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Abstract: This paper presents a sensitivity-based heuristic to address the dynamic priority
assignment problem of connected and autonomous vehicle (CAV) and human-driven vehicle
(HDV) at traffic intersections. We exploit sensitivity analysis tools to approximatively predict
the CAV’s performance violation as a function of the HDV states. Such predictions are then used
to decide on a crossing order that preserves optimality and feasibility despite the behavior of
the HDV. The proposed algorithm is compared with the baseline first-come, first-serve (FCFS)
and mixed-integer nonlinear programming (MINLP) approaches. In the closed-loop simulation,
we show that the heuristic is computationally much faster than MINLP and able to retain a
close-to-optimal solution, which is far better than FCFS.
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1. INTRODUCTION

Coordination between connected and autonomous vehicles
(CAVs) is the key to improving traffic efficiency and main-
taining safety (Rios-Torres and Malikopoulos (2017)). This
is especially prominent in scenarios involving challenging,
dangerous areas such as unsignalized intersections.

One of the most important tasks within this context is
to determine the priority assignment or crossing order,
i.e., how to schedule the occupation of the intersection
among the approaching vehicles. This problem, typically
formulated as mixed-integer programming (MIP), has been
proven to be NP-hard, which may prevent real-time appli-
cations computationally intractable (Chouhan and Banda
(2018)). Thus, it might no longer be a viable option, even
though it yields global solutions. On the other hand, a real-
time approach first-come, first-serve (FCFS) is far from
optimal in various scenarios (Meng et al. (2018)). These
motivate the use of heuristic algorithms that optimize the
balance between them.

There are many past works that developed heuristics to
solve the crossing order problem. A model-based sequen-
tial decision-making heuristic is developed by Campos
et al. (2017). Hult et al. (2019) proposed mixed-integer
quadratic problem (MIQP)-based heuristic. In Mahbub
et al. (2020), Chalaki and Malikopoulos (2019), the cross-
ing order is obtained through the timeslot optimization
supported by the rule-based heuristic. Xu et al. (2020)
⋆ This work was supported by the Wallenberg Artificial Intelligence,
Autonomous Systems, and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

made use of a heuristic Monte Carlo search tree to itera-
tively retrieve the order.

The mentioned works above did not particularly con-
sider the change of priority (order) or reordering issue,
which can occur dynamically in mixed-traffic cases be-
tween CAVs and human-driven vehicles (HDVs). Due to
their inability to coordinate, the uncertain behavior of the
HDVs may frequently trigger reordering, e.g., when they
suddenly prefer to considerably slow down (Faris et al.
(2022)). As a consequence, a heuristic algorithm is required
to address the problem in a computationally efficient way.

Previous research addressing the reordering problems is
mostly deployed in fully autonomous traffic. Chalaki and
Malikopoulos (2022) proposed a strategy based on inter-
section exit time minimization of the CAVs. A similar time-
based sequencing notion is used by Xiao and Cassandras
(2020), where it performs reordering based on the current
number of considered vehicles. In Molinari et al. (2020),
a negotiation-based priority approach is applied to CAVs
coordination. The rules rely on the current states of vehi-
cles but during the auction phase, the vehicles can offer
their bids to negotiate their priority.

In those works, the optimality of the solution was not
evaluated with respect to the global solution from, e.g.,
MIP formulation. Furthermore, none of them analyze ap-
proximated variation of the nominal solution to perform
reordering. To that end, derivative information, i.e., sen-
sitivity theory is required. Previous works have exploited
sensitivity in the field of CAVs’ coordination problem such
as in Zanon et al. (2017), Hult et al. (2020), but none of
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made use of a heuristic Monte Carlo search tree to itera-
tively retrieve the order.

The mentioned works above did not particularly con-
sider the change of priority (order) or reordering issue,
which can occur dynamically in mixed-traffic cases be-
tween CAVs and human-driven vehicles (HDVs). Due to
their inability to coordinate, the uncertain behavior of the
HDVs may frequently trigger reordering, e.g., when they
suddenly prefer to considerably slow down (Faris et al.
(2022)). As a consequence, a heuristic algorithm is required
to address the problem in a computationally efficient way.

Previous research addressing the reordering problems is
mostly deployed in fully autonomous traffic. Chalaki and
Malikopoulos (2022) proposed a strategy based on inter-
section exit time minimization of the CAVs. A similar time-
based sequencing notion is used by Xiao and Cassandras
(2020), where it performs reordering based on the current
number of considered vehicles. In Molinari et al. (2020),
a negotiation-based priority approach is applied to CAVs
coordination. The rules rely on the current states of vehi-
cles but during the auction phase, the vehicles can offer
their bids to negotiate their priority.

In those works, the optimality of the solution was not
evaluated with respect to the global solution from, e.g.,
MIP formulation. Furthermore, none of them analyze ap-
proximated variation of the nominal solution to perform
reordering. To that end, derivative information, i.e., sen-
sitivity theory is required. Previous works have exploited
sensitivity in the field of CAVs’ coordination problem such
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1. INTRODUCTION

Coordination between connected and autonomous vehicles
(CAVs) is the key to improving traffic efficiency and main-
taining safety (Rios-Torres and Malikopoulos (2017)). This
is especially prominent in scenarios involving challenging,
dangerous areas such as unsignalized intersections.

One of the most important tasks within this context is
to determine the priority assignment or crossing order,
i.e., how to schedule the occupation of the intersection
among the approaching vehicles. This problem, typically
formulated as mixed-integer programming (MIP), has been
proven to be NP-hard, which may prevent real-time appli-
cations computationally intractable (Chouhan and Banda
(2018)). Thus, it might no longer be a viable option, even
though it yields global solutions. On the other hand, a real-
time approach first-come, first-serve (FCFS) is far from
optimal in various scenarios (Meng et al. (2018)). These
motivate the use of heuristic algorithms that optimize the
balance between them.

There are many past works that developed heuristics to
solve the crossing order problem. A model-based sequen-
tial decision-making heuristic is developed by Campos
et al. (2017). Hult et al. (2019) proposed mixed-integer
quadratic problem (MIQP)-based heuristic. In Mahbub
et al. (2020), Chalaki and Malikopoulos (2019), the cross-
ing order is obtained through the timeslot optimization
supported by the rule-based heuristic. Xu et al. (2020)
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made use of a heuristic Monte Carlo search tree to itera-
tively retrieve the order.

The mentioned works above did not particularly con-
sider the change of priority (order) or reordering issue,
which can occur dynamically in mixed-traffic cases be-
tween CAVs and human-driven vehicles (HDVs). Due to
their inability to coordinate, the uncertain behavior of the
HDVs may frequently trigger reordering, e.g., when they
suddenly prefer to considerably slow down (Faris et al.
(2022)). As a consequence, a heuristic algorithm is required
to address the problem in a computationally efficient way.

Previous research addressing the reordering problems is
mostly deployed in fully autonomous traffic. Chalaki and
Malikopoulos (2022) proposed a strategy based on inter-
section exit time minimization of the CAVs. A similar time-
based sequencing notion is used by Xiao and Cassandras
(2020), where it performs reordering based on the current
number of considered vehicles. In Molinari et al. (2020),
a negotiation-based priority approach is applied to CAVs
coordination. The rules rely on the current states of vehi-
cles but during the auction phase, the vehicles can offer
their bids to negotiate their priority.

In those works, the optimality of the solution was not
evaluated with respect to the global solution from, e.g.,
MIP formulation. Furthermore, none of them analyze ap-
proximated variation of the nominal solution to perform
reordering. To that end, derivative information, i.e., sen-
sitivity theory is required. Previous works have exploited
sensitivity in the field of CAVs’ coordination problem such
as in Zanon et al. (2017), Hult et al. (2020), but none of
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them specifically addresses the dynamic reordering prob-
lem.

In this work, we propose our contribution: A sensitivity-
based heuristic approach. The sensitivity is derived from
the factorization of the Karush-Kuhn-Tucker (KKT) ma-
trix at a nominal parameter and it can be used to retrieve
the approximated solution with respect to the current
parameter by applying a computationally cheap first-order
method. The approximated solution is then continuously
monitored and investigated in the sense of its gap and
velocity reference tracking as well as braking/acceleration
performances to decide the crossing order dynamically.

Our ultimate goal is to eventually deploy the sensitivity-
based heuristic for multi-vehicle coordination problems.
Therefore, here, we start by considering a pair of ego-
target vehicles’ reordering problem where the number of
permutations is only two. We also discuss the performance
comparison of the proposed heuristic against FCFS, and
MINLP in terms of solution and computational perspec-
tives.

The paper is arranged as follows: we first introduce the
intersection setting along with the vehicle model in Sec-
tion 2, followed by the description of CAV optimal control
problem (OCP) formulation in Section 3. In Section 4, we
describe the properties of the OCP to obtain the sensitiv-
ity, used in the heuristic explained in Section 5. After that,
the other methods (MINLP and FCFS) are explained in
Section 6, in which we compare with the heuristic with
various simulations in Section 7. Finally, the conclusion is
given in Section 8.

2. MODEL DESCRIPTION

Let us consider a setting that involves a HDV (H) and a
CAV (C). The vehicles travel along different directions to
an unsignalized intersection, i.e., the conflict zone (CZ), as
illustrated in Fig. 1.
Remark 1. We assume that the initial CAV’s plan is
yielding to the HDV, which then slows down significantly
thus forcing the CAV to update its plan. The opposite
scenario is not considered here for the sake of a concise

presentation, yet it can be handled by the proposed
approach with minor modifications. Finally, the HDV
cannot communicate with other entities, yet its states and
input can be measured by the CAV.

By Remark 1, a change of order (reordering) might be
required at some point as keeping the current crossing
order is no longer reasonable.
Definition 2. We define the two possible crossing orders
for the considered setting as O = 0 when the HDV clears
the intersection before the CAV and O = 1 when the
crossing order is reversed. Thus, O = {0, 1}.

2.1 Vehicle dynamics

The i-th vehicle moving along its predefined paths is
described by a discrete-time, double integrator

xi,k+1 = Axi,k +Bui,k, i ∈ {C,H}, (1)
with

A =

[
1 ts

0 1

]
, B =

[
1

2
ts2

ts

]
,

k ∈ Z+, where T p is the prediction horizon and ts is the
sampling time. The state vector xi,k = [pi,k vi,k]

⊤ contains
the longitudinal distance of the vehicle from the center of
the CZ, that is, the conflict zone, and the velocity. ui,k

is the input, i.e., acceleration/deceleration profile. Note
that, other dynamic models, possibly nonlinear, can also
be utilized here if needed.

Each vehicle starts from an initial condition xi,0 = x0
i , i ∈

{C,H}. Also, their velocity and acceleration are bounded
as follows.

umin ≤ ui,k ≤ umax, i ∈ {C,H} (2a)
vmin ≤ vi,k ≤ vmax, i ∈ {C,H} (2b)

with vmin > 0, that is, vehicles do not go backward.

2.2 HDV driver model

In this work, we utilize two HDV models for prediction
and simulation purposes, respectively.

Prediction The constant velocity model is employed for
prediction purposes

uH,k = 0, (3a)
vH,k+1|t = vH,k|t, ∀k ∈ {0, T p}, (3b)

where t ∈ R+ is the current simulation time.

Simulation For simulation purposes, the reference veloc-
ity tracking model describes the HDV motion

uH,t+1 = kv(vref
t − vH,t), (4)

where kv is the gain and vref
t is the reference speed at time

t ∈ R+.

3. PROBLEM FORMULATION

In this section, we introduce the constraint and the ob-
jective (cost) function used next to formulate the CAV
motion control problem.
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them specifically addresses the dynamic reordering prob-
lem.

In this work, we propose our contribution: A sensitivity-
based heuristic approach. The sensitivity is derived from
the factorization of the Karush-Kuhn-Tucker (KKT) ma-
trix at a nominal parameter and it can be used to retrieve
the approximated solution with respect to the current
parameter by applying a computationally cheap first-order
method. The approximated solution is then continuously
monitored and investigated in the sense of its gap and
velocity reference tracking as well as braking/acceleration
performances to decide the crossing order dynamically.

Our ultimate goal is to eventually deploy the sensitivity-
based heuristic for multi-vehicle coordination problems.
Therefore, here, we start by considering a pair of ego-
target vehicles’ reordering problem where the number of
permutations is only two. We also discuss the performance
comparison of the proposed heuristic against FCFS, and
MINLP in terms of solution and computational perspec-
tives.

The paper is arranged as follows: we first introduce the
intersection setting along with the vehicle model in Sec-
tion 2, followed by the description of CAV optimal control
problem (OCP) formulation in Section 3. In Section 4, we
describe the properties of the OCP to obtain the sensitiv-
ity, used in the heuristic explained in Section 5. After that,
the other methods (MINLP and FCFS) are explained in
Section 6, in which we compare with the heuristic with
various simulations in Section 7. Finally, the conclusion is
given in Section 8.

2. MODEL DESCRIPTION

Let us consider a setting that involves a HDV (H) and a
CAV (C). The vehicles travel along different directions to
an unsignalized intersection, i.e., the conflict zone (CZ), as
illustrated in Fig. 1.
Remark 1. We assume that the initial CAV’s plan is
yielding to the HDV, which then slows down significantly
thus forcing the CAV to update its plan. The opposite
scenario is not considered here for the sake of a concise

presentation, yet it can be handled by the proposed
approach with minor modifications. Finally, the HDV
cannot communicate with other entities, yet its states and
input can be measured by the CAV.

By Remark 1, a change of order (reordering) might be
required at some point as keeping the current crossing
order is no longer reasonable.
Definition 2. We define the two possible crossing orders
for the considered setting as O = 0 when the HDV clears
the intersection before the CAV and O = 1 when the
crossing order is reversed. Thus, O = {0, 1}.

2.1 Vehicle dynamics

The i-th vehicle moving along its predefined paths is
described by a discrete-time, double integrator

xi,k+1 = Axi,k +Bui,k, i ∈ {C,H}, (1)
with

A =

[
1 ts

0 1

]
, B =

[
1

2
ts2

ts

]
,

k ∈ Z+, where T p is the prediction horizon and ts is the
sampling time. The state vector xi,k = [pi,k vi,k]

⊤ contains
the longitudinal distance of the vehicle from the center of
the CZ, that is, the conflict zone, and the velocity. ui,k

is the input, i.e., acceleration/deceleration profile. Note
that, other dynamic models, possibly nonlinear, can also
be utilized here if needed.

Each vehicle starts from an initial condition xi,0 = x0
i , i ∈

{C,H}. Also, their velocity and acceleration are bounded
as follows.

umin ≤ ui,k ≤ umax, i ∈ {C,H} (2a)
vmin ≤ vi,k ≤ vmax, i ∈ {C,H} (2b)

with vmin > 0, that is, vehicles do not go backward.

2.2 HDV driver model

In this work, we utilize two HDV models for prediction
and simulation purposes, respectively.

Prediction The constant velocity model is employed for
prediction purposes

uH,k = 0, (3a)
vH,k+1|t = vH,k|t, ∀k ∈ {0, T p}, (3b)

where t ∈ R+ is the current simulation time.

Simulation For simulation purposes, the reference veloc-
ity tracking model describes the HDV motion

uH,t+1 = kv(vref
t − vH,t), (4)

where kv is the gain and vref
t is the reference speed at time

t ∈ R+.

3. PROBLEM FORMULATION

In this section, we introduce the constraint and the ob-
jective (cost) function used next to formulate the CAV
motion control problem.
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3.1 Side collision avoidance constraint

To prevent side collision within the CZ, the CAV’s distance
to the HDV is constrained as follows

dmin ≤ pH,k − pC,k, (5)
where dmin is a minimum safety distance constant. This
constraint only holds when O = 0 and before exiting the
CZ.

3.2 Objective function

An objective function is introduced for each crossing order.

Car-following objective When O = 0, the CAV (C) fol-
lows the HDV (H) in virtual platooning mode (Morales Med-
ina et al. (2018)), while minimizing the cost associated
with the input over the prediction horizon T p

JA =

Tp−1∑
k=0

JA,p
k + JA,v

k + JA,u
k , (6)

where
JA,p
k = qd(dref − (pH,k − pC,k))

2,

JA,v
k = qv(vH,k − vC,k)

2,

JA,u
k = ru2

C,k,

and qv, qd, r are the weights and dref is the reference gap.
In (6), the terms JA,x, x ∈ {p, v} penalize the deviations
of the CAV’s position and velocity from the safety distance
to the HDV and the HDV’s velocity, respectively, while the
term JA,u penalizes the CAV’s control effort.

Velocity tracking objective For O = 1, the CAV mini-
mizes the following cost to track its reference velocity while
minimizing the control effort

JB =

Tp−1∑
k=0

qv(vref
C − vC,k)

2 + ru2
C,k. (7)

3.3 Optimal control problem (OCP)

Two optimal control problems (OCPs) are formulated for
the CAV, depending on the crossing order O.

Problem A (O = 0) The CAV’s goal is to follow the
HDV, while keeping a safe distance from it, and is achieved
by minimizing the cost

ΦA(xp, x0
C) = min

w
JA(w) (8a)

s.t. g(w) = 0, h(w) ≤ 0, (8b)
where w = [w1, ..., wk, ..., wTp ]⊤ ∈ Rnw×1 and wk =

[xi,k, ui,k]
T . The parameter xp contains the HDV states

over the prediction horizon
xp = [pH,0:Tp ]⊤,

while the equality and inequality constraints arising from
(1), (2), (3), (5) are lumped in g(w) = 0 and h(w) ≤ 0 as
in (8b), respectively.

Problem B (O = 1) In this case, the CAV tracks its
desired speed by solving the following problem

ΦB(x0
C) = min

w
JB(w) (9)

s.t. Eq. (1), (2), (3),

where, compared to (8), the safety distance constraint (5)
is dropped, as the CAV precedes the HDV. Both OCPs (8)
and (9) are convex quadratic programs (QPs).

4. PROPERTIES OF THE OCP

We next recall the continuity properties of the solution
of (8) with respect to the parameter xp.

4.1 Karush-Kuhn-Tucker (KKT) conditions

Denote by w∗(xp) = [w∗
1(xp), ..., w∗

Tp(xp)]⊤ the (primal)
solution of OCP (8) and by λ∗(xp), µ∗(xp) the corre-
sponding dual variables, with z∗ = [w∗, λ∗, µ∗]⊤. The
primal and dual optimal variables satisfy the following
KKT conditions

r(z∗,xp) =

[∇wL(z∗,xp)
g(w∗)

hA(w∗,xp)

]
= 0, (10)

where
L = J(w∗,xp) + λ⊤g(w∗) + µ⊤

AhA(w∗,xp).

4.2 Continuity and differentiability properties

The following assumptions are used next to provide a
continuity result (Still (2018)) for the parametric solution
of (8)
Assumption 1. w∗ is a regular point. Thus, linear indepen-
dence constraint qualification (LICQ) (Still (2018)) holds
within the neighborhood of xp.
Assumption 2. Strict second order sufficient condition
(SOSC) (Still (2018)) holds at the solution.
Proposition 3. If Assumptions 1 and 2 hold at xp, then
the parametric solution w∗(xp) is continuous in a neigh-
borhood of xp. Furthermore, if there are no weakly active
inequality constraints, then ∇xpw∗(xp) exists.

By leveraging Proposition 3, the approximated parametric
solution of (8), ŵ∗(xp), can be calculated based on the
sensitivities as shown next. In fact, if the continuity and
differentiability conditions hold for the solution of (8),
ŵ∗(xp) can be obtained using a linear, first-order Taylor
approximation (Still (2018))

ŵ∗(xp) ≈ w∗(x̃p) +
∂w∗(xp)

∂xp (xp − x̃p). (11)

The approximated states p̂i,k(xp), v̂i,k(xp), and input
ûi,k(xp) can thus be extracted from ŵ∗

k(x
p).

The sensitivities in (11) can be retrieved from the deriva-
tives of KKT conditions (10)

∂z

∂xp = −
(
∂r(z,xp)

∂z

)−1
∂r(z,xp)

∂xp , (12)

where ∂w
∂xp are in the first nw rows of ∂z

∂xp .

5. HEURISTIC ALGORITHM

In the considered setting, the problem of optimal crossing
order assignment is typically formulated as a mixed-integer
nonlinear programming (MINLP), as explained later in
Section 6.2. In the literature above, it has been mentioned

that solving a MINLP is computationally expensive. As an
alternative, we propose a heuristic method.

The heuristic’s task is to decide the crossing order O
at time t ∈ R+, depending on the vehicles’ states and
parameter xp. Once decided, the CAV solves either prob-
lem (8) or (9). The idea underlying the heuristic is to
switch crossing order in the case where, for the current
order, the HDV’s behavior is leading to an increase of the
cost (performance) function beyond a prescribed bound.
This notion will be explained in detail next.

Assume that the current crossing order is O = 0 and Prob-
lem A has been solved at t = 0, yielding solution w∗(x̃p).
For the next timesteps t > 0, the cost JA can be approx-
imated by evaluating (6) at ŵ∗(xp), cheaply calculated
as in (11) for the current xp. In this way, the cost can
be monitored in order to detect its growth beyond the
following bounds

JA,p
k (p̂i,k(xp)) ≤ qd||dub||2, ∀k ∈ {0, T p}, (13a)

JA,v
k (v̂i,k(xp)) ≤ qv||vub||2, ∀k ∈ {0, T p}, (13b)

JA,u
k (ûi,k(xp)) ≤ qd||ulb||2, ∀k ∈ {0, T p}, (13c)

where the bounds dub, vub, ulb are chosen to reflect the
maximum allowed gap, velocity tracking error from the
target vehicle, and CAV’s breaking/acceleration efforts.
These performance inequalities, over T p, can be compactly
written as JA ≤ Jub.

In Algorithm 1, the growth of the cost beyond each of the
bounds in (13) is continuously monitored and counted by
s ∈ R3×1 (line 9 of the algorithm). s collects the number
of occasions every time a violation JA > Jub (line 8)
is detected. A consistency check is further implemented
to avoid false positive situations, due to, e.g., noise and
prevent an early change of order. This notion can be seen
in line 14, where if there is no violation detected in the
current simulation time t ∈ R+, but the counter s = 1
due to a violation in t − 1, we reset it back to zero (line
15). Reordering occurs if any of the counters shows nmax

consecutive violations (lines 12-14). The order is frozen
once the HDV has been close to CZ (line 6).

Algorithm 1 Sensitivity-based Heuristic
Input: xC,k, xp, O = 0
Output: O
1: Select O = 0, Φ = ΦA, set s = 0 ▷ Initialization
2: Solve QP ΦA(x̃p)
3: Compute sensitivities ∂w

∂xp

4: for t ∈ R+ do
5: Obtain xC,t and new xp

6: if pH,t ≤ pin − δ then
7: Compute JA(ŵ(xp))
8: if JA > Jub then ▷ Performance bounds
9: s = s+ 1 ▷ Counting the violation

10: end if
11: end if
12: if s == nmax then ▷ Consistency check
13: Set O = 1, Φ = ΦB,
14: else if s == 1 && ∀k : JA ≤ Jub then
15: s = 0 ▷ Reset if it was a false sign
16: end if
17: end for

6. OTHER METHODS

The proposed heuristic is compared against other methods
below.

6.1 First-Come-First-Served (FCFS)

FCFS sorts the crossing order based on the vehicle position
when entering the coordination area with respect to the
center of the intersection or the time they arrive at the
intersection. Due to Remark 1, FCFS starts and fixes its
order at O = 1. This method serves as a baseline for the
heuristic and MINLP.

6.2 Mixed-Integer nonlinear Programming (MINLP)

MINLP presents the original optimal solution where the
crossing order is obtained through generic solvers. It
is essentially a combination of OCP (8) and (9), that
implements the switching safe distance constraint{

pH,k − pC,k − dmin ≥ 0 if O == 0

∅ else if O == 1.
(14)

and the switching objective function

JU =

{
JA if O == 0

JB else if O == 1.
(15)

Both imply MIP formulation, which is non-convex. Based
on Remark 1, the safe distance constraint only applies
when O = 0.
Remark 4. Constraint (14) cannot be directly imple-
mented, as the solver naturally chooses the unconstrained
case. Therefore, an auxiliary constraint is added{

pH,k − pC,k − dmin + ηk ≥ 0, if O == 0

pC,k − pH,k + dcom + ηk ≥ 0, else if O == 1,
(16)

where the second constraint represents situations where
the CAV overtakes the HDV. 0 < dcom < dmin is a constant
to compensate for the safety gap and ηk is a slack variable
to avoid infeasibility during switching.

The overall MINLP problem is
ΦU(x0

C,x
p) = min

w
JU(w) + qs||η0:Tp ||22 (17)

s.t. Eq. (1), (2), (3), (16),
O ∈ {0, 1},

where qs is the penalty weight. The corresponding algo-
rithm is written in Algorithm 2. Note that we also apply
an additional check (line 3 in the algorithm) to make sure
that the MINLP does not change the order when it is too
close to the CZ (line 7).

7. NUMERICAL SIMULATIONS

In this section, the proposed heuristic is compared against
the FCFS and MINLP methods in closed-loop simulation
with different experiments. Evaluation includes optimal-
ity and computational aspects. Furthermore, we study
the susceptibility of the heuristic with different objective
bounds. In the simulations, we set dmin = 4 m and dref = 6
m. The input is constrained between ±2 m/s2. The center
of CZ is the zero position, with pin = −4. In line with
Remark 1, the HDV is placed virtually in front of the CAV
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that solving a MINLP is computationally expensive. As an
alternative, we propose a heuristic method.

The heuristic’s task is to decide the crossing order O
at time t ∈ R+, depending on the vehicles’ states and
parameter xp. Once decided, the CAV solves either prob-
lem (8) or (9). The idea underlying the heuristic is to
switch crossing order in the case where, for the current
order, the HDV’s behavior is leading to an increase of the
cost (performance) function beyond a prescribed bound.
This notion will be explained in detail next.

Assume that the current crossing order is O = 0 and Prob-
lem A has been solved at t = 0, yielding solution w∗(x̃p).
For the next timesteps t > 0, the cost JA can be approx-
imated by evaluating (6) at ŵ∗(xp), cheaply calculated
as in (11) for the current xp. In this way, the cost can
be monitored in order to detect its growth beyond the
following bounds

JA,p
k (p̂i,k(xp)) ≤ qd||dub||2, ∀k ∈ {0, T p}, (13a)

JA,v
k (v̂i,k(xp)) ≤ qv||vub||2, ∀k ∈ {0, T p}, (13b)

JA,u
k (ûi,k(xp)) ≤ qd||ulb||2, ∀k ∈ {0, T p}, (13c)

where the bounds dub, vub, ulb are chosen to reflect the
maximum allowed gap, velocity tracking error from the
target vehicle, and CAV’s breaking/acceleration efforts.
These performance inequalities, over T p, can be compactly
written as JA ≤ Jub.

In Algorithm 1, the growth of the cost beyond each of the
bounds in (13) is continuously monitored and counted by
s ∈ R3×1 (line 9 of the algorithm). s collects the number
of occasions every time a violation JA > Jub (line 8)
is detected. A consistency check is further implemented
to avoid false positive situations, due to, e.g., noise and
prevent an early change of order. This notion can be seen
in line 14, where if there is no violation detected in the
current simulation time t ∈ R+, but the counter s = 1
due to a violation in t − 1, we reset it back to zero (line
15). Reordering occurs if any of the counters shows nmax

consecutive violations (lines 12-14). The order is frozen
once the HDV has been close to CZ (line 6).

Algorithm 1 Sensitivity-based Heuristic
Input: xC,k, xp, O = 0
Output: O
1: Select O = 0, Φ = ΦA, set s = 0 ▷ Initialization
2: Solve QP ΦA(x̃p)
3: Compute sensitivities ∂w

∂xp

4: for t ∈ R+ do
5: Obtain xC,t and new xp

6: if pH,t ≤ pin − δ then
7: Compute JA(ŵ(xp))
8: if JA > Jub then ▷ Performance bounds
9: s = s+ 1 ▷ Counting the violation

10: end if
11: end if
12: if s == nmax then ▷ Consistency check
13: Set O = 1, Φ = ΦB,
14: else if s == 1 && ∀k : JA ≤ Jub then
15: s = 0 ▷ Reset if it was a false sign
16: end if
17: end for

6. OTHER METHODS

The proposed heuristic is compared against other methods
below.

6.1 First-Come-First-Served (FCFS)

FCFS sorts the crossing order based on the vehicle position
when entering the coordination area with respect to the
center of the intersection or the time they arrive at the
intersection. Due to Remark 1, FCFS starts and fixes its
order at O = 1. This method serves as a baseline for the
heuristic and MINLP.

6.2 Mixed-Integer nonlinear Programming (MINLP)

MINLP presents the original optimal solution where the
crossing order is obtained through generic solvers. It
is essentially a combination of OCP (8) and (9), that
implements the switching safe distance constraint{

pH,k − pC,k − dmin ≥ 0 if O == 0

∅ else if O == 1.
(14)

and the switching objective function

JU =

{
JA if O == 0

JB else if O == 1.
(15)

Both imply MIP formulation, which is non-convex. Based
on Remark 1, the safe distance constraint only applies
when O = 0.
Remark 4. Constraint (14) cannot be directly imple-
mented, as the solver naturally chooses the unconstrained
case. Therefore, an auxiliary constraint is added{

pH,k − pC,k − dmin + ηk ≥ 0, if O == 0

pC,k − pH,k + dcom + ηk ≥ 0, else if O == 1,
(16)

where the second constraint represents situations where
the CAV overtakes the HDV. 0 < dcom < dmin is a constant
to compensate for the safety gap and ηk is a slack variable
to avoid infeasibility during switching.

The overall MINLP problem is
ΦU(x0

C,x
p) = min

w
JU(w) + qs||η0:Tp ||22 (17)

s.t. Eq. (1), (2), (3), (16),
O ∈ {0, 1},

where qs is the penalty weight. The corresponding algo-
rithm is written in Algorithm 2. Note that we also apply
an additional check (line 3 in the algorithm) to make sure
that the MINLP does not change the order when it is too
close to the CZ (line 7).

7. NUMERICAL SIMULATIONS

In this section, the proposed heuristic is compared against
the FCFS and MINLP methods in closed-loop simulation
with different experiments. Evaluation includes optimal-
ity and computational aspects. Furthermore, we study
the susceptibility of the heuristic with different objective
bounds. In the simulations, we set dmin = 4 m and dref = 6
m. The input is constrained between ±2 m/s2. The center
of CZ is the zero position, with pin = −4. In line with
Remark 1, the HDV is placed virtually in front of the CAV
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Algorithm 2 Mixed-Integer nonlinear Programming
(MINLP)
Input: xC,k, xp

Output: O
1: for t ∈ R+ do
2: Obtain xC,t and new xp

3: if pH,t ≤ pin − δ then
4: Solve MINLP problem ΦU

5: Obtain O = arg minΦU

6: else
7: Keep the same O
8: end if
9: end for

and both have similar initial speeds. Accordingly, we set
O = 0 for FCFS and heuristic at the beginning. Also,
MINLP and heuristic no longer consider reordering when
the order has switched to O = 1. The controller weights
are all set to unity. All simulations are carried out using
MATLAB with Casadi framework, on a laptop with Intel
Core-i5 processor and 16 GB of RAM. The QP problems
are solved with Ipopt, while Bonmin is used for solving the
MINLP.

7.1 Performance evaluation

The results presented next are obtained by simulating the
HDV with the model (4), while model (3) is utilized by
the three approaches. The HDV’s speed profile resembles
a braking (deceleration) maneuver. This is achieved by
choosing the following two reference speed profiles, vref

t =
36 km/h, t = [0, 3.3] seconds (s) and vref

t = 22 km/h, t =
[3.4, 10] s. Normally distributed noise ∆uk with zero mean
and σ = 0.1, is added to the input of the HDV’s simulation
model to mimic the randomness introduced by a human
driver. The heuristics bounds dub, vub, llb are set to 0.5
m, 2.0 km/h, −1.2 m/s2, respectively, and nmax = 3.
We simulate 50 experiments, each with random bounds
on the HDV input, uniformly distributed within 10% of
the nominal bounds. The rest of the constants remain un-
changed. For evaluation, we consider τ , that is, the time (in
seconds) when the change of order occurs. Moreover, the
total objective value is the sum of the values of the entire
simulation time, while the computational performance is
measured from the average time required to decide the
order in each time t. The mean, normalized mean (from
the MINLP as the global optimal solution), and standard
deviation (std.) are then calculated from the results of all
scenarios.

Fig. 2 shows an example from the first experiment. On
the left, we see that both heuristic (Heur.) and MINLP
are able to tell the CAV to takeover the HDV before
they are reaching the CZ. Both have almost the same
trajectories, where the MINLP is slightly ahead. This is
due to 0.1 second difference in reordering of the heuristic,
as indicated by Fig. 3. The difference might be caused
by the choice of the performance bounds or nmax, as
explained further in the next subsection. In Table 1, we
can see that the difference in the mean reordering time
τ between the MINLP and the heuristic is very small,
implying that the heuristic solution is close to MINLP. A
similar conclusion can be drawn by comparing the mean
and normalized mean objectives JA of the heuristic and

the MINLP, respectively. From the table, we see that the
heuristic standard deviations of τ and JA are slightly
higher than those of MINLP, yet much smaller than those
of FCFS. By comparing the costs of the heuristic and the
MINLP against the FCFS, it is clear that keeping the CAV
behind the HDV is clearly disadvantageous.

The advantage of the heuristic is shown in the average
computation time in Table 1, where it demonstrates faster
processing time than MINLP. This is expected from uti-
lizing a simple yet efficient first-order method compared
to solving a MINLP problem. FCFS is clearly the fastest,
as it does not change the order. In terms of the standard
deviation of the computational performance, the heuristic
shows better consistency than MINLP.

7.2 Susceptibility of the objective bounds

One of the drawbacks of the heuristic is the bounds in (13)
which requires a tuning process. In this section, we shed
some light on how these tuning parameters affect the
performance of the heuristic.

In the previous subsection, the heuristic manages to attain
close-to-optimal solutions thanks to the carefully selected
values of the objective bounds in (13). We next study the
impact of the variations of these bounds when their values
are slightly varied, as shown in Table 2. For each case,
we simulate the behavior of the heuristics in the same 50
experiments as before.

When the position bound dub is set to 0.4, the reordering
averagely occurs much earlier implying a lower cost value
than the previous tuning and also the MINLP. This also
happens with the other two bounds vub and ulb when they
are tightened. In real scenarios, early reordering might
not be preferable as it could be unnecessarily induced by
the HDV. However, we observe in the normalized mean of
the objective values (with respect to the MINLP results)
that, when they are tightened, their solutions are not far
from the MINLP and the difference between them can be
considerably small. Their standard deviations (std.) are
very small as well.

Next, when dub is decreased to 0.6, the reordering occurs
much later, followed by a higher objective value. A similar
pattern is also seen with the other two bounds when they
are loosened. A striking result is indicated by the velocity
bound (vub = 2.5 km/h) that the reordering difference is
much larger than the others, and it is also the case for
the standard deviation. In the normalized objective value,
the loosen velocity bound also shows the largest deviation,
far higher than the other bounds. Hence, using velocity
bound as a performance indicator with sensitivity is the
least preferable compared to the others, as it is the most
sensitive to change, even though its standard deviation is
the lowest when it is tight. In contrast, ulb proves to be the
most reliable term by having the lowest normalized value
both when it is tightened and loosened.

Overall, we observe that to retrieve results similar to the
MINLP, the bounds on the states tracking deviation have
to be relatively close to the references, while the input
bound can be closer to the constraint.
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Fig. 2. Position (left), velocity, and acceleration profile (right) of the HDV and the CAV from the first experiment,
except the yellow lines which are the HDV positions, velocities, and inputs from the rest of the experiments. The
yellow lines show variations in the HDV behavior, particularly noticeable during deceleration at t = 3.4 s.

Table 1. Performance evaluation result.

Methods τ (sec.) Total objective value JA Avg. comp. time (sec.)
Mean Std. Mean Normalized mean (%) Std. Mean Std.

MINLP 3.87 0.045 622.76 N/A 27.91 0.1503 0.01400
Heuristics 3.94 0.049 682.07 8.84 33.20 0.0593 0.00300
FCFS N/A N/A 1056.50 68.45 41.23 0.0003 0.00001

Table 2. Heuristic bounds susceptibility results.

Bounds dub vub ulb

0.4 0.6 1.5 2.5 -1.0 -1.4

τ (sec.) Mean 3.80 4.08 3.81 4.20 3.84 4.05
Std. 0.00 0.04 0.02 0.11 0.04 0.05

Total objective value
Mean 567.46 834.20 571.76 1012.40 595.48 806.92
Normalized mean (%) 8.65 34.01 7.96 62.5 4.21 29.74
Std. 10.05 36.47 16.51 128.63 28.72 38.41
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Fig. 3. Crossing order (priority) of the first experiment.

8. CONCLUSION

This work addresses the development of a computation-
ally efficient heuristic algorithm for the dynamic priority
assignment problem of an ego CAV against a target HDV

and in an unsignalized intersection based on the sensitivity
information.

The sensitivity utilized by the first-order Taylor method
enables the approximation of solution with respect to
the current parameter, that is, the HDV states in a
computationally inexpensive way. The estimated solution
is then investigated through cost performance evaluation
to dynamically decide the crossing order. The proposed
heuristic is compared with FCFS and MINLP in closed-
loop experiments with different HDV input bounds. The
heuristic manages to achieve close-to-optimal solutions,
similar to that of MINLP but with a cheaper computation
effort. Furthermore, the susceptibility study highlights the
performance of each performance bound, where the input
bound outperforms the others in terms of reliability.

A natural extension of this work is to address dynamic
priority assignment in mixed-traffic, multi-vehicle coor-
dination problems, where the number of permutations is
much higher. To ensure sensible performance, the current
heuristic needs to be further developed.

REFERENCES

Campos, G.R., Falcone, P., Hult, R., Wymeersch, H.,
and Sjöberg, J. (2017). Traffic Coordination at Road



 Muhammad Faris  et al. / IFAC PapersOnLine 56-2 (2023) 4922–4928 4927

0 2 4 6 8 10
-80

-60

-40

-20

0

20

40
Trajectory

p
in

p
out

HDV

HDV Other Scen.

CAV-MINLP

CAV-Heur.

CAV-FCFS.

0 1 2 3 4 5 6 7 8 9 10

6

8

10

12

14
Velocity

HDV

HDV Other Scen.

CAV-MINLP

CAV-Heur.

CAV-FCFS.

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2
Control action

Fig. 2. Position (left), velocity, and acceleration profile (right) of the HDV and the CAV from the first experiment,
except the yellow lines which are the HDV positions, velocities, and inputs from the rest of the experiments. The
yellow lines show variations in the HDV behavior, particularly noticeable during deceleration at t = 3.4 s.

Table 1. Performance evaluation result.

Methods τ (sec.) Total objective value JA Avg. comp. time (sec.)
Mean Std. Mean Normalized mean (%) Std. Mean Std.

MINLP 3.87 0.045 622.76 N/A 27.91 0.1503 0.01400
Heuristics 3.94 0.049 682.07 8.84 33.20 0.0593 0.00300
FCFS N/A N/A 1056.50 68.45 41.23 0.0003 0.00001

Table 2. Heuristic bounds susceptibility results.

Bounds dub vub ulb

0.4 0.6 1.5 2.5 -1.0 -1.4

τ (sec.) Mean 3.80 4.08 3.81 4.20 3.84 4.05
Std. 0.00 0.04 0.02 0.11 0.04 0.05

Total objective value
Mean 567.46 834.20 571.76 1012.40 595.48 806.92
Normalized mean (%) 8.65 34.01 7.96 62.5 4.21 29.74
Std. 10.05 36.47 16.51 128.63 28.72 38.41

0 1 2 3 4 5 6 7 8 9

0

1

Crossing order

MINLP

Heuristic

FCFS

MINLP
= 3.9

O
MINLP

= 1

Heur.
= 4

O
Heur.

 1

Fig. 3. Crossing order (priority) of the first experiment.

8. CONCLUSION

This work addresses the development of a computation-
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