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ABSTRACT

The use of non-intrusive techniques for monitoring nuclear reactors is becoming more
vital as western fleets age. As a consequence, the necessity to detect more frequently oc-
curring operational anomalies is of upmost interest. Here, noise diagnostics — the analy-
sis of small stationary deviations of local neutron flux around its time-averaged value —
is employed aiming to unfold from detector readings the nature and location of driving
perturbations. Given that in-core instrumentation of western-type light-water reactors are
scarce in number of detectors, rendering formal inversion of the reactor transfer function
impossible, we propose to utilise advancements in Machine Learning and Deep Learn-
ing for the task of unfolding. This work presents an approach to such a task doing so
in the presence of multiple and simultaneously occurring perturbations or anomalies. A
voxel-wise semantic segmentation network is proposed to determine the nature and source
location of multiple and simultaneously occurring perturbations in the frequency domain.
A diffusion-based core simulation tool has been employed to provide simulated training
data for two reactors. Additionally, we work towards the application of the aforemen-
tioned approach to real measurements, introducing a self-supervised domain adaptation
procedure to align the representation distributions of simulated and real plant measure-
ments.

KEYWORDS: neutron noise, machine learning, core diagnostics, core monitoring
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1. INTRODUCTION

With an ageing western fleet of light-water reactors (LWRs) consequently resulting in more fre-
quent operational anomalies, there is a necessity to ensure that accurate core monitoring is in place
to appropriately detect and identify anomalies. Specifically, we investigate the use of the powerful
and non-intrusive technique of noise diagnostics, the analysis of small stationary deviations of the
local neutron flux from its time-averaged value. However, this relies on the non-trivial task of
deriving the nature and location of the driving perturbation/anomaly — referred to as unfolding
— from a scarce number of in-core instrumentation. Given the difficulty of inverting the reactor
transfer function under limited instrumentation with conventional techniques, we utilise the power
of Machine Learning (ML) to approximate this function from data itself.

The adoption of ML in the field of core diagnostics has, in recent times, become more prevalent
with the acceptance and applicability of ML and Deep Learning (DL) advancements. Recent
work has demonstrated the potential of anomaly detection via ML, where time series analysis [1]
methodologies have shown great promise identifying and classifying anomalies with low error.
For neutron noise based non-parametric unfolding techniques and perturbation characterisation,
earlier efforts of the present authors [2—4] demonstrate the capability and effectiveness of such
DL approaches considering single perturbation scenarios. This work presents an extension to
the former, employing a voxel-wise, fully-convolutional, semantic segmentation network for the
classification and localisation of multiple, simultaneously occurring anomalies.

However, the ability to unfold the reactor transfer function via ML, gradient based algorithms, re-
lies on the acquisition of large quantities of training data covering all possible anomalous scenarios.
To train the proposed supervised algorithms, datasets are needed for which a known perturbation
type and source is assumed, and subsequently its resulting induced neutron noise estimated for a
corresponding number of detectors. To obtain such a dataset encapsulating various types of known
perturbations originating at all possible locations, a frequency domain modelling tool CORE SIM+
[5] is employed. These simulations provide an extensive training set comprised of single perturba-
tion noise sources which we additively combine.

In this work we consider the vital challenge of identifying multiple, and simultaneously occurring
in-core perturbations, characterising each by type and locating the position in which they originate
within the core volume. The rationale is that in reality, perturbations within the core rarely occur in
isolation. As such, in order to appropriately classify operation anomalies from real plant readings,
we propose a voxel-wise, fully-convolutional, semantic segmentation network capable of making
predictions at all positions within the core simultaneously. Furthermore, this is achieved through
a limited number of neutron detectors in 2 reactors, namely a Swiss and German pre-KONVOI
reactor, each taken as an application example. It is worth noting that this implementation does not
consider the case that noise sources from separate perturbations originating from the same position
co-exist. Moving towards the applicability of our approach to real measurements, we propose the
use of Domain Adaption (DA) to minimise the inherent shift in data distributions between simu-
lated and real measurements. This encourages our network to align data representations allowing
full utilisation of vast quantities of simulated data when predicting with plant measurements.
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2. MODELLING AND PROCESSING OF NEUTRON NOISE SIMULATIONS

The CORE SIM+ [5] modelling software used to generate training sets for the ML methods, es-
timates the effect of stationary perturbations in macroscopic cross-sections onto the neutron flux
using the two-group diffusion approximation, in linear theory and assuming one group of de-
layed neutrons. The spatial discretization of the balance equations is based on finite differences in
Cartesian geometry. Depending on the problem of interest, different numerical methods and non-
uniform computational meshes can be selected for effective numerical performance and accuracy.
The modelling of the corresponding noise source for the below scenarios is described in detail in
[6] and [3]. From the spatial dependence of the induced neutron noise estimated by CORE SIM+,
the Cross-Power Spectral Densities (CPSD) of the relative neutron noise (compared to the static
neutron flux) between pairs of neutron detectors were calculated. Calculating the CPSD ensures
consistency between the simulations and the type of quantities determined from the analysis of
measured plant data. In this work, a Swiss 3-loop and a German 4-loop pre-KONVOI reactor are
modelled using proprietary data, in order to appropriately reproduce the nuances of real measure-
ments. Several scenarios of anomalies are considered *, with the resulting neutron noise estimated:

* Generic “absorber of variable strength”, where a spatial Dirac-like perturbation is assumed. All
possible locations of the perturbation are considered.

* Axially travelling perturbations at the velocity of the coolant flow, where a perturbation is created
at some spatial location in the core and travels upwards with the flow through the core. All
possible locations of the perturbation are considered.

* Fuel assembly vibrations, for which the lateral movement of fuel assemblies is modelled accord-
ing to the following modes of vibrations: the cantilevered beam mode, the simply supported
on both sides mode (with its two first harmonics), and the cantilevered beam and simply sup-
ported mode (with its two first harmonics). All possible locations of vibrating fuel assemblies
are modelled.

* Control rod vibrations, where a partially inserted control rod is assumed to laterally vibrate in
the core. All possible locations of the vibrating control rod are considered.

* Core barrel vibrations, where the core barrel is assumed to vibrate in the beam or pendular mode.

Our goal is to train and evaluate ML algorithms on samples comprising of the noise response
from multiple perturbations occurring simultaneously. To achieve this, we additively combine
the single perturbation volumetric samples produced via CORE SIM +. Additive combination
however, assumes that all vibrations are in phase and that their relative weight are kept at their
respective nominal value. More appropriate and computationally efficient combination procedures
are reserved for future work. For our experimentation we produce 3 combined data sets, each
differing in maximum number of combinations. The number of combined single perturbations per
sample is selected at random within the range [1, z], where x = {15, 30,45}, whilst ensuring that
samples combinations are of the same frequency and do not originate from the same location.

In order to represent our simulated data as close to real plant measurements, and to provide our MLL
algorithms with rich input information, pre-processing of the volumes of induced neutron readings
was undertaken. The approach follows that of [4,3], in which detailed pre-processing procedures

“Scenarios abbreviations: AVS = Absorber of Variable Strength, CANT = Fuel Assembly Vibration (FAV) Cantilevered, SF =
FAV Supported First, SS = FAV Supported Second, CSF = FAV Cantilevered Supported First, CSS = FAV Cantilevered Supported
Second, CR = Control Rod Vibration, TP = Travelling Perturbation, BV = Core Barrel Vibration, BG = Background / No Class
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are given. To summarise, the Auto-Power Spectral Densities (APSDs) and CPSDs of simulated
neutron detector readings are computed per single perturbation scenario, the additive combination
is performed on the APSD/CPSD of the detector readings. As stated, this method introduces com-
plications due to cross-correlation of noise. However, the combination of noise before this stage is
not in the scope of this work. Given these readings are complex values, we decompose each into
their amplitude and phase to allow for compatibility with DL frameworks. The input into the net-
work are volumes of dimensions 17 x 17 x 17 and 16 x 16 x 21 for the German and Swiss reactors,
respectively. The input volumes are half the dimension of that modelled CORESIM+, we under-
take this simple reduction to reduce computation without compromising localisation. The reactors
are provided with 44 and 56 detectors respectively. APSD and coherence’s of these detectors are
embedded into each volume at their corresponding locations, all other voxels are zero. We con-
catenate all volumes (amplitude and phase of APSDs and coherence’s) channel-wise. Note that we
do not use the coherence’s between all detectors as this results in large numbers of channels, and
thus computational inefficiency. We empirically found that 8 selected detectors are adequate, cal-
culating the coherence between each detector and the 8 selected detectors, resulting in 16 channels
(8 detectors each with an amplitude and phase component concatenated).

3. VOXEL-WISE SEMANTIC SEGMENTATION FOR CLASSIFICATION AND
LOCALISATION OF MULTIPLE, SIMULTANEOUSLY OCCURRING ANOMALIES

To unfold and consequently characterise and localise multiple perturbations, we use a 3D Fully-
Convolutional Neural Network (FCNN) to provide spatial feature extraction of the detector read-
ings embedded in the input volume. Specifically, we task our neural network to minimise the cross
entropy between a voxel-wise prediction and ground truth (the true source location of the simulated
perturbations) semantic labels. This task known in computer vision as semantic segmentation, in-
volves “linking” each voxel in the input volume to a semantic label in an output prediction volume.
In our case each semantic label represents the perturbation scenario, with its location in the volume
(i, j, k) representing where this perturbation originated, thus localising and classifying.

3.1. Model Description

Our proposed network — depicted in Figure 1 — follows an encoder-decoder structure, the en-
coder extracts and constructs high-dimensional spatial feature representations of the frequency
domain input volume, whilst the decoder utilises these features to construct a prediction mask
with the same dimensions as the input. Both the encoder and decoder are constructed of 3D CNN
layers providing translational invariance, ideal for learning the spatial information that can vary
in position throughout the volume. The model proposed is inspired from [7], taking the notable
design feature of the spatial pyramid pooling block (four bottom blocks of the network). This
block learns rich semantic features at various scales, using four CNN layers with differing kernel
size, stride, and dilation to capture varying information at different granularities. Additionally, to
capture greater spatial information given the limited number of detectors, dilated convolutions [8]
are employed to increase the receptive field of the convolution operator whilst maintaining com-
putational efficiency. Furthermore, CoordConv [9] is also implemented to help preserve spatial
information of the features. This informs the convolution kernels where they are in relation to the
input volume, introducing layer-wise cartesian coordinates of voxel positions, improving segmen-
tation accuracy by ~ 2% per perturbation class.
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Figure 1: The proposed 3D Fully-convolutional, voxel-wise semantic segmentation network.
Arrows represent the direction of network activation’s, purple arrows are the flow of
activation’s with no operation, red show trilinear up-sampling, and green are the
concatenation of activation’s channel-wise.

As previously stated, the network is trained to minimise a variation of the cross entropy loss, focal
loss [10]. The focal loss (Equation 1) introduces a tuneable focusing parameter, -, to the cross
entropy loss to adjust the rate at which easy examples are down-weighted and hard examples are
given more significance. Here, P represents the number of perturbation classification scenarios.
The rationale behind this implementation is that given the constraints of inherent reactor design,
there are of course far fewer cases of a control rod vibration in comparison to examples representing
a generic absorber of variable strength. As such there is an imbalance between class occurrence,
where without weighting schemes the under-represented classes will not receive as much weighting
in the training procedure. To further assist with class imbalance, a logarithmic class weighting
scheme from [7] has been employed. The loss function is weighted per class, «,, depending on the
true class using logarithmic weighting.

Z [ypo‘p(l - @10)7 log@p) +(1— yp)(l - Otp)ﬂ; log(1 — @p)} (D

p=1

A 1
Lri(y,y) = 5

3.2. Simulated Measurement Experimental Results

To demonstrate the performance of our approach, experimentation has been undertaken on com-
binations of simulated scenarios for both a Swiss pre-KONVOI and a German pre-KONVOI re-
actor which were described in section 2. Our experimentation aims to explore how our approach
classifies and localises each of the induced perturbations, given a range of simultaneously oc-
curring perturbations per sample. The networks remain identical throughout, only changing the
input dimensions to accommodate different reactor dimensions. The training procedure utilised
the Stochastic Gradient Descent (SGD) optimisation procedure for back propagation, with a base
learning rate of 0.01, decaying by a factor of 0.1 when the validation error plateaus for 20 epochs
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within a threshold of 0.025. Additionally, training lasted 150 epochs with a batch size of 128, and
employed /-1 weight regularisation of 0.001. Furthermore, a modulating factor of v = 2 for the
focal loss was used. The percentage accuracy of our predictions are shown in Table 1, where the
accuracy is defined as the percentage of correctly classified voxels per perturbation classification
throughout the volume, averaged across the test set. In addition, normalised confusion matrices
showing the performance per classification are depicted in Figure 2.

Per Class Voxel Accuracies on Simulated Test Sets

Reactor Max No. Accuracy (%)
Comb BG \ AVS \ CANT \ SF \ SS \ CSF \ CSS \ CR \ TP \ BV
German 15 99.08 | 90.47 | 92.98 | 86.49 | 93.02 | 97.62 | 97.22 | 83.06 | 94.74 | 100.00
German 30 99.64 | 85.97 | 81.48 | 90.48 | 97.37 | 90.24 | 95.12 | 90.21 | 93.25 | 100.00
German 45 99.35 | 82.28 | 88.00 | 87.50 | 89.23 | 90.00 | 92.42 | 88.99 | 93.20 | 100.00
Swiss 15 99.43 | 87.64 | 89.47 | 82.14 | 82.93 | 89.66 | 86.11 | 93.05 | 91.16 | 100.00
Swiss 30 99.68 | 84.45 | 83.72 | 92.86 | 86.54 | 86.49 | 81.63 | 87.85 | 90.48 | 100.00
Swiss 45 99.11 | 80.95 | 79.41 | 82.50 | 90.79 | 85.71 | 90.14 | 89.86 | 91.81 | 100.00

Table 1: Per classification voxel accuracies averaged across the unseen test set for varying
numbers of combined perturbations for both simulated pre-KONVOI reactors.

Figure 2: Normalised confusion matrix of per voxel classification on the simulated test set,
max combination = 15. These show the number of voxel predictions per classification
against the ground truth. (Left) German pre-KONVOI, (Right) Swiss pre-KONVOI.

Table 1 shows the results of voxel-wise classification of simultaneously occurring perturbations,
and subsequently their origin locations. Low error is reported across all scenario types and combi-
nations for each reactor type, this is further depicted by the normalised confusion matrices shown
in Figure 2. It is often noticed the loss in performance is attributed to false positive predictions, i.e.
detecting a perturbation that is not present. Simply put, our network tends to make additional pre-
dictions around the ground truth value, forming a cluster of predictions, this is depicted in Figure
3. Although affecting performance of our network, this result does in fact, inspire greater confi-
dence in contrast to the contrary of false negative predictions (missed predictions). Furthermore,
it is worth noting that the increase in combined perturbations per sample does result in a drop
in classification performance of the more localised perturbations such as the generic absorber of
variable strength, —7%. We conjecture that due to the more uniform structure of fuel assembly
vibrations, control rod, and core barrel vibration,s there are fewer variations at which these pertur-
bations can originate, thus resulting in a lower complexity in comparison to generic absorber of
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variable strength.

Figure 3: Network prediction (Left) and ground truth (Right) classification masks for a
combination of simulated scenarios. The pressure vessel is not depicted for visual clarity.

4. SELF-SUPERVISED DOMAIN ADAPTATION FOR SYNTHETIC-TO-REAL
REPRESENTATION ALIGNMENT

Given the low error of our model in synthetic case, the desirable next step is the application to
real plant measurements. However this is non-trivial, since ground truth values for the real plant
measurements are unknown and few in number of samples, thus we must employ the simulated
data solely to learn the characteristics of the perturbations. Additionally, the simulations and real
plant measurements — although fundamentally and theoretically represent the same response to
anomalous phenomena — present some naturally occurring differences in data distributions. Con-
sequently, it is necessary that mitigations are introduced to enable the large quantities of simulated
data to be fully exploited for use with real plant measurements. Without such alleviation, the dif-
ference in distribution will yield a difference in feature distribution captured by the model resulting
in poor predictions when inference is performed using a model trained only with simulated data.

4.1. Model Description

To align the data domains (simulated or real), we propose to utilise a domain adaptation procedure
encapsulating our 3D FCNN model, to more closely align representations of the input volumes
produced by our network from each data domain. Specifically, we employ the Self-Supervised Do-
main Adaptation (SSDA) procedure proposed in [11]. Given we do not have any labelled (ground
truth) information for real plant measurements, auxiliary tasks — constructed from solely the in-
put volumes — are employed to provide feature understanding of structurally relevant information
that does not require human annotated labels. These tasks encourage alignment between the dis-
tribution of features captured by the FCNN of both the simulated (source) and real measurements
(target) domains, by making the feature extractor predict identical augmentations to each input
volume, hence enforcing invariance to the nuances displayed between the data distributions.

The proposed method aims to simultaneously train our previously described network to minimise
the error of the main task of semantic segmentation for source domain data (simulated), whilst
also minimising the loss of a variety of auxiliary tasks for both source and target (real) domains.
Auxiliary tasks are simply Softmax classification tasks aiming to predict augmentations applied
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identically to each of the source and target domain input samples. The tasks include: rotation pre-
diction [0°,90°, 180°, 270°]; vertical flip prediction [0, 1]; and prediction of a missing detector. The
output for each task, including the segmentation task, is provided by individual classification layers
where input is provided by the feature extractor, this is visually depicted in Figure 4. The resulting
loss is the mean of the categorical cross entropy loss for each auxiliary tasks per domain, and the
segmentation loss for the source domain (Equation 1). At inference time, the target test samples
are input to the feature extractor, a resulting prediction mask is produced via the segmentation task
head, whilst disregarding all auxiliary heads. Real plant predictions are shown in Figure 6.

Figure 4: SSDA methodology depicting the input volumes (Left), FCNN network (Middle),
and the three auxiliary tasks and supervised (segmentation) task (Right). The flow of source
and target data is given by the red and blue arrows respectively.

4.2. Real Plant Measurement Experimental Results

To make predictions via our self-supervised domain adap-
tation procedure, the model had been trained in a similar
manner as described in Section 3.2, although, for a fewer
100 epochs, weight decays of 107, and with a smaller
base learning rate of 0.001. To further leverage the sim-
ulated training, our FCNN feature extractor weights are
initialised with those corresponding to the trained model
from the simulated experiments, and all parameters fine-
tuned throughout the domain adaptation procedure. The
real plant measurements have been processed by using clas-
sical signal processing techniques for neutron noise diag-
nostics, observing the response of the neutron detector sen-
sors in the frequency domain through the Fourier transform
of the auto-correlation function, APSD. Analogously, for
two variables, the CPSD has been calculated through the
Fourier transform of the cross correlation between signals
of two detectors. Moreover, to provide further information
via signal processing, the coherence is calculated between
detectors, by the same procedure described in Section 2.

Figure 5: Normalised auxiliary
task errors and MMD error
between the source and target
distributions. Improved
alignment is shown as errors
decrease until convergence.
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First, Figure 5 depicts the smooth convergence of our auxiliary task losses, along with the minimi-
sation and convergence of a non-optimised distance metric between source and target representa-
tions. This metric, measures the centroid distance (linear maximum mean discrepancy (MMD))
between the feature distributions of the two domains in the learned representation space produced
by the FCNN feature extractor. This empirically shows maximisation of alignment in represen-
tational space between simulated and real domains, consequently improving invariance between
source and target in our feature extractor. Additionally, Figure 6 shows the predictions made by
our network for real measurements of an operational German pre-KONVOI reactor. These results,
although yet to be fully validated given the inability to acquire ground truth values, show the poten-
tial of our method to make on-line predictions of core anomalies in operational reactors. To further
support our claims, work by [12] undertook an alternative approach on the same real reactor mea-
surements with similar phenomena reported at near identical locations within the core volume. For
example, strong axially travelling perturbations are reported at (12, 16) in [12], with our prediction
(Figure 6) also reporting the same phenomena at (14, 14) in addition to an axial column of generic
absorber of variable strength, adding further weight to the validity of our prediction.

(a) 0.1 Hz (b) 10 Hz

Figure 6: Predictions of German pre-KONVOI reactor measurements under our
self-supervised domain adaptation procedure. Left: 3D prediction visualisation of the whole
core volume, we omit the reactor pressure vessel for visual clarity. Right: Axial (top down)
view of the predictions excluding AVS. Outside of the pressure vessel is depicted in grey.

5. CONCLUSION

We demonstrate a method to provide novel insights into operational reactor core anomalies, achiev-
ing low error for two reactors in the simulated case with our proposed semantic segmentation
network classifying and subsequently localising the origin of up to 45 simultaneously occurring
perturbation scenarios. In addition, we extend this methodology to show the applicability of such a
method to real plant measurements, making the non-trivial step towards leveraging large quantities
of synthetic data to unfold and therefore classify and localise the origin of anomalies in real, opera-
tional reactors. Although the predictions are not yet validated, we provide empirical evidence of the
minimisation of simulated and real data distributions in feature space showing the ability to adapt
to the real domain from large quantities of synthetic data. Work is ongoing to further validate our
predictions and extend our approach to retrieve more perturbation characteristics to provide greater
details of anomalous signals. The exploration of ML and DL in nuclear safety is still relatively un-
explored, with our work proposing one avenue to provide highly accurate assistance through ML
predictions to analyse and form intuitions of behaviours during reactor operation.
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