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Abstract: Due to dynamic vehicle operating conditions, random user behaviors, and cell-to-
cell variations, accurately estimating the battery state of health (SoH) is challenging. This
paper proposes a data-driven multi-model fusion method for battery capacity estimation
under arbitrary usage profiles. Six feasible and mutually excluded scenarios are meticulously
categorized to cover all operating conditions. Four machine learning (ML) algorithms are
individually trained using time-series data to estimate the current time step battery capacity.
Additionally, a prediction model based on the histogram data is adopted from previous work
to predict the next step capacity value. Then, a Kalman filter (KF) is applied to fuse all the
estimation and prediction results systematically. The developed method has been demonstrated
on cells operated under diverse profiles to verify its effectiveness and practicability.

Keywords: Battery capacity estimation, SoH estimation, Machine learning, Model fusion,
Kalman filter, Battery management system.

1. INTRODUCTION

Lithium-ion (Li-ion) batteries play an essential role in
reducing greenhouse gas emissions and combating global
warming. However, the nonlinear aging characteristics,
cell-to-cell variations, and dynamic operating conditions
make battery aging estimation a challenging task in real-
world applications, e.g., electric vehicles (Birkl et al.,
2017).

Existing battery State of Health (SoH) estimation ap-
proaches can be divided into empirical, physics-based, and
data-driven methods (Li et al., 2019). The simplicity and
low computational effort of the empirical battery aging
models made them attractive in the early days. However,
the dynamic operating profiles and cell-to-cell variations
in real-life applications make such methods lose accuracy
and reliability. Aging models have been derived from the
first principles of internal battery mechanical and electro-
chemical processes for the physics-based method. Despite
profound, detailed insights into the aging mechanisms,
the complicated parameterization and high computational
requirements make such methods unpractical for online
applications. As opposed to this, data-driven methods
are flexible, mechanism-agnostic, and can recognize trends
and patterns under complex and dynamic situations, thus
being a promising way to solve the battery SoH estimation
problem.

The inputs to data-driven models often referred to as fea-
tures, are of great importance for such a method. Whether
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the selected features can well represent or indicate the
relationship to the model output will directly affect the
model performance. A growing number of studies have
formulated various features from the battery charge and
discharge curves and applied different machine learning
(ML) algorithms to estimate the battery SoH (Ng et al.,
2020). However, the practical availability of these desired
features is usually not meticulously considered as the bat-
tery deployed in the real world often experiences highly
dynamic and random cycling profiles, especially discharge
and changing ambient environment (Sulzer et al., 2021).

Sometimes the model performance may deteriorate due
to the presumption that the model does not hold for a
certain case. Hence, an ensemble of different ML models
can potentially overcome such issues and correspondingly
increase the estimation accuracy and robustness. Some
early efforts have been made in the literature (Gou et al.,
2021). However, most of the ensemble methods have been
trained offline and then directly applied during online
usage. Consequently, the estimation result of the indi-
vidual model may not be optimally combined during the
deployment phase.

In this work, we seek to fill the identified research gap
by developing an efficient and practical SoH estimation
method for Li-ion batteries. This is achieved by first cate-
gorizing the charging profile into six feasible and mutually
exclusive scenarios and extracting corresponding relevant
features to cover all possible real-world use cases. Then two
Bayesian-based and two frequentist-based ML algorithms
are adopted to conduct SoH estimation, also quantita-
tively providing the estimation uncertainty. Eventually,
a Kalman filter (KF) is applied to systematically fuse



all individual estimation results in real-time with minor
additional computations.

2. FEATURE CONSTRUCTION AND ENGINEERING

2.1 Charging scenarios

Different from cycling the cells in a laboratory setting
with repeated cycling profiles and controlled temperature,
battery usage in real-life is highly dynamic, with frequent
changes in the operating conditions, especially under dis-
charge, where repeatable patterns are difficult to identify
due to random usage. Comparatively, the charge phase is
relatively easy to control, with a predefined charging policy
being repeatedly used. Therefore, we focus on the charge
curve for the battery capacity estimation. Nowadays, the
CC-CV charging strategy is still commonly used by many
automotive companies, so we consider it the first choice to
charge our batteries. Noteworthy, we do not limit ourselves
to the typical lab setting where all cells start with the same
initial state of charge (SoC) level and cycle under a fixed
temperature. In other words, this study intends to tackle
arbitrary CC-CV charging under practical use cases. Based
on this, we categorize the charging profiles into six feasible
and mutually exclusive scenarios (see Fig.1a).

S1: Complete CC-CV charging from 0% SoC to 100%.
S2: Partial CC-CV charging that starts before the IC

peak value (see Fig. 1c) and ends with the complete
CV phase (see Fig. 1a).

S3: Partial CC charging that starts before the IC peak
value and ends without the CV phase.

S4: Partial CC-CV charging that starts after the IC peak
value and ends with the complete CV phase.

S5: CC charging that starts after the IC peak value and
ends without the CV phase.

S6: All the remaining scenarios not covered in S1–S5.

It is worth noting that S1-S5 covers all user cases when a
conventional CC-CV charging policy is adopted. In case
other charging strategies are used, S6 is introduced to
cover the remaining ones.

2.2 Feature construction

As stated in the introduction, feature construction plays
an important role in the data-driven method. The selected
features have to effectively indicate the aging state of the
battery and also be practically available under real-world
use cases. In our cases, based on availability, different
features are selected for different charging scenarios.

Specific voltage window-related features. As illustrated in
Fig 1a–b, the voltage, and current curves will gradually
change as the battery degrades. To limit data processing
effort, a predefined voltage window is chosen as the base
to construct features. Considering that an aged cell will
gradually take less time to charge than a newer cell in such
a predefined voltage window, as can be seen in Fig. 1a, the
charging time is first chosen as a useful feature. Second,
the energy of the signal can also be used as a feature, i.e.,

E =

∫ ∞

0

s(t)2 dt, (1)

where s(t) is the signal. Third, the area under the current
and voltage curves could also represent the aging state of
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Fig. 1. Illustration of the varying health indicator as the
battery gradually ages. (a) shows the change of the
voltage curve along with an illustration of different
charging scenarios. (b) represents the change of the
current. (c) shows the change in the IC-curve.

the batteries and has previously been used by (She et al.,
2022) to successfully estimate battery capacity. Finally, it
is noticed that the voltage curve in the CC phase becomes
steeper as the battery ages. Based on this, we select the
slope of the voltage curve as one of the feature candidates.
Similarly, the slope of the current curve in the CV phase
could serve as a feature if there is a CV phase in the
charging profile.

Incremental capacity (IC) curve-related features. IC is
defined as the ratio between the change in the charging
capacity and the corresponding voltage change in a pre-
defined time interval. IC has proven to be an informa-
tive health indicator since the underlying pattern of the
IC-curves changes during battery degradation (Li et al.,
2019). To make the obtained IC curves over the battery’s
entire lifetime comparable, we adopt a time interval of ten
seconds and apply a KF to smooth the calculated IC curve.
It is noteworthy that when applying IC-related features for
battery capacity estimation in real-world applications, the
initial SoC level and the cell temperature can dramatically
change the character of the constructed IC curve due to the
cell polarization and internal resistance changes. To cope
with such changing effects, we propose to select the initial
charging SoC and charging temperature-related features
into the feature pool. For the features extracted from the
IC-curve, we choose the peak value and its corresponding
voltage level, since their changes during the battery aging
process can be quite prominent (see Fig. 1c).
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Fig. 2. The overall battery SoH estimation pipeline.

3. ESTIMATOR DESIGN

Three evaluation matrices are applied to quantify the
estimation performance, namely the mean absolute per-
centage error (MAPE), the root mean square percentage
error (RMSPE), and the 95% percentile confidence interval
of the estimation result. They are mathematically defined
as

MAPE =
1

N

N∑
i=1

|Qi − Q̂i|
Qi

× 100%, (2)

RMSPE =

√√√√ 1

N

N∑
i=1

(
Qi − Q̂i

Qi

)2

× 100%, (3)

CI = Q̂i ± 2×
√
σ(Q̂i), (4)

where Qi is the measured capacity, Q̂i is the estimated
capacity, N is the total number of samples in the test set,
and CI is a 95.4% probability for Gaussian distribution
with the covariance denoted by σ(Q̂i).

3.1 Time-series data-based model for capacity estimation

Four ML algorithms, two of which are probabilistic and
two frequentist-based, are selected to develop models for
the capacity estimation, namely Gaussian process regres-
sion (GPR) (Rasmussen and Williams, 2006), Bayesian
ridge regression (BRR) (Tipping, 2001), Random forest
regression (RFR) (Wager et al., 2014) and Deep ensemble
neural network (DeNN) (Lakshminarayanan et al., 2017).
The readers are directed to the original work for details.
All of them are able to quantitatively propagate their
estimation uncertainty to provide a confidence interval for
their results. Henceforth, the ML algorithm output, i.e.,
the battery capacityQ, will be referred to as y, and the cor-
responding features will be represented by x. A random-
search hyperparameter tuning is applied together with 5-
fold cross-validation to find the optimal hyperparameters
for each ML algorithm.

3.2 Histogram data-based model for capacity prediction

For cases that do not fit into S1–S5 due to various reasons,
e.g., extremely shallow discharge/charge, data corruption,
or communication delay/faults, the method introduced in
Section 3.1 become infeasible. To overcome the issue, we
treat the capacity monitoring task at the current time step
k as a prediction problem instead of estimation, using
historical capacity estimates up to k − 1 and features
extracted from usage data. To enable online prediction of
battery aging trajectory and lifetime with any format of
raw data collected under various operating conditions, we
have recently proposed a histogram data-based machine
learning framework (Zhang et al., 2022). This framework
fits the capacity prediction task well and is therefore
implemented recursively whenever S6 is triggered.

The end-user usage data, e.g., the accumulated dis-
charge/charge energy throughput, discharge range, cell
temperature, charging current, discharging current, volt-
age, and vehicle parking time, no matter in time series or
histograms of any dimension, are transformed into one-
dimensional (1D) histogram data. Then, a set of statistic
properties of the constructed 1D histograms are extracted
and used as feature candidates. After feature engineer-
ing, the selected features, denoted by xhd, are employed
to learn battery aging behavior. A global model is first
developed offline from N labeled input-output pairs in the
available dataset, generated from a statistically significant
number of batteries, i.e.,

∆Q̂n = fglobal(xhd,n), n ∈ {1, · · · , N}, (5)

where ∆Q̂n represents the capacity loss between two
consecutive samples for any battery in the dataset. For
the offline regression problem, the RFR is employed to
develop the function fglobal().

After obtaining a global model in (5), the second step is
to adapt it online to any considered individual battery,
indexed bym ∈ {1, · · · ,M}. This is achieved by expressing
the degradation of cell m as λm,kfglobal(xhd,m,t), where
λm,k is a correction coefficient. With the historical capac-



ity estimation values (e.g., obtained when any scenario
of S1–S5 is active) saved in the BMS memory, a cell
individualized model for the faded capacity of battery
m, is then determined by making a trade-off between
the cell corrected model, i.e., λ∗

m,kfglobal(xhd,m,t) and the

global model, i.e., fglobal(xhd,m,t), where λ
∗
m,k is optimized

online to get the best possible fit to historical data, i.e.,
{Q̂m,1, · · · , Q̂m,k−1}. The capacity fade from step k− 1 to
any future time step t ≥ k is then expressed as

∆Q̂m,t = (1− w∗
k,t)fglobal(xhd,m,t)

+ w∗
k,tλ

∗
m,kfglobal(xhd,m,t), (6)

where w∗
k−1 is a weight coefficient calculated offline to opti-

mally trade-off between the global estimate fglobal(xhd,m,t)
and the individually corrected estimate λ∗

m,kfglobal(xhd,m,t)

(Zhang et al., 2022). By assigning t to k + 1 in (6), the
following one-step capacity prediction model is obtained:

∆Q̂k = (1− w∗
k−1,k)fglobal(xhd,k)

+ w∗
k−1,kλ

∗
k−1fglobal(xhd,k), (7)

Q̂k = Q̂k−1 +∆Q̂k, (8)

where the subscript m has been dropped for any arbitrary
battery during online deployment.

3.3 Optimal model fusion

The ML models introduced in the above two subsec-
tions have their advantages and disadvantages. The best-
performing algorithm may vary depending on different
datasets and operating conditions. Fusing the results of
all algorithms may therefore give a more accurate and
reliable estimation of battery capacity. We use a KF to
optimally combine the estimation models in Section 3.1
and the prediction model in Section 3.2.

By defining the process noise as w and the measurement
noise as v, the dynamic system of battery capacity is
formulated as

Qk = Qk−1 +∆Qk−1 + wk−1, (9)

yk = CQk + vk. (10)

When the true capacity is not measured during operations,
the system output y is a vector of the estimation results
from the ML models introduced in Section 3.1 and is
defined by

y =
[
Q̂GPR Q̂BRR Q̂RFR Q̂DeNN

]T
(11)

implying that C = [1 1 1 1]
T
. Σw and Σv are covariances

of the process noise and the measurement noise, respec-
tively. The covariance of the measurement noise is com-
posed of the uncertainty quantifications of the estimates
using the four ML models.

Assumption 1. The noise w and v are uncorrelated.

Justification 1. The estimation model (10) is developed
from time-series features (extracted in Section 2.2) using
the probabilistic or frequentist-based ML algorithms. In
contrast, the prediction model (9) is obtained from usage-
related histogram-based features using RFR. Therefore,
with different inputs, ML models, and training processes,
the corresponding noise terms w and v are naturally
uncorrelated.

Assumption 2. w and v are zero-mean, white, and Gaus-
sian noise.

Justification 2. All the estimations conducted to obtain
the system output y are independent and random and so
are the processes obtaining the system inputs ∆Qk. There-
fore we can assume vk and wk are at least close to white
noise. However, for the highly nonlinear battery system
and ML-based estimation/prediction models, analytically
proving the zero-mean, whiteness, and Gaussian properties
of the two noise terms is difficult and not pursued here.
Instead, numerical justification is made by the results
presented in Section 4.

Based on the nominal model of the dynamic system (9)–
(10), a standard KF is designed, i.e.,

Q̂−
k = Q̂+

k−1 +∆Qk−1, (12)

P−
k = P+

k−1 +Σw,k, (13)

Kk = P−
k CT

k (CkP
−
k CT

k +Σv,k)
−1, (14)

Q̂+
k = Q̂−

k +Kk(yk − CkQ̂
−
k ), (15)

P+
k = (I −KkCk)P

−
k , (16)

where P is the state covariance matrix, the superscripts
− and + signify the prior and posterior, respectively, and
Kk is the Kalman gain.
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Fig. 3. Estimation results of a randomly selected NMC-
type cell under scenario S1.

4. RESULTS AND DISCUSSIONS

4.1 SoH estimation results under lab tests

To demonstrate the efficacy of the developed models, we
first verify their performance for each charging scenario,



Table 1. Results of different SoH estimation algorithms for NMC batteries under charging
scenarios S1–S6

Algorithms
S1 S2 S3 S4 S5 S6

MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE

GPR 0.693 1.073 0.887 1.323 0.915 1.491 1.532 1.999 2.110 2.757 - -

BRR 0.772 1.182 0.799 1.009 1.025 1.527 1.984 2.598 2.270 2.910 - -

RFR 0.632 0.857 0.874 1.202 0.877 1.231 1.817 2.312 1.725 2.262 - -

DeNN 0.919 1.418 0.816 1.114 1.027 1.471 1.576 2.132 1.860 2.334 - -

KF 0.629 0.861 0.714 0.880 0.751 1.178 1.662 2.110 1.731 2.229 3.899 5.611

i.e., applying them to data for which the cells have been
receiving the same charging scenario throughout their
entire lifetime. The battery dataset used in this study is
acquired from Sandia National Laboratories, and the cell
with Nickle Manganese Cobalt (NMC) positive electrode
was used (Preger et al., 2020).

The estimation errors of different SoH estimation algo-
rithms are quantitatively studied with the results listed
in Table 1. It can be seen that from S1 to S5, all the
estimation ML models derived, and the KF, achieve rea-
sonable estimates, with a MAPE of 0.629% for the best
case and 2.27% for the worst case. When the batteries are
operated under S6 over their entire lifespan, albeit a very
rare case, the proposed model fusion method can estimate
the capacity trajectory at a MAPE of 3.899%. It is worth
mentioning that under S6, the estimation models (10)
derived by GPR, BRR, RFR, and DeNN are infeasible,
and then the capacity estimation can only be performed by
the prediction model using histogram data. The relatively
poor estimation result is simply attributed to the fact that
a very small and sparse set of training data has been used.

The results in Table 1 also verify the superiority of the
proposed KF-based fusion method—it generally performs
better than, or as well as, the best-performing individual
model. As exemplified by the estimated capacity trajec-
tories of Fig. 3a of a randomly selected cell under S1,
KF follows the measured capacity better than the best
individual ML model, i.e., RFR in this case. The obtained
numerical results are, to a large extent, consistent with the
analysis. However, the global optimality is not achieved
by the KF with the employed battery dataset. This is
because the zero-mean part for the measurement noise v in
Assumption 2 does not hold. As demonstrated in Fig. 3c,
the mean values slightly deviate from zero and are located
in a range of [0.4%, 0.6%] for the four estimation models
in (10). The remaining part of Assumption 2 is valid,
as both v and w have a (nearly) Gaussian distribution
which can be seen from Fig. 3c and Fig. 7e in (Zhang
et al., 2022), respectively. All the models developed here
can provide a 95 percentile estimation confidence inter-
val, therefore providing valuable information for predictive
battery maintenance and usage optimization. Moreover,
by fusing the estimation results from all the individual
models using the KF, the confidence interval is consider-
ably tightened, in other words reducing the uncertainty
significantly. As shown in Fig. 4, the standard deviation of
the estimates from KF, σKF , is always smaller than that
of any individual model.
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Fig. 4. The standard deviation of the results from the best
model, the worst model, and the model fusion for a
randomly selected cell.

4.2 SoH estimation results under vehicle usage

In practice, it is rather rare that a battery only undergoes
one charging profile during its whole lifetime. Therefore,
it is worthwhile to explore the estimation performance
when various charging profiles are exhibited on one specific
battery. The charging profiles of each cell are supposed
to periodically rotate among the six scenarios during its
whole lifetime. The detailed rotating protocols as well as
the results are given in Table 2. The corresponding features
are extracted according to each scenario’s availability.
Specifically, for S6, since no time-series feature is available,
it is not feasible for the individual estimation models (10)
to estimate the capacity value. In such a case, whenever
S6 is triggered, the capacity remains unchanged from its
previous time-step estimate. It can be seen from Table 2
that within each protocol, the KF always provides better
estimation results than any individual ML model. When
S6 is activated more frequently, the estimation results
of the individual models generally become worse. Most
of their estimates deviate from the measurements with
a RMSPE greater than 2%, which is unacceptable for
vehicle applications. On the contrary, the KF is still very
reliable and continuously follows the ground truth at
around 1% RMSPE. By comparing different protocols and
comparing the results under lab tests to the vehicle usage
case, it can be concluded that the advantage of the KF
becomes more significant, particularly when S6 appears
more times. These results corroborate the necessity to use
the KF in real-world vehicle battery usage. By looking
into the detailed estimation result shown in Fig. 5b and
c, the best-performing individual model, i.e., GPR in
this case, still has a few estimation points violating the
±2.5% error bounds, whereas the KF manages to contain
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Fig. 5. The results of a randomly selected NMC-type
battery capacity estimation under practical charging
cycles.

all estimation points within such error bounds. Under-
estimating the capacity will lead to conservative usage,
while over-estimation can cause abuse and, in extreme
conditions, trigger thermal safety issues. As illustrated in
Fig. 5d, the KF has the narrowest probability distribution
of the estimation errors and is also closest to zero. This
means the KF is much less likely to under- or over-estimate
the capacity than all the individual methods.

Table 2. SoH estimation results under various
practical charging scenarios

Algorithms
Protocol 1: Periodically repeat {S1, · · · , S5, S6}
MAPE RMSPE

GPR 1.337 2.408

BR 1.373 1.847

RFR 1.314 1.706

DeNN 1.092 1.58

KF 0.631 0.813

Protocol 2: Periodically repeat
{S1, · · · , S5, S6, S6, S6, S6, S6}

GPR 2.043 2.999

BR 2.271 3.045

RFR 2.199 2.820

DeNN 1.706 2.387

KF 0.797 1.031

5. CONCLUSION

This paper proposes a practical battery SoH estimation
method under arbitrary usage conditions. The proposed
model fusion method is able to considerably increase the
estimation accuracy and robustness while significantly
tightening the confidence interval of the estimation result.
For example, the estimates obtained for the entire lifespan
of NMC battery cells had a MAPE of 0.631% under a
practical operating protocol (Protocol 1), and the error
was less than 0.8% for all the studied protocols.
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