and
verifying discrete-event control systems. Though Suprem-
ica includes many standard SCT and DES algorithms, its
main advancement is the abstraction-based compositional
synthesis algorithms (Mohajerani et al., 2014) that can in
a few seconds compute supervisors for systems of more
than 1017 reachable states. For well-structured systems,
such as the Transfer Line of Wonham and Cai (2019),
these algorithms manage to find and exploit the structure
to compute supervisors for systems of more than 101505

reachable states.

Supremica supports ordinary “flat” Finite-State Ma-
chines (FSM), as well as Extended Finite-State Ma-
chines (EFSM) (Sköldstam et al., 2007), which allow
compact models due to the inclusion of bounded discrete
variables, and guards and actions over these variables
associated to the transitions. Supremica can convert from
EFSM to equivalent FSM representations by “flattening”,
and thus all the algorithms available for FSM can be used
for EFSM (Malik et al., 2017).

Supremica provides an integrated development environ-
ment (IDE) that makes available all the actions to cre-

Lupremica – Lua Scripting for Supremica ⋆

Martin Fabian ∗ Robi Malik ∗∗ Sahar Mohajerani ∗

∗ Chalmers University of Technology, Gothenburg, Sweden
(e-mail: {fabian, mohajera}@chalmers.se).

∗∗ University of Waikato, Hamilton, New Zealand
(e-mail: robi@waikato.ac.nz)

Abstract: Supremica is a software tool that implements several state-of-the-art algorithms
to manipulate discrete-event systems, such as different types of compositions and compositional
supervisor synthesis. Lua is a light-weight programming language suitable as a scripting language
embedded into other applications. This paper describes the use of Lua as a scripting language for
Supremica. To this end, the LuaJ interpreter is added to Supremica as a bridge between the
Java-based implementation of Supremica and the Lua scripts. In this way, Supremica’s entire
Java API is made available to Lua scripts. Thus, scripts can automatically create automata,
and manipulate them with all the algorithms available in Supremica and further manipulate
the result with new algorithms implemented by Lua scripts. This opens up a new world of
possibilities to try out new ideas and to extend the power of Supremica.

Keywords: Discrete-Event Systems, Synthesis, Verification, Scripting, Lua

1. INTRODUCTION

Discrete-Event Systems (DES) (Cassandras and Lafor-
tune, 2008) are a modeling paradigm useful to model many
engineered systems, such as manufacturing systems, traffic
systems, and software controlled systems. DES occupy at
each time instant one out of a finite number of states, and
evolve by transiting between the states on the occurrences
of events. Interaction between DES can be described by
various types of synchronous composition, which require
some events to occur simultaneously in two or more par-
ticipating DES.

The Supervisory Control Theory (SCT) (Wonham and
Cai, 2019) is a general approach to automatically compute,
that is synthesize, control functions for DES. Given a plant
to control and a specification of the desired controlled
behavior, a supervisor can be synthesized that interacts
with the plant and guarantees that the specification is
always fulfilled. This correct-by-construction guarantee
is a major advancement in development of DES, as it
helps engineers managing the ever-increasing complexity
of these types of systems (Goorden et al., 2021). To fully
reap this benefit, tools able to handle industrial-sized
systems have to be available, and these tools have to be
user-friendly and customizable.

There exists a multitude of tools and library packages
that implement manipulation of DES, including supervisor
synthesis and verification (TC on DES, 2022). While
many of these present full-fledged user interfaces, others
implement a set of library functions meant to be used
by user-implemented code. Both of these approaches have

⋆ This work was supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, and the Swedish Research Council
(VR) under grant number 2016-06204 (SyTeC).

their advantages and drawbacks, and implementing both
in a single tool, as some do, is a great benefit.

This paper is organized as follows. Section 2 briefly de-
scribes Supremica, and Section 3 briefly describes Lua.
Then, Section 4 describes LuaJ, the Lua-Java bridge em-
bedded in Supremica. Section 5 is the main section de-
scribing and exemplifying several Lua scripts and their
execution in Supremica. Finally, Section 6 concludes the
paper and suggests some future enhancements.

2. SUPREMICA

Supremica (Malik et al., 2017; Supremica Developers,
2022b) is a tool for modeling, analyzing, synthesizing and
verifying discrete-event control systems. Though Suprem-
ica includes many standard SCT and DES algorithms, its
main advancement is the abstraction-based compositional
synthesis algorithms (Mohajerani et al., 2014) that can in
a few seconds compute supervisors for systems of more
than 1017 reachable states. For well-structured systems,
such as the Transfer Line of Wonham and Cai (2019),
these algorithms manage to find and exploit the structure
to compute supervisors for systems of more than 101505

reachable states.

Supremica supports ordinary “flat” Finite-State Ma-
chines (FSM), as well as Extended Finite-State Ma-
chines (EFSM) (Sköldstam et al., 2007), which allow
compact models due to the inclusion of bounded discrete
variables, and guards and actions over these variables
associated to the transitions. Supremica can convert from
EFSM to equivalent FSM representations by “flattening”,
and thus all the algorithms available for FSM can be used
for EFSM (Malik et al., 2017).

Supremica provides an integrated development environ-
ment (IDE) that makes available all the actions to cre-

6100 Martin Fabian et al. / IFAC PapersOnLine 56-2 (2023) 6099–6104

ate, compose, analyze, verify, and synthesize discrete-event
models through a graphical user interface. While this is a
well-proven user-friendly approach, it is also a bit limiting,
as the user can only the apply actions made available
through menus and buttons. To overcome this limitation,
Supremica 2.8 now supports the use of scripts written in
the Lua (Ierusalimschy et al., 2018) scripting language, as
described in this paper.

The Java API available for Supremica (Supremica De-
velopers, 2022a), lists more than 19 000 public classes,
interfaces, and methods. This entire API is made available
to Lua scripts, which opens up a new world of possibilities
to try out new ideas and extend the power of Supremica.

3. LUA

Lua (Ierusalimschy et al., 2018) is a light-weight script-
ing language developed at the Pontifical Catholic Uni-
versity of Rio de Janeiro (PUC-Rio). It is used in video
games (Emmerich, 2009), TVs and set-top boxes (Januario
et al., 2014), and other embedded devices (Lua Commu-
nity, 2022), as well as for engineering applications (Pleune
et al., 2020). Even the document processing tool TeX has
a version with Lua embedded (LuaTeX.org, 2022).

A Lua file is read by the compiler from start to finish,
and every line is executed. Typical scripts start with dec-
larations of variables and functions, which are then used
by program statements placed at the end. Lua source files
can load other Lua files with the dofile or require com-
mands. This is handy to build libraries that encapsulate
frequently occurring constructs.

Lua is dynamically typed, meaning that only values have
type, not variables. Thus, type definitions are absent, and
all values carry their own type. All values are also first-
class values, meaning that any value can be stored in
variables, passed as arguments to functions, and returned
as results; and this includes functions themselves.

The eight types supported by Lua are nil, boolean,
number, string, function, table, userdata, and thread.
Here, nil is a special type of value, different from all
other values, typically representing the absence of a useful
value; boolean is the type of the values true and false, and
both nil and false make conditions false, any other value
makes them true. The number type represents double-
precision floating-point numbers, typically implemented as
per the IEEE 754 standard. The string type represents
immutable, pooled, sequences of bytes, that can include
any 8-bit value, including zero. The function type rep-
resents Lua functions, which can take a variable number
of parameters and return multiple values. The type table
represents associative arrays that can be indexed by any
Lua value except nil. The userdata type allows arbitrary
C data to be stored in Lua variables, and is a pointer to a
block of memory. The thread type represents independent
threads of execution and is used to implement coroutines.

As mentioned above, Supremica’s entire Java API is
available to Lua scripts. The benefit of Lua over direct
programming with this API in Java is that Lua is much
less verbose; there simply is less to write in Lua compared
to Java, even though the API bindings have to be made
explicit.

4. LUAJ

LuaJ (Roseborough and Farmer, 2014) is a Lua virtual
machine written in Java. It includes a compiler that
compiles Lua source code to Java bytecode. LuaJ version
3.0.1, used with Supremica 2.8, supports Lua version 5.2,
with all standard features of the language.

The intention behind LuaJ is to allow embedding into Java
applications, and a major goal has been to achieve good
performance. In some benchmarks, Lua compiled to Java
bytecode executes faster than C-based Lua (Roseborough
and Farmer, 2014).

LuaJ loads and compiles Lua scripts as chunks that are
then evaluated as executable LuaValue instances. LuaJ
allows to run Lua scripts as Java applications, as well as
MIDlets, and JSR-223 Dynamic scripts. Supremica only
supports the Java application type.

Using LuaJ in a Java app is a simple matter of including
the library luaj-jse-3.0.1.jar in the class path when
compiling. Supremica embeds LuaJ at compile time
into the SupremicaLib.jar file to avoid any external
dependencies.

The straightforward way to run a Lua script inside a
Java application is, as shown by Roseborough and Farmer
(2014):

import org.luaj.vm2.*;

import org.luaj.vm2.lib.jse.*;

Globals globals = JsePlatform.standardGlobals ();

LuaValue chunk = globals.loadfile(script);

chunk.call();

This creates a standard global environment for the script
to run in, then loads the script and executes it. This is in
essence the way Lua scripts are run inside Supremica.

LuaJ uses reflection (McCluskey, 1998) for its bindings
between Lua and Java. Java 9 introduced the module
concept, which restricts many reflection operations. Thus,
for full functionality, LuaJ and Lua scripts in Supremica
require Java 8.

5. LUA SCRIPTS IN SUPREMICA

Lua scripts are run from inside Supremica through the
new (in version 2.8) menu option File > Run Script...
(shortcut Ctrl/Cmd+R) This will open a file chooser
dialog box in the default scripts folder filtering out the
*.lua files, see Fig. 1. The Lua file chosen from here is
then loaded and run. Supremica’s default scripts folder
contains many Lua scripts aimed at illustrating how to
write such scripts.

The first thing almost every script has to do is to get a
reference to the Supremica IDE. This can be achieved in
two ways; either by simply accepting the arguments that
are passed to the script, as:

local script , ide , log = ... -- params from Supremica

The double hyphen starts a Lua comment, and the triple
dots is Lua syntax for variable number of arguments,
the first two of which are the name of the script itself,
and a reference to the Supremica IDE that currently

 Martin Fabian et al. / IFAC PapersOnLine 56-2 (2023) 6099–6104 6101

ate, compose, analyze, verify, and synthesize discrete-event
models through a graphical user interface. While this is a
well-proven user-friendly approach, it is also a bit limiting,
as the user can only the apply actions made available
through menus and buttons. To overcome this limitation,
Supremica 2.8 now supports the use of scripts written in
the Lua (Ierusalimschy et al., 2018) scripting language, as
described in this paper.

The Java API available for Supremica (Supremica De-
velopers, 2022a), lists more than 19 000 public classes,
interfaces, and methods. This entire API is made available
to Lua scripts, which opens up a new world of possibilities
to try out new ideas and extend the power of Supremica.

3. LUA

Lua (Ierusalimschy et al., 2018) is a light-weight script-
ing language developed at the Pontifical Catholic Uni-
versity of Rio de Janeiro (PUC-Rio). It is used in video
games (Emmerich, 2009), TVs and set-top boxes (Januario
et al., 2014), and other embedded devices (Lua Commu-
nity, 2022), as well as for engineering applications (Pleune
et al., 2020). Even the document processing tool TeX has
a version with Lua embedded (LuaTeX.org, 2022).

A Lua file is read by the compiler from start to finish,
and every line is executed. Typical scripts start with dec-
larations of variables and functions, which are then used
by program statements placed at the end. Lua source files
can load other Lua files with the dofile or require com-
mands. This is handy to build libraries that encapsulate
frequently occurring constructs.

Lua is dynamically typed, meaning that only values have
type, not variables. Thus, type definitions are absent, and
all values carry their own type. All values are also first-
class values, meaning that any value can be stored in
variables, passed as arguments to functions, and returned
as results; and this includes functions themselves.

The eight types supported by Lua are nil, boolean,
number, string, function, table, userdata, and thread.
Here, nil is a special type of value, different from all
other values, typically representing the absence of a useful
value; boolean is the type of the values true and false, and
both nil and false make conditions false, any other value
makes them true. The number type represents double-
precision floating-point numbers, typically implemented as
per the IEEE 754 standard. The string type represents
immutable, pooled, sequences of bytes, that can include
any 8-bit value, including zero. The function type rep-
resents Lua functions, which can take a variable number
of parameters and return multiple values. The type table
represents associative arrays that can be indexed by any
Lua value except nil. The userdata type allows arbitrary
C data to be stored in Lua variables, and is a pointer to a
block of memory. The thread type represents independent
threads of execution and is used to implement coroutines.

As mentioned above, Supremica’s entire Java API is
available to Lua scripts. The benefit of Lua over direct
programming with this API in Java is that Lua is much
less verbose; there simply is less to write in Lua compared
to Java, even though the API bindings have to be made
explicit.

4. LUAJ

LuaJ (Roseborough and Farmer, 2014) is a Lua virtual
machine written in Java. It includes a compiler that
compiles Lua source code to Java bytecode. LuaJ version
3.0.1, used with Supremica 2.8, supports Lua version 5.2,
with all standard features of the language.

The intention behind LuaJ is to allow embedding into Java
applications, and a major goal has been to achieve good
performance. In some benchmarks, Lua compiled to Java
bytecode executes faster than C-based Lua (Roseborough
and Farmer, 2014).

LuaJ loads and compiles Lua scripts as chunks that are
then evaluated as executable LuaValue instances. LuaJ
allows to run Lua scripts as Java applications, as well as
MIDlets, and JSR-223 Dynamic scripts. Supremica only
supports the Java application type.

Using LuaJ in a Java app is a simple matter of including
the library luaj-jse-3.0.1.jar in the class path when
compiling. Supremica embeds LuaJ at compile time
into the SupremicaLib.jar file to avoid any external
dependencies.

The straightforward way to run a Lua script inside a
Java application is, as shown by Roseborough and Farmer
(2014):

import org.luaj.vm2.*;

import org.luaj.vm2.lib.jse.*;

Globals globals = JsePlatform.standardGlobals ();

LuaValue chunk = globals.loadfile(script);

chunk.call();

This creates a standard global environment for the script
to run in, then loads the script and executes it. This is in
essence the way Lua scripts are run inside Supremica.

LuaJ uses reflection (McCluskey, 1998) for its bindings
between Lua and Java. Java 9 introduced the module
concept, which restricts many reflection operations. Thus,
for full functionality, LuaJ and Lua scripts in Supremica
require Java 8.

5. LUA SCRIPTS IN SUPREMICA

Lua scripts are run from inside Supremica through the
new (in version 2.8) menu option File > Run Script...
(shortcut Ctrl/Cmd+R) This will open a file chooser
dialog box in the default scripts folder filtering out the
*.lua files, see Fig. 1. The Lua file chosen from here is
then loaded and run. Supremica’s default scripts folder
contains many Lua scripts aimed at illustrating how to
write such scripts.

The first thing almost every script has to do is to get a
reference to the Supremica IDE. This can be achieved in
two ways; either by simply accepting the arguments that
are passed to the script, as:

local script , ide , log = ... -- params from Supremica

The double hyphen starts a Lua comment, and the triple
dots is Lua syntax for variable number of arguments,
the first two of which are the name of the script itself,
and a reference to the Supremica IDE that currently

Fig. 1. Dialog to choose and run Lua scripts.

runs the script. The log variable receives a reference to
Supremica’s logging pane, which is useful for writing
messages to the user, especially when debugging scripts.

The other way to get a reference to the IDE looks a
bit more complicated, but also illustrates some general
techniques for accessing a Java API via LuaJ.

local IDE = luajava.bindClass("org.supremica.gui.ide.

↪→ IDE")

local ide = IDE:getTheIDE ()

local log = IDE:getTheLog ()

Here, luajava is a reference to the LuaJ bridge, and the
call to luajava.bindClass tells LuaJ to return a reference
to the org.supremica.gui.ide.IDE class into the IDE
variable. This approach to bind a Java class reference to a
local Lua variable is general and appears in most scripts.

The IDE variable on the next line is used to put a
reference to the currently running Supremica instance
into the local ide variable by calling the static method
getTheIDE() of class IDE. And a similar thing happens for
the log variable. The ide and log variables can now be
used to access the currently running Supremica instance.

In the following it is assumed that the ide and log vari-
ables exist and reference the currently running Supremica
instance. For brevity we will also assume that the luajava
reference to LuaJ has been aliased to luaj, which is done
inside the Lua file as:

local luaj = luajava

This creates the local variable luaj as a shorthand for
luajava. The reference being local also brings slight
performance improvements.

5.1 Creating Automata

A script can load automata of various forms into Suprem-
ica either as a new project, called module, or as individual
automata inside a module created by the script.

Open a module Supremica modules are stored in XML
files with the wmod extension. Three lines of Lua code load
such files:

local file = luaj.newInstance("java.io.File", fname)

local manager = ide:getDocumentContainerManager ()

manager:openContainer(file)

The first line asks LuaJ to create a new instance of the
Java File class, and instantiate it with the file name given
in fname. Then the ide is asked to create a new document
container manager, and this manager is then asked to open
the given file. The result is that a new module containing
the automata in the wmod file is displayed in the IDE.

Create automata Programmatically creating automata
is a little more involved, especially as concerns EFSM.
First the events, variables, locations, and edges with
guards and actions have to be created. These are then
combined into an EFSM, and then loaded into the cur-
rently open module.

In Supremica 2.8’s scripts folder is an example of this,
EFSMsimpleCreate.lua, the main parts of which are listed
below. The script creates inside Supremica the EFSM
shown in Fig. 2.

Fig. 2. EFSM resulting from the Lua script below.

This EFSM has two locations, named q0 and q1, with
q0 inital and q1 marked, and a transition from q0 to q1
labeled by a controllable event c. The transition is guarded
by the expression x > 2, and can thus only execute when
the variable x has a value greater than two. When the
transition is executed, the action x -= 1 decreases the
value of x by one.

The script to create this EFSM starts with binding some
Java classes and interfaces to Lua variables, as done in
the previous examples. This is akin to Java’s import
statements.

local waters = "net.sourceforge.waters. " -- shorthand

local ModuleSubjectFactory = luaj.bindClass(waters..

↪→ "subject.module.ModuleSubjectFactory ")

local CompilerOperatorTable = luaj.bindClass(waters..

↪→ "model.compiler.CompilerOperatorTable ")

local EventDeclProxy = luaj.bindClass(waters..

↪→ "model.module.EventDeclProxy ")

local EventKind = luaj.bindClass(waters..

↪→ "model.base.EventKind ")

local ComponentKind = luaj.bindClass(waters..

↪→ "model.base.ComponentKind ")

local Collections = luaj.bindClass(

↪→ "java.util.Collections")

local factory = ModuleSubjectFactory:getInstance ()

local optable = CompilerOperatorTable:getInstance ()

The double dot is Lua’s string concatenation operator,
and it is used to generate the fully qualified Java package
names, with the contents of the waters variable as base.

Then the code creates some convenience functions to easily
create an event:

local function createEvent(name , kind)

local eventName = factory:createSimpleIdentifierProxy(

↪→ name)

local event = factory:createEventDeclProxy(eventName ,

↪→ kind)

return event

end -- createEvent

6102 Martin Fabian et al. / IFAC PapersOnLine 56-2 (2023) 6099–6104

a location:

local function createLocation(label , initial , marked)

if not marked then -- Create nonmarked location

return factory:createSimpleNodeProxy(label , nil , nil

↪→ , initial , nil , nil , nil)

end

-- Create a marked location

local nodeLabelAccepting = factory:

↪→ createSimpleIdentifierProxy(

↪→ EventDeclProxy.DEFAULT_MARKING_NAME)

local nodeLabelList = Collections:singletonList(

↪→ nodeLabelAccepting)

local marking = factory:createPlainEventListProxy(

↪→ nodeLabelList)

return factory:createSimpleNodeProxy(label , marking ,

↪→ nil , initial , nil , nil , nil)

end -- createLocation

an integer variable:

local function createIntegerVariable(name , min , max ,

↪→ init)

local varName = factory:createSimpleIdentifierProxy(

↪→ name)

local varMin = factory:createIntConstantProxy(min)

local varMax = factory:createIntConstantProxy(max)

local varRange = factory:createBinaryExpressionProxy(

↪→ optable:getRangeOperator (), varMin , varMax)

local varRef = factory:createSimpleIdentifierProxy(

↪→ name)

local varInitVal = factory:createIntConstantProxy(init

↪→)

local varInitPred = factory:

↪→ createBinaryExpressionProxy(optable:

↪→ getEqualsOperator (), varRef , varInitVal)

local var = factory:createVariableComponentProxy(

↪→ varName , varRange , varInitPred)

return var

end -- createIntegerVariable

an enumeration:

local function createEnumeration(name , values , init)

local varName = factory:createSimpleIdentifierProxy(

↪→ name)

local enumMembers = luaj.newInstance("

↪→ java.util.ArrayList ", #values)

for i = 1, #values do

local member = factory:createSimpleIdentifierProxy(

↪→ values[i])

enumMembers:add(member)

end

local varRange = factory:createEnumSetExpressionProxy(

↪→ enumMembers)

local varRef = factory:createSimpleIdentifierProxy(

↪→ name)

local varInitVal = factory:createSimpleIdentifierProxy

↪→ (init)

local varInitPred = factory:

↪→ createBinaryExpressionProxy(optable:

↪→ getEqualsOperator (), varRef , varInitVal)

local var = factory:createVariableComponentProxy(

↪→ varName , varRange , varInitPred)

return var

end -- createEnumeration

a binary expression:

local function createBinaryExpression(op1 , op, op2)

local function getOperandType(operand)

if type(operand) == "number" then

return factory:createIntConstantProxy(tonumber(

↪→ operand))

elseif type(operand) == "string" then

return factory:createSimpleIdentifierProxy(operand

↪→)

end

-- Type is neither number nor string , just return as

↪→ is

return operand

end

local operand1 = getOperandType(op1)

local operand2 = getOperandType(op2)

return factory:createBinaryExpressionProxy(op,

↪→ operand1 , operand2)

end -- createBinaryExpression

and a label block:

local function createLabelBlock(events)

local labels = luaj.newInstance("java.util.ArrayList ",

↪→ #events)

for i = 1, #events do

local event = factory:createSimpleIdentifierProxy(

↪→ events[i])

labels:add(event)

end

return factory:createLabelBlockProxy(labels , nil)

end -- createLabelBlock

Also, a variable-argument list-creation function is given as:

local function makeList(...)

local args = {...} -- variable arguments list as table

if #args == 1 then

return Collections:singletonList(args [1])

end

local list = luaj.newInstance("java.util.ArrayList ", #

↪→ args)

for i = 1, #args do

list:add(args[i])

end

return list

end -- makeList

Here, the Lua script creates a new instance of the
java.util.ArrayList and fills it in with the elements
given as arguments to the function (if more than one).

These convenience functions can be stored in a Lua file and
reused between scripts. With these functions available, we
can generate an EFSM:

-- controllable event "c", stored in an alphabet

local eventC = createEvent("c", EventKind.CONTROLLABLE)

-- marking proposition

local mark = createEvent(

↪→ EventDeclProxy.DEFAULT_MARKING_NAME ,

↪→ EventKind.PROPOSITION)

local alphabet = makeList(eventC , mark)

-- integer variable x, range 0..10 , initial value 5

local varX = createIntegerVariable("x", 0, 10, 5)

-- locations: q0 , initial , unmarked; q1 , marked

local loc0 = createLocation("q0", true , false)

local loc1 = createLocation("q1", false , true)

local locations = makeList(loc0 , loc1)

-- create guard x > 2

local guard = createBinaryExpression("x", optable:

↪→ getGreaterThanOperator (), 2)

local guards = makeList(guard)

-- create action x -= 1

local action = createBinaryExpression("x", optable:

↪→ getDecrementOperator (), 1)

local actions = makeList(action)

local label = createLabelBlock ({"c"})

-- create a guard/action block

local gaBlock = factory:createGuardActionBlockProxy(

↪→ guards , actions , nil)

-- edge from q0 to q1

local edge = factory:createEdgeProxy(loc0 , loc1 , label ,

↪→ gaBlock)

local edges = makeList(edge)

-- deterministic , no blocked events , locations and edges

local graph = factory:createGraphProxy(true , nil ,

↪→ locations , edges)

local efsmName = factory:createSimpleIdentifierProxy(

↪→ "MyEFSM")

 Martin Fabian et al. / IFAC PapersOnLine 56-2 (2023) 6099–6104 6103

a location:

local function createLocation(label , initial , marked)

if not marked then -- Create nonmarked location

return factory:createSimpleNodeProxy(label , nil , nil

↪→ , initial , nil , nil , nil)

end

-- Create a marked location

local nodeLabelAccepting = factory:

↪→ createSimpleIdentifierProxy(

↪→ EventDeclProxy.DEFAULT_MARKING_NAME)

local nodeLabelList = Collections:singletonList(

↪→ nodeLabelAccepting)

local marking = factory:createPlainEventListProxy(

↪→ nodeLabelList)

return factory:createSimpleNodeProxy(label , marking ,

↪→ nil , initial , nil , nil , nil)

end -- createLocation

an integer variable:

local function createIntegerVariable(name , min , max ,

↪→ init)

local varName = factory:createSimpleIdentifierProxy(

↪→ name)

local varMin = factory:createIntConstantProxy(min)

local varMax = factory:createIntConstantProxy(max)

local varRange = factory:createBinaryExpressionProxy(

↪→ optable:getRangeOperator (), varMin , varMax)

local varRef = factory:createSimpleIdentifierProxy(

↪→ name)

local varInitVal = factory:createIntConstantProxy(init

↪→)

local varInitPred = factory:

↪→ createBinaryExpressionProxy(optable:

↪→ getEqualsOperator (), varRef , varInitVal)

local var = factory:createVariableComponentProxy(

↪→ varName , varRange , varInitPred)

return var

end -- createIntegerVariable

an enumeration:

local function createEnumeration(name , values , init)

local varName = factory:createSimpleIdentifierProxy(

↪→ name)

local enumMembers = luaj.newInstance("

↪→ java.util.ArrayList ", #values)

for i = 1, #values do

local member = factory:createSimpleIdentifierProxy(

↪→ values[i])

enumMembers:add(member)

end

local varRange = factory:createEnumSetExpressionProxy(

↪→ enumMembers)

local varRef = factory:createSimpleIdentifierProxy(

↪→ name)

local varInitVal = factory:createSimpleIdentifierProxy

↪→ (init)

local varInitPred = factory:

↪→ createBinaryExpressionProxy(optable:

↪→ getEqualsOperator (), varRef , varInitVal)

local var = factory:createVariableComponentProxy(

↪→ varName , varRange , varInitPred)

return var

end -- createEnumeration

a binary expression:

local function createBinaryExpression(op1 , op, op2)

local function getOperandType(operand)

if type(operand) == "number" then

return factory:createIntConstantProxy(tonumber(

↪→ operand))

elseif type(operand) == "string" then

return factory:createSimpleIdentifierProxy(operand

↪→)

end

-- Type is neither number nor string , just return as

↪→ is

return operand

end

local operand1 = getOperandType(op1)

local operand2 = getOperandType(op2)

return factory:createBinaryExpressionProxy(op,

↪→ operand1 , operand2)

end -- createBinaryExpression

and a label block:

local function createLabelBlock(events)

local labels = luaj.newInstance("java.util.ArrayList ",

↪→ #events)

for i = 1, #events do

local event = factory:createSimpleIdentifierProxy(

↪→ events[i])

labels:add(event)

end

return factory:createLabelBlockProxy(labels , nil)

end -- createLabelBlock

Also, a variable-argument list-creation function is given as:

local function makeList(...)

local args = {...} -- variable arguments list as table

if #args == 1 then

return Collections:singletonList(args [1])

end

local list = luaj.newInstance("java.util.ArrayList ", #

↪→ args)

for i = 1, #args do

list:add(args[i])

end

return list

end -- makeList

Here, the Lua script creates a new instance of the
java.util.ArrayList and fills it in with the elements
given as arguments to the function (if more than one).

These convenience functions can be stored in a Lua file and
reused between scripts. With these functions available, we
can generate an EFSM:

-- controllable event "c", stored in an alphabet

local eventC = createEvent("c", EventKind.CONTROLLABLE)

-- marking proposition

local mark = createEvent(

↪→ EventDeclProxy.DEFAULT_MARKING_NAME ,

↪→ EventKind.PROPOSITION)

local alphabet = makeList(eventC , mark)

-- integer variable x, range 0..10 , initial value 5

local varX = createIntegerVariable("x", 0, 10, 5)

-- locations: q0 , initial , unmarked; q1 , marked

local loc0 = createLocation("q0", true , false)

local loc1 = createLocation("q1", false , true)

local locations = makeList(loc0 , loc1)

-- create guard x > 2

local guard = createBinaryExpression("x", optable:

↪→ getGreaterThanOperator (), 2)

local guards = makeList(guard)

-- create action x -= 1

local action = createBinaryExpression("x", optable:

↪→ getDecrementOperator (), 1)

local actions = makeList(action)

local label = createLabelBlock ({"c"})

-- create a guard/action block

local gaBlock = factory:createGuardActionBlockProxy(

↪→ guards , actions , nil)

-- edge from q0 to q1

local edge = factory:createEdgeProxy(loc0 , loc1 , label ,

↪→ gaBlock)

local edges = makeList(edge)

-- deterministic , no blocked events , locations and edges

local graph = factory:createGraphProxy(true , nil ,

↪→ locations , edges)

local efsmName = factory:createSimpleIdentifierProxy(

↪→ "MyEFSM")

local efsm = factory:createSimpleComponentProxy(efsmName

↪→ , ComponentKind.PLANT , graph)

-- put the components together

local components = makeList(varX , efsm)

-- Combine events , variables , and EFSM to make module

local mod = factory:createModuleProxy("MyModule",

↪→ "Module comment", nil , nil , alphabet , nil ,

↪→ components);

Once the module is created, it can be saved:

local MarshallingTools = luaj.bindClass(waters..

↪→ "model.marshaller.MarshallingTools ")

MarshallingTools:saveModule(mod , "in/this/path")

The above code is available as EFSMsimpleCreate.lua in
Supremica 2.8. Though it may look a mouthful, consider
that convenience functions can be created to hide the
direct calls to Supremica’s Java API.

5.2 Synthesize a supervisor

Once there are automata in the currently open Supremica
module, a script can manipulate them, for instance by
applying a standard monolithic synthesis operation (Won-
ham and Cai, 2019) as demonstrated below. Other oper-
ations such as verification follow a similar pattern. The
file MonolithicSynthesis.lua is available in Suprem-
ica 2.8’s scripts folder, here we just point out the basics.

First we bind some Java classes to Lua variables:

local ProductDESElementFactory = luaj.bindClass(waters..

↪→ "plain.des.ProductDESElementFactory ")

local ModuleSubjectFactory = luaj.bindClass(waters..

↪→ "subject.module.ModuleSubjectFactory ")

Then, we create a compiler to “flatten” EFSM. This is
necessary, since the monolithic synthesis works on ordinary
FSM, and cannot cope with variables or guards or actions.
The compiler is then configured, and asked to compile the
components into a set of ordinary FSM:

local manager = ide:getDocumentManager ()

local desFactory = ProductDESElementFactory:

↪→ getInstance ()

local module = ide:getActiveDocumentContainer ():

↪→ getEditorPanel ():getModuleSubject ()

local compiler = luaj.newInstance(waters..

↪→ "model.compiler.ModuleCompiler ", manager ,

↪→ desFactory , module)

-- Configure the compiler...

-- optimisation removes selfloops and redundant

↪→ components

compiler:setOptimizationEnabled(true)

-- normalisation is needed for advanced feature modules

compiler:setNormalizationEnabled(true)

-- only report the first error even if there are several

compiler:setMultiExceptionsEnabled(false)

-- Compile the module

local des = compiler:compile ()

The set of FSM are now in the des variable. A monolithic
synthesizer is instantiated and invoked on the FSM:

local synthesizer = luaj.newInstance(waters..

↪→ "analysis.monolithic.MonolithicSynthesizer ",

↪→ desFactory)

synthesizer:setModel(des)

synthesizer:run()

The result from the synthesis can be empty, that is, no
supervisor exists, and then there is nothing to do. Else,

if the synthesis result consists of one (or more, as in the
general case with non-monolithic synthesis) FSM, we add
it to the module that the components came from:

local result = synthesizer:getAnalysisResult ()

if result:isSatisfied () then

local supervisor = result:getComputedProductDES ()

local factory = ModuleSubjectFactory:getInstance ()

local importer = luaj.newInstance(waters.."

↪→ model.marshaller.ProductDESImporter ", factory)

-- iterate over all components and add to the module

local iterator = supervisor:getAutomata ():iterator ()

while iterator:hasNext () do

local aut = iterator:next()

local comp = importer:importComponent(aut)

module:getComponentListModifiable ():add(comp)

end -- while

end -- if

Instead of adding the synthesized result back to the
module, we could save it to a file:

local supervisor = result:getComputedProductDES ()

-- bind the MarshallingTools class to Lua variable

local MarshallingTools = luaj.bindClass(waters..

↪→ "model.marshaller.MarshallingTools ")

MarshallingTools:saveProductDES(supervisor , getFileName(

↪→ "supervisor.wdes"));

This code uses the convenience function getFileName,
which is available in the scripts folder and can be loaded
into a script with:

local Config = luaj.bindClass(

↪→ "org.supremica.properties.Config ")

local getFileName = dofile(Config.FILE_SCRIPT_PATH:

↪→ getValue ():getPath ().."/getFileName.lua")

This uses dofile to read in the getFileName function
from the getfileName.lua file in the set scripts folder.
The function generates a file name valid for the particular
operating system, using the default save path that is set
in Supremica’s IDE under the Configure menu.

5.3 User Interfacing

Supremica redirects the output of Lua’s print function
to the logger pane, which allows for some feedback to the
user. By using the log variable, initialized as described
above, all the functions of the standard logger are avail-
able:

-- Print calls are intercepted and shown in the logger

↪→ pane

print("Let’s print an important number: ", 42, "!")

-- Supremica ’s standard logger is also available

log:error("This is an error message!", 0)

log:info("This is just info (same as ’print ’)", 0)

log:debug("Debug messages also work", 0)

log:trace("This is a trace message", 0)

print(_VERSION) -- print LuaJ version

The above script results in the logger pane output shown
in Fig. 3.

Scripts may also want to interface with the user in more
advanced ways, like getting keyboard input etc. For this,
Lua scripts can use all of the existing Java components.
For instance, opening a file chooser is done by a script like:

local fc = luaj.newInstance("javax.swing.JFileChooser ")

fc:setDialogTitle("Lupremica file chooser")

local retval = fc:showOpenDialog ()

6104 Martin Fabian et al. / IFAC PapersOnLine 56-2 (2023) 6099–6104

Fig. 3. Output from Lua script in the logger pane.

if retval == fc.APPROVE_OPTION then

local fname = fc:getSelectedFile ():getPath ()

print("File: "..fname)

else

print("User cancelled")

end

This will display the full path and name of the chosen file
(if any) in the logger pane.

In the same way as for the print function, output from
the Lua interpreter appears in Supremica’s logger pane.
Error messages are admittedly cryptic, but at least they
give the script name and a line number, which is a first
help. For instance, Fig. 4 shows the error given when a
script tries to add an element to a singleton list returned
by makeList given above.

Fig. 4. Lua compiler error on line 147 in the script
EFSMsimpleCreate.lua.

6. CONCLUSIONS

This paper presents the new scripting possibilities included
in Supremica 2.8, which uses the Lua scripting language
through the LuaJ interpreter as a bridge between Lua and
the Java API of Supremica.

Many of the Lua code examples presented in this paper
are available in Supremica 2.8 in the scripts folder.

Currently, the Lua scripting implementation in Suprem-
ica is rather bare-bones. The main thing missing is a set
of Lua files to be used as libraries by user scripts via the
dofile or require calls. Such libraries would simplify the
API calls and hide a lot of complexity for the user. Things
like

local EventKind = luaj.bindClass(waters.."model.base.

↪→ EventKind")

which binds the Java enumeration EventKind to the same-
named local Lua variable, would then be readily available
and not have to be written into every script file. Also, a
lot of the complex code to, for instance, generate automata
and EFSM could be hidden inside such library functions.
Work on this is on-going.

REFERENCES

Cassandras, C.G. and Lafortune, S. (2008). Introduction
to Discrete Event Systems. Springer US, Boston, MA.
doi:10.1007/978-0-387-68612-7 2.

Emmerich, P. (2009). Beginning Lua with World of War-
craft Add-ons. Apress, Berkeley, CA. doi:10.1007/978-
1-4302-2372-6 1.

Goorden, M.A., Fabian, M., van de Mortel-Fronczak, J.M.,
Reniers, M.A., Fokkink, W.J., and Rooda, J.E. (2021).
Compositional coordinator synthesis of extended finite
automata. Discrete Event Dynamic Systems, 31, 317–
348. doi:10.1007/s10626-020-00334-w.

Ierusalimschy, R., de Figueiredo, L.H., and Celes, W.
(2018). A look at the design of Lua. Communications
of the ACM, 61, 114–123. doi:10.1145/3186277.

Januario, F.A.P., Cordeiro, L.C., De Lucena, V.F.,
and De Lima Filho, E.B. (2014). BMCLua: Ver-
ification of Lua programs in digital TV interac-
tive applications. In 2014 IEEE 3rd Global Con-
ference on Consumer Electronics (GCCE), 707–708.
doi:10.1109/GCCE.2014.7031344.

Lua Community (2022). Lua Uses. https://www.lua.
org/uses.html. Accessed: 2022-10-07.

LuaTeX.org (2022). LuaTeX. https://www.luatex.org/.
Accessed: 2022-10-29.

Malik, R., Åkesson, K., Flordal, H., and Fabian, M.
(2017). Supremica–an efficient tool for large-scale dis-
crete event systems. IFAC-PapersOnLine, 50(1), 5794–
5799. doi:10.1016/j.ifacol.2017.08.427.

McCluskey, G. (1998). Using java reflection.
https://www.oracle.com/technical-resources/
articles/java/javareflection.html. Accessed:
2023-03-23.

Mohajerani, S., Malik, R., and Fabian, M. (2014). A frame-
work for compositional synthesis of modular nonblock-
ing supervisors. IEEE Transactions on Automatic Con-
trol, 59(1), 150–162. doi:10.1109/TAC.2013.2283109.

Pleune, M., Paul, N., Faulkner, C., and Chung, C.J.
(2020). Specifying route behaviors of self-driving ve-
hicles in ROS using Lua scripting language with web
interface. In 2020 IEEE International Conference
on Electro Information Technology (EIT), 535–539.
doi:10.1109/EIT48999.2020.9208285.

Roseborough, J. and Farmer, I. (2014). Getting started
with LuaJ. http://www.luaj.org/luaj/3.0/README.
html. Accessed: 2022-10-09.

Sköldstam, M., Åkesson, K., and Fabian, M. (2007).
Modeling of discrete event systems using finite
automata with variables. In 2007 46th IEEE
Conference on Decision and Control, 3387–3392.
doi:10.1109/CDC.2007.4434894.

Supremica Developers (2022a). Supremica – the
API. https://www.cs.waikato.ac.nz/~robi/
waters-doc/index.html. Accessed: 2022-10-15.

Supremica Developers (2022b). Supremica – the Web Site.
https://supremica.org/. Accessed: 2022-10-10.

TC on DES (2022). Discrete event systems re-
sources – software tools. http://ieeecss.org/tc/
discrete-event-systems/resources. Accessed: 2022-
10-13.

Wonham, W.M. and Cai, K. (2019). Supervisory Control
of Discrete-Event Systems. Springer International Pub-
lishing, Cham. doi:10.1007/978-3-319-77452-7.

