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Abstract: Electric vehicles (EVs) play a substantial role in reducing greenhouse gas emission
and support a sustainable future. However, the increase of EV may lead to rising electricity
demand and fluctuation. In this paper, the EV is proposed as a means to support the electricity
grid via the vehicle-to-grid (V2G) technology. To reduce energy demand peaks, charging is
planned during off-peak hours. Additionally, the EV battery may be used as a buffer to store
energy during off-peak hours, and to supply energy to the grid during peak hours. Furthermore,
grid frequency may be regulated by controlling the charging power. Since battery utilization
will be increased during V2G operations, battery degradation is included in this study. A case
study of Swedish households shows that the V2G is not only contributing to the stability of
the grid, but may also help reducing the operating cost of an EV owner, even when battery
degradation is considered.
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1. INTRODUCTION

To curb climate change, the consensus is that fossil fuel-
based electricity generation shall be replaced by renewable
power generation, and combustion engine vehicles substi-
tuted by electric vehicles (EVs). However, due to the un-
predictability of weather, an increased share of renewable
power generation from weather-dependent sources reduces
the production predictability. Furthermore, a higher mar-
ket penetration of EVs imposes further challenges for the
grid operators, particularly when a large number of EVs
are charged simultaneously, creating peak power demand.

Recently, there are many proposed smart grid services
for alleviating the conundrum of weather-dependent re-
newable power generation and rising EV share, namely
the vehicle-to-home (V2H) and vehicle-to-grid (V2G), see
(Thingvad and Marinelli, 2019; Bjurek and Hagman, 2022)
and the references therein. In both applications, EV bat-
teries are used to store electrical energy for later dispatch
using a bidirectional charger. Specifically, V2H reduces
peak power demand, while V2G strategies offer frequency
regulation services to the transmission system operators
(TSOs). By empowering EVs with smart grid technologies,
the EV may become a part of the solution for stabilizing
the grid, instead of being the cause of the problem.

However, as these services increase battery usage, there
is a concern regarding premature battery degradation. As
the lithium-ion battery is one of the most cost-intensive
components in an EV, it is important to consider the
degradation cost. Additionally, it is also imperative to
prolong battery life to reduce the environmental impact,
as the energy used for manufacturing new and decommis-
sioning used-batteries is significant.

In this paper, V2G optimization problems with battery
aging cost are investigated, where the contributions are
threefold. Firstly, a linear battery aging model that cap-
tures incremental degradation during a V2G session is
proposed. Secondly, the proposed model is utilized to
formulate optimization problems for frequency balancing
services using EVs. Finally, a case study in the Swedish
market is analyzed and the results are discussed.

2. BATTERY ENERGY AND AGING MODEL

A battery pack consists of multiple cells connected both
in series and parallel. In this paper, the characteristics
of a 18650 Li-ion battery cell with carbon cathode and
Li(NiMnCo)O2 anode are used, where the specifications
are given in Table 1. Furthermore, the pack consists of
10260 cells, where 95 strings are connected in parallel, and
each string consists of 108 cells. Homogeneity of the cells
is assumed.

Table 1. Battery cell specifications (Ecker
et al., 2014; Schmalstieg et al., 2014).

Nom. Capacity 2.05 Ah γ0 = 3.3324 ϵ0 = 7.543 · 106
Nom. Voltage 3.6 V γ1 = 2.1021 ϵ1 = 23.75 · 106
Min. Voltage 2.5 V γ2 = −5.8485 ϵ2 = 6976
Max. Voltage 4.2 V γ3 = 8.0326 ζ0 = 7.348 · 10−3

Int. Resistance 0.0334 Ω γ4 = −3.4599 ζ1 = 3.667
ζ2 = 7.600 · 10−4

ζ3 = 4.081 · 10−3

2.1 Battery Energy Model

The battery model used for optimizing V2G operations
shall capture the dynamics of battery SoC, as it dictates



how much energy can be charged or discharged from
the battery. Another desirable model property is a fast
computational speed. To this end, the energy reservoir
model is adopted:

dz(t)

dt
=

P (t)

bcap,kWh
, z(t) ∈ [0, 1], (1)

where z(t), P (t), and bcap,Wh are respectively, the battery
state-of-charge (SoC), power and pack energy capacity in
kilowatt-hours.

Additionally, the battery open-circuit voltage, OCV can
be fitted using

OCV(z) = γ0 + γ1 · z + γ2 · z2 + γ3 · z3 + γ4 · z4, (2)

where γ’s are the polynomial coefficients listed in Table 1

2.2 Battery Aging Models

The battery capacity loss over time can be examined
using the empirical degradation characteristic proposed in
(Ecker et al., 2014; Schmalstieg et al., 2014). The model
allows fitting to experimental data, which is favourable
when the exact battery chemistry is not available. Fur-
thermore, the model considers calendar aging and cycle
aging individually. The total degradation is given by

Clost = α(V (t), θ) · T 0.75 + β(V (t), z(t)) ·
√

Q, (3)

where α, β, θ, V, T , and Q are respectively, the calendar
aging factor, cycle aging factor, voltage, battery tempera-
ture, battery age in days, and the total energy throughput
from the beginning-of-life in ampere-hours. Note that the
latter two terms can be obtained from accelerated battery
aging tests.

The calendar aging factor over a period, T is given by

α(V, θ) = (ϵ0 · V̄ − ϵ1) · exp
(
−ϵ2

θ

)
, (4)

where V̄ is the average voltage over the period, and ϵ0 to
ϵ2 are the coefficients. Moreover, the cycle aging factor is

β(V, z) = ζ0 · (∅V − ζ1)
2 + ζ2 + ζ3 ·∆DoD, (5)

where ∅V is the root-mean-square voltage, and ζ0 to
ζ3 are the coefficients. The depth-of-discharge, ∆DoD is
approximated as (Reniers et al., 2018),

∆DoD =
2
∫
|z̄ − z(t)| dt

T
, (6)

where z̄ is the average SoC.

Incremental Aging Model. During V2G optimization, it
is desirable to know the incremental degradation resulted
from a chosen action during the control horizon. By
utilizing Taylor series expansion, Bjurek and Hagman
(2022) approximated of the incremental degradation over
the control horizon, T hor using

C̃lost = 0.75 · α(V, θ) ·
Thor

T 0.25
+ 0.5 · β(V, z) ·

Qhor

√
Q

, (7)

where Qhor is the energy throughput during the control
time horizon. For ease of implementation, the T and Q
prior to the control horizon are used when the control
horizon is sufficiently short compared to the battery age.
Furthermore, T hor is typically given in a V2G optimization
problem, and Qhor is linear to battery power (the opti-
mized variable) — allowing for linear problem formulation
and may lead to faster optimization. The results from (3)
and (7) are compared in Figure 1.

Fig. 1. Battery aging computed using the original (3) and
the new model (7).

Linearized Incremental Aging Model. Note the incre-
mental aging model (7) requires voltage as an input, which
is dependent on the nonlinear OCV (2). To facilitate linear
problem formulation, an affine voltage model is desirable.
By assuming a small battery internal resistance, the volt-
age is close to the OCV. This assumption is typically
acceptable as the battery internal resistive loss is relatively
small compared to the energy transferred from/to the
grid. Additionally, by assuming a sufficiently small SoC
operating range over the investigated period, the mean
voltage may be approximated usinĝ̄V = V min + κ · z̄, (8)

where V min is the voltage at 0% SoC, z̄ is the average SoC
over the period, and κ is calculated using

κ =
∆OCV

∆z
=

OCV(1)−OCV(0)

1− 0
.

By using the mean voltage, the linearized incremental
aging model is then given by

C̃ lost,mv = d̃cal + d̃cyc (9a)

d̃cal = 0.75 · α( ̂̄V , θ) · T hor

T 0.25
(9b)

d̃cyc = 0.5 · β(V̂ , ẑ) · Q
hor

√
Q

, (9c)

where d̃cal and d̃cyc are the incremental capacity loss from
calendar and cyclic aging, respectively. Further simplifi-
cations can be obtained if the following assumptions are
made: The temperature, θ is assumed constant if the bat-
tery temperature is well controlled during V2G operation;
A median voltage V̂ for a typical cycle may be adopted
if charge/discharge cycles are similar to each other in
general; An appropriate ẑ is chosen to approximate ∆DoD
in the typical cycle.

Note that the proposed model (9) can be tuned for a given
cyclic pattern to match (7). Therefore it provides improved
flexibility compared to the fixed rate degradation model
proposed by Reniers et al. (2018), where the lost capacity
per cycle is given by

C̃ lost,fix = dc ·
∫

|P (t)|dt, (10)

where P (t) is the power trajectory during a cycle. More-
over, the degradation constant, dc is determined by assum-



ing the battery reached its end-of-life (EoL) 1 after a pre-
defined number of cycles. The fixed rate degradation model
(10) cannot capture different degradation rates resulted
from distinctive usage patterns.

3. VEHICLE-TO-GRID (V2G) OPTIMIZATION

In the following, an overview of the frequency regulation in
electricity grid is first given, followed by the optimization
problem formulation.

3.1 Overview of Frequency Regulation

For the electric power system to work efficiently, a bal-
ance between production and consumption of power is
needed. A sudden deviation from the planned schedules
of production and consumption will lead to a deviation of
the grid frequency from the nominal, which is 50 Hz in
Europe. A stable frequency is of utter importance since
electrical appliances are constructed to work at a desig-
nated frequency, and a deviation can lead to non-working
devices. Furthermore, large frequency deviations will cause
instability problems, leading to failure in system operation.
If the energy production is higher than consumption, the
frequency of the grid will rise above the nominal value,
and down-regulation of the frequency is necessary. On the
other hand, if the consumption is higher than production,
the frequency will drop under the nominal value, and up-
regulation is required. Note the grid frequency is the same
within a synchronous area, where the Nordic synchronous
system covers Sweden, Finland, Norway, and the Eastern
Denmark.

To maintain the frequency of the grid, Transmission Sys-
tem Operator (TSO) is appointed on a national or re-
gional level. The TSO may offer remuneration for market
participants who provide frequency regulation services.
The rate of remuneration is dependent on the regulation
product that is characterized by activation speed and
endurance. In Sweden, the TSO is Svenska Kraftnät, and
the products available are Fast Frequency Reserve (FFR),
Frequency Containment Reserve (FCR), automatic Fre-
quency Restoration Reserve (aFRR), and manual Fre-
quency Restoration Reserve (mFRR) (Svenska Kraftnät,
2022). These products are traded on markets where par-
ticipants can offer capacity of a product at a certain price,
which can then be procured by the TSO. Furthermore,
there are also requirements on the minimum bid size, i.e.
the regulating capacity. While this might not be an issue
for large market players, it prevents small-scale actors such
as individual households from participating in frequency
regulation markets. An approach to circumvent this issue
is to aggregate the capacity of many smaller units such
that the combined capacity can be traded. The market
actor that consolidates capacity is called the aggregator.
In the following, the Swedish frequency regulation services
will be described.

Frequency Containment Reserve. The Frequency Con-
tainment Reserve (FCR) stabilizes the frequency in case
of deviations and is a vital part of regulating the frequency

1 The EoL for EV batteries is typically defined when 30% of the
initial storage capacity is lost.

of the grid. The service is automatically activated if the
frequency deviates inside the specified regulation region.
The FCR is divided into two products, FCR-N where the
letter N stands for normal operation, and FCR-D where
the letter D stands for disturbed operation. Note that
the product specifications and numbers in the following
paragraphs are specific for the Swedish market (Svenska
Kraftnät, 2022).

FCR-N is a frequency regulation product in both up and
down directions. It is symmetrical as the offered capacity
has to be available for activation in both directions. The
region for activation is between 49.9 Hz to 50.1 Hz, and
the minimum bid size is 0.1 MW. The approximate volume
requirement for Sweden is 231 MW in 2023. The product
is activated linearly, with 100% activation of the bid at
50.1 Hz and -100% activation at 49.9 Hz, where negative
activation implies up-regulation. Regarding reaction time,
63% of the given activation must be made within 60
seconds of a deviation, and 100% within 3 minutes, while
the activation endurance must be at least one hour.

Furthermore, FCR-D is a frequency regulation product
offered in only one direction, and it is automatically ac-
tivated to stabilize the frequency in the event of a distur-
bance when the frequency is outside the range of 49.9 Hz
to 50.1 Hz. The FCR-D (up) focuses on up-regulation,
where it is activated between 49.5 Hz to 49.9 Hz. The
linear activation is adopted, with 100% activation if the
frequency is at the lower end, 49.5 Hz and 0% activation if
the frequency is at the higher end, 49.9 Hz. The minimum
bid size is 0.1 MW and the volume requirement for Sweden
is up to 558 MW in 2023. The required activation time is
50% within 5 seconds and 100% within 30 seconds, and
endurance should be at least 20 minutes. Note that the
FCR-D product portfolio was expanded in 2022 by intro-
ducing FCR-D (down) that focuses on down-regulation. In
this paper, only FCR-D (up) will be considered since it is
more applicable to the bidirectional charging use case.

Bidding Procedure and Remuneration. The FCR prod-
ucts can be procured in the one-day-ahead (D-1) or two-
days-ahead (D-2) markets. These markets are closed one or
two days before the actual delivery, where the deadline for
submitting bids for D-1 is 18:00, and D-2 is 15:00. Note the
majority of the capacity is procured in D-2. Additionally,
the bids are held in closed auctions, so participants are
unaware of each other’s bids. When the bidding process
ends, Svenska Kraftnät will consolidate the bids and sort
them in ascending order, and then accept the bids with
the lowest asking prices summing up to the total product
volume requirement (Svenska Kraftnät, 2022).

Procured bids for FCR-N capacity are reimbursed accord-
ing to “pay-as-bid”. Additionally, the energy usage during
activation is priced according to the up-regulation and
down-regulation prices on Nord Pool power exchange.

On the other hand, the procured FCR-D bids are reim-
bursed according to “pay-as-bid”, but there is no reim-
bursement or cost for activation.

3.2 Problem Formulation

FCR-N. The FCR-N bids are symmetrical in both up
and down directions. During up-regulation, the EVs either



stop charging or enter discharge mode. Conversely, during
down-regulation, the charging power is increased. The
FCR-N problem with nv vehicles, nh households and over
the next nk hours is considered. Inspired by Dalton (2018),
the problem is formulated as:

min
Pbat
k,i

,Pbid
k

Πnet −Πbid,FCRN +Πreg + λdeg (11a)

s.t. Πnet

=

nk∑
k=0

[
λda
k ·

(
nh∑
h=1

Ek,h +

nv∑
i=1

Pwall
k,i ·∆t

)]
(11b)

Πbid,FCRN =
∑
k

λbid,FCRN
k

· Pbid
k (11c)

Πreg =
∑
k

λreg
k

·RD2C
k · Pbid

k (11d)
zk+1,i =

Pbat
k,i

bcap,kWh
·∆t+ zk,i

zmin ≤ zk,i ≤ zmax

z0,i = ziniti

znk,i ≥ zend

(11e)

{
λdeg =

∑
i

C̃lost,mv
i · bcost

Equation (9)

(11f)
∑
i

Pwall
k,i ·∆t ≥ −

∑
h

Ek,h

Pmin ≤ Pwall
k,i ≤ Pmax

(11g)


Pbid
k ≤

∑
i

(
Pwall
k,i + |Pmin

i |
)

Pbid
k ≤

∑
i

(
Pmax
i − Pwall

k,i

) (11h)

Pwall
k,i +

RD2C
k · Pbid

k

nv
= Pbat

k,i + (1− η) · |Pbat
k,i | (11i)

The objective function (11a) defines the total operat-
ing cost, which includes the net electricity costs for all
households, Πnet, reimbursement from offered bids, Πbid,
cost/income from bought/sold energy during activation,
Πreg, and battery degradation cost, λdeg. Without loss of
generality, the sampling time, ∆t is chosen as one hour,
where the discrete time-step is k = 0, 1, . . . , nk.

The total household electricity cost (11b) is dependent on
the day-ahead price, λda

k , household energy consumption,
Ek,h, and the power exchanged between EV and wallbox,

Pwall
k,i . Moreover, the bidding price, λbid,FCRN

k , regulation

price, λreg
k , dispatch-to-contract ratio, RD2C

k , day-ahead
price and household energy consumption are assumed to
be known a priori. The dispatch-to-contract ratio quanti-
fies the proportion of the activated bids.

Furthermore, (11e) is the discretization of the battery
energy model (1), where the permissible SoC range is
defined in [zmin, zmax], the initial SoC is given as ziniti ,
and the final SoC constraint ensures the EV driver has at
least the demanded SoC, zend at the departure time.

As described in (11f), the battery degradation cost, λdeg

is a product of the lost battery capacity, C̃ lost,mv
i and the

cost of a new battery bcost, where the lost battery capacity
is modeled using (9).

Additionally, the wallbox power constraint (11g) restricts
the total energy discharged from all EVs to be at most

the total household energy consumption. Therefore, the
same total energy is drawn from the grid across different
solutions. Moreover, the wallbox has hardware limitations,
where the power is restricted within [Pmin, Pmax].

The bid size is constrained by (11h), where the maximum
up-regulation bid is limited by the sum of the actual
charging power and the maximum discharging power. Sim-
ilarly, the maximum down-regulation bid is bounded by
the difference between the maximum and actual charging
power.

Finally, (11i) expresses the relationship between wallbox
power and battery power, where the charging/discharging
efficiency, η ∈ (0, 1), and the activation of offered bid are
considered. The power from activating the bids is assumed
to be equally distributed over all EVs.

FCR-D (up). The FCR-D (up) optimization problem is
defined as:

min
Pbat

k,i
,Pbid

k

Πnet −Πbid,FCRD + λdeg (12a)

s.t. Equations (11b), (11e)–(11g)

Πbid,FCRD =
∑
k

λbid,FCRD
k · P bid

k (12b)

P bid
k ≤

∑
i

(
Pwall
k,i + |Pmin

i |
)

(12c)

Pwall
k,i = P bat

k,i + (1− η) · |P bat
k,i | (12d)

The total cost of operation for FCR-D (up) (12a) consists
of the net household electricity cost, the revenue from
offering the bids, and the cost of battery degradation.

Moreover, expressions for the total household electricity
cost, battery energy model, wallbox power constraint and
battery degradation cost are shared with the FCR-N
problem formulation defined in (11). Furthermore, the
FCR-D revenue can be calculated using the bid price,

λb,FCRD
k . Note the regulation bid only has one constraint,

depicting the case where EVs stop charging and discharge
at the maximum rate, as defined in (12c). Additionally,
the power transfer efficiency between EV and wallbox is
considered in (12d). However, no activation of the offered
FCR-D (up) bids is being considered in this study, as it is
a relatively rare occurrence.

Note that the optimization problems (11) and (12) consist
of absolute value functions that are not differentiable,
but can be transformed to standard linear program forms
using standard techniques found in (Boyd et al., 2004,
p. 6). Additionally, the problems are modeled using Py-
omo (Bynum et al., 2021; Hart et al., 2011), and solved
using the linear programming toolbox, Gurobi (Gurobi
Optimization, LLC, 2022).

4. CASE STUDY OF SWEDISH HOUSEHOLDS

4.1 Assumptions

To investigate the potential saving by using V2G services,
a large fleet of vehicles with randomized driving behavior
was simulated, where the average driving distance per day,
battery age, and the arrival SoC for each EV were sampled
from truncated Gaussian distributions defined in Table 2.



The mean daily travel distance are chosen according to the
Swedish data in 2021 (Trafikanalys, 2021). The end SoC
was set to be at least 70%, for all EVs.

Table 2. Truncated Gaussian distribution pa-
rameters.

Mean SD Min Max

Daily Travel [km] 30 20 5 100
Battery Age [day] 365 365 30 1095
Arrival SoC [%] 45 10 35 55

Additionally, the seasonal effect was investigated on the
four days listed in Table 3. The days were arbitrarily
chosen but spread evenly throughout a year.

Table 3. Days used for the case study.

Arrival Time Departure Time

Day 1 (Summer) 2021-07-11, 17:00 2021-07-12, 08:00
Day 2 (Autumn) 2021-10-11, 17:00 2021-10-12, 08:00
Day 3 (Winter) 2022-01-11, 17:00 2022-01-12, 08:00
Day 4 (Spring) 2022-04-11, 17:00 2022-04-12, 08:00

Furthermore, the vehicles are assumed to be plugged-in
overnight from 5 pm to 8 am on the selected days. As
the actual value of dispatch-to-contract ratio, RD2C

k was
not easily accessible, an estimation was deduced from the
historical data from the Nordic Synchronous System using

RD2C
k =

max
(

fk−50.0
50.00−49.90 ,−1

)
, if fk < 50.00

min
(

fk−50.0
50.00−49.90 , 1

)
, if fk ≥ 50.00,

(13)

where fk is the frequency with the maximum deviation
from 50.00 Hz within the k-th hour. The frequency data
was obtained from Fingrid (2022), which had a resolution
of three minutes. By selecting the frequency with the
maximum deviation from 50.00 Hz within each hour, the
worst-case activation was achieved. The resulting activa-
tion profiles for the chosen days are shown in Figure 2.
Note that a negative activation implies that the frequency
was lower than 50.00 Hz.

Fig. 2. FCR-N activation for Days 1 to 4.

4.2 Results and Discussions

The total electricity consumption cost for a fleet size of
1000 EVs and 1000 households are shown in Table 4, where
Smart Charging (SC), V2H-G, FCR-N and FCR-D are
investigated. SC represents the baseline use case, where a

Fig. 3. Hourly electricity price for Days 1 to 4.

Table 4. Electricity and battery degrada-
tion costs, and the potential savings with

V2H/V2G services.

Direct Cyc. Cal. Total Savings

[SEK] [SEK] [SEK] [SEK] [%]

Day 1 SC 19,202 4,020 3,348 26,571 -

V2H-G 18,911 4,115 3,334 26,359 0.8

FCR-N -28,301 5,341 3,618 -19,342 172.8

FCR-D -59,027 4,116 3,334 -51,578 294.1

Day 2 SC 25,588 4,020 3,342 32,950 -

V2H-G 15,606 6,609 3,208 25,424 22.8

FCR-N -55,721 11,363 2,929 -41,429 225.7

FCR-D -78,792 7,188 3,310 -68,294 307.3

Day 3 SC 47,504 4,020 3,378 54,902 -

V2H-G 16,711 11,012 3,035 30,758 44.0

FCR-N -32,693 9,149 2,937 -20,608 137.6

FCR-D -55,228 11,211 3,041 -40,976 174.6

Day 4 SC 52,679 4,020 3,421 60,120 -

V2H-G 27,620 8,698 3,139 39,457 34.4

FCR-N -6,116 10,830 2,796 7,510 87.5

FCR-D -24,050 8,590 3,163 -12,297 120.5

cost-minimizing EV charging schedule is adopted without
discharging the battery to feed the grid. V2H-G represents
V2H with the possibility of feeding energy to the grid.
Even though the problem formulations for SC and V2H-G
are not discussed in this paper, the results are included
here for completeness. For details please refer to (Bjurek
and Hagman, 2022).

A close inspection of Day 1 reveals that V2H-G marginally
improves the saving compared to SC. This is due to a
combination of very low variance in electricity price within
the optimization horizon (see Figure 3), and a relatively
low household energy consumption (see Figure 4). The
cycle aging cost is higher than the fluctuations found in
electricity price (except for 7 am). Between 7 am and 8 am,
the EVs are discharged to the households, yielding the
observed marginal saving. On the other investigated days,
V2H-G improves the baseline cost saving of up to 44% due
to the higher consumptions and price fluctuations.

FCR-N shows a great cost reduction potential because of
the revenue received from frequency regulation. For the
three out of four investigated days, the total costs are
negative, implying the household owners obtain a profit,
as the revenue from frequency regulation bids is greater
than the total cost for energy consumption and battery
degradation. However, note that the adopted assumptions
about a priori knowledge of activation and the hourly



(a) Household 1 (b) Household 2 (c) Household 3

Fig. 4. Household energy consumption for Days 1 to 4.

dispatch-to-contract ratio are simplification of the real-
world conditions, which may result in an optimistic result.
Nevertheless, this encouraging result motivates further
investigations. For practical implementation, the lack of
knowledge about future activation can be tackled using
a conservative approach, for example, by offering FCR-
N only using unidirectional charging, i.e., stop charging or
charge more than planned, as this would not risk depleting
the batteries and reducing the degradation cost.

Furthermore, FCR-D (up) yields the lowest total cost
and shows good profits. Since the activation of FCR-D
(up) is typically rare, the charging behavior is minimally
affected. Note that for the three out of four days, the
cycle aging costs are higher than V2H-G. This is not
expected intuitively, as no activation is triggered. A careful
investigation reveals that this is caused by the higher bid
offering remuneration compared to the sum of day-ahead
electricity price and cycle aging marginal cost — the EVs
are actually charged more than necessary to be able to
offer a larger bid. For example, on Day 2, the EVs reached
an average final SoC of 76%, compared with the lower
limit of 70%. On Day 3, the EV fleet is charged with a
slightly higher power during 8 pm in order to increase the
bid for that specific hour. As a result, the EVs are then
able to discharge more energy to the households at 5 am
on the following day, when the bid offering remuneration is
lower. The charging-discharging leads to a higher battery
throughput and cycle aging cost. The calendar aging is
also increased due to the increased average SoC.

5. CONCLUDING REMARKS

A linearized battery model and problem formulation are
utilized to study the V2G with aggregated fleet of EVs,
where battery degradation cost is considered. By investi-
gating the V2G cases involving three Swedish household
consumptions in various seasonal conditions, the FCR-D
(up) is emerged as the most profitable frequency balancing
product offer, with the lowest entry requirement.

To improve the representation of battery dynamics during
optimization, a nonlinear, nonhomogeneous battery pack
model with thermal effects may be considered in future
work.
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