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Data-driven analysis and 
prediction of dynamic 
postprandial metabolic 
response to multiple dietary 
challenges using dynamic mode 
decomposition
Viktor Skantze 1,2*, Mats Jirstrand 1, Carl Brunius 2, 
Ann-Sofie Sandberg 2, Rikard Landberg 2 and Mikael Wallman 1

1 Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden, 
2 Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of 
Technology, Gothenburg, Sweden

Motivation: In the field of precision nutrition, predicting metabolic response 
to diet and identifying groups of differential responders are two highly 
desirable steps toward developing tailored dietary strategies. However, data 
analysis tools are currently lacking, especially for complex settings such as 
crossover studies with repeated measures.

Current methods of analysis often rely on matrix or tensor decompositions, 
which are well suited for identifying differential responders but lacking in 
predictive power, or on dynamical systems modeling, which may be used 
for prediction but typically requires detailed mechanistic knowledge of the 
system under study. To remedy these shortcomings, we explored dynamic 
mode decomposition (DMD), which is a recent, data-driven method for 
deriving low-rank linear dynamical systems from high dimensional data.

Combining the two recent developments “parametric DMD” (pDMD) and 
“DMD with control” (DMDc) enabled us to (i) integrate multiple dietary 
challenges, (ii) predict the dynamic response in all measured metabolites 
to new diets from only the metabolite baseline and dietary input, and (iii) 
identify inter-individual metabolic differences, i.e., metabotypes. To our 
knowledge, this is the first time DMD has been applied to analyze time-
resolved metabolomics data.

Results: We demonstrate the potential of pDMDc in a crossover study setting. 
We could predict the metabolite response to unseen dietary exposures on 
both measured (R2  =  0.40) and simulated data of increasing size (Rmax

2 = 0.65), 
as well as recover clusters of dynamic metabolite responses. We conclude 
that this method has potential for applications in personalized nutrition and 
could be useful in guiding metabolite response to target levels.

Availability and implementation: The measured data analyzed in this study 
can be provided upon reasonable request. The simulated data along with 
a MATLAB implementation of pDMDc is available at https://github.com/
FraunhoferChalmersCentre/pDMDc.
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1 Introduction

Diet is one of the main modifiable lifestyle factors that contribute 
to health (1). It is known that individuals exhibit large differences in 
response to diet and nutritional requirements, which motivates the 
research in precision nutrition (PN) for improved population health 
(2–5). PN can be defined as providing the right diet to the right person 
at the right time, i.e., optimizing the dietary intake for individual 
needs, which requires prediction of individual responses to diet.

Prediction of metabolite response is still considered a difficult 
problem, since no mechanistic model as of yet covers the entire 
human metabolome, although important progress has been made 
in recent years. In a landmark study by Zeevi et al. (6), individual 
postprandial glycemic responses to various foods were successfully 
predicted from blood parameters, dietary habits, anthropometrics, 
physical activity, and gut microbiota highlighting the potential for 
personalized dietary recommendations to lower glycemic response. 
Later, in the PREDICT 1 study, meal composition, habitual diet, 
meal context, anthropometry, genetics, microbiome, clinical and 
biochemical parameters were used to predict individual 
postprandial responses in triglycerides, glucose, and insulin 
successfully to responses of food intake (7). Notably, both of these 
studies targeted only a small number of metabolites (one and three 
respectively) which are determinants for cardiometabolic diseases. 
However, many more metabolites have been associated with health 
and disease outcomes, and it will become a desirable trait in PN to 
guide a larger part of the metabolite levels to optimize response to, 
e.g., dietary exposures (8). Wang et al. recently used dietary data 
and microbiome to predict metabolome profiles at a static point in 
time using deep learning (9, 10). However, deep neural network 
architectures are often challenging to interpret, which is desirable 
when connecting dietary contents and metabolite response. 
Furthermore, prediction of metabolite response over time will 
provide more information than single time points. However, such 
high-dimensional multivariate time series forecasting has not yet 
been explored in PN (11).

Rather than focusing on individual metabolite responses, an 
alternative approach within PN is to identify groups of individuals 
with similar latent metabolic phenotypes (i.e., metabotypes) and tailor 
dietary advice for the group (1, 12, 13). Identifying metabotypes relies 
heavily on dimensionality reduction to capture essential trends in the 
data that can subsequently be clustered. This has previously been done 
in matrix (single point in time) and multiway/tensor metabolomics 
data (time series) using matrix and tensor decomposition methods 
respectively, such as principal component analysis (PCA) and 
CANDECOMP/PARAFAC (CP) (14, 15). Tensor decomposition 
methods like CP are useful for interpreting time series data in, e.g., 
metabolomics but are descriptive methods and not inherently 
predictive. Furthermore, CP which arguably is the more interpretable 

tensor decomposition (compared to, e.g., Tucker decomposition), has 
a multi-linear structure that does not fit all tensor data, leaving 
unexplained variance in the data.

Addressing both the problem of prediction and dimensionality 
reduction, dynamical mode decomposition (DMD) (16) has 
recently emerged as a promising tool for analysis of large-scale 
dynamical data. However, to the best of our knowledge, the 
usefulness of DMD has not yet been investigated in the analysis of 
time-resolved metabolite data. DMD works by identifying a 
low-rank linear dynamical system (LDS, a linear state space model) 
directly from data. The low-rank LDS captures the “essential” 
dynamics underlying the full system under study, and mapping 
between the low-rank system and the full system can be performed 
using a linear operator. Thus, DMD naturally incorporates both 
prediction (in the form of dynamical modeling) and dimensionality 
reduction (in the reduced rank of the model), and thus holds the 
potential to become a valuable tool within PN. Further, LDSs are 
well-studied, interpretable, and have been used extensively to model 
and forecast phenomena in a wide variety of research fields (17). 
Moreover, these systems come with a range of analytical perks such 
as stability and identifiability analysis, automatic control, and 
analytical state solutions (18).

Since its introduction, several variants of DMD have been 
proposed (19–23). Notably, parametric DMD (pDMD) allows several 
perturbations of the same system to be used to infer the parameters of 
a single DMD model (24). This makes it well suited to infer the 
metabolic system by integrating data from, e.g., different intervention 
diets. In addition, another development denoted DMD with control 
(DMDc) (22) allows incorporation of system input to the identified 
LDS, which is well aligned with, e.g., dietary interventions to separate 
the metabolic regulation from the dietary exposures.

Our aim was therefore to explore the use of DMD for the 
analysis of time-resolved metabolomics tensor data. Specifically, 
we  employ a combination of pDMD with DMDc (denoted 
pDMDc) to predict the metabolite response of a given individual 
to new diets after having trained on several others, and to identify 
potential metabotypes from LDS trajectories. As a realistic setting 
for this method development, we used measured metabolomic 
data from a dietary intervention crossover study, with variability 
in four dimensions: metabolite, time, individual, and diet. The 
methodology was further evaluated using identically structured 
synthetic data from a large human metabolome model (25), 
containing two clusters of individuals (healthy and diabetic) used 
as ground truth for metabotyping, and responses from simulated 
dietary interventions as ground truth for prediction. The 
identification of potential metabotypes was performed by 
clustering latent dynamic states derived from pDMDc using 
measured and simulated data, and compared to clustering scores 
derived using CP.
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2 Materials and methods

2.1 Data and workflow overview

2.1.1 Measured data from a dietary intervention 
study

Time-resolved metabolite data were obtained from a dietary 
crossover intervention trial (26). The trial comprised 17 middle-aged 
overweight men (BMI 25–30 𝑘𝑔/𝑚2, 41–67 years of age), all consuming 
three different diets (pickled herring, baked beef, and baked herring) 
on separate test occasions, as detailed in Table 1.

Baseline clinical measures along with anthropometric measures 
were recorded, including alanine aminotransferase (ALAT), aspartate 
transaminase (AST), gamma-glutamyl transferase (GGT), cholesterol, 
low-density lipoprotein (LDL), creatinine, thyroid stimulating 
hormone (TSH), and body mass index (BMI). On each test occasion, 
blood samples for metabolomics analysis were taken 8 times at 
one-hour intervals, including a baseline sample just before the meal 
was consumed. Metabolomics analysis was performed using GC-MS 
and 79 targeted metabolites were measured, resulting in 79 metabolite 
trajectories with 8 time points for three different diets for each 
individual. The main categories of metabolites contained in the data 
were: amino acids (n = 35), carboxyl acids (n = 6), lipids (n = 8), and 
carbohydrates (n = 16). The data can be  viewed as a fourth-order 
tensor (four-way array)  ∈ × × ×M T I D with M =79 metabolites, T =8 
time points, I=17 individuals and D=3 diets. A graphical overview of 
the study design and experimental data is presented in Figure 1. The 

baseline measurement, xm t i d, , ,=0 , was subtracted from each time 
series to focus the analysis on the postprandial dynamics in the data 
from the study intervention. For proper values on evaluation metric 
(R2) we standardized the response per diet to unit variance.

2.1.2 Simulated data from a virtual metabolic 
human dynamic model

Data was simulated for two purposes; (i) to evaluate prediction 
performance of response to unseen dietary exposures using pDMDc, 
and (ii) to evaluate metabotyping with ground truth clusters using 
pDMDc and CP. We used a virtual metabolic human dynamic model 
for pathological analysis (25) to generate simulated data. The model 
consists of 202 ordinary differential equations modelling the human 
metabolome using 1,140 kinetic parameters. Inputs to the model are 
amounts and uptake rates of glucose and triglycerides, and the outputs 
are dynamic postprandial responses of 202 metabolites.

For the dietary response prediction study, we generated a dataset 
consisting of 17 healthy simulated individuals (same number as the 
measured data in Section 2.1.1) and 90 postprandial responses to 
different dietary exposures. For the metabotyping study, data from 50 
healthy and 50 diabetic individuals were generated as postprandial 
responses to 3 meal interventions. The meals were generated by 
sampling the glucose and triglyceride content and their uptake rates 
from a normal distribution, as detailed in Table 2, “dietary parameters.” 
Differences in individual metabolism were modelled using a selection 
of kinetic parameters impacting the diabetic characteristic, as detailed 
in Kurata (25), with mean and standard deviations set to produce 
typical responses from healthy and diabetic individuals (Table  2, 
“individual parameters”). Initial values for the simulations were 
produced by running the model with the default food input (mean 
values of the dietary parameters in Table 2) for 10 h.

For each simulated dataset, the model simulated metabolite 
dynamics for 10 h, producing 60 time points sampled at 10-min 
intervals. Logarithmic down-sampling resulting in eight time points 
was done to make the simulated data more similar to the measured 
data and to save computing time when performing DMD. Metabolite 
concentrations with a standard deviation less than 10−3 mM during the 
course of the simulation were excluded, leaving 130 dynamic 

TABLE 1 Macronutrients of the intervention diets.

Meal Fat, g Protein, g Carbohydrate, g

Baked 

herring

29 33 47

Pickled 

herring

29 29 81

Baked beef 35 43 47

FIGURE 1

Study design graphic of the three-armed crossover dietary interventional study.
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metabolites for further analysis. When computing the R2 values, 
we standardized the response per diet to unit variance.

2.2 Linear dynamical systems

2.2.1 Discrete linear dynamical systems
In this work, we describe the dynamics of metabolite responses 

using discrete time LDSs, defined by a coupled system of linear 
difference equations:

 x A x B zt t t+ = +1  (1)

Here, t is the time index, xt M∈  is a vector of M  metabolite 
concentrations at time t, A M M∈ ×  is the system matrix representing 
the best-fit (smallest Frobenius norm) mapping between metabolite 
time points, zt l∈  is a vector of l  system inputs, B M l∈ ×  is the 
best-fit mapping from the input to the metabolite dynamics. We also 
assume that the measured metabolites can be projected linearly (via 
the mapping U M S∈ × ) to a smaller set of latent dynamical state 
variables xt S∈  of size S (potentially simplifying system analysis), 
representing the “essential” dynamics of the system, as formalized in 
Equations (2a, 2b)

 





x A x B zt t t+ = +1  (2a)

 ˆt txx U=    (2b)

Here, A S S∈ ×  is the reduced system matrix, B S l∈ ×  is the 
mapping from the input to the metabolite dynamics, and ˆ M

tx ∈  is 
the approximation of the data consisting of M  metabolites. Given 
these model structures, it remains to infer the dimensionality and 
parameters of Equations (1, 2a, 2b) from the available data, which 
we do using DMD.

2.2.2 Conceptual description of the dynamic 
model

DMD is a method that learns a linear kinetic model structure, 
along with its parameters, from dynamical data, without any prior 
knowledge of the underlying system. As integral part, DMD also 
provides dimension reduction of the data, which in turn reduces the 
complexity of the learned model. In practice, this means that many 
correlated measured signals can be represented by a single model 
state, similar to PCA.

Data that measure the response of a system to some perturbation 
are suitable for the application of DMD. This fits well with the setting 
of this study, where the data consist of postprandial responses, 
measured as time-resolved omics features. The DMD model, 
representing the metabolic system, is learned using least squares 
regression, which also has the advantage that optimization of model 
parameters can be done analytically. This avoids the risk of finding 

TABLE 2 Individual parameters: description of parameter distributions for simulated postprandial responses of diabetic and healthy individuals, drawn 
from normal distributions with the indicated mean and standard deviation.

Type Variable Description Value health 
(mean  ±  std)

Value diabetic 
(mean  ±  std)

Unit

Individual parameters

Vmaxlipog l
AccoaLC

Lipogenesis rate for AcCoa in 

liver

0.12 ± 0.0192 0.24 ± 0.0384 mmol/min

Vmaxlipog
MalcoaLC

2

Lipogenesis rate for Malcoa 

in liver

1 ± 0.16 2 ± 0.32 mmol/min

Vmaxtgsyn
FFAL

TG synthesis rate for FFA in 

liver

0.4 ± 0.0640 1.6 ± 0.256 mmol/min

Vmaxcholsynl
AccoaLC

cholesterol synthesis rate for 

AcCoa in liver

0.02 ± 0.0032 0.04 ± 0.0064 mmol/min

Kminssyn
GlcB

MMc for insulin synthesis 7.5 ± 1.2 11.25 ± 1.8 mmol

KmInsBL
MMc for insulin in liver (1 ± 0.16)·10−8 (1.5 ± 0.24)·10−8 mM

KmInsBM
MMc for insulin in skeletal 

muscle

(1 ± 0.16)·10−8 (1.5 ± 0.24)·10−8 mM

KmInsBA
MMc for insulin in adipose 

tissue

(1 ± 0.16)·10−8 (1.5 ± 0.24)·10−8 mM

Meal parameters

GlcB
meal

total input glucose 220 ± 88.9 220 ± 88.9 mmol

Tdelay
Glc

time delay of glucose release 50 ± 20.2 50 ± 20.2 min

TGB
meal

total input TG 25 ± 10.1 25 ± 10.1 mmol

Tdelay
TG

time delay of TG release 240 ± 96.9 240 ± 96.9 min

Meal parameters: the four parameters governing the input to the simulated metabolic system, generating different diets from the normal distribution. The values are indicated in mean and 
standard deviation. MMc stands for Michaelis–Menten constant.
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local optima, which is a problem for many machine learning methods 
(27). Furthermore, the least squares solution can be calculated using 
the singular value decomposition (SVD), which also allows for 
dimension reduction and therefore reduction in model complexity.

Additionally, DMD can be extended to include a known input to 
the model (dynamic mode decomposition with control, DMDc). In 
this work, the model structure expressed in Equations (2a, 2b) is 
learned using DMDc, with dietary intake as input and measured 
postprandial response, in the form of high dimensional metabolomics 
time trajectories, as output. Furthermore, to include information 
about responses to different meals, an additional extension called 
parametric DMD (pDMD) can be combined with DMDc, resulting in 
the proposed pDMDc method. This development enables prediction 
of postprandial response to new diets. Since the dimensionality 
reduction property of DMD still holds for pDMDc, it also allows for 
identifying the differences in response between individuals in large 
groups of omics features.

A mathematical description of DMDc and pDMDc can be found 
in Sections 2.3 and 2.4, respectively. To give an overview of our 
proposed data analysis workflow, we summarize the two different 
applications, i.e., predicting the postprandial metabolite response and 
the identification of metabotypes, in Figure 2.

2.3 Dynamic mode decomposition with 
control

In the context of the dynamic metabolite measurements described 
in Section 2.1, vectors of metabolite samples xt M∈  per time point 

t T= …1 2, , ,  are stored column-wise in the matrices (commonly called 
snapshot matrices in the DMD literature),

 

( )1
1 2 1: M T

TX x x x −
−

×
| | |

| | |

 
 = … ∈ 
  



 

(3)

 

( )1
2 3: M T

TX x x x × −


′


 

|
= … ∈ 
 | 

| | |

|


 

(4)

Thus, one snapshot matrix contains the first T −1 measurements 
and the other one contains the last T −1 measurements. Note that here 
we  assume that the metabolite measurements stem from a single 
dietary provocation to the metabolic system.

Further, we assume that the measurements in each time point 
have been generated from a linear time-invariant system (Equation 1), 
where each time point is a linear function of the previous measurement 
and a previous control/input signal. Using the example data, the input 
zt could represent, e.g., nutrient composition in a dietary intervention, 
and the data xt  represent the postprandial metabolite responses to the 
intervention. To estimate the matrices A and B, we first construct the 
control input snapshot matrix, in Equation 5.

 

( )1
1 2 1: l T

TZ z z z × −
−

| | |

| | |

 
 = … ∈ 
  



 

(5)

FIGURE 2

Overview of the two applications for which we use our method. (A) Identification of a discrete linear dynamical system (LDS) using parametric DMD 
with control (pDMDc) allows for prediction of postprandial response of a new diet having trained on several others (Section 2.5). (B) Using pDMDc with 
a shared output mapping U tot( ) that links individuals in the population to the same LDS framework, we cluster latent state trajectories xt i d, ,  to identify 
metabotypes (Section 2.6).
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These definitions allow us to formulate an equation analogous to 
Equation (1) but in full matrix form:

 ′ = +X AX BZ  (6)

Here, ′X , X  and Z  are already known, so in order to solve for A 
and B, we restate Equation 6 as

 
′ = [ ]







 =X A B

X
Z

GΩ
 

(7)

We model the dietary input (represented by the nutritional 
composition of the intervention diet) as an impulse of size l  to the 
metabolic system at the first time point, which implies that Z  is set to 
zero everywhere apart from the first time point (u1). Accordingly, the 
matrix Σ can be written as

 

1 2 3 1

1 0 0 0

Tx x x x

z

−



| | | |

| | |

 
 … Ω =
 


… 

|

 

(8)

We now seek the best-fit solution, in the Frobenius sense, of the 
operator G , representing a column-wise concatenation of A and B. 
This is achieved using the Moore-Penrose inverse (denoted † ) via the 
SVD of Ω Σ=U W . As commonly done in DMD, we can also choose 
to truncate the SVD to V  ≤ rank Ω( )≤ M l+( ) components (e.g., to 
reduce overfitting and sensitivity to noise), resulting in the reduced 
matrices ( )ˆ M l VU + ×∈ , ( )1ˆ T VW − ×∈  and ˆ V V×Σ∈ . Applying 
the pseudo-inverse and truncated SVD to solve Equation 7 gives us 
the matrix G  as

 
( ) ( )† †† 1ˆ ˆˆ ˆ ˆ ˆG X X U W X U W X W U−′ ′ ′= Ω = Σ ≈ ∑ = ∑′  

 (9)

In the text below, Â M M×∈ and ˆ M lB ×∈  will be used to 
denote rank-reduced versions of A and B. The resulting rank-reduced 
system retains the same size as the original system (Equation 1) but is 
less prone to overfitting to the given data. We  now retrieve the 
approximations Â  and B̂ of the two linear operators A and B by 
dividing G  into two parts:

 

[ ]
( ) ( )1 1

ˆ ˆA

ˆ ˆˆ ˆ ˆ ˆX z

A B B

X W U X W U− −

 ≈  
 = ∑ ∑ ′


′


 

 (10)

Here ( )ˆ X M VU ×∈  and ( )ˆ z l VU ×∈  represent the bases for 
the metabolomics data and the dietary input, respectively, as 

( ) ( ) .ˆ ˆ ˆ[ ]X zU U U=     This yields the rank-reduced system

 1 ˆ ˆˆ ˆAt t tx x B z+ = +  (11)

where ˆtx  denotes the approximation of the metabolite 
concentration xt .

At this stage, the system still represents the dynamics of each 
metabolite with a separate state. However, for simplified analysis 
we also aim to reduce the number of states of our LDS to a latent space 
representation with S ≤ M states (cf. Equations (2a, 2b)). The choice of 
S and V is dependent on the data and can be set equal to each other. 
To do this, we start with the SVD ′ ′ ′= ′X U WΣ . Next, we truncate the 
matrix ′∈ ×U M M  to form U M S∈ × , which we use to map the 
system onto the latent state space. The resulting system matrix, input 
matrix, and state vector for the reduced order LDS become

 ÂA U U=  


 (12a)

 
ˆB U B= 


 (12b)

 ˆt tx U x= 


 (12c)

where A S S∈ ×  and B S l∈ × . This allows us to form the 
reduced LDS as

 





x Ax Bzt t t+ = +1  (13a)

 ˆt tx Ux=   (13b)

Here, the initial state x1  is derived directly from data as  x U x1 1=  .

2.4 Parametric dynamic mode 
decomposition with control

For the remainder of the manuscript, we will use an index-based 
notation. Using the data as an example, xt i d M

, , ∈ × 1 represent the 
column vector of the metabolite postprandial response at the t:th time 
point, i:th individual, and d:th diet. We use the colon notation (:) to 
indicate that a range of time points are selected resulting in the matrix 
x T i d M T
1: , , ∈ ×  and the ∗ to indicate the concatenation of responses 

of D diets for the i:th individual as Xi
T M D

,∗
× ⋅( )∈ . Finally, we use 

( ) ( )tot M T D IX × ⋅ ⋅∈  to denote all data in the dataset concatenated as 
X X X Xtot

i i i
( )

= ∗ = ∗ = ∗= … 1 2 17, , ,, . Parametric DMD with control 
(pDMDc) can make use of higher order tensor data, such as cross-over 
interventions, where 3-way data (I M T× × ) are collected for multiple 
interventions into 4-way data (D I M T× × × ) (24). Thus, pDMDc has 
the potential to incorporate several provocations of the metabolic 
system into the same dynamic model, predict metabolite response to 
a new diet, and also identify groups of differential responders by 
clustering the individual latent state trajectories. Using pDMDc on the 
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tensor data as described in Section 2.1, we can obtain system distinct 
matrices Ai and input matrices Bi  per individual i = …{ }1 2 17, , ,  based 
on data from all diets in the dataset.

We do this by concatenating data from all diets, forming the new 
snapshot matrices Xi,∗, Xi,∗′  and Ωi,∗ per individual (analogous to 
Equations 3, 4, 8) according to Equations 14, 15, and Equation 16

 

, 1, , 1 2, , 1 3, , 1 1, , 1 1, , 2, , 3, , 1, ,

1

i i d i d i d T i d i d D i d D i d D T i d D

diet diet D

X x x x x x x x x∗ = = = − = = = = − =

| | | | | | |
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| | | | |
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Subsequently, we proceed with DMDc, completely analogous to 
Equations 9–12a, 12b, 12c but substituting ′X  (Equation 4) with Xi,∗′  
(Equation 15) and Ω  (Equation 8) for Ωi,∗ (Equation 16), to obtain 
the matrices Ai, Bi  and Ui d, . For a detailed derivation, see the 
Supplementary material, Section 1. This gives the following system, 
analogous to Equations 13a, 13b:

 





x A x B zt i d i t i d i t d+ = +1, , , , ,  (17a)

 , , , , ,ˆ .t i d i d t i dx U x=    (17b)

Here the dimensions of the system are the same as for 
Equations 13a, 13b and the indices t, i, and d  represent time, 
individual, and diet, respectively. The initial state of each individual 
and diet x i d1, ,  is derived as  x U xi d i d i d1 1, , , , ,=  .

When using Equations 17a, 17b to predict the response to a new 
diet, we  avoid projecting the states onto a lower-dimensional 
subspace (corresponding to setting S = M during the SVD of the 
snapshot matrix Xi,∗′  and thus effectively omitting Ui d,  from 
Equations 17a, 17b) but still rank-reducing the system (see 
Supplementary material Equation S8). This is done to reduce 

prediction errors since the interpretability of the model is not 
the focus.

To identify metabotypes, we  take an alternative approach to 
deriving the LDS, using a mapping between the full and latent system 
that is shared by all individuals, thereby making state trajectories 
comparable between individuals. We  start by forming the matrix 
X tot M T D I( ) × ⋅ ⋅( )∈  by column-wise concatenation of data for all 

individuals, time points, and diets. We then perform an SVD of X tot( )

= U Wtot tot tot( ) ( ) ( )Σ   and truncate the resulting matrices using 

S rank X tot≤ ( )( )   components to obtain the matrices ( )tot M SU ×∈  ,  

( )tot S S×∈Σ   and W tot T D I S( ) ⋅ ⋅( )×∈ . Now U tot( ) defines the 
mapping between the full system and a latent, reduced system, shared by 
all individuals. Next, we use U tot( ) to project the snapshot matrices Xi,∗ 
and Xi,∗′  onto this latent space, forming two new matrices according to

  X U Xi
tot

i, ,∗
( )

∗= 
 (18a)

  X U Xi
tot

i, ,∗
′ ( )

∗
′= 

 (18b)

Similar to Equation 16, we then form a matrix Ωi,∗ according to
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Finally, using Xi,∗′  and Ωi,∗  from Equations 18a, 18b, 19, we again 
proceed with DMDc according to Equations 9–12a, 12b, 12c, but this 
time substituting the snapshot matrix ′X  (Equation 4) with Xi,∗′  
(Equations 18a, 18b) and Ω  (Equation 8) with Ωi,∗ (Equation 19), to 
obtain the matrices Ai and Bi . For a detailed derivation, see the 
Supplementary Material, Section 2. Together with the matrix U tot( ), 
this allows us to write the system as, in Equations 20a and 20b

 





x A x B zt i d i t i d i t d+ = +1, , , , ,  (20a)

 
( )

, , , ,ˆ tot
t i d t i dx U x=    (20b)

Here, the three diets are given distinct initial states 


x U xi d
tot

i d1 1, , , ,= ( )  and initial inputs z d1,  to the same individual LDS 
given by the system matrix Ai and input matrix Bi .

2.5 Predicting postprandial metabolite 
response to unseen diets

Prediction of response to unseen diets with pDMDc was done 
using measured data (Section 2.1.1) and simulated data (Section 
2.1.2), where evaluation of performance was measured using R2 on 
test sets.

Pooling of the measured data was done using the responses to 
the three dietary exposures for all individuals (n = 17), thus each 
response per individual is considered one “observation.” Using the 
measured data, a training, validation, and test split of 60, 20, and 
20% of the observation were used, respectively. To estimate the R2 
on the entire dataset, the order of observations in the entire dataset 
was randomly permuted prior to splitting, training, and evaluation. 
This resampling without replacement was performed 100 times 
and the average R2 from all iterations was calculated as the 
final one.

To investigate if the inclusion of further dietary exposures hold 
the potential to improve the predictions, initially the same pooling of 
the data (Section 2.1.2) from 17 simulated individuals was performed. 
However, instead of using the same split as for the measured data 
we assigned a large test set of the response to 50 diets on 17 individuals 
and gradually increased the number of responses to diets in the 
training and validation set from 3 up to 40 diets.

Model complexity was chosen using the residuals of the training 
and validation data. When the root mean squared error (RMSE) of the 
validation data deviated more than 30% from the RMSE on the 
training data, the training stopped and the model that achieved the 
lowest RMSE was chosen. Model performance evaluation was 
measured using R2-values computed according to Equation 21.

 

( ) ( )( )
( )( )

2

2
2

ˆ
1

N
ii i

N
ii

vec vec
R

vec

−
= −

−

∑

∑

 

 
 

(21)

where vec ( ) represents the vectorized tensor   (entire test set) 
and ̂  (entire predicted test set) denotes the predicted tensor while 
  denotes the average of all the values N  in the tensor.

2.6 Metabotyping

Metabotyping was performed using both pDMDc and CP 
(representing a state-of-the-art decomposition method) on the 
measured data from the intervention study described in Section 2.1.1 
and on the simulated data described in Section 2.1.2. To validate the 
use of pDMDc for metabotyping, we aimed to identify two previously 
published metabotypes (15) in the measured data. Using simulated 
data, metabotyping was performed to identify ground truth clusters 
of diabetic and healthy individuals as described in Section 2.1.2.

To identify metabotypes using pDMDc, we  compared the 
resulting latent state trajectories from pDMDc (Section 2.4) between 
individuals by taking the pairwise cosine similarities cs i j d, , ,  and 
arranging them in a square matrix with I=17 rows and columns as in 
Equation 22:

 
c

x x

x xs i j d
s T i d s T j i d

s T i d s T
, , ,

, : , , , : , ,

, : , , , :|| || ||
= ≠ 

 

1 1

1 1



,, , ||j i d≠  
(22)

Here, xs T i d
T

, : , ,1
1∈ ×  denotes the latent state trajectories, the 

indices i and j  represent distinct individuals producing a square 
similarity matrix cs I I d

I I
, : , : ,1 1 ∈ ×  per state and diet. We proceeded 

by clustering the matrix using agglomerative clustering to identify 
groups of individuals with similar metabolite dynamics per state. In 
the case of measured and simulated data, the number of clusters to 
search for was known.

Model complexity in pDMDc for metabotyping, i.e., the choice of 
S and V  (for simplicity we choose S V= ), was assessed by identifying 
the inflection point in the scree plot of the singular values derived from 
the SVD X tot( )= U Wtot tot tot( ) ( ) ( )Σ  (28, 29). Further, we classified the 
S most dominant dynamical profile by clustering the covariance 
matrix C M M∈ ×  of the measured data for each metabolite averaged 
over all individuals and diets M TX ×∈  (Equations 23, 24). The 
dominant dynamical metabolite profiles were compared with latent 
state trajectories xs T i d, : , ,1  using correlation.

 
1: ,1: , ,

1 1

1 I D
M T i d

i d
X x

I D = =
= ∑ ∑

 
(23)
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( )covC X=

 
(24)

Clusters of metabolites in the covariance matrix were identified 
using agglomerative clustering with “Farthest distance” as method and 
one minus the sample correlation between points as distance metric 
in MATLAB (Statistics and Machine Learning Toolbox, version 7.10.0, 
R2022a, The MathWorks, Inc., Natick, Massachusetts, US).

The potential metabotype clusters identified using pDMDc were 
compared to clusters derived from the scores of the unconstrained CP 
(30), representing a state-of-the-art tensor decomposition method 
(Equation 25).

 
 = ⊗ ⊗ ⊗

=
∑
f

F
f f f fr q p h

1  
(25)

Here r M∈ , q T∈ , p I∈ , and h D∈  denote factors 
representing the modes (metabolites, time points, individuals, and diets 
respectively) of the tensor  ∈ × × ×M T I D . The factors are multiplied 
using the outer product ⊗ and form a tensor with four axes/modes and 
the F components are summed to reconstruct the tensor  . This is 
similar to PCA where the factors of different components are constrained 
to be orthogonal to each other and the tensor is constrained to only two 
axes, i.e., a matrix. We refer to p as individual scores, and the other 
factors as metabolite, time, and diet loadings (r, q, and h respectively). 
The data for each metabolite was scaled to unit standard deviation (31). 
The CP models were derived using the MATLAB N-way toolbox (32) 
and model complexity was chosen by selecting the model that explained 
the most variance without exhibiting two-factor degeneracies.

Using CP, clusters were identified using k-means on the individual 
scores p f  and compared to clusters identified using pDMDc. 
Agglomerative clustering was performed on the similarity matrix 
derived using pDMDc since this clustering performs well on matrices 
similar to covariance matrices while the k-means was chosen when 
clustering CP scores, as it is a common method for clustering matrices 
with no particular structure (27). To assess the biological relevance of 
the clusters, we used ANOVA to find associations between clusters 
and clinical baseline and anthropometric measures. For strong 
associations (p < 0.05) with a plausible biological relationship between 
metabolites, clusters, and baseline measures, we infer that the clusters 
may correspond to potential metabotypes.

To compare variance captured using pDMDc and CP we calculated 
the correlation between orthonormal basis vectors U M s

tot
1: ,

( )  and the 
metabolite loadings rf . Furthermore, we  calculated correlation 
between the latent state trajectories x T i d1: , ,  and the time loadings q f  to 
assess the dynamic behavior captured in each component and state. 
The trajectories and time loadings were compared to mean metabolite 
trajectories of grouped metabolites from clustering the data covariance 
matrix using correlation (Equation 24).

3 Results

3.1 Predicting postprandial metabolite 
response to unseen diets

Using the baseline metabolite measurement and the dietary 
information (macronutrient amounts) we predicted the response of 

unseen diets in the measured data. Since the participants (n = 17) 
were only exposed to three meal challenges in the study, we pooled 
data from all individuals and considered each individual with their 
metabolite response to the three challenges as three “observations.” 
Using the pooled data we  were able to predict the test sets (10 
observations) with 40% explained variance (R2 = 0.4) (averaged over 
all resampling iterations). Figure 3A shows a predicted response to a 
unseen dietary exposure in six of the 79 metabolites, whereas 
Figure 3B shows the prediction and data of the entire test set as a 
scatter plot.

Using simulated data from 17 individuals (pooled data as in the 
measured data), we observed that increasing the number of exposures 
to diets in the training set increased R2 on the large test set (170 
examples and 50 diets) shown in Figure  4. When increasing the 
number of diets successively from 3 to 40, R2-values displayed a 
corresponding increase from around 0.38 to 0.65 (Figure 4). As input 
to the pDMDc model, we used the simulated metabolite baseline and 
the dietary information (glucose and triglyceride content and their 
delay coefficients explained in Section 2.1.2).

3.2 Metabotyping

Metabotyping was performed in measured data (Section2.1.1) to 
identify already published metabotypes and on simulated data 
(Section 2.1.2) to identify ground truth clusters of healthy and 
diabetic individuals.

The scree plot of the singular values (used to choose model 
complexity) resulted in an inflection point at four SVD components 
(data not shown), i.e., four latent pDMDc states. The correlation 
between averaged metabolite clusters and latent states was calculated 
to identify what metabolite category the states represented. The first 
state trajectories captured metabolite trajectories peaking at 2 h post 
ingestion (ρ  = 0.88), the second captured slower dynamics, peaking at 
>7 h (ρ  = 0.97), the third state captured oscillatory dynamics (ρ  = 
0.85), and the fourth state captured intermediate dynamics (ρ  = 0.93), 
peaking at 3 h (Figures 5A,B). Using CP, only three components could 
be extracted that showed both interpretable dynamics and biologically 
relevant clusters in scores (Figure 5C). CP models using more than 3 
components had degenerate solutions in accordance with previous 
findings from this data set (15). The CP time loadings reflected 
pDMDc states one (ρ  = 0.90) and two (ρ  = 0.99), but did not capture 
dynamics of state three (ρ  = −0.06) and four (ρ  = −0.54). 
Regularization of the metabolite mode was attempted, but clustering 
in scores revealed no relevant biological connection to baseline clinical 
parameters (data not shown).

Figure 6 gives a visual overview of the metabolite contribution to 
each state in pDMDc and components in CP (Figure 5), via column 
vectors of the shared output matrix U tot( ) (Section 2.4) and metabolite 
loading vectors (Section 2.5). The figure shows that large groups of 
metabolites (Figure 6) coincide with dynamic profiles (Figure 5A) in 
each given latent state and component of the models. The CP 
metabolite loadings (Figure 6C) coincide well in the first (ρ  = 0.89) and 
second (ρ  = 0.78) component with the first and second pDMDc state 
but states three and four correlated more poorly in the third component 
(ρ  = −0.41 and ρ  = −0.44, respectively). For the metabolite data used 
in this study, the first state was represented predominantly by amino 
acids, which had an early absorption peak at around 2 h (Figure 6, first 
column). The second state was represented predominantly by lipids 
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(Figure 6, second column), with a late peak after 7 h (Figure 5, second 
column). The third state was represented predominantly by 
carbohydrates (Figure 6A, third column), with an oscillatory dynamic 
behavior. The fourth state was represented by a mix of carbohydrates, 

carboxyl acids, and amino acids among others (Figure  6A, fourth 
column), with a fast dynamic behavior (peak around 3 h).

The state trajectories xi d,  obtained from the 4-state pDMDc model 
were clustered state by state using agglomerative clustering on the 

FIGURE 3

(A) Dynamic metabolite trajectories for training (gray) and holdout test (red) observations, exemplified for 6 out of 79 metabolites. Here dots are data 
and lines are model prediction (red) or reconstruction (grey). (B) Entire test data and prediction of test data as scatter plot for one of the cross-
validation iterations. The line represents the perfect match between data and predictions.
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cosine similarities between individual trajectories as described in 
Section 2.5. As shown in Figure  7A, clustering in the first state 
trajectories in the meat diet produced two response patterns, one with 

mostly positive trajectories (blue) and mostly negative trajectories 
(red). Using the 3-component CP model similar clusters were found 
with 94% overlap to the ones found with pDMDc (Figure 7B). However, 

FIGURE 4

Prediction of responses to simulated diets using pooled individuals as in Figure 3. (A) Prediction metric R2 of a large test set with increasing number of 
diets in the training set (5 iterations of scrambling the examples prior to splitting training and validation). (B) Prediction of test example (red) and training 
examples (grey) shown in six metabolite (out of 130 in total) responses. Here dots are data and lines are model prediction (red) or reconstruction (grey). 
The predictions are made using 40 diets in the training set. The subscripts GI,L, AdT, and MS stand for metabolites modelled in gastrointestinal tract, 
liver, adipose tissue, and skeletal muscle, respectively.

https://doi.org/10.3389/fnut.2023.1304540
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Skantze et al. 10.3389/fnut.2023.1304540

Frontiers in Nutrition 12 frontiersin.org

a 100% match could be found using two-components but explaining 
less variance of the data (15). ANOVA analysis revealed that the 
clustering was significantly associated with baseline creatinine levels 
(p = 0.007). Finally, the amino acids that contributed the most to the 
first state showed differences in response between clusters (Figure 7C).

When applying pDMDc and CP for metabotyping on simulated 
data we  were able to identify simulated diabetic and healthy 
individuals (Figure 8). Using pDMDc, the scree plot showed inflection 
point at four states (data not shown) and diabetic clusters were 
identified in states two and three but were separated most clearly in 
state four (Figure 8A). Although ground truth clusters could also 
be found using CP (Figure 8B), more than three components could 
not be modelled without factor degeneracy even though clustering of 
the covariance matrix revealed dynamics which pDMDc could model 
but not CP (data not shown). The most dominating metabolites in the 
fourth state displayed clear cluster separation (Figure 8C).

4 Discussion

In this work, we explored combining two variants of DMD (DMD 
with control and parametric DMD) for the purpose of prediction and 

classification of metabolomic data from multiple dietary challenges. 
We  demonstrated the utility of the method in two use cases: (i) 
predicting measured and simulated and postprandial response to new 
diets based on data from prior dietary interventions (ii) identifying 
metabotypes in metabolomic data from a dietary intervention 
crossover study and simulated data. We show that it is possible to 
predict responses to new dietary exposures using pooled measured 
and simulated data. Additionally, we  showed that prediction 
performance is increased when adding more diets to the data available 
for training the DMD model. Furthermore, we  showed that 
metabotyping can be performed using the same pDMDc model, and 
that the clustering results are comparable to those produced by the 
state-of-the-art method CP. To our knowledge, this study represents 
the first application of DMD to metabolite data.

Using pDMDc to predict the simulated data set from the virtual 
human metabolic model, we showed that the predicted variance could 
be improved significantly by adding more diets (Figure 4). This was 
done since no more than three dietary exposures were available in the 
measured data. The result indicates that using more dietary exposures 
from dietary intervention studies could improve predictive 
performance, and that the pDMDc algorithm could be  useful for 
predicting large parts of the measurable metabolism with high 

FIGURE 5

(A) Average measurement trajectory per metabolite (grey lines) and mean measurement trajectory per dynamical class (red line) obtained from 
clustering of the covariance matrix of the averaged data per metabolite. (B) Individual state trajectories for the pickled herring diet (grey lines) and 
median of individual trajectories per state (red line). (C) CP time loadings (q from Equation 23) for the 3-component CP model.

https://doi.org/10.3389/fnut.2023.1304540
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Skantze et al. 10.3389/fnut.2023.1304540

Frontiers in Nutrition 13 frontiersin.org

precision. However, the efficacy needs to be confirmed in large-scale 
multi-diet intervention studies.

We showed that pDMDc is interpretable in terms of what 
metabolite dynamics each state represents (Figures 5, 6), in contrast 
to deep learning methods that often lack an explicit representation of 
metabolite dynamics, often making interpretation difficult (33). 
Furthermore, pDMDc is linear and built on well-understood 
mathematics used in many fields of physics and mathematics, 
including linear control theory. Thus, pDMDc provides the potential 
to approach PN by estimating the optimal dietary input given a target 
metabolite trajectory (18). This could potentially help find the best 
personalized diet in a population with differential responders. To do 
this, a multi-diet intervention would be needed for the model to learn 
the individual responses in a large set of metabolites to varied diets. 
Thereafter, a priori known target levels of important biomarkers would 
be set and used together with the trained model to calculate what 
dietary input is required to meet those levels. This is analogous to 
existing methodology in automatic control, which is well understood 
and widely applied to LDSs. While this is a relatively easy problem in 
cases where we have perfect knowledge of the system under study, it 
should be noted that pDMDc only provides an approximation to the 
metabolic system based on a limited number of postprandial 

responses. It is therefore very important that the dietary challenges are 
as varied as possible, to capture as much of the systems capabilities as 
possible. Other machine learning methods, like random forest and 
network models, are not as well studied in the context of automatic 
control, and LDSs are preferred when applicable (18, 34). Additionally, 
the proposed pDMDc methodology uses differences in model states 
(roughly corresponding to groups of metabolites) to identify 
metabotypes. This means that it naturally highlights metabolites that 
could potentially be used as biomarkers for metabotyping, as well as 
giving suitable time points for measuring these metabolites after a 
dietary provocation.

Metabotypes were successfully identified with pDMDc in 
measured and simulated data by clustering latent state trajectories 
derived using a shared output map U tot( ) (Equations 18a, 18b). 
Imposing the shared output map makes the individual state 
trajectories comparable, enabling clustering of individuals which 
to our knowledge has not been done before using this 
methodology. The high correlations (Section 3.2) between 
trajectories in data (Figure 5A), latent states (Figure 5B), and CP 
time loadings (Figure  5C) show that pDMDc can be  an 
interpretable model in terms of visually inspecting what each 
latent state represent. This is further supported in that metabolite 

FIGURE 6

(A) Column vectors of U tot( )color-coded by metabolite category, describing the contribution of metabolites (similar to PCA loadings) to the observed 
states. (B) CP metabolite loadings (r from Equation 25) color-coded by metabolite category, describing the metabolite contribution to each CP 
component.
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contribution to each latent state can be  identified in the 
output map U tot( ).

Metabotype clusters of the cosine similarity scores overlapped 
well with clusters derived from CP in already published 
metabotypes (15). However, using simulated data ground truth 
clusters (healthy and diabetics) were identified with highest 
classification accuracy in the fourth pDMDc state, while they were 
identified in all three CP components. This indicates that CP may 
be superior to pDMDc when it comes to clustering. Furthermore, 
CP has the advantage of enabling an overview of the data in one 
plot (subplots of factors per component (35)). In contrast, latent 
pDMDc states must be clustered per state and per dietary exposure 
and a full overview of the compressed data using the model is not 
trivial to produce. However, unconstrained CP can degenerate in 
spite of not all dynamics from the data being accounted for in the 
CP model. This problem is not present using pDMDc since model 
complexity depends on the SVD which does not degenerate due 
to orthogonal components. Although divergent predictions can 
occur in DMD model due to instability of the LDS, this can 
be  mended by scaling eigenvalues (20). To avoid degeneracy 
problems, constraints on the CP model can be imposed, such as 
orthogonality constraints on the metabolite mode making it more 
similar to the orthonormal basis U tot( ) in pDMDc. However, in 

the present study we  focused on comparing our method to 
unconstrained CP, as it is unique up to permutation and scaling 
ambiguities, which is not the case when imposing constraints 
(31, 35).

When metabotyping performed on static markers and related to 
disease outcomes, which is often the case (11), it is far from certain 
that individuals within the same metabotype will respond similarly 
to targeted food. Conversely, identifying differential responders to 
meals prior to relating them to outcomes, as is done using pDMDc, 
may increase the likelihood that the individuals within each identified 
group respond similarly to a tailored diet. Indeed, the more diets the 
individuals are exposed to, the more likely it is that the groups of 
differential responders represent true metabotypes, since more 
information of their metabolic system is uncovered. An added 
advantage of pDMDc is that it allows clustering of differential 
responders and prediction of response to new diets based on the 
same model, contrary to purely predictive or descriptive models like 
random forests and CP.

Limitations include that to our knowledge there is currently no 
well-established method for forecasting multivariate metabolite time 
series using baseline values and dietary information. Consequently, 
no comparison to the state-of-the-art was possible in the prediction 
case. Additionally, the dietary inputs were macronutrients, 

FIGURE 7

Clustering of metabolic response to diet using pDMDc and CP to infer metabotypes (red and blue lines and dots). (A) The individual state trajectories of 
the first state in response to the meat diet, using four latent states. (B) K-means clustering of CP scores. (C) Raw data of amino acids contributing most 
strongly to the first column vector of 

U tot( ), color-coded according to the clustering.
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representing a highly simplified encoding of the nutritional content of 
the meals. More informative encodings, e.g., included food items and 
type of food preparation, might improve prediction and clustering 
results. Furthermore, the measured dataset only included 17 
individuals each with 3 dietary challenges, hampering generalization 
of results from this part of the study. Finally, no ground truth 
metabotype clusters were available using the measured data, yielding 
a proxy validation by identifying previously published clusters.

5 Conclusion

We have developed a method for analysis of time-resolved 
metabolomics data, based on a combination of parametric DMD 
and DMD with control for analyzing time-resolved omics tensor 
data. To the best of our knowledge, this is the first use of DMD as a 
tool for clustering and prediction in metabolomics. The method was 
applied to measured and simulated data to predict metabolite 
responses of unseen dietary exposures using the metabolite baseline 
and the dietary information. Using simulated data, we showed that 
metabolite responses to dietary provocation could be predicted with 
high accuracy. Additionally, the pDMDc model was used to infer 

metabotypes from experimental and simulated data by clustering 
LDS state trajectories, resulting in agreement with previously 
published outcomes, although CP was shown to be  a stronger 
metabotyping tool. The method thus has strong potential for PN 
applications as it learns the relationship between dynamic 
postprandial response and dietary exposures. Furthermore, it has 
the potential to provide optimal tailored diets, given target levels in 
biomarkers of interest. However, this potential still must 
be demonstrated using experimental data from large scale studies 
using diverse intervention diets. Even though the pDMDc 
methodology presented in this article was developed and applied in 
the context of personalized nutrition and multiple dietary 
exposures, it should be noted that prediction and identification of 
differential responders in other time-resolved omics or high 
dimensional biological data may also be suitable use cases. Future 
directions of development may include refining the estimation of 
the input dynamics such that it can provide a more realistic impact 
on the dynamics and investigating optimal dietary input for a priori 
known metabolically healthy target levels. Finally, for improved 
prediction performance and accuracy of pDMDc-tailored diets, a 
deeper investigation of which type of nutritional information that 
should be used as input is needed.

FIGURE 8

Clustering of state trajectories and CP scores to identify the ground truth simulated diabetic (blue) and healthy (red) patients. (A) Individual DMD state 
trajectories of the fourth state using four latent states. (B) CP scores clustered using the three-component model. (C) Raw simulated data of 
metabolites with the strongest contributors to the fourth column vector of U tot( ), color-coded according to the clustering. The subscripts p, h, l, and 
GI stand for metabolites modelled in plasma, heart, liver, and gastrointestinal tract, respectively.
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