
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

A STUDY OF THE GENERATION AND

ORGANIZATION OF BEHAVIORS FOR

AUTONOMOUS ROBOTS

Hans Sandholt

Department of Machine and Vehicle Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2004

A Study of the Generation and Organization of Behaviors for
Autonomous Robots
Hans Sandholt

c© Hans Sandholt, 2004

Contact information:
Hans Sandholt
Department of Machine and Vehicle Systems
Chalmers University of Technology
Hörsalsvägen 7
SE–412 96 Göteborg, Sweden

Phone: +46 (0)31–772 8430
Fax: +46 (0)31–772 3690
E-mail:hans.sandholt@me.chalmers.se
URL: http://www.me.chalmers.se/˜sandholt

Chalmers Reproservice
Göteborg, Sweden 2004

Till Lars och Birgitta

A Study of the Generation and Organization
of Behaviors for Autonomous Robots

Hans Sandholt
Department of Machine and Vehicle Systems
Chalmers University of Technology

Abstract

This thesis deals with the issues of generating and organizing behaviors for au-
tonomous robots. Several different types of implementation methods for behav-
iors are studied, and the generated behaviors are used in connection with two
different methods for behavioral organization, in order to form complete robotic
brains, capable of solving more complex tasks than those defined by the individ-
ual behaviors.

The work has been performed within the framework of evolutionary robotics, i.e.
the subfield of behavior based robotics in which evolutionary algorithms are used
for generating robotic brains.

The two studied methods for behavioral organization are a non-explicit arbitration
method and the utility manifold method. The methods are mainly used in connec-
tion with wheeled robots. However, the thesis also describes the construction of a
bipedal walking robot, which is to be used in future research.

The results from theses studies indicates a strong advantage of using evolutionary
algorithms when defining behaviors and, to an even greater extent, when gener-
ating behavioral organizers. Investigations of the utility manifold algorithm show
promising results concerning the performance of the evolved behavioral organiz-
ers, and robustness to different implementations of the behaviors used.

Keywords: Behavioral organization, behavior-based robotics, autonomous
robots, bipedal robots, evolutionary algorithms.

i

Acknowledgements

The author wishes to thank the School of Mechanical Engineering at Chalmers
University of Technology for financially supporting this project.

A big thanks to all my colleagues for providing such a great workplace.

A special thanks goes to my friend and supervisor Mattias Wahde, for all the hours
of support and constructive criticism during the project leading to this thesis.

Finally, but not least, without the love and support from my wife Kerstin, and my
children Gustav, Karin, Erik, and Anna, this work would have meant nothing.

iii

Table of Contents

1 Introduction and motivation 1

1.1 Motivation . 2

1.2 History . 2

1.3 Reader instructions . 4

2 Ethology and behavior-based robotics 5

2.1 Ethology . 5

2.2 Combining behaviors . 6

2.3 Behavior-based robotics . 7

3 Defining behaviors 9

3.1 Behavior complexity . 9

3.2 Deriving behaviors . 11

3.3 Behavior type . 11

3.4 Implementation . 11

3.4.1 Specific examples . 13

4 Behavioral organization 17

4.1 Arbitration methods . 17

4.2 Command fusion methods . 18

4.3 Non-explicit arbitration methods 18

4.4 Hand-coded vs. evolved behavioral organizers 18

v

vi TABLE OF CONTENTS

5 The Utility manifold method 19

5.1 Biological background . 19

5.2 Behaviors and fitness . 20

5.3 State variables and utility functions 20

5.4 Evolutionary optimization . 20

5.5 A simple example . 21

6 Evolving robotic brains 25

6.1 Behavior implementation . 25

6.1.1 GFSMs . 26

6.1.2 Neural networks . 27

6.1.3 Hand-coded behaviors 27

6.1.4 Reflections on implementation methods 27

6.2 Evolving behavioral organizers 28

6.2.1 Non-explicit arbitration 28

6.2.2 The UM method . 28

7 Conclusions 29

8 Summary of appended papers 31

8.1 Paper I: Evolving complex behaviors on autonomous robots . . . 31

8.2 Paper II: A flexible evolutionary method for the generation and

implementation of behaviors for humanoid robots 32

8.3 Paper III: Development of a bipedal robot with genetic algorithm

based motion control . 33

8.4 Paper IV: A study of multiple behavior implementations in con-

nection with the utility manifold method for behavioral organization 33

8.5 Paper V - Construction of a low-cost, general purpose bipedal robot 34

Technical terms used in the thesis

action, 2
arbitration methods, 17
artificial intelligence, 1
artificial neural network, 11
auxiliary behaviors, 6

behavior-based robotics, 7
behavioral coordination, 2
behavioral organization, 2
behaviors, 2
box jellyfish, 5

classical ai, 1
command fusion methods, 17, 18
complex task, 6

embodied evolution, 7
ethology, 2
evolutionary algorithms, 3
evolutionary robotics, 3

feed-forward neural network, 27
fixed action pattern, 9
fuzzy logic, 18

genetic programming, 21

hawkmoth, 5

internal states, 7

multiple objective, 18

non-explicit arbitration methods, 17

ockham’s razor, 14

parsimony pressure, 14
priority-based, 17

reactive, 7
reality gap, 7
recurrent neural network, 27
robotic brain, 7

state variables, 20
state-based, 17
subsumption architecture, 17

task, 6
task behavior, 6
transitivity of choice, 19

um, 2
utility, 19
utility functions, 19
utility manifold, 2

voting, 18

winner-take-all, 17

vii

Chapter 1
Introduction and motivation

This thesis investigates methods for implementation of behavioral organization in
autonomous robots, in order to manage a given task in an adequate manner. The
methods investigated are biologically inspired and belong to a branch of artificial
intelligence (AI)1, called behavior based robotics (BBR). It is known that even
insects are able to display rational behaviors2, even though they are generally
equipped with very simple nervous systems [29]. Thus, it is clear that rational
behavior does not require rational thought (i.e. reasoning) in the traditional sense.

Turning now to robotics, it is predicted that the need for domestic service ro-
bots will increase significantly during the next few decades [1]. One important
factor is that the trend in the demographical structure, with respect to age, fore-
casts an increasing demand for care of elderly in the near future [23]. At the same
time it is clear that the economy cannot handle the associated costs, if traditional
solutions are to be used. One way to reduce the effects on the economy due to the
increasing geriatric care is to investigate which duties can be automatized. Several
routine duties that could be handled by autonomously operating service robots can
be found, for example postal services, vacuum cleaning, and surveillance.

Creating a robot for operation in a realistic environment is difficult. In the
design of such a robot there are several challenges related to mechanical and elec-
trical issues, as well as issues pertaining to the process of providing the robot with
intelligent behavior. However, it is likely that purely technical limitations will be-
come ever less important. Instead, the problem of providing robots with intelligent

1Classical AI, meaning the original area of AI based on symbolic representation of the environ-
ment, is not biologically inspired and has showed limited capabilities in real-world applications of
robotics [12]. Algorithms based on, or partly based on, classical AI [17] for generation of robotic
behaviors are not addressed further in this thesis.

2In this thesis, the terms rational behavior and intelligent behavior are used interchangeably,
and neither term implies the use of rational thought or reasoning.

1

2 Chapter 1. Introduction and motivation

behavior is, and will remain for some time to come, the main challenge.
As the name behavior based robotics implies, this approach to robotics is con-

cerned with behaviors3. Furthermore, in BBR, rational overall behavior of a ro-
bot is the result of productively switching between several elementary, or atomic,
behaviors, a procedure that requires behavioral organization. Behavioral orga-
nization is also known in the literature as behavioral coordination, behavioral
selection and action selection. A short overview of such methods is found in
Chapter 4 and more thorough presentations can be found in [2, 8, 31].

1.1 Motivation

Developing robotic behavioral organization is important if robots are to manage
tasks in an unstructured environment4. When developing and implementing intel-
ligent behavior by hand, the complexity of the problem soon increases to a level
where it is very difficult to achieve useful results [37]. An alternative is to generate
behavioral organizers automatically.

Several approaches for automatic generation of behavioral organization have
been demonstrated but none has, so far, resulted in solutions that are generally
applicable, scalable, and robust when considering real-world applications [35].

As mentioned above, this thesis is concerned with the generation of behav-
ioral organization using biologically inspired methods, based on evolutionary al-
gorithms. A significant part addresses the properties of the ethologically5 inspired
utility manifold method [38], hereafter called the UM method.

1.2 History

The idea of robots capable of displaying intelligent behaviors can be traced back
to ancient history where Parmendies, Platon, and Aristotle [34] over the period of
500-300 B.C. developed the early theories of logic and deductive reasoning. These
theories were used to postulate an algorithm that describes human thoughts based
on pure logic, and through that predict what rhetorical elements are convincing.

These findings were further developed by Blaise Pascal in the 17th century
when he created the first mechanical calculating machine, the predecessor to our

3In the literature, the term action is sometimes used instead of behavior. However, in this
thesis, actions are considered even more elementary than behaviors, so that behaviors are generally
composed of a, possibly modifiable, sequence of actions.

4Unstructured environments are those that change rapidly and in an unpredictable way, so that
it is impossible to rely on pre-defined maps.

5Ethology: The scientific study of animal behavior especially under natural conditions.

1.2. History 3

computers. Only thirty year later, Leibniz improved Pascal’s machine and postu-
lated the universal calculation algorithms (after inspiration from Ars Magna [15]
by Raymon Lull). During the 19th century a vivid discussion arose concerning the
effects of creating intelligent machines. Some of the fears are described in Mary
Shelley’s book Frankenstein’s monster.

During the 19th century vital theories for classical AI were developed. Among
these pioneering scientists were George Boole (Boolean algebra), Charles Bab-
bage and Ada Byron (first programmable mechanical machine). In 1945, John
von Neumann, presented First Draft of a Report on the EDVAC, in which he de-
scribed the stored-program concept, a vital part of what is still known as the von
Neumann architecture.

The foundations of the field of AI can be traced back to several prominent
researchers, working in different fields. Some examples include Bertrand Russell
(Logic), Norbert Wiener (Cybernetics), Alan Turing (intelligence test for robots),
and John McCarthy (defined classical AI), but also Ivan Pavlov (conditioning and
learning), Nikolaas Tinbergen, Konrad Lorenz, Karl von Frisch (animal social
behavior).

With the invention of the computer in the late 1940s, and the microprocessor
in the 1970s, the efforts and findings in the area of machine intelligence have
increased dramatically.

While classical AI has been successful in many of the subfields it has spawned,
such as e.g. image recognition and autonomous navigation, it has not led to truly
intelligent machines, capable of interacting with people in a natural way. How-
ever, intelligent machines (albeit rather simple) have recently begun to become
available, with the advent of several autonomous robots such as lawn mowers
(manufactured e.g. by Husqvarna (Sweden), Centro Sistemi (Italy), MowDirect
(UK)), vacuum cleaners (Electrolux (Sweden), Dyson (UK), iRobot (US)), and
pet robots (Sony (Japan), ZMP (Japan)). To a great extent, progress in the field of
autonomous robots is driven by the behavior-based approach (even though many
hybrid systems, combining BBR and classical AI, exist as well [2]).

The research area of BBR is a recent establishment. Although discussions
concerning the capturing of animal behavior in an algorithm is quite old, it was
not until the mid-1980s that the first scientific papers (by Brooks [6] and others)
were presented in what today is considered to be BBR.

The subfield of BBR that deals with the use of evolutionary algorithms(EAs)
for defining behaviors and complete robotic brains, is called evolutionary robot-
ics (ER). In this thesis, all methods studied make use of EAs. For an introduc-
tion to such algorithms, see e.g. [24]. The topic of ER is covered in detail in
[20, 28, 39].

An interesting comparison, by Moravec [26], between machine intelligence
and computer power, predicts a robot with human intelligence by the year 2040

4 Chapter 1. Introduction and motivation

and vastly surpassing humans by 2050. While large computer systems, such as
the chess-playing computer Deep Blue, at best (in 1999) reached 3% of the es-
timated computational capacity of the human brain, the available processors for
autonomous robotic systems (the same year) reached a mere 0.001%. However,
extrapolating from Moore’s law [25], by the year 2040 the processing speed for
autonomous robots could very well reach the amazing speed of a hundred million
million instructions per second. (100 million MIPS), equivalent to the estimated
computational power of a human brain. Thus, Moravecs prediction could come
true, assuming appropriate algorithms are developed.

1.3 Reader instructions

This thesis presents in Chapter 2 an introductory overview of the field of intel-
ligent behaviors. Chapter 3 describes behaviors in general and some properties
and limitations that should be placed upon them. Examples of evolved robotic be-
haviors can be found in Papers I-IV. In order to connect to the main methodology
described here the distinction between task and auxiliary behaviors is also out-
lined. The topic of behavioral organization is described and motivated in Chapter
4. In this thesis, two methods for behavioral organization are investigated.

First, in Paper I the development of a robotic brain, capable of exhibiting two
different behaviors, namely a cleaning behavior and an obstacle avoidance behav-
ior, is described. Using a generalized finite state machine (GFSM) architecture,
two approaches were tested, namely (1) evolving the complex behavior directly,
and (2) evolving the cleaning and obstacle avoidance behaviors separately, and
then fusing them using continued evolution.

Secondly, in Paper IV the development of a robotic brain involving the or-
ganization of four different behaviors using the UM method, is presented. This
method is described in some detail in chapter 5 and a thorough investigation of
the method is presented in Paper IV.

A description of methods for evolving robotic brains is presented in Chapter
6 and the thesis ends with Chapters 7 and 8 containing the conclusions and a
summary of appended papers, respectively.

Chapter 2
Ethology and behavior-based robotics

In ethology, intelligent (or rational) behaviors can be defined as behaviors that
preserve individuals of a species, i.e. behaviors resulting in the basic capabilities
of feeding, fleeing, and reproducing. Rational behavior can be defined in similar
terms for robots. Here, the goal is also to survive in an unstructured environment,
meaning that e.g. collisions should be avoided, batteries should be kept non-empty
etc. In addition, a robot must strive to reach other goals than mere survival, i.e. to
manage its assigned tasks.

This chapter gives a short overview of ethology and how it has inspired re-
searchers to results that partly define BBR. In the second part of this chapter a
description of BBR is presented.

2.1 Ethology

Ethology is used as one source of inspiration when developing rational robotic
behaviors [7]. It is believed that intelligent behavior is an emergent capability,
developed during evolution, for survival and reproduction. Intelligence, cognition,
and reasoning did not leap into the scene of evolution for no reason at all [7].

Ethology shows that intelligent behavior can be found even in animals with
very simple nervous systems, such as the nematode C. Elegans [9]. Another in-
teresting example is the Hawkmoth [32, 33] that displays an intelligent behavior
to escape pursuing bats. This escape behavior works without a central nervous
system [32]. The Hawkmoth is capable of navigating away from distant echolo-
cating bats or, if the bat appears close, to fly in loops, make startling noises or
simply fold its wings and drop to the ground. When the bat disappears the moth
starts to fly again and avoids crashing onto the ground.

Another example is the box jellyfish, Tripedalia cystophora [29], which does

5

6 Chapter 2. Ethology and behavior-based robotics

not have a central nervous system either but is capable of keeping a fixed position
while subjected to wind and tide currents on the boundaries of Mangrove swamps
in Central America, where it feeds on plankton. The positioning is facilitated by a
set of specialized light-sensitive sensors. Some of the sensors are looking upwards
for the edge of the Mangrove trees. If it gets too dark, implying that the jellyfish is
close to the trees, it swims towards the light. If it gets too light, the jellyfish swims
towards the darkness. Another set of sensors are looking downwards to keep track
of the roots of the mangrove trees. If the roots move, relative to the jellyfish, in
one direction, it starts to swim in the opposite direction.

An animal has a repertoire of behaviors and some of the behaviors are more
productive than others in a given situation. For example, if the animal is hungry,
the feeding behavior is probably more productive than, say, a locomotion behavior.
In BBR, such a productive behavior can be called a task behavior [38] and refers
to the task that the robot has been assigned to carry out. A task could also be to
maintain a state, such as staying on route or keeping a posture. From this point
forward BBR is the main topic of this thesis.

2.2 Combining behaviors

A robot is generally assigned a task, meaning that it should execute one or several
task behaviors. While executing a task behavior other behaviors might be needed
to support the robot to safely perform the task behavior. For example, a robot
moving along a road, may on a timely basis scout the surroundings as a part of
planning the handling of potential future events. Such behaviors are named aux-
iliary behaviors. Of course, it is common that several task behaviors share the
same set of auxiliary behaviors but use them in different situations.

In realistic applications, the robot should be capable of managing sequences
and hierarchies of tasks as well as prioritizing among several tasks. Furthermore,
the robot must cope with scheduling, and sometimes rescheduling among several
tasks. For example, while vacuum cleaning, a robot must be able to move obsta-
cles obstructing the area that is to be vacuumed, perhaps even temporarily placing
those objects in a different room and returning them to their original locations
when vacuuming has been completed. Thus, the task of vacuuming is certainly a
complex task, if all the necessary auxiliary behaviors are taken into account.

In this thesis, and particularly in Paper IV, the emphasis will be on situations
involving a single task behavior and one or more auxiliary behaviors.

2.3. Behavior-based robotics 7

2.3 Behavior-based robotics

Behavior-based robotics (BBR), in which intelligent behaviors are built in a
bottom-up fashion, usually starts with simple behaviors, many of which may be
active simultaneously in a given robotic brain1. Such simple behaviors could be
avoid obstacles, find power supply, charge battery, follow wall etc.

Developing intelligent behaviors in BBR is usually a two-phase process. The
first phase is to define basic behaviors, e.g. avoid obstacles. Such a basic behavior
can involve several actions e.g. stop, turn away, start moving. The process of
defining behaviors is described in some detail in Chapter 3. The second phase
is to define the behavioral organizer which handles behavioral arbitration in such
a way that the robot can accomplish its task. Several methods are proposed and
some of them are described in Chapter 4.

Central to BBR is the concept of situatedness [7], meaning that the robot
should not build abstract world models but instead rely on sensor readings. A
robot selecting behaviors based only on current sensor information is called a re-
active [2, 5] robot. Avoiding pure reactiveness, several behavioral organization
methods implement internal states as a function of different variables and read-
ings, such as time, sensor readings, and battery charge level. These internal states
can be interpreted as the robot’s abstract representation of the world.

Unfortunately, the majority of the developed methods for behavior coordina-
tion rely heavily on manual coding [4, 18, 38] and, as mentioned before, soon
leads to extensive fine-tuning and non-robust solutions. This issue will be dis-
cussed further in Chapters 4 and 5.

Developing robotic brains usually means testing the candidate solution in
a simulator. Of course, a simulator is never a perfect match with the real world
and the discrepancy between the simulated and real outcome using a robotic brain
is called the reality gap [13]. The effects from the reality gap can be reduced
by improving the simulator, making the robotic brain more tolerant to noise, and
implementing adaptive abilities in the robotic brain. However, usually, the de-
velopment of a robotic brain is an iterative process where the brain is gradually
improved through repetitive cycles involving simulations and tests on the physical
robot,

An approach for evolving the robotic brain directly on the robot, and thus
avoiding the reality gap, is called embodied evolution [11, 41] but this method
will not be covered in this thesis.

Despite the reality gap, simulations (rather than embodied evolution) are of-
ten used, since the evolution of a robot is usually quite time-consuming when

1The term robotic brain is used to emphasize that the means for generating rational behaviors
for the robot should not be a synonym for a controller, related to classical control theory.

8 Chapter 2. Ethology and behavior-based robotics

performed in a physical robot rather than a simulated one. The problem of gener-
ating a robot capable of rational behavior (through behavioral organization) turns
out to be very complex, involving optimization in high-dimensional spaces. For
this reason, EAs are often used in connection with such problems. For example,
the UM method [38] relies heavily on such an algorithm namely, GA [24].

Learning [3, 22, 27], i.e. modification of the robotic brain as a result of inter-
action with the environment, is a desirable property of autonomous robots, giving
them the ability to adapt to a changing world. However, this property will not be
covered here.

Chapter 3
Defining behaviors

In BBR, the brain of a robot is built from a repertoire of behaviors. When defining
behaviors, it is important to distinguish between the intended result of a behavior
and the manner in which it achieves the result.

For example, in autonomous robotics there is usually a behavior for obstacle
avoidance. Thus, the intended result of the behavior is to avoid obstacles, and a
prescription such as rotate away while obstacle is detected by the sensors and then
stop is an example of a detailed implementation of the behavior.

Discussing the definition of single behaviors out of context is difficult, and
therefore the discussion will involve more than one behavior. However, the de-
tailed discussion of the issue of generating behavioral organizers is deferred to
Chapter 4.

3.1 Behavior complexity

Behaviors can be defined at different levels of complexity. For the obstacle avoid-
ance behavior above, removing the stop-part and letting some other part of the
robotic brain handle that particular action reduces the behavior complexity but
increases the complexity of the behavioral organizer. Instead, adding complexity
to the behavior such as rotate away while obstacle is detected by the front sensors
and then drive away a distance L at full speed before stopping results in a more
complex behavior.

Raising the level of complexity of a behavior indicates an assumption that
it is possible to predict the situations the robot will experience. McFarland and
Bösser [20] describes such a complex behavior with a fixed sequence of actions,
known in ethology as a fixed action pattern, resulting in a productive but spe-
cialized, inflexible, behavior. Since predicting situations in unstructured envi-

9

10 Chapter 3. Defining behaviors

Figure 3.1: A robot operating in a grid-based environment with three proximity
sensors pointing left, forward, and right, situated in two different mazes with sharp
corners. Using the maze in the left panel and defining behaviors for move forward
and turn right 90◦ but forgetting the turn left 90◦ behavior could result in an un-
successful robotic brain where the robot reaches a point, marked with an×, turns
right twice, and then proceeds in the wrong direction. A hand-coded behavior for
traversing the maze in the left panel is shown in Fig. 3.2. On the other hand, using
that behavior, the robot would get stuck in a loop-like motion in the maze shown
in the right panel.

ronments is generally not possible, unnecessary behavioral complexity should be
avoided. Instead, a better approach is to use a repertoire of several elementary
behaviors together with a behavioral organizer, and select appropriate behaviors
in such a way that a beneficiary overall behavior is presented.

In order to illustrate the benefit of using elementary behaviors, consider the
very simple example of a robot equipped with two behaviors, drive straight and
turn left sharply, so that it can follow a closed path, leading to the left, of approx-
imately circular shape. By switching between these two behaviors appropriately,
the combined behavior of following a closed path will emerge. The radius of
the circle is controlled by the selection of behaviors over time, not by a single
behavior.

It should be noted that defining what part of the robotic brain to encode into
a behavior, and what part to solve using behavioral organization is difficult to
determine a priori. However, it is possible to evolve both the constituent behaviors
and the robotic brain, as shown in the work described in Paper I. In this work,
the robotic brain was evolved in two phases; First, the constituent GFSM-based
behaviors were evolved, and secondly, these behaviors were fused together into
a complex robotic brain, using random transition-rules initially and a continued
evolution.

3.2. Deriving behaviors 11

3.2 Deriving behaviors

Deciding what behaviors to include in an autonomous robot is a process requiring
considerable experience, but often also some amount of guesswork. When defin-
ing the behaviors one should strive not to overlap their functionality too much but
at the same time not leave open gaps in the overall functionality of the robotic
brain. To illustrate such a gap of functionality, consider a very simple robotic
brain for a robot operating in a grid-based environment. The task of the robot is
to pass through a path with sharp angles, seen in the left panel of Fig. 3.1. The
robot is equipped with the behaviors move forward and turn right 90◦ but not the
behavior turn left 90◦. The absence of such a behavior could result in a failure to
accomplish the task of passing through the maze. Assuming that the robot reaches
the second corner, requiring a left turn, two outcomes are possible, failure in mak-
ing that left turn, or execution of the left turn by means of three 90◦-right turns
in a sequence, effectively resulting in a 90◦-left turn. Clearly, the latter procedure
places a higher requirement on the behavioral organizer.

3.3 Behavior type

When defining behaviors for a task to be executed by a robot, one or a few be-
haviors are selected to be task behaviors, i.e. behaviors involved in productive
actions directly benefiting the task given. For example, from the simple example
above, the most productive behavior is the move forward-behavior, leading the
robot to move through the maze. Therefore, this behavior is designated the task
behavior. At the same time, executing only the task behavior could lead the robot
into trouble, such as a collision. Therefore, some auxiliary behaviors are needed
to support the task behavior. The behaviors turn right 90◦ and turn left 90◦ are the
auxiliary behaviors, since they are, by themselves, insufficient to generate motion
through the maze, but, at the same time, essential in enabling the robot to navigate
around corners and productively use the task behavior.

3.4 Implementation

An implementation of a behavior is an exact description of what actions should
be taken by the robot in different situations. The implementation method depends
on whether the behavior is to be hand-coded or machine-programmed. If hand-
coding is preferred, a simple if-then-else code or a finite state machine (FSM)
could be adequate. If instead the behavior is machine-programmed, an artificial
neural network (ANN) could be suitable.

12 Chapter 3. Defining behaviors

// ----Behavior: Traverse maze ------------------

function TraverseMaze(Sl,Sf,Sr: integer): integer;

var Action:integer;
begin

if Sf = 1 then // Obstacle ahead
if Sr = 0 then // If no obstacle on right side

Action := TurnRightAction // turn right 90 degrees
else if Sl = 0 then // If no obstacle on left side

Action := TurnLeftAction // turn left 90 degrees
else // If obstacles on all three sides

Action := TurnRightAction // turn right
end

else
Action := GoForwardAction // No obstacles ahead, go forward

end;
result := Action;

end

Figure 3.2: Code example of a behavior for travesring the maze in the left panel
of Fig. 3.1. The code is given in Delphi object-oriented Pascal.

Consider the simple robot described in Fig. 3.1, acting in a grid-based simu-
lator operating in discrete time. At each square, the robot can either go one square
forward, turn left 90◦, or turn right 90◦. The robot is equipped with three sensors,
for which the notation Sl, Sf , Sr is introduced for the left, front, and right sensor,
respectively. Each sensor gives a binary reading of either zero (no obstacle) or
one (obstacle present). Given this simple setup, a hand-coded if-then-else-style
behavior for navigating the maze could take the form shown in Fig. 3.2.

This simple code handles all situations and will completely traverse the maze
in the left panel of Fig. 3.1. Since there is only one behavior, no behavioral or-
ganizer is needed. On the other hand, this behavior will lead to a static motion
pattern that might not be optimal in a general case. For example, consider the
same robot in the maze shown in the right panel of the same figure. Using the
program described in Fig. 3.2, the robot will move in a loop-like motion.

As mentioned in the introduction of this chapter, adding complexity to a be-
havior assumes that future situations for the robot can be predicted. In the first
situation above, the implementation expected only one, correct, choice that, effec-
tively, became the wrong choice in the second situation.

In the other extreme, where no logic or decision-making is placed in the be-

3.4. Implementation 13

// --- Behavior: Turn left ------------------
function TurnLeft(Sl,Sf,Sr: integer): integer;
begin

result := TurnLeftAction // turn left 90 degrees
end;

// --- Behavior: Turn right ------------------
function TurnRight(Sl,Sf,Sr: integer): integer;
begin

result := TurnRightAction // turn right 90 degrees
end;

// --- Behavior: Go forward ------------------
function GoForward(Sl,Sf,Sr: integer): integer;
begin

result := GoForwardAction // Go forward
end;

Figure 3.3: Very simple definition of the three behaviors, turn left, turn right, and
go forward.

havior, the same functionality could be obtained using a properly designed behav-
ioral organizer (see Chapter 4) together with three very simple behaviors defined
as in Fig. 3.3, assuming the maze always look the same, i.e. the behavioral orga-
nizer always chooses a left turn if both a right and a left turn are possible. Adding
more information to the behavioral organizer, such as a compass or a map, indi-
cating the previous path of the robot, it would be possible to improve the overall
performance of the robot. However, such improvement would require a more
complex behavioral organizer.

It should be noted that essentially the same behaviors can be defined in many
different ways. The code examples above are only an illustration of one such
implementation.

3.4.1 Specific examples

In order to illustrate some of the behaviors used in the appended papers, two be-
haviors will now be described briefly; First, an evolved behavior, used in Paper I,
is described, and secondly a description is given of a simple hand-coded behav-
ior used in Paper IV. Both examples represent quite simple behaviors that, in the
papers, were used in conjunction with other behaviors to form a complete robotic
brain for two-wheeled differentially steered robots.

14 Chapter 3. Defining behaviors

Figure 3.4: The structure of a chromosome encoding a GFSM.

Figure 3.5: The variable length chromosome, with structure described in Fig. 3.4,
used to generate the GFSM in Fig. 3.6.

Garbage collection

In Paper I, two behaviors were evolved for a cleaning robot, namely garbage col-
lection and obstacle avoidance. These behaviors were implemented using a gen-
eralized FSM (GFSM), encoded in a variable-length chromosome. The structure
of the chromosome as well as an example, are shown in Figs. 3.4 and 3.5, and the
corresponding GFSM is shown in Fig. 3.6. The chromosome shown in Fig. 3.5,
has been formatted for easier reading. In Fig. 3.6, rectangles represent the states,
which define the settings for the left and right motor, and the dashed boxes show
the conditions for transitions to other states. The arrows indicate the target states
for a fulfilled condition. If no condition is fulfilled, the FSM remains in the same
state. The conditions are based on readings of the IR sensors of the simulated
robot. For example, the first condition in state one indicates a transition to state 2
if the reading of sensor 3 is in the range [1.0, 1.3].

The approach of encoding both coefficients and structure in the chromosome
limits the risk of restricting the EA from finding the necessary complexity of a be-
havior to solve the problem adequately. However, in many cases, it is common to
apply a size restriction in order to avoid evolving GFSMs that attempt to take into
account every aspect (including noise) in the environment, rather than focusing
on the relevant aspects. Thus, a parsimony pressure can be used, meaning that
a punishment is applied to complex GFSMs. The idea is similar to the concept
of Ockham’s razor, i.e. selection of the simplest system that can represent the
available data.

3.4. Implementation 15

Figure 3.6: The GFSM decoded from the chromosome shown in Fig. 3.5.

function TRobotScoutingBehavior.BehaviorStep(
var aMotorSettings:array of real;
aV: Real): real;

begin
Result := inherited BehaviorStep(aMotorSettings, aV);
aMotorSettings[LeftMotor] := 0.5;
aMotorSettings[RightMotor] := -0.5;

end;

Figure 3.7: A simple robot scouting behavior, hand-coded in Delphi object-
oriented Pascal.

Robot scouting

The robot scouting behavior, used in Paper IV, equips the robot with a rota-
tional motion in for rapid scanning of its closest environment. The robot was not
equipped with sensors covering its whole surrounding leaving, so called, blind
sectors. Thus, it was necessary for the robot to sometimes scan the environment,
which contained moving obstacles.

Compared to the previous example, this behavior is even simpler, in that it
does not respond to any external stimuli. Thus, by itself, this behavior would be
quite useless. However, in Paper IV, the behavior was used in connection with a
behavioral organizer, implemented using the utility manifold method (see Chapter
5), which handled the activation of the various available behaviors. The program
code for this example is shown in Fig. 3.7. As can be seen in the figure, the
motors are set to opposite values of equal magnitude, making the robot rotate
without moving its center-of-mass.

Chapter 4
Behavioral organization

Autonomous service robots used in real-world applications must be able to handle
a number of situations in order to perform their assigned tasks. Such applications,
a few examples of which are mentioned in Chapter 1, require several behaviors
and a means of organizing them, i.e. a procedure for selecting when to activate
different behaviors. Such procedures will here be referred to as behavioral orga-
nization methods, even though other names are sometimes used (see Chapter 1).

In Chapter 3, the discussion concerning the definition of behaviors argued that
complex or specialized behaviors are generally less useful when generating robots
capable of carrying out complicated tasks. Instead, a more common approach is to
use a repertoire consisting of rather simple behaviors, together with some method
for behavioral organization.

In Chapter 2, the concept of BBR was introduced, partly with a biologically
motivation, and in this chapter, some relevant methods for behavioral organization
are described briefly.

Several methods for organizing behaviors in BBR have been proposed. These
methods can be grouped in, at least, three categories namely, arbitration meth-
ods, command fusion methods, and non-explicit arbitration methods. A re-
view of the first two categories is given in [31].

4.1 Arbitration methods

In this group, where exactly one behavior is active (i.e. controls the robot) at
any given time, there are at least three subgroups, namely priority-based, state-
based, and winner-take-all arbitration methods. In the priority-based subgroup,
the first method published related to BBR can be found, namely the subsumption
architecture (SA) [6]. This arbitration method uses a set of behaviors with dif-

17

18 Chapter 4. Behavioral organization

ferent levels of priority. Behaviors are activated in such a way that a higher-level
behavior may override, or subsume, a lower-lever behavior.

The utility manifold method [38], used in e.g. in Paper IV in this thesis, and
described in Chapter 5, also belongs to the arbitration category.

4.2 Command fusion methods

Unlike arbitration methods, command fusion methods1 allow more than one be-
havior to be active simultaneously. The recommended outputs from the active
behaviors are fused together to form an action. This class of methods can be
further sub-divided into three sub-groups, voting, fuzzy logic, and multiple ob-
jective command fusion methods. These methods are not further addressed in this
thesis, but a survey can be found in [31].

4.3 Non-explicit arbitration methods

In this category, the identity of the individual behaviors is lost during the forma-
tion of the complete robotic brain. The method used in Paper I, which is partly
described also in Chapter 3, is an example of such a method.

4.4 Hand-coded vs. evolved behavioral organizers

Most methods for behavioral organization rely heavily on the ability of the user
to manually define the structure of the behavioral organizer, and to adjust its pa-
rameters [4, 6, 16, 38].

However, hand-coded behavioral organizers often turn out to be prone to fail-
ure when exposed to realistic environments. Furthermore, the connection to bi-
ological systems, which is a guiding principle for BBR, is often lost in methods
requiring manual fine-tuning.

An alternative procedure, used in the utility manifold method, is to evolve
behavioral organizers, rather than constructing them by hand. Thus, in this the-
sis, it is argued that behaviors and behavioral organizers should be automatically
generated using EAs. An additional advantage of this approach is that new and
unexpected valid solutions may emerge as a result of running an EA. While all
results must be thoroughly verified before being implemented in an actual robot,
the ability of an EA to find novel solutions is a strong advantage.

1Command fusion methods are also called cooperative methods.

Chapter 5
The Utility manifold method

The utility manifold (UM) method [38] addresses the need for a general, i.e.
widely applicable, method for behavioral organization that requires a minimum
of parameter tuning by the user. In the UM method, each behavior is assigned a
utility function, and the complete set of utility functions represents all desires and
beliefs of the robot.

The method is an arbitration method, i.e. one in which only a single behavior
is active at any given time. The active behavior is simply chosen as the behavior
with the highest utility value. Thus, the main problem is to determine the exact
shape of the utility functions. In the UM method, whose central concepts will
now be outlined briefly, the optimization of utility functions is performed using
an evolutionary algorithm. For a more thorough introduction to the UM method,
see Wahde [38, 40].

5.1 Biological background

In the development of the UM method [38], ethological considerations played
a central role. The concept of utility provides a common currency for rational
agents when they select which behavior to perform [20]. Indeed, the concept of
utility maximization follows from the property of transitivity of choice, which,
in turn, underlies all rational behavior. Thus animals, who are highly adapted to
their environment, tend to behave as if they were maximizing a quantity which
we may call utility (even though, in most cases, and especially in simpler ani-
mals, it is likely that the maximization of utility is something which is performed
unwittingly and as a result of evolutionary design). Wahde [38, 40] stresses the
importance of considering the highly optimized capacity for behavioral selection
in animals when trying to emulate this ability in robotics. The problem of be-

19

20 Chapter 5. The Utility manifold method

havioral selection has been studied intensively in ethology [10, 14, 19, 36], and
a few authors (e.g. Spier and McFarland [21], McFarland and Bösser [20]) have
considered the use of utility functions in robotics. However, the UM method is
the first approach in which utility functions are constructed quantitatively using
evolutionary optimization.

5.2 Behaviors and fitness

The UM method is concerned with behavioral organization, not with the gener-
ation of individual behaviors. In fact, the method is intended to be sufficiently
general to be able to organize behaviors no matter how they were generated. This
property is discussed further in Paper IV.

In the UM method, behaviors are divided into two categories, task behaviors
which are directly related to the task of the robot and which give it a fitness in-
crease if performed successfully, and auxiliary behaviors which may be useful or
even essential (and thus associated with high utility), but which give no fitness in-
crease. Thus, the designer of the robot should only be required to provide fitness
functions for the behaviors that are related to the task of the robot, and not to its
auxiliary behaviors (such as e.g. obstacle avoidance and battery charging), whose
activation instead should be determined indirectly through the optimization of the
utility functions.

5.3 State variables and utility functions

With each behavior is associated a utility function (not to be confused with the
fitness functions provided for task behaviors, see the example below), which de-
pends on (some of) the state variables. State variables, in turn, are divided into
three categories: external variables (e.g. readings of IR or visual sensors) that
measure anything the robot can derive directly from the environment, internal
physical variables that measure physical properties such as temperature or energy
levels within the robot itself, and, finally, internal abstract variables, which are
used in the behavioral selection (see Sect. 5.5 below), and which roughly corre-
spond to signaling substances (e.g. hormones) in biological systems [19, 38].

5.4 Evolutionary optimization

In the UM method, the optimization of utility functions is normally performed
using EAs. In general, the utility functions depend on several state variables, and

5.5. A simple example 21

should provide appropriate utility values for any combination of the relevant in-
puts. Thus, determining the exact shape of the utility functions is a formidable
task, and one for which EAs are very well suited. In principle, genetic program-
ming (GP) can be used, in which case any function of the state variables can be
evolved. However, it is often sufficient to make an ansatz for the functional form
of each utility function, and then implement the EA as a standard genetic algo-
rithm (GA) for the optimization of the parameters in the utility function. The
latter approach has been used in Paper IV.

As an example, consider a utility function Ui that depends on a sensor value
S, the battery energy E, and an internal abstract variable x. Defining a polyoma
of the second degree, the ansatz becomes

Ui = ai,000 + ai,100S + ai,010E + ai,001x +

+ ai,200S
2 + ai,020E

2 + ai,002x
2 +

+ ai,110SE + ai,101Sx + ai,011Ex, (5.1)

where the ai,jkl are constants that are to be determined by the EA.
The variation of the internal abstract variable must also be specified. In prin-

ciple, the variable can be any functions of sensor variables and behavior-time. An
ansatz could look like

xi =

{

bi,1 + bi,2e
−|bi,3|ti If Bi is active,

0 Otherwise
(5.2)

where bi,j are constants that will be used for each abstract variable xi. The
behavior-time ti increases linearly with (global) time if behavior i is active, and
is zero otherwise. Furthermore the abstract variable xi is exactly zero when the
associated behavior is inactive. An example of how the values from the utility
functions varies over if found in Fig. 5.1. These particular series originates from
tests done within the studies for Paper IV.

Thus, once the state variables have been identified, and an ansatz has been
made for each utility function, the EA can begin the process of shaping the utility
functions in such a way that the choice of behaviors becomes as good as possible.

5.5 A simple example

The UM method will now be illustrated by means of a simple example. For a more
thorough introduction, see [38]. Consider the example of a lawn mowing robot
equipped with three behaviors: one task behavior mow the lawn (B1) and two

22 Chapter 5. The Utility manifold method

50 100 150 200 250

-0.5

0.5

1

1.5

B4.1

B3.2

B2.1

B1.1

Figure 5.1: Example of utility values over time for four behaviors. At each time
step, the behavior with the highest utility is active.

auxiliary behaviors charge batteries1 (B2), and avoid obstacles2 (B3). Clearly,
from a user’s or owner’s point of view, the lawn mowing behavior is the relevant
one, i.e. the behavior one would wish the robot to perform continuously if it were
possible. Thus, a fitness function (f1) is assigned to this behavior. For example,
the robot could be given an additional fitness point for each square meter of uncut
grass it mows. B2 and B3 give no fitness, i.e. f2 and f3 are both identically zero.

Furthermore, each behavior is associated with a utility function, denoted U1,
U2, and U3 for B1, B2, and B3, respectively. The utility functions depend on the
state variables of the robot, which in the case of the lawn mowing robot may in-
clude readings of IR sensors (obstacle detectors), the battery energy level, several
internal abstract variables etc.

The generation of the behavioral organization system of this robot, by means
of the UM method, would amount to evolving the three utility functions, either
from completely random functions of the state variables or from some ansatz.

The feedback signal to the optimization procedure is the fitness, which, as
described above, only is given for B1. How, then, can B2 or B3 be activated?
Consider the case in which B2 is not activated at all. In such a case, the robot
would mow the lawn until it ran out of battery energy, and would then be unable
to continue (and would therefore also be unable to gain additional fitness). In the

1A battery charging behavior would normally also have to include a sub-behavior for finding a
charging station. However, for simplicity, such complications are neglected in this example, which
is only intended to describe the basic concepts of the method.

2In this context an obstacle anything that could stop the robot from moving freely, such as trees
and holes.

5.5. A simple example 23

case in which B3 is not activated at all, the robot would, in all likelihood, suffer
a collision with an obstacle (possibly damaging the robot) or get stuck between
obstacles.

However, the activation of behaviors is governed by the utility functions.
Thus, if instead the evolutionary algorithm designs the utility functions such that
U2 or U3 sometimes exceed U1 (e.g. when the battery level is low or the robot
is near an obstacle), the robot would charge its batteries or avoid the obstacle and
thus be able to resume its lawn mowing activities after some time. Thus, while
the fitness f1 is the optimization measure, and neither B2 nor B3 give any fitness
increase, the evolutionary optimization method will nevertheless design the util-
ity functions so that B2 and B3 are sometimes activated (at least if the evaluation
time exceeds the time that the robot can operate on a single battery charge, and
the travelled distance is such that some obstacles are encountered).

Chapter 6
Evolving robotic brains

Well-functioning behaviors are the absolute foundation from which a behavior-
based robotic brain is defined. In general, any given behavior can be implemented
in many different ways, and the implementation details are often of less impor-
tance, as pointed out in Chapter 3, than the functionality obtained from the be-
havior. The definition of behaviors is associated with several difficulties. For
example, it is common that hand-coded behaviors become too specialized to the
particular situations the designer had in mind when generating the behavior. Even
if the robot is able to cope with those situations, it is likely (in an unstructured
environment) that it will be faced with other situations as well, the handling of
which might have been omitted by the designer. Thus, there is a strong motivation
for evolving behaviors, as was done in Papers I-III, rather than constructing them
by hand. On the other hand, evolving complex behaviors is generally a rather
time-consuming process. Thus, in such cases, a different approach is commonly
used, in which a robotic brain is built from a repertoire of simple behaviors, that
are somehow combined (see Papers I and IV), using e.g. an evolved behavioral
organizer (see Paper IV), to form a complete robotic brain.

This chapter elaborates on the behaviors and behavioral organizers studied in
Papers I-IV.

6.1 Behavior implementation

As mentioned before, many different implementations can normally be used for
any given behavior, but the choice of implementation may still be important. For
example, some implementations are better suited for evolutionary optimization
than others.

Several different implementation methods have been used in Papers I-IV, and

25

26 Chapter 6. Evolving robotic brains

they are briefly discussed below.

6.1.1 GFSMs

In Paper I, two GFSM-based behaviors, garbage collection and obstacle avoid-
ance, were evolved for a simulated differentially steered robot, equipped with 5
sensors. The simple arena used in the simulations was a metaphor for the platform
of e.g.a subway station.

The sensors were implemented in a simplified way, and discriminated be-
tween garbage objects, people, and walls (giving sensor readings 1,2, and 4, re-
spectively). Thus, the maximal reading for a sensor was 1 + 2 + 4 = 7. Each
state contained the values of torques applied to the two motors and a set of simple
transition conditions of the form

state →

{

target state If A < Si < B,
state Otherwise

(6.1)

where Si is the reading of sensor i and A and B define the range for which the
condition becomes true. The target state is the state to which the GFSM jumps
if the condition is fulfilled. In the evolution of garbage collection, only walls and
garbage were present in the scene of simulation, whereas in the evolution of (mov-
ing) obstacle avoidance, only walls and simulated people (in the form of circular
disks) were present. The evolution of the two separate behaviors was success-
ful and the two behaviors were then used in a study of behavioral organization,
in which both the structure and the coefficients were evolved using a GA with
chromosomes of variable length.

A more complex problem was studied in Paper II where, again, two GFSM-
based behaviors were evolved. In this study a simulated five-link bipedal robot
was used and behaviors for energy-optimized gait and robust balancing were de-
veloped. Each state contained parameter settings and reference angles for a PID-
controller determining the torques at each of the five joints. In addition, a loose
specification of reference angles was initially given, and the deviation between the
reference angles and the actual joint angles were used in the transition conditions.

In addition to parametric mutation a method for structural mutation of the
GFSM was implemented. The implemented structural mutations were 1) insertion
of a state, 2) deletion of a state, 3) addition of a prioritized state, 4) addition of a
transition condition, and 5) deletion of a transition condition.

When defining the initial population it was possible to choose between two
types of GFSM, namely linear GFSMs or general GFSMs. In the case of linear
FSMs, each state s had one transition condition targeting state s+1, except for the
last state for which the transition condition targeted state 1. In the case of general
GFSMs the structure was arbitrary, i.e. no restrictions were placed on it. The

6.1. Behavior implementation 27

evolution of a GFSM for energy optimized gait resulted in a cyclic FSM where
the first state acted as a starting state and the the subsequent states were activated
in a cyclic manner. In the evolution of the behavior for robust balancing, where
the robot stood with one leg lifted and was subjected to three point perturbations,
the EA added one more state to handle the disturbance.

6.1.2 Neural networks

A different implementation method was selected for Paper III where, again, a
balancing problem was studied. Here two types of ANN were used, namely a
feed-forward neural network (FFNN) and a fully connected recurrent neural
network (RNN), respectively. In this problem, a structure similar to an inverted
pendulum was exposed to sinusoidal perturbations while attempting to keep an up-
right position. The two types of implementation were encoded in chromosomes
genes and the parameters, but not the structure, of the networks were evolved.
The simulations showed that FFNNs, lacking short-term memory, could not solve
the problem in a satisfactory way. However, using RNNs, the inverted pendulum
could be kept upright for the duration of the simulation.

This study also included the use of using pressure sensors under the feet as
feedback to the behaviors. The findings was later used in the design of the bipedal
robot described in paper V.

6.1.3 Hand-coded behaviors

Finally, in Paper IV, simple hand-coded behaviors were implemented for a dif-
ferentially steered robot. Four behaviors were defined, and only one of them,
obstacle avoidance, included logical operators. Instead, the problem of selecting
between these simple behaviors was solved using the UM method for behavioral
organization.

6.1.4 Reflections on implementation methods

From the examples above it is clear that behaviors can be implemented using
several different methods. What is not indicated is that even the simple hand-
coded obstacle avoidance behavior, in paper IV, containing a small portion of logic
required several iterations and fine-tuning before working satisfactory. Thus, even
considering results from simulations only, it is evident that automatic definition of
behaviors, using e.g.EAs, is generally to be preferred.

It should be noted that all behaviors defined in Papers I-IV concern motor
control. Behaviors for e.g.abstract cognitive processes have not been studied.

28 Chapter 6. Evolving robotic brains

6.2 Evolving behavioral organizers

In this thesis two methods for behavioral organization have been studied, namely
a non-explicit arbitration, in Paper I, and the UM method, in Paper IV.

6.2.1 Non-explicit arbitration

In Paper I, two evolved GFSM-based behaviors were fused by concatenation of
the two chromosomes representing the best instance of each of the two constituent
behaviors. The concatenation amounted to adding initially random transition con-
ditions between the two behaviors.

The resulting chromosome was then exposed to some mutations to form an
initial population for further evolution, involving both parametric and structural
mutations. The resulting, complex, robotic behavior, based on the two constituent
behaviors, was successfully evolved using this procedure. By contrast, attempts
to evolve the complex behavior directly, were not successful.

However, while the results were promising, the method introduced in Paper I
had several drawbacks, one of the most important being that, in the final, evolved
FSMs, it was generally not possible to disentangle the different behaviors. While
this state of affairs is perhaps biologically motivated, keeping in mind the very
complex structure of e.g. the human brain, it is not optimal from a robotics point-
of-view. Furthermore, it is not clear that the method would scale well as the
number of behaviors were increased.

6.2.2 The UM method

In contrast to the previous, non-explicit arbitration, method the UM method was
studied in Paper IV. As shown in [30, 38] and in Paper IV, this method has the
ability of efficiently organizing behavioral repertoires.

The study in Paper IV indicates that the UM method can handle different
implementation variants and even implementation defects (in the individual be-
haviors), to some extent.

Chapter 7
Conclusions

This thesis describes several methods for implementing and evolving behaviors
and behavioral organizers for the development of autonomous robots, which are
expected to become widely used in a variety of applications in the near future.

Based on the results of the studies, it is proposed that evolving both indi-
vidual behaviors and behavioral organizers is to be preferred to manual coding,
a procedure often used in connection with many methods for behavioral organi-
zation. Using evolutionary algorithms not only significantly reduces the manual
work and time needed to find a solution but may also lead to novel, and sometimes
unexpected, solutions to the problem at hand.

In particular, the results of the thesis give an indication in favor of the utility
manifold method for behavioral organization, based on its promising properties in
terms of generality.

Future work This thesis indicates a promising potential for the UM method,
used in Paper IV, as a means of organizing behaviors for autonomous robots.
However, several issues remain to be investigated, such as e.g. further studies
of (1) generality, i.e. robustness to different implementations of behaviors; (2)
scalability, i.e. the ability of the method to cope with an increasing number of
behaviors; and (3) noise tolerance, i.e. the ability of the method to cope e.g. with
varying levels of noise, in both input and output signals.

29

Chapter 8
Summary of appended papers

8.1 Paper I: Evolving complex behaviors on autonomous
robots

Proc. of the 7th UK Mechatronics Forum International Conference, 2002

This paper describes an evolutionary procedure for generating complex robotic
behaviors, implemented in generalized finite state machines (GFSMs). The par-
ticular case considered in the paper was that of a garbage collecting robot moving
in a populated area. Thus, two behaviors were needed, namely garbage collection
and avoid collisions.

In the paper, a procedure was introduced whereby complex (or composite)
behaviors are generated by first evolving simple behaviors. Next, a large FSM is
formed by forming initially random connections between the FSMs representing
the simple behaviors. The connections are then optimized by continuing the arti-
ficial evolution. During this procedure, fine-tuning of the constituent behaviors is
allowed as well.

The approach presented in the paper shows that it is possible to evolve con-
stituent behaviors and later fuse them to form a more complex robotic brain. An
alternative procedure, in which the complex behavior was evolved directly, with-
out the intermediate step of evolving simple behavior, was tried as well. However,
in this case, the complex behavior did not emerge in any run.

The main conclusion of the paper is that complex behaviors can be generated
quite easily and efficiently by first evolving the simple constituent behaviors and
then joining them. Furthermore, it was demonstrated that the FSM representation
is well suited for evolutionary robotics.

31

32 Chapter 8. Summary of appended papers

8.2 Paper II: A flexible evolutionary method for the
generation and implementation of behaviors for
humanoid robots

Proceedings of the IEEE-RAS International Conference on Humanoid Ro-
bots, Humanoids 2001, Tokyo, Japan, November 2001

This paper presents a method for generating behaviors for bipedal robots, centered
around the specific case of motor behaviors, such as balancing (during perturba-
tions) and walking. A simple, two-dimensional model of a five-link bipedal robot
was used.

In the method introduced in the paper, only a rough indication of the desired
behavior must be specified as an initial condition to an evolutionary algorithm
(EA), which then performs further optimization of the behavior. The EA was
implemented such that it could not only optimize the parameters of the GFSMs,
but also their structure, increasing the flexibility of the method. Such flexibility is
needed, since it is generally difficult to specify a priori the optimal structure of a
robotic brain for bipedal locomotion or balancing.

As in Paper I, behaviors were represented using generalized finite state ma-
chines (GFSMs), in which each state defined the values of 20 constants determin-
ing the torques acting on the links. A sequence of reference states, providing a
rough indication of the desired movement, was specified, and the deviation be-
tween the actual position and the reference position (in the currently active state
of the GFSM) was used to define six variables used in the transition conditions
connecting the GFSM states to each other.

The method was applied to two test cases, namely energy optimization and
robust balancing. In the first case, the robot was required to walk as far as possible
using a finite amount (500 J) of energy. In first generations, the robot fell over
almost immediately. However, the EA quickly improved the gait, and generated
GFSMs capable of making the robot walk. During the run, the length walked
increased considerably, from 1.77 m to 4.15 m. In the second case, a case was
considered in which the robot was supposed to lift one leg (i.e. as if starting to
climb stairs), in the presence of perturbations. Here, the structural modifications
were essential: the final GSFM, capable of keeping the robot upright, contained
two states, whereas the GFSMs in the initial population contained only one.

8.3. Paper III: Development of a bipedal robot with genetic algorithm based
motion control 33

8.3 Paper III: Development of a bipedal robot with
genetic algorithm based motion control

Proceedings of the 8th UK Mechatronics Forum International Conference
(Mechatronics 2002), Twente, The Netherlands, June 2002

This paper discusses the early stages of the development of the bipedal robot de-
scribed in Paper V. While the exact design presented in this paper was never ac-
tually fully assembled, it provided important guidance for the final development
of the robot. In particular, a preliminary design for a force and torque sensor for
posture control was studied, and results from hardware validation tests are given
in the paper.

Such sensors are to be attached under the feet of the bipedal robot presented
in Paper V. The signals obtained from these sensors are to be used as an addi-
tional sensory modality for the robot. Thus, in the paper, some early results are
presented from simulations of a balancing (monopedal) robot, using an artificial
neural network (ANN) as brain, and with force signals as input variables. Two
kinds of ANN were used, namely feed-forward neural networks (FFNN) and re-
current neural networks (RNN). The FFNNs, lacking short-term memory, turned
out to be insufficient for the task, whereas the RNNs were able to balance the
robot for the duration of the simulation.

8.4 Paper IV: A study of multiple behavior imple-
mentations in connection with the utility mani-
fold method for behavioral organization

Submitted to Robotics and Autonomous Systems, November 2004

In Papers I-III, several different (but related, through the use of EAs) methods for
generating behaviors were introduced, and Paper I also considered the important
issue of generating a complete robotic brain, combining different behaviors.

Thus, in Paper IV, some properties of a more general method for behavioral
organization, namely the utility manifold (UM) method [38] (see Chapter 5) were
studied, in a case involving four different behaviors. More specifically, the task of
the robot was to move around in an arena, while avoiding collisions with moving
and stationary obstacles and, simultaneously, avoiding complete discharging of
the battery.

Unlike the method introduced in Paper I, in the complete robotic brain gen-

34 Chapter 8. Summary of appended papers

erated using the UM method, the identity of the simple behaviors is preserved.
Behaviors are activated by an evolved behavioral organizer, based on utility func-
tions

In Paper IV, it is first shown that the UM method is indeed able to solve the
problem of organizing the four behaviors, and the properties of the solution are
discussed in detail. Next, an important property of the method itself are studied,
namely its ability to generate a complete robotic brain regardless of the imple-
mentation details of the constituent behaviors.

8.5 Paper V - Construction of a low-cost, general
purpose bipedal robot

Technical report TR-BBR-2004-002, Chalmers University of Technology, 2004

This technical report gives a brief description of the construction of a small general-
purpose bipedal robot. The construction is a strongly modified extension of the
design introduced in Paper III. The robot weighs 7 kg and has an overall height of
0.98 m, including a simple rod presently serving as the upper body of the robot.
At present, the robot comprises 15 degrees of freedom with external power supply
and control.

An effort has been made to minimize the component cost of the robot, while
maintaining a robust design, capable of coping e.g. with a fall. The total com-
ponent cost of the robot does not exceed 1,000 EUR, and the robot is tolerant to
shocks due to falling, mechanical overload, and joint motion exceeding actuation
range.

Bibliography

[1] World Robotics 2003, United Nations, 2003.

[2] R. C. ARKIN, Behavior-based robotics, MIT Press, 1998.

[3] R. K. BELEW AND M. MITCHELL, Adaptive Individuals in Evolving Popu-
lations: Models and Algorithms, Santa Fe Institute Studies in the Science of
Complexity, 1996.

[4] B. BLUMBERG, Action-selection in hamsterdam: Lessons from ethology., in
In: From Animals To Animats, Proc of the 3th Int. Conf. on the Simulation
of Adaptive Behavior, MIT Press, 1994.

[5] V. BRAITENBERG, Vehicles: Experiments in Synthetic Psychology, MIT
Press, 1984.

[6] R. A. BROOKS, A robust layered control system for a mobile robot, vol. 2,
IEEE, March 1986.

[7] , Intelligence without representation, vol. 47, January 1991, pp. 139–
159.

[8] , Cambrian Intelligence The Early History of the New AI, MIT Press,
1999.

[9] W. CLARK AND M. GRUNSTEIN, Are we hardwired. The Roles of Genes in
Human Behavior, Oxford University Press, 2000.

[10] R. DAWKINS, Hierarchical organization: A candidate principle for ethol-
ogy., Growing Points in Ethology, (1976).

[11] S. FICICI, R. WATSON, AND J. POLLACK, Embodied evolution: A resonse
to challenges in evolutionary robotics, in In: Proc of the 8th European Work-
shop on Learning Robots, 1999, pp. 14–22.

35

36 BIBLIOGRAPHY

[12] S. HARNAD, The symbol grounding problem, Physica D: Nonlinear Phe-
nomena, 42 (1990), pp. 335–346.

[13] N. JAKOBI, Minimal simulations for evolutionary robotics, 1998.

[14] K. LORENZ, Foundation of Ethology, Springer-Verlag, New York, 1973.

[15] R. LULL, Ars Magna, 1272.

[16] P. MAES, How to do the right thing, Connection Sci. J., 1 (1984), pp. 291–
323.

[17] , Situated Agents Can Have Goals, Designing Autonomous Agents, MIT
Press, 1990.

[18] , Modeling adaptive autonomous systems, Artificial Life, 1 (1994),
pp. 135–162.

[19] D. MCFARLAND, Animal Behavior, Addison Wesley Longman, 1993.

[20] D. MCFARLAND AND T. BÖSSER, Intelligent Behavior in Animals and Ro-
bots, MIT Press, 1993.

[21] D. MCFARLAND AND E. SPIER, Basic cycles, utility, and opportunism in
self-sufficient robots, Robotics and Autonomous Systems, 20 (1997).

[22] F. MICHAUD AND M. J. MATARIC, Representation of behavioral history for
learning in nonstationary conditions, Robotics and Autonomous Systems,
29 (1999), pp. 187–200.

[23] B. MIRKIN AND M.-B. WEINBERGER, The demography of population age-
ing, in Technical meeting on population ageing and living arrangements of
older persons: Critical issues and policy responses, Population Division, De-
partment of Economic and Social Affairs, United Nations Secretariat, Feb-
ruary 2000.

[24] M. MITCHELL, An Introduction to Genetic Algorithms, MIT Press, Cam-
bridge, MA., 1996.

[25] G. E. MOORE, Cramming more components onto integrated circuits, Elec-
tronics, 38 (1965).

[26] H. P. MORAVEC, Robot, Mere Machine to Transcdent Mind, Oxford Uni-
verity Press, 1999.

BIBLIOGRAPHY 37

[27] S. NOLFI AND D. FLOREANO, Learning and evolution, Autonomous Ro-
bots, 7 (1999).

[28] , Evolutionary Robotics, MIT Press, 2000.

[29] K. NORDSTRÖM, R. WALLEN, J. SEYMOUR, AND D. NILSSON, A sim-
ple visual system without neurons in jellyfish larvae, in Proceedings of the
Royal Society of London: Biological Sciences, vol. 270, November 2003,
pp. 2349–2354(6).

[30] J. PATTERSSON AND M. WAHDE, (2004).

[31] P. PIRJANIAN, Behavior coordination mechanisms—state-of-the-art, tech.
report, Technical report IRIS-99-375, Institute of Robotics and Intelligent
Systems, University of Southern California, Los Angeles, California, 1999,
1999.

[32] K. D. ROEDER, Turning tendency of moths exposed to ultrasound while in
stationary flight, Journal of Insect Physiology, 13 (1967), pp. 873–880.

[33] , Episodes in insect brains, American Scientist, 58 (1970).

[34] W. D. ROSS, ed., The Works of Aristotle: Translated into English, Vol I, Part
C., Clarendon Press, Oxford, 1928.

[35] D. SINGLETON, An evolvable approach to the maes action selection mech-
anism, 2002.

[36] N. TINBERGEN, The Study of Insects, Clarendon Press, Oxford, 1950.

[37] T. TYRRELL, Computational mechanisms for action selection. PhD Thesis,
University of Edinburgh, 1993.

[38] M. WAHDE, A method for behavioural organization for autonomous robots
based on evolutionary optimization of utility functions, J. Systems and Con-
trol Engineering, 217 (2003), pp. 249–258. Part I.

[39] , Evolutionary robotics: The use of artificial evolution in robotics, in
IROS2004: Tutorial, 2004.

[40] , An Introduction to Adaptive Algorithms and Intelligent Machines, 2:nd
ed., Chalmers, 2004.

[41] R. WATSON, S. FICICI, AND J. POLLACK, Embodied evolution: Em-
bodying an evolutionary algorithm in a population of robots, in In: 1999
Congress on Evolutionary Computation, IEEE, 1999, pp. 335–342.

Paper I

Evolving complex behaviors on autonomous robots

in

Proc. of the 7th Mechatronics Forum International Conf.,
2002.

EVOLVING COMPLEX BEHAVIORS ON AUTONOMOUS
ROBOTS

Mattias Wahde, Hans Sandholt

Div. of Mechatronics
Chalmers University of Technology,

412 96 G̈oteborg, Sweden
E-mail: fmwahde,sandholtg@me.chalmers.se

Abstract: An evolutionary procedure for obtaining complex robotic behaviors, implemented
in generalized finite state machines, is introduced and described. The procedure operates by
first evolving simple behaviors and then combining the corresponding finite state machines
and continuing the artificial evolution. It is demonstrated that the procedure is efficient and
produces robust results. The finite state machine representation is shown to be well suited for
evolutionary robotics.

1. INTRODUCTION

The use of evolutionary methods is becoming increas-
ingly widespread in many areas of science. Such meth-
ods have, for example, the advantage of being able to
generate solutions to problems for which it is difficult
to formulate an analytical model. An important ex-
ample is the problem of constructing behaviors for
autonomous robots. In the artificial life and adaptive
behavior communities, evolutionary algorithms have
been used extensively to evolve behaviors for au-
tonomous robots (”animats”). Thus far, many basic
behaviors, such as following a moving target, avoid-
ing collisions etc., have been obtained, as well as
several behaviors illustrating natural phenomena, such
as e.g.flocking (Reynolds, 1987) and pursuit–evasion
(Wahde and Nordahl, 1998). Work has also begun
on the evolution of more advanced behaviors such as
e.g. shepherding (Schultzet al., 1996) and garbage
collection (Nolfi, 1997). From the point of view of
the more applied sciences, such as mechatronics, the
generation of robust and effective complex behaviors
is of great importance, as it would make possible the
construction of fully autonomous robots that could
be used reliably in industrial applications. There are
several issues pertaining to evolutionary methods that
are relevant to mechatronics. An important question
is that of representation: which is the best way of
representing the control systems of autonomous robots

for mechatronic applications? Another issue of impor-
tance is that of time scales: given a good represen-
tation for the control systems, how long time does it
take to evolve complex behaviors? Is there a way by
which time can be gained, for instance by evolving
simple behaviors separately and then combining them
into more complex ones? In this contribution an inves-
tigation of these questions is initiated, with emphasis
on the particular case of a subway cleaning robot.

2. THE PROBLEM

This investigation will focus on (simulated) robots ca-
pable of carrying out two different behaviors, namely
1) cleaning an area while 2) avoiding to collide with
moving objects. The task can be thought of as that
faced by a robot cleaning a subway station, while con-
stantly avoiding collisions with moving or stationary
passengers leaving, entering, or waiting for trains. A
somewhat simplified version of this problem is con-
sidered here: the robot is placed in a quadratic area
with walls, containing (circular) objects to be removed
(garbage) as well as other robots moving around in the
area (pedestrians). The task of the robot is to push the
garbage objects to the walls of the area, and doing so
with a minimum number of collisions with the other
robots, which are circular in shape. This problem,
with its two constituent behaviors, was not chosen

(c) 2000 Elsevier Science Ltd. All rights reserved.

1

2

 3

4

5

Fig. 1. A robot equipped with 5 sensors (semi–circles),
numbered clockwise from the top, and two
motors driving the two wheels (rectangles). The
line indicates the front direction of the robot.

at random. The two behaviors were selected because
they are particularly difficult to combine: in the first
behavior, the robot should seek objects (and then push
them forward), whereas in the second it should do the
exact opposite.

3. METHOD AND REPRESENTATION

The evolution of robotic behaviors can be carried
out either in simulation or on real robots. Normally,
the evolutionary process requires the evaluation of a
large number of candidate solutions, and it is therefore
necessary to make use of the superior speed that can be
achieved in computer simulations. In this contribution,
the work has been carried out exclusively on simulated
robots.

3.1 Robots and sensors

The robots used in the simulations are circular in
shape, and are equipped with a number of equally
spaced sensors, with given range and opening angle,
as well as two wheels symmetrically placed on the
sides of the robot, as shown in Fig. 1. The equations
of motion have been taken as

dv

dt
+ �v = � (Mr +Ml) ; (1)

and

d2'

dt2
+

d'

dt
= Æ (Mr �Ml) ; (2)

where' is the direction of motion,Mr andMl are the
right and left motor torques, respectively, and�; �; ;
and Æ are constants. Thus, limits are introduced on

both the linear and angular speed of the robot. The
velocity components of the robot are obtained as

vx = v cos' (3)

and

vy = v sin': (4)

Sensors can be implemented with various degrees
of realism. The least realistic way would be to give
the robot complete information on the locations of
garbage objects, pedestrians, and walls. While such
a representation might work fine in simulations, it
would clearly not be useful in a realistic situation.

Here, more realistic sensors based on direct visual in-
puts have been used, namely sensors such that garbage
objects, pedestrians, and walls give sensor readings of
1,2, and 4, respectively, if within range of the sensor in
question, and 0 otherwise. If a sensor has, for instance,
both a wall and a garbage object (or several) within
range, the corresponding sensor reading equals 4+1
= 5 etc. An even more realistic sensor type would
be one that gave a graded response depending on the
distance of the objects, without quantized levels for
different types of inputs. However, the emphasis here
is on behaviors rather than image preprocessing, and
therefore the use of the slightly simplified sensors was
justified.

Note that the sensory input is not affected if more
than one object of a given type (garbage, pedestrians,
or walls) are within range. This simplification was
introduced in order to obtain a simple upper limit
(=1+2+4=7) on the sensory inputs. Alternatively, a
saturation procedure could have been used to limit the
input signal.

3.2 Control systems

As for the representation of the control systems, the
use of neural networks is very common in evolution-
ary robotics, see e.g. (Meyer, 1998) and references
therein. While such a representation certainly has its
advantages, it has also some disadvantages. For ex-
ample, it is most often difficult to interpret the so-
lutions obtained in a neural network representation.
Furthermore, due mainly to the distributed nature of
the computation in neural networks, it is not clear how
simple behaviors implemented in neural networks best
should be combined into complex behaviors.

Another possible representation is given by finite state
machines (FSMs). An FSM consists of a finite number
of states and conditional transitions between them.
The FSM reads input symbols from a finite alphabet
and produces output symbols (actions) taken from
another (or possibly the same) finite alphabet, while
jumping between the different states. Normally, the

(c) 2000 Elsevier Science Ltd. All rights reserved.

State 1
L: 0.5
R: 0.3

State 2
L: 0.1
R: 0.4

State 3
L: 0.7
R: 0.7

3
3.1<s <4.7

1

3.1<s <4.1
2 5

6<s <7.2
2 3

2.3<s < 5

2.1<s < 4

1<s <1.3

Fig. 2. An example of a 3–state FSM. The arrows
indicate the state to which the FSM jumps if the
corresponding condition (listed in the rounded
boxes) is fulfilled.

states themselves are not associated with any partic-
ular action. Instead, the actions of the FSM are as-
sociated with the transitions between states. For an
excellent introduction to FSMs in the framework of
evolutionary methods, see (Fogel, 1999).

Here, a slightly generalized version (still denoted
FSMs to avoid introducing a new acronym) will be
used, in which there is a finite number of states, but
where the actions and transition conditions are con-
tinuous, and where each state represents a particular
action, defined by the torques of the two motors. The
transitions are of the formA < si < B, whereA
andB are real numbers between 0 and 7 (representing
the maximum sensory input), andsi is the reading of
sensori. The transition conditions are checked in a
given order, so that those which are considered first
have higher priority than those that are considered last.
For each transition condition, there is a target state to
which the FSM jumps if the condition is fulfilled. If no
condition is fulfilled the FSM remains in its previous
state. The initial state is always state 1. A very simple
example of a 3–state FSM of this kind is shown in
Fig 2. From state 1, in which the left and right motor
torques equal 0.5 and 0.3, respectively, the FSM jumps
to state 2 if sensor 3 has a reading between 1.0 and 1.3
(i.e. if it sees one or several garbage objects), and to
state 3 if the sensor reading is between 3.1 and 4.7.
Note that some transitions may be unused: a condition
that cannot be fulfilled, such as e.g.3 < si < 2, is
equivalent to a non-existent transition.

3.3 Artificial evolution of FSMs

In the computer code used here, a very simple evo-
lutionary algorithm has been implemented. Initially, a
population ofNpop individuals consisting of random
FSMs is generated. Two individuals are picked at ran-

500 1000 1500 2000 2500 3000 3500 i

10

15

20

25

f

Fig. 3. The two curves show, as functions of the
number of evaluated individuals (i), the highest
fitness (f) obtained (upper curve) and the average
fitness, computed as a moving average over 100
individuals.

dom from the population, and are then evaluated. The
evaluation consists ofNe tests, starting with different
random positions of theNg garbage objects andNp

pedestrians (and random speeds for the latter). Fitness
values are then computed for each of the two individ-
uals. The fitnesses are defined as follows. If there are
only garbage objects (i.e.Np = 0), the fitness for a par-
ticular test equals the mean square position, counted
from the center of the arena, of all the garbage objects
at the end of the test. If there are only pedestrians,
the fitness is updated each time step, such that the
contribution equalsC=Ns, whereNs is the number of
time steps used in the test, if the distancer between
the robot and the closest pedestrian is larger thanC,
andr=Ns otherwise.C was taken equal to 7. If there
are both garbage objects and pedestrians present, the
fitness is computed during the test in the same way
as for the case of only pedestrians, and at the end of
the test the fitness is multiplied by the mean square
position of the garbage objects. The total fitness for
an individual equals the (geometric) average of the
fitness values obtained in theNe separate tests. The
geometric average was chosen since it gives a strong
punishment if one of the tests yields a low fitness
value.

When two individuals have been evaluated this way,
the one with the lower fitness of the two is deleted
and is replaced by a slightly mutated copy of the
one with the higher fitness. The mutations can alter
the actions (motor torques), the transition conditions
and transition targets, and the number of states. The
process – selection, evaluation, and replacement with
mutation, is repeated until a satisfactory FSM has been
found.

4. RESULTS

The settings for the runs, i.e. the number of garbage
objects and pedestrians, the size of the arena etc., can
easily be varied, and several runs were carried out
with varying settings. However, in order to be able to

(c) 2000 Elsevier Science Ltd. All rights reserved.

make a fair comparison between different runs, only
one particular setting was used in the simulations re-
ported here: The population size was 30 individuals,
and the arena size was 50 by 50 length units. In runs
aimed at evolving cleaning behavior,Ng = 4 garbage
objects were used, and in runs aimed at evolving eva-
sive behavior,Np = 10 pedestrians were used. For the
evolution of the combined behavior, 4 garbage objects
and 10 pedestrians were used. Each test lasted for
Ns = 3; 000 time steps, and the time step length was
0.1 simulated seconds. Every individual was tested
Ne = 3 times, with different starting conditions. At
the beginning of each test, the robot was placed in the
center of the arena, facing in a random direction. The
objects were placed at random positions on a circle
with radius 6, and the pedestrians were placed at ran-
dom locations in the arena and given random veloci-
ties. The pedestrians maintained a constant speed, and
changed direction only at wall collisions. The robots
were equipped with 5 sensors, located with a spacing
of �=6 radians on the surface of the robot, as shown
in Fig. 1. Each sensor had an opening angle of�=6
radians and a range of 5 units.

The settings just described will be referred to as the
standard settings. For the standard settings, the first
behavior, i.e. cleaning the area, turned out to be per-
formed satisfactorily by robots with a fitness of around
17.5. For the second behavior, evasive action, a fitness
of 6.5 implied that the robot displayed the desired
behavior, and for the combined behavior, a fitness of
95 was needed. These three numbers will henceforth
be taken as the success criteria. With the standard set-
tings, the evaluation of 1,000 individuals took around
5 minutes on a computer equipped with a 550 MHz
Pentium III processor.

4.1 Evolution of constituent behaviors

The first step of the analysis was to check how easily
the two simple behaviors – cleaning and evasive ac-
tion – could be obtained through artificial evolution.
It should be noted that the first behavior is not really
that simple: the robot must locate the objects (which
may not be within sensor range), select one and move
it as fast as possible to a wall, then return and find
the next object. This was reflected in the time needed
for the evolutionary process to find a good solution:
with the standard settings, the first behavior required
the evaluation of around4:4�103 individuals (average
over 5 runs) for the success criterion to be reached,
whereas the simpler second behavior, evasive action,
was obtained after only2:5 � 103 evaluated individ-
uals. A graph showing the average fitness and the
best fitness as functions of the number of evaluated
individuals for an evolution of the cleaning behavior
is shown in Fig. 3.

1

2

3

1

2

1

2

 3

4

5

Fig. 4. The figure illustrates the combination
procedure, applied to two FSMs with 3 and
2 states, respectively. Note that the transition
targets have, for clarity, been plotted only for the
new transitions introduced by the combination
procedure.

4.2 Evolution of the combined behavior

Next, attempts were made to evolve the combined
behavior. Starting from random FSMs as was done
in the case of the evolution of the constituent be-
haviors, it turned out to be very difficult to achieve
the combined behavior: In each run, the evolutionary
algorithm evaluated 9,000 individuals, and the success
criterion was never reached. As mentioned above, the
two constituent behaviors require more or less oppo-
site behavior to be displayed by the robot, and so it
is perhaps not surprising that the evolutionary algo-
rithm was unable to solve the problem. If the runs
had been extended further, the success criterion for the

(c) 2000 Elsevier Science Ltd. All rights reserved.

2000 4000 6000 8000

60

70

80

90

100

f

i

Fig. 5. The maximum fitness obtained as a function
of the number of evaluated individuals. The three
lower curves, extending over the whole interval,
show the results from evolutionary runs that were
started from random FSMs. The three short and
almost vertical curves show the results from runs
in which the initial population was obtained via
the combination procedure described in the text.
The horizontal line marks the success criterion.

combined behavior would probably have been reached
eventually. However, this is clearly not the way to go:
in a more complex situation, the number of constituent
behaviors may be many more than two and it would,
in most cases, be a hopeless task to evolve a combined
behavior starting from random FSMs.

How should the combined behavior be achieved? One
way would be to evolve the two constituent behav-
iors separately, and then somehow connecting them to
form the combined behavior. This was the road taken
here, and the FSM representation turned out to be par-
ticularly useful for this task, as it allows a natural and
simple way of connecting behaviors. In short, this was
done as follows: First, the two constituent behaviors
were obtained, and the corresponding populations of
evolved FSMs were stored. Then, an initial popula-
tion for the evolution of the combined behavior was
obtained by going through the two populations and
making new FSMs by combining one individual from
each population as shown in Fig. 4. Cleaning FSMs
and evasive FSMs were joined by simply forming ran-
dom connections (of random priority, as shown in Fig.
4) between the two. One such conditional connection
was made for each state in the two FSMs that were to
be combined, and the jump made if the condition was
satisfied was always either from cleaning behavior to
evasive behavior or vice versa. Then, the evolutionary
algorithm was applied to the population thus formed.

In this case, the combined behavior was obtained
remarkably fast, and the results for three such runs
are compared with three runs starting from random
FSMs in Fig. 5. The lower curves that extend over the
whole interval in the figure show the fitness increase,
as functions of the number of evaluated individuals,
for three runs in which the evolution was started from
random FSMs.

1

2

3

4

5

6

Fig. 6. An FSM of a robot that reached the success
criterion for the combined behavior, obtained
by first evolving the two constituent behaviors
separately and then combining the corresponding
FSMs and continuing the artificial evolution.

Fig. 7. A robot working on the cleaning task
while avoiding collisions with the pedestrians
(represented by the red circles). In this figure, the
robot is just in the process of delivering a garbage
object at a wall.

By contrast the short, almost vertical curves show the
fitness increase starting from an initial population ob-
tained by the combination procedure described above.
Three runs were made, starting with different random
connections between the two behaviors, obtained via
the combination procedure. The runs were terminated

(c) 2000 Elsevier Science Ltd. All rights reserved.

when the success criterion (fitness = 95) was reached.
The success criterion is indicated by a horizontal line
in Fig. 5. In order to obtain a fair comparison, these
curves have been shifted to the right by the number of
individualsItot (in this case equal to 5680) needed to
first evolve the constituent behaviors.Itot is defined
as max(Ic; Ie), whereIc andIe denote the number of
individuals needed for the evolution of the cleaning
behavior and the evasive behavior, respectively. Only
the larger of those two numbers is relevant, since the
two behaviors can be evolved in parallel on separate
machines.

As is evident from Fig. 5, the procedure of first evolv-
ing constituent behaviors and then joining them and
continuing the artificial evolution is very effective and
reliable. For clarity, only the results of a few runs were
displayed in Fig. 5. However, several additional runs
were made, in which different populations of evasive
and cleaning robots were combined. In all cases the
combination procedure, followed by further evolution,
was successful in rapidly reaching the success criteri-
on.

An example of an evolved FSM for the combined
behavior is shown in Fig. 6. A snapshot of the
robot equipped with the best FSM from this run
is displayed in Fig. 7. It is rather fascinating to
watch, on the screen, an animation of such a robot
but, alas, it is much less fascinating to see non–
moving pictures as in Fig. 7. The interested read-
er is urged to visit the homepage of the project:
www.me.chalmers.se/�mwahde/robotics.html, where
several animations are available for downloading.

5. DISCUSSION

The evolutionary combination procedure described
above has several advantages. Most importantly, it
quickly generates the desired combined behavior from
the constituent behaviors. Also, the resulting FSMs are
rather easy to interpret compared to, for instance, a
control system implemented using a neural network
representation. Furthermore, the procedure does not
enforce a certain solution to the problem: it merely
makes a suggestion by initially forming random con-
nections between the two constituent behaviors, and
the rest is up to the artificial evolution. Note that the
constituent behaviors are not frozen after the combi-
nation. Instead, they can be refined further and this
refinement may also help forming the best possible
connections between the two behaviors.

Another important issue is that of generalization. In
the computer runs, the individuals were tested on
three different configurations so as to avoid obtaining
solutions with poor generalization properties. In order
to check their ability to generalize, the best FSMs were
tested further in several different settings with varying
numbers of garbage objects and pedestrians, and were
seen to perform well even in these cases.

6. CONCLUSION

In this contribution it has been shown that complex
robotic behaviors can be obtained quickly and effi-
ciently in an FSM framework by first evolving the
constituent behaviors, then combining them by form-
ing random connections between the constituent be-
haviors, and thereafter proceeding with the evolution.
This procedure has been shown to be much more effi-
cient than trying to evolve the complex behaviors from
a random starting point. It has also been shown that
FSMs provide an excellent representation for this type
of problem. The next steps, which are being carried
out at the moment, consist of generalizing the process
to the combination of more than two behaviors, and
also to implement the corresponding control systems
on actual robots.

REFERENCES

Fogel, L. (1999).Intelligence through Simulated
Evolution, Wiley, New York.

Meyer, J.–A. (1998). Evolutionary approaches to neu–
ral control in mobile robots. In:Proceedings of the
IEEE International Conference on Systems, Man
and Cybernetics, pp. 2418–2423, IEEE Press,
New York.

Nolfi, S. (1997). Evolving non-trivial behaviors on
real robots: a garbage collecting robot.Robotics
and Autonomous Systems, 22, 187–198.

Reynolds, C. (1987). Flocks, Herds, and Schools: A
Distributed Behavioral Model.Computer Graph–
ics, 21, 25–34.

Schultz, A., J. Grefenstette and W. Adams (1996).
Robo–Shepherd: Learning Complex Robotic Be–
haviors. In:Proc. of the International Symposium
on Robotics and Automation(M. Jamshidi, F. Pin
and P. Dauchez, Eds.), pp. 763–768, ASME Press,
New York.

Wahde, M. and M. Nordahl (1998). Co–evolving
Pursuit–Evasion Strategies in Open and Confined
Regions. In:Proceedings of the 6th International
Conference on Artificial Life (C. Adami, R.K.
Belew, H. Kitano and C.E. Taylor, Eds.), pp. 472–
476, MIT Press, Cambridge, MA.

(c) 2000 Elsevier Science Ltd. All rights reserved.

Paper II

A flexible evolutionary method for the generation
and implementation of behaviors for humanoid

robots

in

Proceedings of the IEEE-RAS International Conference on Humanoid Robots,
Humanoids 2001, Tokyo, Japan

November 2001.

A flexible evolutionary method for the generation and
implementation of behaviors for humanoid robots

Jimmy Pettersson, Hans Sandholt, Mattias Wahde

Division of Mechatronics, Chalmers University of Technology,
412 96 Göteborg, Sweden�

jimmy.pettersson, hans.sandholt, mattias.wahde � @me.chalmers.se

Abstract

A flexible method for generating behaviors for
bipedal robots is presented and applied to the case
of motor behaviors. The method is biologically in-
spired and is based on evolutionary algorithms in
connection with generalized finite state machines
(FSMs). The evolutionary process acts directly on
the FSMs and optimizes both their parameters and
their structure.

In this method, only a rough indication of the de-
sired behavior needs to be specified as an initial con-
dition to the evolutionary algorithm, which then per-
forms further optimization of the behavior.

We apply the method to two test cases, namely
energy optimization and robust balancing. It is
found that the method performs very well in both
cases, and that its ability to modify the structure of
the FSMs is very useful. In the case of energy opti-
mization, the walking length for a given amount of
energy is improved by 134 %.

Keywords: bipedal robots, evolutionary robotics,
behavior–based robotics

1. Introduction

During the early decades of the 21st century, it is
expected that humanoid robots will come to play an
increasingly important role, both in industries and
as household robots. However, in order for this
to happen, the robots will need to become much
more complex than today, and the development of
such robots presents a formidable challenge to re-
searchers and engineers. As the complexity of hu-
manoid robots increases, there will be a strong need
for a flexible and versatile representation for motor
behaviors (and other behaviors) [9]. In addition to
a flexible representation, an efficient optimization
method for generating robust and energy-optimal
motor behaviors will also be needed.

The development of a representation and the

choice of an optimization method are difficult prob-
lems. However, the fact that the systems that are
being generated – humanoid robots – are modelled
on biological systems – humans – indicates that it
would be wise to consider optimization methods
inspired by biological considerations, such as e.g.
evolutionary algorithms.

The application of evolutionary computation to
robotics has given rise to the very active research
field of evolutionary robotics [12]. The use of evo-
lutionary methods to the case of bipedal robots has
mainly been restricted to parameteric optimization
within a pre-specified structure (see e.g. [1], [3],
[4], and [6]). Notable exceptions are provided by
Arakawa and Fukuda [1], who allowed a certain
flexibility in the representation of the control sys-
tem and Paul and Bongard [13], who allowed the
morphology of the bipedal robot to vary.

The aim of this paper is to introduce a flexible
and general method for the construction of robotic
behaviors. We will describe the representation of
the behaviors, and also show how evolutionary op-
timization can be applied successfully to this repre-
sentation, optimizing not only the parameters of the
system but also its structure. While the focus of the
paper is on the description of the method as such, we
will also present some early results obtained with
this method.

2. The robot

For our simulations, we have used a five-link robot,
constrained to move in the sagittal plane. The robot
has five degrees of freedom: torques can be applied
at both knee joints and at both hip joints. In addi-
tion, a fifth actuator controls the posture of the upper
body. The lengths of the leg links have been based
on the corresponding values for a 1.5 m tall human.

The structure of our robot, which is shown in Fig.
1 is similar to that earlier used by e.g. Cheng and Lin
[3] and Mitobe et al. [10]. While this robot model
is perhaps somewhat simplistic, it is still sufficient

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

PSfrag replacements

���
��� ���

���

���

	

Figure 1: Configuration of the bipedal walking
robot.

for the purposes of demonstrating the feasibility of
our method for representing behaviors for bipedal
robots. We have used a lagrangian formulation for
the equations of motion (see e.g. [11], Ch.4), which
take the form������������������������������������� ��!#" $�%'&(�

(1)

where
�

is the generalized inertia matrix,
�

con-
tains centrifugal and Coriolis terms,

�
contains

gravity terms,
!

is the constraint matrix and
$

the
corresponding Lagrange multipliers, and

&
contains

the generalized forces. The derivation of the vari-
ous matrices and vectors is straightforward, and thus
will not be given here. The generalized coordinate
vector

�
is given by�)%+* ,.-/�101010��2,435� 	 �
�6 " � (2)

where the angular variables
,7-/�101010��2,43

determine
the orientation of the limbs (see Fig.1), and 	 �
 are
the coordinates for one foot (i.e. the tip of a leg) of
the robot.

The vector of generalized forces
&

is related to
the torques T applied at the five joints through the
transformation

&8%'9;:
, where

9<%
=>>>>>>>>
?

1 0 0 0 0 0 0
-1 1 0 0 0 0 0
0 0 1 -1 0 0 0
0 0 0 1 0 0 0
0 -1 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

@1AAAAAAAA
B

(3)

The constraint matrix
!

varies in size and structure
depending on the number of feet (0, 1, or 2) that are
in contact with the ground [7].

Lagrange’s equation for impulsive motion is used
to model ground impacts and perturbations and is
stated as C�DC ��FEEEE G�HJI

C�DC ��FEEEE GLK
%NMO �

(4)

where PRQ and PTS denote the instants immediately
after and immediately before the impulse, respec-
tively,

MO
is the vector of generalized impulses, and

T is the kinetic energy of the system. Using the fact
that the generalized inertia matrix (M) is symmet-
ric, the generalized momenta can be expressed as:
C�DVU/C ��W%X�Y��

, which, when inserted into Eq. (4),
gives the generalized postimpact velocities as�� Q %'� S - MO �J�� S 0

(5)

3. The method

The implementation of motor behaviors (and other
behaviors) in robots consists of two parts which will
now be introduced: an architecture for storing the
behaviors of the robot, and a method for obtaining
the behaviors that are to be implemented.

3.1 The representation

While this paper will deal exclusively with bipedal
motor behaviors, the ultimate goal of this work is to
arrive at a method which is sufficiently general to be
able to accomodate not only bipedal gaits but also
other aspects of the behavior of a robot1, such as
the ability to avoid obstacles, grip objects etc. Thus,
an architecture which can only hold fully specified
reference trajectories for bipedal gaits will not be
sufficient.

Instead, we have chosen to use an architecture
based on (generalized) finite state machines (FSMs).
FSMs have the advantage of allowing combina-
tion of several behaviors into a complete behavioral
repertoire [14], and they have often been used in
connection with behavior-based robotics [2]. Fur-
thermore, a system based on FSMs is generally
transparent and easy to interpret.

A standard FSM consists, as the name implies, of
a finite number of states and conditional transitions
between those states. Furthermore, the allowed set
of actions is usually chosen from a finite alphabet.
The FSMs introduced in this paper are slightly dif-
ferent. First, each state in an FSM is here associated
with a set of variables specific to that state, whereas
in a standard FSM, the variables are associated with
the transitions between states. In addition, we use

1For this reason, we will use the term robotic brain for the
computer program that determines the actions of the robot, rather
than the term control system. The latter term would indicate a
more limited representation employing classical control theory.

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

F

F

T

T

PSfrag replacements

	�� - � 	��� � 	���	��� � 	�� 3
	����- � 	����� � 	�����	����� � 	����3

���
	 � -

���
	 ���-

Figure 2: A simple two-state FSM, with five state
variables and one transition condition per state. The
arrows indicate the direction of signal flow. If
the condition under consideration is true, the cor-
responding arrow marked with a T is followed. If
instead the condition is false, the arrow marked with
an F is followed.

continuous variables rather than a discrete alphabet.
Each state has a number of conditional transitions,
each with a specified target state.

A simple, generic, example of a two-state FSM
is shown in Fig. 2. In this FSM both states contain
the values of five variables (which may, for example,
represent the reference angles for a given posture for
the five–link bipedal robot). From the first state, the
FSM can jump to the second state if the condition���	 � - is fulfilled. Note that the variables

�
(of

which only one was introduced in Fig. 2) defining
the transition conditions need not be the same as the
variables 	��� specified in the states � . In this case, the
condition variable

�
may, for instance, measure the

deviation between the actual posture of the robot,
and the posture specified in the active state. If the
deviation is sufficiently small, the robot may pro-
ceed to the second state etc.

If no condition is fulfilled, the FSM remains in
the same state, as indicated in Fig. 2 by the links
emanating on the right hand side of the transition
conditions. Note that, in subsequent figures, these
links are not explicitly shown.

The number of transition conditions, as well as
the number of variables defining the conditions, may
vary from state to state. In cases where there is more
than one transition condition associated with a state,
the conditions are checked in order from left to right,
so that the leftmost condition has the highest prior-
ity, since it is always checked.

3.2 The evolutionary algorithm

Evolutionary algorithms constitute, in our opinion, a
natural choice for the generation of motor behaviors
and other behaviors for autonomous robots in gen-

eral, and bipedal robots in particular. After all, it is
known that evolution is capable of generating highly
complex structures in nature, and that evolutionary
algorithms, which are based on natural evolution,
often prove to be highly efficient in problems involv-
ing large and complicated search spaces. Clearly,
the construction of robotic motor behaviors, which
is the subject of this paper, is indeed a problem in-
volving a very large search space.

The most commonly used type of evolutionary al-
gorithm is the genetic algorithm (GA) [8]. Most of
the work to date on evolutionary algorithms in con-
nection with bipedal robots has been based on GAs
([1], [3], [4], and [6]). However, standard genetic al-
gorithms may not the best choice from the point of
view of the construction of robotic brains. A stan-
dard GA is useful when carrying out parametric op-
timization, where the parameters of the system un-
der study easily can be coded into a string of digits.

However, we wish to go beyond parametric opti-
mization, and optimize not only the parameters but
also the structure of the robotic brain. Thus, a more
flexible scheme is required. The use of evolution-
ary algorithms in connection with FSMs, known as
evolutionary programming, was pioneered by Fo-
gel (see e.g. [5]). In evolutionary programming,
the evolutionary process acts directly on the FSMs,
by optimizing both the parameters of the FSMs and
their structure, e.g. the number of states and transi-
tion conditions.

Our method is an adaptation of evolutionary pro-
gramming to the case of generalized FSMs as de-
scribed above, and it includes both crossover and
mutation operators, by contrast with the original
form of evolutionary programming which only used
mutation operators.

Briefly, the process operates as follows: A fitness
measure is specified before the simulation. An ex-
ample of a fitness measure suitable for bipedal loco-
motion is given by the distance covered by the robot
as it uses up a pre-specified amount of energy. In the
beginning of a simulation, a population of random
FSMs is generated. Normally, the initial population
consists of rather simple FSMs. Then, all individu-
als in the population are evaluated, and each individ-
ual obtains a fitness value based on its performance.

The following sequence is then repeated until a
satisfactory solution has been found: two individ-
uals are selected from the population using tourna-
ment selection. Then, two offspring are formed by
the procedures of crossover and mutation outlined
below. The two new individuals are then inserted
into the population, replacing the two worst individ-
uals. Finally the two new individuals are evaluated,
and the procedure is repeated again.

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

I II

III IV

V

Figure 3: Structural mutations: I) Insert state: inserts a state with one transition condition, whose variables
are defined as the average of the variables in the two adjacent states, II) Delete state: simply removes a state,
III) Add prioritized state: adds, to an already present state, a transition (with top priority) to a new state. The
variables of the new state are taken as slight mutations of the variables in the state to which the new transition was
added, IV) Add transition condition: adds a transition condition (with lowest priority) to a state, and, V) Delete
transition condition: deletes the transition condition with lowest priority for a given state. Note that, for clarity,
the transitions are not explicitly shown (except one transition in case III) in this figure.

3.2.1 Crossover

Combination of material from different individu-
als is an important part of evolutionary algorithms.
Crossover is easy to implement in a standard GA,
but somewhat more difficult in our case, in which
the structures to be crossed are more complicated
than the strings used in GAs. We have chosen to in-
troduce a crossover procedure which simply swaps
two selected states between two FSMs. The pro-
cedure begins by the selection of one state in each
of the FSMs that are to be crossed. Next, the
states with their transition conditions are swapped
between the FSMs, forming two new FSMs. As a
final step, it is checked that the targets for the con-
ditional jumps are consistent, i.e. that no condi-
tion generates a jump to a non-existent state (which
may occur if the FSMs contain different numbers of
states). If an inconsistent jump is detected, the target
is arbitrarily set to state 1. This does not imply a sig-
nificant restriction, since subsequent mutations can
change the transition target to any of the available
states.

3.2.2 Mutations

Two kinds of mutations are used: parametric muta-
tions, which modify the value of any parameter in
the FSM by a small, random amount, and structural
mutations which modify the structure of the FSMs.
The structural mutations, which are needed in order
to arrive at the desired flexibility, are illustrated in
Fig. 3.

3.3 The simulation program

The generalized FSM representation and the evo-
lutionary algorithm described above have been im-
plemented in a computer program written in Delphi
Object-oriented Pascal. The program is fully object-
oriented, so that the data structures, e.g. the FSMs,
are flexible and can be of arbitrary size and com-
plexity. Thus, the program permits an open-ended
evolutionary process that can lead to very complex
structures.

At the outset of a simulation, the user provides a
set of parameters, such as link lengths and masses
(for the robot), the fitness measure, initial structural
parameters for the FSMs (e.g. the number of states)
as well as ranges for the parameters (variables and
transition conditions) defining the states. Parame-
ters related to the simulation of a single individual,
such as e.g. the length of the time steps for the nu-
merical integration of the equations of motion, must
also be specified. Furthermore, it is possible to pro-
vide limits on the joint torques and their first deriva-
tive with respect to time.

The user may also choose between two different
types of initial FSMs, linear FSMs, in which each
state � has a single transition condition whose tar-
get is state �

���
, except for the last state, for which

the target of the transition condition is state 1, and
general FSMs, with a completely arbitrary structure.
The linear FSMs are useful for generating cyclic be-
haviors, such as a step sequence, whereas the more
flexible general FSMs are needed e.g. to cope with
perturbations during a step or other non-cyclic mo-
tor behaviors. Note that the specification of an FSM

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

5000 15000 25000 35000
Evaluated individuals

2

2.5

3

3.5

4

4.5
M
a
x
i
m
u
m

F
i
t
n
e
s
s

Figure 4: Fitness of the best individual as a function
of the number of individuals for test case 1 (energy
optimization).

type only relates to the initial population. The evo-
lutionary process has full freedom to add and delete
states, as outlined above, should the need arise.

In keeping with the aim of developing a suffi-
ciently flexible representation that can hold differ-
ent kinds of behaviors, great care has been taken
to make the data structures for the FSMs as gen-
eral as possible. Thus, an FSM can consist of states
of many different types (i.e.with different variables
defining the states), and with various transition con-
ditions of, in principle, any form.

However, here we are concerned with motor be-
haviors, and we have therefore used a specific kind
of FSM, the components of which will now briefly
be described.

FSM states In any state of the FSMs used here,
the requested torque at joint � is given by

�������� %	��
� ��, �
I
, ����� �������� �, � ������ (6)

where
�
� ,

, ����� ,
� �� , and

� �� are constants. Thus,
for the representation of motor behaviors, each FSM
state holds a set of 20 variables (4 for each link).
Since we, for realism, normally impose limits on
the torque derivatives, the actual torque delivered at
a joint is not always equal to the requested torque.
In most situations, however, the actual torque ap-
proaches the requested torque within a few time
steps.

Transition conditions For each state � , there are� � transition conditions which, in this case, take the
form

� � � � � * ��� 6 	�� �������! #"%$�&'�(��)#�+*-,�./�0�1� (7)

where
*
Op 6 denotes one of the operators

�
and

�
,	��

is a constant, specific to transition condition 1 ,
and the target is any state in the FSM (cf. Fig. 2).

Early FSM Best FSM
Energy used (J) 500 500
Length walked (m) 1.77 4.15
Total time (s) 2.56 4.11
Average speed (m/s) 0.69 1.01

Table 1: A comparison between the first individual
that managed to walk (left) and the best individual,
in test case 1.

1

2

3

4

56

7

8

Figure 5: Structure of the best FSM obtained in test
case 1 (energy optimization).

The variables
� � can be choosen freely. In this ap-

plication, we have chosen to use six condition vari-
ables, namely

� � %', �
I
, ����� � � % �5�101010��+2 � (8)

and

�43�% 5667 �2
38
� 9 - ��, � I

, ����� � � 0
(9)

4. Results

In order to test the efficiency of both the represen-
tation and the evolutionary algorithm, a number of
runs of the simulation program have been made.
Two specific applications have been used as test
cases, namely the generation of smooth and energy-
efficient bipedal gaits, and the construction of robust
balancing in the presence of perturbations.

4.1 Test case 1: Energy optimization

For any autonomous robot that carries its own en-
ergy source (e.g.batteries), it is clearly of paramount
importance to move with as little use of energy as
possible. In nature, evolution has optimized hu-
man walking (and, in general, animal locomotion),
to make it very energy efficient. While we do apply

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

1 2 3 4

−0.6

−0.4

−0.2

0
PSfrag replacements

, � � P �
A

ng
le

(r
ad

ia
ns

)

Time (s)Height (m) 1 2 3 4

−0.6

−0.4

−0.2

0PSfrag replacements

, � � P �

A
ng

le
(r

ad
ia

ns
)

Time (s)Height (m)

1 2 3 4

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

PSfrag replacements

,435� P �

A
ng

le
(r

ad
ia

ns
)

Time (s)Height (m) 1 2 3 4
0

0.02

0.04

0.06

0.08

PSfrag replacements

 � P �

Angle (radians)

Time (s)

H
ei

gh
t(

m
)

Figure 6: Energy optimization. Each plot shows the variation with time of one generalized coordinate for the
first FSM that was able to make the robot walk (dashed) and the best FSM in the run (solid). Only some of the 7
generalized coordinates are shown in this figure.

artificial evolution to optimize the gait of our sim-
ulated robot, it should be pointed out that our opti-
mization problem differs from the optimization car-
ried out by natural evolution. In our case, the con-
figuration of the robot, i.e. its bipedal nature and its
structure with five links of given length and mass,
are given whereas in natural optimization both the
structure of the animal and its method of locomo-
tion are optimized. However we do, as described
above, allow a considerable freedom concerning the
structure of the brain of the robot.

For the energy optimization runs, the fitness mea-
sure was chosen as the length walked by the robot
until it had used an energy of 500 J. By using this fit-
ness measure, energy optimization is obtained with-
out explicitly having to include the energy usage in
the fitness measure in an ad hoc fashion. In order to
prevent the robot from walking very slowly, a time
limit of 6 simulated seconds was introduced as well.

The population size was set to 400, and the struc-
tural and parametric mutation rates were set to 0.02
and 0.03, respectively. The crossover probability
was equal to 0.10. The time step length was 0.005
seconds. Furthermore, limits were set on the max-
imum torque delivered at the joints (200 Nm), as
well as the maximum rate of change of the torques
(3000 Nm/s).

One of the main purposes with our method is

to allow for the possibility of specifying, in a very
loose sense, a sequence of motions, which will then
be further optimized by evolution. In the develop-
ment of energy-optimized gaits, we therefore spec-
ified only 8 reference states, 4 for the step with the
left foot, and 4 for the right step.

The reference angles were set so as to generate a
very rough representation of the two steps. The pro-
portional and derivative constants were given ran-
dom values centered on -250 Nm for the propor-
tional constants and -15 Nms for the derivative con-
stants. The

� �� parameters were given random val-
ues in the range

*
I
����� ��� 6 Nm. The initial popula-

tion consisted of linear FSMs (see Sect. 3.3).
In the beginning of the run, it was clear that the

initial specification of the motion was much to rough
to generate smooth walking: the few robots that
managed to walk at all, stumbled forward in a very
inefficient manner. Many robots used up their 500 J
without getting anywhere. However, the optimiza-
tion algorithm very quickly began to improve the
gait, and the length walked by the robot increased
considerably, from 1.77 m early in the run, to 4.15
m at the end, as shown in Fig. 4 and Table 1.

The total number of states of the best FSM at the
end of the run was also equal to 8. However, this was
in no way enforced. Indeed, during the run, several
of the best FSMs that appeared used more than 8

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

states. The 8 states of the final FSM were totally
different from the states specified in the beginning
of the run.

Furthermore, the evolutionary optimization
method was able to improve the structure of the
FSM. Clearly, a cyclic sequence of states is con-
venient when walking at full speed. However, the
robot starts from rest, and thus the very first part of
the motion differs from the rest. This was indeed
exploited: the structure of the best FSM at the end
of the run contained one state that was used only to
get the robot started, and 7 states that were used in
a cyclic fashion for the continued motion, as shown
in Fig. 5.

Finally, we note that the bipedal gait generated by
the best FSM in the run was very smooth (see Fig.
6) and symmetric compared to the FSMs obtained
early in the run, despite the fact that symmetry was
not explicitly required.

4.2 Test case 2: Robustness

A bipedal robot moving in an unstructured environ-
ment, such as e.g. a busy street or a hospital, will in-
variably find itself in situations where it cannot rely
on prespecified reference trajectories. For example,
the robot may encounter an unexpected moving ob-
stacle, or it may lose its balance due to an external
perturbation or simply a bump in the ground. Thus,
for such robots to be useful, they must be able to
cope with unexpected situations. As a simple ex-
ample, and as a test of our method, we have con-
sidered the following case: Assume that a bipedal
robot is about to begin climbing some stairs, and
as it lifts the front leg, it is perturbed. A sequence
of three point perturbations, modeled as impulsive
forces, are applied. The generalized velocities after
each perturbation are computed using Eq. (5). The
first perturbation is applied on the thigh of the sup-
porting leg, the second on the upper body, and the
third on the lower part of the lifted leg, as shown in
the right panel of Fig. 7.

At the start of each simulation, the robot was
placed with both feet on the ground, and the FSM
of the robot contained a single state which made it
lift the front leg. The fitness measure was defined
simply as the inverse of the integrated total devia-
tion between a desired position, with one leg lifted
as shown in Fig. 7, and the actual position of the
robot. The total deviation was computed as the root
mean square of the deviation of each generalized co-
ordinate. The fitness computation began after 0.6
s, giving the robot some time to reach the desired
position from its starting position. Each simulation
lasted for the equivalent of 3.6 s, and the three per-
turbations were applied after 0.8 s (perturbation � ,
see Fig. 7), 1.4 s (

�
), and 2.0 s (�), respectively. The

PSfrag replacements

b
a
c

PSfrag replacements

b

a

c

Figure 7: Starting posture (left) and desired posture
for the robot in test case 2. The arrows indicate the
magnitudes, directions, and points of application of
the perturbations.

2
1

1

Figure 8: Initial (left) and final structure of the
FSMs from test case 2. The added state helps the
robot cope with the perturbations.

simulated robots were given a maximum of 500 J of
energy to lift the leg and to handle the perturbations.
The parameters of the evolutionary algorithm were
the same as in test case 1 (see Sect. 4.1).

While the initial FSMs generally had severe dif-
ficulties in keeping the robot upright, FSMs capa-
ble of doing so appeared fairly quickly as a result of
the optimization. More interestingly, the final FSM
obtained from this run had undergone a structural
mutation in which an additional state was added to
cope with the perturbation. A schematic view of the
structure of the initial FSMs and the best FSM ob-
tained is shown in Fig. 8.

5. Discussion and Conclusion

In this paper, we have introduced a method for the
generation of motor behaviors in bipedal robots.
With our procedure, it is sufficient to provide the op-
timization algorithm with a rough indication of the
desired motor behavior (rather than a complete tra-
jectory specification), and then allow the algorithm
to optimize it.

Ideally, it should be possible to generate a bipedal
gait, or some other motor behavior, without specify-
ing even a rough set of reference values. However,
if no specification is made at all, it is not evident
that a human-like gait will result. For instance, the
evolutionary process may select a bird-like gait in-
stead. Thus, some guidance should be given to the
optimization algorithm, for instance in the form of a
few reference positions as in our method.

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

It is obvious that for bipedal robots to be useful,
they must be able to cope with unstructured and un-
predictable environments. Our procedure may be
useful in the construction of such robots, chiefly be-
cause of the structural flexibility of the correspond-
ing robotic brains and the fact that the optimization
method proceeds with a minimum of bias.

We believe that the ability to optimize the struc-
ture of the robotic brain, in addition to its param-
eters, is of great importance, and allows a kind of
open-ended evolutionary process, which can pro-
duce structures that are much more complex than
those initially specified. A possible indication sup-
porting this hypothesis is the fact that the fitness
values continued to increase during the full extent
of the runs, rather than reaching a plateau quickly,
as is often the case in evolutionary algorithms. A
stronger indication is derived from the fact that the
possibility to modify the structure of the FSMs was
exploited in both of the test cases considered here.
Thus, even though it probably would be possible, at
least for simple gaits, to specify a useful FSM by
other means (or even by hand), it has been our pol-
icy to give the evolutionary optimization method as
much freedom as possible.

The two test cases also showed that consider-
able improvements could be obtained in a reason-
able amount of time. In the case of energy opti-
mization, a 134% improvement in walking length
was obtained in a run that lasted approximately 28
hours on an 800 MHz pentium III computer.

The results presented here are, to a great extent,
preliminary, and further experiments are underway
to test the procedure in more challenging situations.
The aim is to develop a full behavioral repertoire for
bipedal locomotion using the procedure described
in this paper, and to combine these behaviors us-
ing e.g. the method for evolutionary combination of
separate behaviors described by Wahde and Sand-
holt [14]. Furthermore, we plan to implement the re-
sulting robotic behaviors in the bipedal robot which
is currently under development in our group.

References

[1] T. Arakawa and T. Fukuda, Natural Motion
Trajectory Generation of Biped Locomotion
Robot using Genetic Algorithm through En-
ergy Optimization. In: Proc. of the 1996 IEEE
International Conference on Systems, Man
and Cybernetics, pp. 1495-1500, 1996

[2] R.C. Arkin, Behavior-based robotics, MIT
Press, Cambridge, MA, 1998

[3] M.-Y. Cheng and C.-S. Lin, Genetic Algorithm
for Control Design of Biped Locomotion. In:

Proc. of the 1995 IEEE International Confer-
ence on Systems, Man and Cybernetics, pp.
1315-1320, 1995

[4] S.-H. Choi, Y.-H. Choi, and J.-G. Kim, Op-
timal Walking Trajectory Generation for a
Biped Robot Using Genetic Algorithm. In:
Proc. of the 1999 IEEE/RSJ International
Conference on Intelligent Robots and Systems,
pp. 1456-1461, 1999

[5] L. Fogel, Intelligence through simulated evo-
lution, Wiley, NY, 1999

[6] T. Fukuda, Y. Komata, and T. Arakawa, Sta-
bilization Control of Biped Locomotion Robot
based Learning with GAs having Self-adaptive
Mutation and Recurrent Neural Networks. In:
Proc. of the 1997 IEEE International Confer-
ence on Robotics and Automation, pp. 217-
222, 1997

[7] J. Furusho et al., Realization of Bounce Gait in
a Quadruped Robot with Articular-Joint-Type
Legs. In: In: Proc. of the 1995 IEEE Inter-
national Conference on Robotics and Automa-
tion, pp. 697-702, 1995

[8] J.H. Holland, Adaptation in Natural and Arti-
ficial Systems, 1st ed. University of Michigan
Press, Ann Arbor; 2nd ed. MIT Press, Cam-
bridge, MA, 1992

[9] F. Kanehiro et al., Developmental Methodol-
ogy for Building Whole Body Humanoid Sys-
tem. In: Proc. of the 1999 IEEE/RSJ Inter-
national Conference on Intelligent Robots and
Systems, pp. 1210-1215, 1999

[10] K. Mitobe et al., Non-linear feedback control
of a biped walking robot. In: Proc. of the 1995
IEEE International Conference on Robotics
and Automation, pp. 2865-2870, 1995

[11] R.M. Murray, Z. Li, and S.S. Sastry, A Mathe-
matical Introduction to Robotic Manipulation,
CRC Press, 1994

[12] S. Nolfi and D. Floreano, Evolutionary
Robotics, MIT Press, Cambridge, MA, 2000

[13] C. Paul and J.C. Bongard, The Road Less
Travelled: Morphology in the Optimization
of Biped Robot Locomotion. In: Proc. of the
IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS2001), in press

[14] M. Wahde and H. Sandholt, Evolution of
complex behaviors on autonomous robots.
In: Proc. of Mechatronics 2000, the 7 �

�

UK Mechatronics Forum International Con-
ference, Elsevier, 2000

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

Paper III

Development of a bipedal robot with genetic
algorithm based motion control

Proceedings of the 8th UK Mechatronics Forum International Conference
(Mechatronics 2002), Twente, The Netherlands

June 2002.

DEVELOPMENT OF A BIPEDAL ROBOT WITH
GENETIC ALGORITHM BASED MOTION

CONTROL

Hans Sandholt, Jimmy Pettersson, Mattias Wahde

Division of Mechatronics,
Department of Machine and Vehicle Systems,

Chalmers University of Technology
SE-412 96 Göteborg, Sweden

e-mail:
hans.sandholt@me.chalmers.se,

jimmy.pettersson@me.chalmers.se,
mattias.wahde@me.chalmers.se

Abstract
A description of the development of a bipedel robot currently under devel-
opment at the Division of Mechatronics at Chalmers University of Tech-
nology is given. Furthermore, we introduce a method, based on genetic
algorithms in conjunction with neural networks, for robust posture con-
trol for bipedal robots. We also present some early results from simu-
lations using this method. Finally, a preliminary design of a force and
torque sensor for posture control is described and the results of a hard-
ware validation test are presented.

1 Introduction

During the last few years, bipedal robots have evolved from being a remote possibility
for the future to being a reality for the present. Around the world, and particularly in
Japan, there are now a large number of projects dealing with bipedal and humanoid
robotics (Wahde and Pettersson, 2002). While most of these projects are carried out in
an academic setting, there also exists commercially oriented projects (such as Honda’s
ASIMO, Sony’s SDR-3X etc.).

In 2001, a humanoid project was initiated at the Division of Mechatronics at Chal-
mers University of Technology in Göteborg, Sweden. In our research group, we em-
phasize the use of biologically inspired computation methods for many aspects of the
development of bipedal robots.

We are currently constructing a bipedal robot, which represents the first stage in
our development of a complete humanoid robot. The aim of this paper is to describe
the proposed biped, and also to introduce the control method, which is based on ge-
netic algorithms. The method makes use of control signals (such as e.g. the pressure
distribution under the feet) similar to those available in biological systems.

Proc. of Mechatronics 2002, University of Twente, 24-26 June 2002

489

Group id Name DOF
001 Foot
002 Ankle 2
003 Lower leg
004 Knee 1
005 Upper leg
006 Hip joint 3
007 Hip
008 Spine joint 3

Table 1: Groups defining the bipedal robot and degrees of freedom (DOF) per part
where applicable.

We will present the results of simulations aimed at evolving a controller for main-
taining an upright posture in the presence of perturbations. In addition, we will discuss,
in some detail, the hardware implementation of a robot foot equipped with force sen-
sors.

This paper contains two main parts: first, in Sect. 2 a rather detailed description
of the proposed bipedal robot is given. Second, in Sect. 3 we describe the algorithms,
simulations, hardware, and preliminary results for our investigation concerning the evo-
lution of posture control. Some conclusions are given in Sect. 4.

2 Outline of the bipedal robot hardware architecture

The parts of the robot are grouped according their locations within the robot, e.g. foot,
lower leg, knee, etc. In total the complete humanoid robot is divided into 19 groups,
of which 8 are needed to describe the bipedal robot. These groups are listed in Table
1. Each group consists of both mechanical and electrical parts such as motors, gears,
sensors, electronics, power electronics, etc. These components are not described in
detail in this paper. Instead, the description is limited to an outline of the general
structure and motivation for some of the choices made during the design process.

The main goal with the hardware design of this robot was to arrive at a robust, low
cost design with low weight, and with a mobility range as close as possible to that ofa
human. The robot will have 15 DOF in order to be able to mimic the motion pattern of
human gait. These DOFs are distributed according to Table 1.

2.1 Actuators

It is of great importance to have high power density in the actuators in order to avoid
excessive mass. Therefore, actuators have been combined into generating motions
using combined and differential drive. This design is implemented in the foot motion
and in the sagittal and frontal motion of the leg. The configuration of a foot is illustrated
in the left panel of Fig. 1.

Furthermore, Teflon coated slide bearings have been chosen because of their low
weight and low static friction. The latter is essential when performing small, smooth
motions while at the same time avoiding excessive torque and high demands on the
motion control system.
The transformation from rotating to linear motion is performed using lead screws with

Proc. of Mechatronics 2002, University of Twente, 24-26 June 2002

490

Figure 1: Left panel: Foot actuator demonstrating the combination of two motors used
for gaining high power density. The two motors run in parallel and differential mode
to generate high torque, depending on the set motion. Right panel: Rendered bipedal
robot with group indicators.

plastic nuts. The motivation for this choice was low cost, low weight, and low static
friction.

Developing a bipedal robot is a challenging task with high demands on concurrent
engineering. At present, we are evaluating the knee actuator of the biped with respect
to smooth mechanical actuation and general performance. The knee actuator is shown
in Figure 2.

2.2 Joints

All joints are designed to be as compact and light as possible without requiring high
tensions and strains. The joints are equipped with Teflon coated slide bearings with the
same motivation as for the actuator (see above).

2.3 Sensors

The bipedal robot is equipped with several sensors that are currently under evaluation.
For example, the joints are, at present, equipped with potentiometers for reading the
angular position, but incremental and absolute encoders are also being considered.

The feet of the robot will be equipped with several strain gauge sensors in order to
measure the torque and force distribution under each foot. A more complete discussion
of these sensors is given in Sect. 3.2

Proc. of Mechatronics 2002, University of Twente, 24-26 June 2002

491

Figure 2: The knee actuator showing the motor in the background and the moving plate
in the foreground. The gearbox is hidden inside the top housing.

2.4 Electronics

Each actuator is driven and controlled by a Power Drive Unit (PDU) containing both
the power drive module and actuator sensor interface, e.g. electrical signal conditioning
circuitry. The motor drive is realized using high-performing PWM driver, LMD18200
from National semiconductor, whose circuits are capable of delivering 75 W contin-
uously and 150 W momentarily. Each PDU is connected to a Motor Control Unit
(MCU), responsible for the low-level control such as PWM-signal generation, actuator
monitoring, and closing the low-level motor control loop. The MCU is connected to the
higher control system, running on an external PC, using a 1Mbit CAN-bus interface. A
schematic view of the electronic modules is shown in Fig. 3.

3 Posture control and walking

Several methods for generating dynamically stable bipedal walking patterns have been
suggested in the literature. A common approach is to base the control method on
the position of the zero-moment point (ZMP), see e.g. Arakawa and Fukuda (1996).
The ZMP is a generalization of the centre-of-mass, and was originally introduced by
Vukobratovic and Juricic (1969). Simply expressed, the ZMP condition states that the
robot will maintain an upright posture as long as the ZMP resides within the convex
hull of the support area defined by the supporting foot (or feet, in the double-support
phase).

Using the ZMP criterion, there are two main approaches to the generation of bipedal
gaits (Huang, Nakamura and Inamura, 2001). In the first approach, it is assumed that
the environment is well known, and the bipedal gait is generated off-line and is then
applied to the robot (Hirai, Hirose, Haikawa and Takenaka, 1998). In the second ap-
proach, an on-line controller determines the torques required to keep the ZMP in posi-
tion (Fujimoto and Kawamura, 1998).

The ultimate aim of humanoid robotics is to generate robots that are able to function
in a large variety of environments, and to cope with unexpected situations. Clearly, to
realize this aim, it is not enough to use e.g. pre-defined trajectories for locomotion.
In addition, control algorithms based on classical control are often computationally

Proc. of Mechatronics 2002, University of Twente, 24-26 June 2002

492

Figure 3: Schematic drawing over the electronic modules and the buses used. Each
actuator is driven by a PDU and up to 16 PDU:s are controlled by a MCU. The MCU
is connected to a higher control system referred to as ”Brain” in the drawing.

expensive. This is not to say that such controllers should not be used in humanoid
robots. On the contrary, for the low-level control regulating e.g. individual actuators
such methods are certainly appropriate.

However, for the high-level control of walking, we believe that alternative methods
should be explored. Humanoid robots are inspired by biological systems, and therefore
it makes sense to attempt to use methods for optimization and adaptation similar to
those found in nature. One such method, which will be used in this paper, is genetic
algorithms (GAs) (See e.g. Mitchell 1996). GAs have been used in several investiga-
tions concerning bipedal robots, see e.g. Arakawa and Fukuda (1996), Cheng and Lin
(1995) and Paul and Bongard (2001).

An important feature of genetic algorithms, which we believe has yet to be fully
exploited in bipedal robotics research, is their ability to optimize not only the parame-
ters but also the structure of the control system under study (Pettersson, Sandholt and
Wahde, 2001). This is an important feature in complex problems for which it may be
difficult to derive an analytical model, or for which the use of the analytical model is
computationally expensive.

In this study, we have used a genetic algorithm in order to study a simplified aspect
of bipedal motion, namely the ability to maintain an upright posture in the presence
of external perturbations, using only the pressure distribution under the feet as input
signals. The use of the foot pressure distribution is motivated by the fact that it isa
signal that is readily available to biological walking systems, i.e. humans or animals.

Our study has, so far, been limited to one-legged balancing, corresponding to the
single-support phase of bipedal locomotion. Furthermore, we have only considered the
balancing of a rigid foot on a flat surface, for which the pressure distribution under the
foot can be determined using much fewer pressure sensors than would be needed fora
deformable foot or for rugged surfaces.

In principle, a control system for balancing could be evolved directly in hardware,
i.e. without using simulations. Such an approach has been used by e.g. Wolff and

Proc. of Mechatronics 2002, University of Twente, 24-26 June 2002

493

Figure 4: The setup used in the posture control simulations.

Nordin (2001). However, when performing both parametric and structural optimiza-
tion of a control system, a very large number of candidate solutions must be evaluated,
making evolution in hardware too time-consuming. Furthermore, if the GA is imple-
mented in the hardware, the system must be monitored continuously, in order to replace
worn out parts etc. (Wolff and Nordin, 2001).

Thus, we have chosen to implement the GA in simulation. We will begin by dis-
cussing the simulations, and will then briefly describe a hardware implementation ofa
foot equipped with pressure sensors.

3.1 Posture control simulations

The simulation code was written in Delphi (Object-oriented pascal). The Delphi envi-
ronment allows rapid development of Windows software, and its speed is comparable
to that of C++.

Simulation setup The simulated system, which is shown in Fig. 4, consists ofa
massless pole with a pointlike weight (representing the upper body and swing leg of
the robot) attached to a foot plate which, in turn, is connected to the ground via4
spring-damper systems, one at each corner of the foot plate. The leg is modelled as an
inverted spherical pendulum with the addition of a vertical acceleration component due
to the motion of the foot plate. The motion of the foot plate is given by

� �� � �� � �
 �
� � � � � � � (1)

� � � � � �� � �
 �
� �

�
�

(2)

where �� is the vertical acceleration of the foot,
�

is the vector of angular accelerations,

�
�

is the force from the� " spring/damper pair,

� � is the vertical component of the
reaction force exerted by the inverted pendulum,� is the vector of applied torques in
the horizontal plane,

�
is the moment of inertia, and�

�
is the location vector of the� "

force �
�
. We have made the assumption that the friction under the foot plate is sufficient

Proc. of Mechatronics 2002, University of Twente, 24-26 June 2002

494

to keep it from moving in the horizontal direction. Forces from the four spring/damper
pairs were calculated as

�
� � � � � � 	 � � � � � � � � � � � � � � � (3)

where

� � is the spring constant,

�
the damping coefficient,� 	 �

the spring contrac-
tion, and

� �
the velocity of the connection points of the� � ! damper. With this setup,

there can be no forces pulling the foot down. Thus, negative forces�
�
were set to zero.

The spherical pendulum is assumed to be actuacted by two joints that deliver torques
in the " �

and # �
directions (measured relative to the foot plate), respectively.

In the simulations, the dimensions of the foot plate were 0.3m (length) and 0.1m
(width). The weight of the foot plate was set to 1 kg and the weight and length of
the leg were set to 5 kg and 0.80m, respectively. The spring constants and damping
coefficients were 1000 N/m and 50 Ns/m, respectively. The perturbation torques were
of order 1 Nm.

Control system architecture In keeping with our aim to develop a biologically in-
spired high level robot control system, we chose to use a neural network architecture
for our simulations.

Initially a simple feedforward network was tried. This network had four input
nodes, one for each of the four force sensors attached to the foot plate, see Fig. 4, and
two outputs representing the torques ($ % and $ &) of the leg actuators.

Perturbations were simulated by adding a small amount to the torque generated by
the neural network as ' % � () + - / 0 2) 3 4 5 7) / 8 : 0 =) ? � 3 4 (4)' & � (A + - / 0 2 A 3 4 5 7 A / 8 : 0 = A ? � 3 4 (5)

where B (� � 2 � � 7 � � = � D
are constants. The total applied torque ($ E% and $ E&) was then set

as FG $ E%$ E&H IJ � FG $ % 5 ' %$ & 5 ' &H IJ
(6)

The weights of the neural network were determined using a genetic algorithm with
tournament selection and generational replacement of individuals. The fitness measure
was taken essentially as the integrated inverse of the deviation from the desired posture,
which taken as the position corresponding to a 10 degree rotation around the# �

axis.

Preliminary results The simple feedforward network architecture turned out to be
too simple to generate useful results: the leg suffered divergent oscillations which ulti-
mately caused it too fall.

In order to improve the balancing of the leg, a continuous-time recurrent neural
network (RNN) architecture was chosen instead. In this architecture, each neuron is
connected to all other neurons (including itself), and the dynamic equations for neuron� take the form $ � L" � 5 " � � N P R TU V) X � U " U 5 Y � [� � � � � \ \ \ � ^ (7)

where" �
denotes the output from neuron� , and X � U are the weights connecting neuron_

to neuron� . N is a sigmoidal squashing function, here chosen asN 0 	 4 � a b : c 0 d 	 4 � (8)

Proc. of Mechatronics 2002, University of Twente, 24-26 June 2002

495

Figure 5: Left panel: Schematic drawing of a foot sensor. Right panel: The evaluation
module of the foot sensor. In the upper part of the figure the module is shown from
above. The coordinate system is superimposed on the picture and the numbering of the
sensors is, from the x-axis 1,2, and 3, with 120 degrees relative angular displacement.

where � is a constant. The external input
� �

is equal to
�

at all times except for the four
input neurons which read the four force values� � � 	
 � � � � � � � . The output torques
are taken as the output values from two selected neurons, multiplied by a scale factor.
The � �

are time constants, which provide the network with a primitive form of memory
(something which the simple feedforward network lacks).

With this network architecture, better results were obtained: the best networks ob-
tained by the genetic algorithm were able to balance the leg for the complete duration
of the simulation.

3.2 Haptic foot sensor hardware

Guided by the results of our simulations, we are evaluating ground contact (foot) sen-
sors, which are based on strain gauge sensors. The basic idea of the sensor is to usea
small cylindrical body, approximately 20 mm in diameter, and to glue three strain gauge
sensors with 120 degrees relative angular displacement. A sketch of the arrangement
is shown in left panel of Fig. 5 and the current test sensor is shown in the right panel
of the same figure.

The transformation of the strain gauge sensor readings into force and torque values
is easy to develop analytically. Letting�
 � � � � � � � � � � � denote the vector with the
sensor readings� �

and �
 � � � � ! � � " � � the vector with the calculated force and
torques, we obtain the simple relationship�
 % � (9)

where% is the transformation matrix given by the geometrical relations according to

%
 ()* �� �� ��� + , . 0 � 2� + , . 0 4 2�5
+ + , . 0 2 6 + , . 0 2 6 78

(10)

where + is the radius of the sensor body and(is a scale factor essentially depending
on the Young’s modulus of the aluminum cylinder. However, this equation relies on

Proc. of Mechatronics 2002, University of Twente, 24-26 June 2002

496

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

4

5

6
M

x
M

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
F

z

Figure 6: Recorded foot sensor data from one step on a sensor. The recorded step isa
normal, slow, step by a 90 kg man. Left Panel: torques, Right Panel: vertical force.

idealized behavior of the sensor. In order to arrive at a more reliable result, it is better to
calculate a least square approximation of� based on calibration data, i.e. simultaneous
measurements of forces, torques, and deformations.

Hardware validation test A small test with a foot sensor was performed. The test
was to take one walking step on the sensor and sample the readings for evaluation using
the calculated� matrix.

The recorded step was a normal, slow step performed by a 90 kg man. From the
left panel of Fig. 6 it is evident that the torque in the y-direction from walking on the
sensor is very clear and that there is almost no torque in the x-direction, as expected.

The calculated vertical force�
� is shown in the right panel of Fig. 6. The measured

positive force towards the end of the step is likely to be caused by tensions induced due
to the method used for mounting the cylinder. We are currently investigating this issue
further.

4 Discussion and Conclusion

The preliminary results from our simulations indicate the importance of choosing an
adequate architecture for the control system. The introduction of a recurrent neural net-
work, with its (albeit limited) memory of recent events generated significant improve-
ments in the simulation results. While such networks are more difficult to analyze than
ordinary feedforward networks, their advantages easily outweigh this disadvantage.
The next step in our analysis will be to allow structural optimization (e.g. variation of
the number of neurons) of the neural network during a run of the genetic algorithm.

The initial test done with the foot sensor was promising and indicates good possi-
bilities for future use in the design of a more elaborate haptic foot sensor. A complete
foot sensor matrix, consisting of several strain sensors, will be able to sense uneven
ground, slopes and even vibration from the ground contact. The latter is of impor-
tance for the detection of horizontal slip. However, the test shows that, in its present
implementation, the force reading is not yet fully reliable. Additional evaluation and
development will lead to changes in the structure of the sensor body and the method of
assembly of the sensor. Furthermore, the strain gauge sensor signal is very noisy, and
this will put high demands on signal conditioning such as low pass filtering etc.

Proc. of Mechatronics 2002, University of Twente, 24-26 June 2002

497

Acknowledgement

This project is financed in part by the school of Mechanical and Vehicular Engineer-
ing at Chalmers University of Technology and Chalmers Center for Mechatronics and
System Engineering (CHASE).

References

Arakawa, T. and Fukuda, T. (1996). Natural motion trajectory generation of biped
locomotion robot using genetic algorithm through energy optimization,In: Proc.
of the 1996 IEEE International Conference on Systems, Man and Cybernetics
pp. 1495–1500.

Cheng, M.-Y. and Lin, C.-S. (1995). Genetic algorithm for control design of biped
locomotion, In: Proc. of the IEEE International Conference on Robotics and
Automation pp. 1315–1320.

Fujimoto, Y. and Kawamura, A. (1998). Simulation of an autonomous biped walking
robot including environmental force interaction,IEEE Robotics and Automation
Magazine 5(2): 33–42.

Hirai, K., Hirose, M., Haikawa, Y. and Takenaka, T. (1998). The development of the
honda humanoid robot,In: Proc. of the 1998 IEEE Int. Conf. on Robotics and
Automation.

Huang, Q., Nakamura, Y. and Inamura, T. (2001). Humanoids walk with feedforward
dynamic pattern and feedback sensory reflection,In: Proc. of the IEEE Interna-
tional Conference on Robotics and Automation pp. 4220–4225.

Mitchell, M. (1996). An Introduction to Genetic Algorithms, MIT Press, Cambridge,
MA.

Paul, C. and Bongard, J. (2001). The road less travelled: Morphology in the optimiza-
tion of biped robot locomotion,In: Proc. of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS2001).

Pettersson, J., Sandholt, H. and Wahde, M. (2001). A flexible evolutionary method for
the generation and implementation of behaviors in humanoid robots,In: Proc. of
the IEEE-RAS International Conference on Humanoid Robots pp. 279–286.

Vukobratovic, M. and Juricic, D. (1969). Contribution to the synthesis of biped gait,
IEEE. Trans. Bio-Med. Eng. BME-16(1): 1–6.

Wahde, M. and Pettersson, J. (2002). A brief review of bipedal robotics research,In:
Proc. of the 8th Mechatronics Forum International Conference.

Wolff, K. and Nordin, P. (2001). Evolution of efficient gait with humanoids using vi-
sual feedback,In: Proc. of the IEEE-RAS International Conference on Humanoid
Robots pp. 99–106.

Proc. of Mechatronics 2002, University of Twente, 24-26 June 2002

498

Paper IV

A study of multiple behavior implementations in
connection with the utility manifold method for

behavioral organization

Submitted to
Robotics and Autonomous Systems

November 2004

A study of multiple behavior implementations

in connection with the utility manifold method

for behavioral organization

Hans Sandholt, Mattias Wahde

Department of Machine and Vehicle Systems, Chalmers University of Technology,

412 96 Göteborg, Sweden

Abstract

In this paper, the performance of the utility manifold (UM) method for behavioral
organization is investigated. The method is applied to a case involving selection
between four different behaviors in order to generate an overall task of navigation
for a simulated wheeled robot.

A desirable property of any method for behavioral organization is the ability to
organize (i.e. select between) different behaviors regardless of their specific imple-
mentation. This property is investigated for the UM method, by testing it against
two different versions for each of the four constituent behaviors, i.e. a total of 16
different combinations.

It was found that the UM method generally was able to find adequate behavioral
organizers, regardless of the specific implementation used. However, it was also
found that the re-evaluation performance of the behavioral organizers varied quite
strongly, depending on which specific implementations were used for the behaviors.
Thus, a procedure is suggested in which a few implementations are given for each
behavior, and the final selection of specific implementations for behaviors is based
on the re-evaluation performance of the corresponding behavioral organizer.

Key words: Behavior-based robotics, behavioral organization, utility manifold
method, evolutionary algorithms

1 Introduction

Behavioral organization, i.e. the problem
of determining when behaviors should be
active, is one of the central problems in
behavior-based robotics. Several methods
have been suggested for solving this prob-
lem, starting with the pioneering subsump-

tion method (1).

A drawback with most methods of behav-
ioral organization is that they rely heavily
on the ability of the user to set parame-
ters by hand. In all but the simplest cases,
it is very difficult to anticipate all situa-
tions that the robot may encounter, par-
ticularly if it is designed to move in an un-

Preprint submitted to Robotics and Autonomous Systems 14 November 2004

structured environment. Recently, Wahde
(2) introduced an alternative method, the
utility manifold (UM) method, in which
the behavioral organization system is based
on utility functions that are evolved rather
than designed by hand. In the UM method,
the user need only specify fitness functions
for so called task behaviors, i.e. behaviors
directly related to the task of the robot.
For auxiliary behaviors, such as obstacle
avoidance and battery charging, no fitness
functions need be assigned. The method
does have certain limitations: For exam-
ple, it does not, as yet, handle situations
in which an explicit memory is needed (as
for example, in cases where the robot is in-
terrupted in a behavior that can only be
restarted successfully if the state of the ro-
bot is stored, and thus recoverable, at the
time of exit). So far, the method has been
tested in abstract behavioral combination
tasks where, in some cases, the optimal be-
havioral organization could be derived an-
alytically (2), and in a task involving loco-
motion of a simulated legged robot (3).

The aim of this paper is to expose the
method to more stringent tests and analy-
sis, involving the organization of four be-
haviors for a wheeled robot. In addition,
the generality of the method, i.e. its ability
to organize behaviors regardless of their
specific implementation, will be investi-
gated.

The outline of the paper is as follows: in
Sect. 2, the UM method is briefly reviewed.
In Sect. 3 the simulator is presented, and
the constituent behaviors are described in
Sect. 4. The results are presented in Sect.
6, and the paper ends with a discussion and
conclusion in Sect. 7.

2 The utility manifold method

The utility manifold (UM) method (2) ad-
dresses the need for a general, i.e. widely
applicable, method for behavioral or-
ganization that requires a minimum of
parameter-tuning by the user. In the UM
method, each behavior is assigned a utility
function which contains the desires and
beliefs of the robot. The method is an ar-
bitration method, i.e. one in which only a
single behavior is active at any given time.
The active behavior is simply chosen as
the behavior with the highest utility value.
Thus, the main problem is to determine
the exact shape of the utility functions. In
the UM method, whose central concepts
will now be outlined briefly, the optimiza-
tion of utility functions is performed using
an evolutionary algorithm. For a more
thorough introduction to the UM method,
see (2) and (4).

2.1 Biological background

In the development of the UM method,
ethological considerations played a cen-
tral role. The concept of utility provides a
common currency for rational agents when
they select which behavior to perform (5).
Indeed, the concept of utility maximiza-
tion follows from the property of transi-

tivity of choice, which, in turn, underlies
all rational behavior. Thus animals, who
are highly adapted to their environment,
tend to behave as if they were maximizing
a quantity which we may call utility (even
though, in most cases, and especially in
simpler animals, it is likely that the max-
imization of utility is something which is
performed unwittingly and as a result of
evolutionary design). Wahde (2) stresses

2

the importance of considering the highly
optimized capacity for behavioral selec-
tion in animals when trying to emulate
this ability in robotics. The problem of
behavioral selection has been studied in-
tensively in ethology (5) and a few authors
(e.g. McFarland and Spier (6), McFarland
and Bösser (7)) have considered the use of
utility functions in robotics applications.
However, the UM method is the first ap-
proach in which utility functions are con-
structed quantitatively using evolutionary
optimization.

2.2 Behaviors and fitness

The UM method is concerned with behav-
ioral organization, not with the generation
of individual behaviors. In fact, the method
is intended to be sufficiently general to be
able to organize behaviors no matter how
they were generated. This property will
be investigated in this paper. In the UM
method, behaviors are divided into two
categories, task behaviors which are di-
rectly related to the task of the robot and
which give it a fitness increase if performed
successfully, and auxiliary behaviors which
may be useful or even essential (and thus
associated with high utility), but which
give no fitness increase. Thus, the designer
of the robot should only be required to
provide fitness functions for the behaviors
that are related to the task of the robot,
and not to its auxiliary behaviors (such as
e.g. obstacle avoidance and battery charg-
ing), whose activation instead should be
determined indirectly through the opti-
mization of the utility functions.

2.3 State variables and utility functions

With each behavior is associated a utility
function (not to be confused with the fit-
ness functions provided for task behaviors,
see the example below), which depends on
(some of) the state variables. State vari-
ables, in turn, are divided into three cate-
gories: external variables (e.g. readings of
IR or visual sensors) that measure anything
the robot can derive directly from the en-
vironment, internal physical variables (e.g.
battery levels) that measure physical prop-
erties such as temperature or energy levels
within the robot itself, and, finally, internal
abstract variables, which are used in the be-
havioral selection (see Sect. 6 below), and
which roughly correspond to signaling sub-
stances (e.g. hormones) in biological sys-
tems (2).

2.4 Evolutionary optimization

In the UM method, the optimization of
utility functions is normally performed us-
ing evolutionary algorithms (EAs). In gen-
eral, the utility functions depend on several
state variables, and should provide appro-
priate utility values for any combination
of the relevant inputs. Thus, determining
the exact shape of the utility functions is
a formidable task, and one for which EAs
are very well suited. In principle, genetic
programming (GP) can be used, in which
case any function of the state variables can
be evolved. However, it is often sufficient to
make an ansatz for the functional form of
each utility function, and then implement
the EA as a standard genetic algorithm
(GA) for the optimization of the para-
meters in the utility function. The latter
approach will be used in the paper. The

3

ansatz for each utility function is given in
Subsect. 5.4.

Thus, once the state variables have been
identified, and an ansatz has been made
for each utility function, the EA can begin
the process of shaping the utility functions
in such a way that the choice of behaviors
becomes as good as possible.

2.5 A simple example

The UM method will now be illustrated
by means of a simple example. For a more
thorough introduction, see (2). Consider
the simple example of a cleaning robot
equipped with two behaviors: one task be-
havior sweep floor (B1) and one auxiliary
behavior charge batteries 1 (B2). Clearly,
from a user’s or owner’s point of view,
the floor sweeping behavior is the relevant
one, i.e. the behavior one would wish the
robot to perform continuously if it were
possible. Thus, a fitness function (f1) is
assigned to this behavior. For example,
the robot could be given an additional fit-
ness point for each square meter of (dirty)
floor that it cleans. B2 gives not fitness,
i.e. f2 ≡ 0. Furthermore, each behavior is
associated with a utility function, denoted
U1 and U2 for B1 and B2, respectively.
The utility functions depend on the state
variables of the robot, which in the case
of the cleaning robot may include readings
of IR sensors (collision detectors), the bat-
tery energy level, some internal abstract

1 A battery charging behavior would nor-
mally also have to include a sub-behavior for
finding a charging station. However, for sim-
plicity, such complications are neglected in
this example, which is only intended to de-
scribe the basic concepts of the method.

variables 2 etc. When the behavioral orga-
nization system of this robot is generated,
the two utility functions are evolved, either
from completely random functions of the
state variables or from some ansatz. The
feedback signal to the optimization pro-
cedure is the fitness, which, as described
above, only is given for B1. How, then,
can B2 be activated? Consider the case in
which B2 is not activated at all. In such a
case, the robot would sweep the floor un-
til it ran out of battery energy, and would
then be unable to continue (and also un-
able to gain additional fitness). However,
the activation of behaviors is governed by
the utility functions. Thus, if instead the
evolutionary algorithm designs the utility
functions such that U2 sometimes exceeds
U1 (e.g. when the battery level is low and
the robot is near a charging station), the
robot would charge its batteries and thus
be able to resume its floor-sweeping ac-
tivities after some time. Thus, while the
fitness f1 is the optimization measure, and
B2 gives no fitness increase, the evolution-
ary optimization method will nevertheless
design the utility functions so that B2 is
sometimes activated (at least if the evalu-
ation time exceeds the time that the robot
can operate on a single battery charge).

2.6 Procedure

The main step in the use of the UM method
is the generation of the behavioral orga-
nization system through the definition of
utility functions for each behavior.

The constituent behaviors used by the UM
method can be generated by any means de-

2 The use of internal abstract variables is de-
scribed further in Subsect. 5.4.

4

sired. For example, behaviors can be either
hand-coded or evolved.

In this paper, both the generation of indi-
vidual behaviors and the subsequent evolu-
tion of the behavioral organization system
are done in a simulated environment, which
will now be described in detail. Thereafter,
the detailed properties of the various con-
stituent behaviors are described, as well as
the simulation procedure used in connec-
tion with the UM method.

3 Simulator

The work presented here has been carried
out in simulations. When applying a solu-
tion from a simulation to a real-world sit-
uation there is commonly a problem with
discrepancies between the models and re-
ality, referred to as the reality gap (8).

In order to minimize the reality gap, a good
simulator should be based on accurate de-
scriptions of the used objects (e.g. robots,
sensors, motors) and proper description of
the environment and interactions during
the simulation. These descriptions are now
addressed.

3.1 Simulated robot

A mathematical model of a Khepera ro-
bot 3 shown in Fig. 1, equipped with two
speed-controlled wheels, and eight IR sen-
sors, six in the front and two in the rear is
used. The IR sensors are used as proximity
sensors.

3 The Khepera robot is manufactured by K-
team, www.k-team.com

SS

S

S

SS

S

S

1

2 3

4

0 5

67

Fig. 1. Sensor and motor layout of the mod-
elled Khepera robot. Sensors are shown as
gray rectangles and motors as black rectan-
gles.

The motion of the differentially steered ro-
bot is governed by the equations

Mv̇ + αv = A(τL + τR) (1)

Iϕ̈ + βϕ̇ = B(−τL + τR) (2)

where v and ϕ̇ are the curvilinear and ro-
tational speeds of the robot, respectively.
τL and τR are the torques acting on the left
and right wheel, respectively, and M and I
are the mass and moment of inertia of the
robot, respectively. A and B are scale fac-
tors depending on the geometrical proper-
ties of the robot.

3.1.1 Motors

A simplified DC-motor model (no induc-
tion modelled) was developed. The torque
acting on a wheel is modelled as

τi =
km

R
(ui − ωika) (3)

where R, km, ka are the estimated resis-
tance, the torque constant, and the back-
emk constant for the motor, respectively,
and τi, ui, and ωi are the torque on the

5

wheel, the applied potential, and the angu-
lar speed of motor i, respectively.

The model also includes two speed-
controllers (PI-type), one for each wheel.
The PI-controller is described as

ui = kpωi + kIIi, (4)

and

Ii =
∫

(ωi − ri)δt, (5)

which in discrete form becomes

Ii(t + δt) = Ii(t) + (ωi(t) − ri(t))δt, (6)

where kp and kI are the proportional and
integral constants of the controller, respec-
tively and Ii and ri are the integral state
and motor-speed reference value, respec-
tively. The integral state Ii is updated for
each time-step.

The speed-controller parameters are set so
that the simulated step-response is similar
to the real step-response, as measured by
Byung et al. (9).

In the simulation, the range of the wheel
speeds is normalized to [−1, 1].

3.1.2 Sensors

In the proximity sensor model, obstacles
within the sensor range are divided into N
parts. The number N depends on the com-
plexity of the obstacle. The contributions
from the obstacle parts are summed accord-
ing to

Si =
N
∑

j=0

αi,j

Θi

(

1 −
di,j

Di

)2

, (7)

d

Obstacle

D

1

2

3

i,2

Qi

a
i,2

i

Fig. 2. Proximity sensor variables. The sensor
range is a triangle, and the obstacle is divided
into three parts due to its complexity. The fig-
ure shows the parameters for obstacle part 2.

where αi,j is the jth part of an obstacle an-
gular coverage of sensor i, Θi the aperture
of sensor i, both in radians, di,j is the dis-
tance from the sensor to the center of ob-
stacle part j, and Di is the range of sensor
i. In Fig. 2 these variables are visually de-
scribed. The square term in the expression
is due to a quadratic fall-off with distance
of the sensor reading for this sensor type.
Note that the far-end of the sensor range
is simplified to a straight line instead of a
curved boundary. The range of the sensor
values is normalized to [0, 1].

3.1.3 Battery

The range of the battery level is normalized
to [0, 1] and the level is updated according
to

dE

dt
= −cE, for E ∈ [0, 1], (8)

6

Fig. 3. Simulation arena with fixed and mov-
ing obstacles. The five robots on the scene are
equipped with two rear sensors whereas the
three moving obstacles lack rear sensors.

where cE is the discharge rate, which is here
taken as a constant. This equation applies
when the battery is not charging.

3.2 Simulated environment

In the simulation environment, shown in
Fig. 3, robots as well as fixed and moving
obstacles are defined. The environment is
equipped with walls along each edge, i.e.
periodic boundary conditions are not used.
The moving obstacles are equipped with
front sensors, giving them the possibility to
avoid stationary obstacles.

In all simulations described below, the sta-
tionary obstacles were placed as in Fig. 3.

Usually, during simulations, several robots
were active simultaneously in the environ-
ment. The exact simulation procedure will
be described in Sect. 5 below.

4 Constituent behaviors

The UM method sets no restriction on the
implementation details and manner of gen-
eration of individual behaviors. Thus, in
order to illustrate the ability of the UM
method to organize many different sorts of
behaviors, different implementations of the
behaviors will be used.

The task for this evolved robotic brain is to
drive the robot as far as possible in the en-
vironment without colliding with any ob-
stacles or running out of battery energy.
Therefore four different behaviors are iden-
tified and implemented.

The behaviors defined for the simulation
are wandering, obstacle avoidance, battery

charging, and robot scouting. The wander-

ing behavior is the task behavior while the
others are auxiliary behaviors.

No sensor input is used directly by the be-
haviors, except obstacle avoidance, i.e. the
torques acting on the motors are set disre-
garding sensor readings. However, the be-
havioral organizer, which is supposed to se-
lect an appropriate behavior, is of course
provided with the sensor readings.

The description of the behaviors is as fol-
lows:

Wandering The wandering behavior is
implemented in the simplest possible way,
simply moving the robot in piece-wise
straight paths. Two different implementa-
tions were used, namely straight-line wan-

dering (denoted B1.1), in which the motors
are set to the same speed making the ro-
bot move in a straight line, and drunkard’s

walk (denoted B1.2), in which the robot
moves in a straight line for a random pe-
riod of time, and then turns to a new ran-

7

dom direction starting a new straight-line
motion etc.

Obstacle Avoidance The behavior is re-
sponsible for navigating the robot away
from any obstacle in the close vicinity that
compromises a safe passage.

Three implementations are provided for
this behavior, namely rotate away and

stop (denoted B2.1) where the robot ro-
tates away from an obstacle and stops the
motors when the front-sensor values fall
below a certain value, rotate away and re-

cede (denoted B2.2) is similar to the rotate

away and stop implementation but allows
the robot to set full speed backward or for-
ward if an obstacle is present in front of or
behind the robot, respectively, and grazing

robot behavior (denoted B2.3), a behavior
used in this paper by the moving obstacles.
This last behavior is a wander and obsta-
cle avoidance behavior where normally the
left and right motors at set to slow forward
speeds resulting in a slightly curved path.
If an obstacle is close the motors are set to
mainly rotate away from it resulting in a
forward wiggling motion.

Battery Charging This behavior is re-
sponsible for recharging the batteries. The
robot is considered to be equipped with so-
lar cells, and is standing still during charg-
ing. Two implementations are used for this
behavior: In delayed linear charging (de-
noted B3.1), the battery energy changes ac-
cording to

dE

dt
=

cC If t3 > tc and E < 1,

0 Otherwise,
(9)

where t3 is the time elapsed since the charg-
ing behavior was activated (see below), and
tc is a constant. In delayed direct charging

(denoted B3.2), the battery energy remains
unchanged for 2tc seconds, and is then in-
stantaneously set to the maximum value
of 1.

Robot scouting: This behavior makes the
robot search its closest vicinity for other
robots that might collide with it from a
blind angle. Two implementations are pro-
vided for this behavior, namely, rotational

scouting (denoted B4.1) where the motors
are set to fixed speed with opposite signs
to make the robot execute a pure counter-
clockwise rotation, and seeking scouting

(denoted B4.2) using a hand-coded func-
tion describing a simple search pattern
where the motor speeds are set according
to {ω1, ω2} = {sin cs1ti,− cos cs2ti}, where
ti is the behavior time. cs1 and cs2 are
constants determining the search pattern.

5 Simulation procedure

The main part of the simulation procedure
used in this paper consists of evolving be-
havioral organizers using the UM method.
In addition, the simulator allows evalua-
tion of evolved behavioral organizers. The
UM method is based on an EA (see e.g.
(10) for a thorough description of EAs),
the basic flow of which is shown in Fig. 4.
As in all EAs, the optimization procedure
acts on a population of individuals that
are assigned fitness values based on their
performance during evalutions, the flow of
which are shown in Fig. 5. In the follow-
ing subsections, the EA and the evaluation
procedure for individuals will be described
briefly. Next, the specific form used for the
utility functions will be discussed, and the
section is concluded with a description of
the fitness measure used in the EA.

8

5.1 Evolutionary algorithm

The chromosomes appearing in an EA used
in connection with the UM method encode
the utility functions on which behavioral
selection is based. In the investigation re-
ported here, a specific ansatz for the util-
ity functions, described in Subsect. 5.4, is
used. Thus, when decoded, the information
contained in the genes of a chromosome is
used for determining the exact shape of the
utility functions for the individual in ques-
tion.

At the start of an EA run, a population
of N chromosomes is initialized randomly.
Once a chromosome has been decoded, the
corresponding individual is tested and as-
signed a fitness value (see below) based on
its performance. When all individuals have
been tested, the next generation is formed
using the procedures of tournament selec-
tion, crossover, and mutation. Elitism is
used, i.e. a single exact copy is made of the
best chromosome, and it is transferred un-
changed to the next generation.

5.2 Evaluation of individuals

During evaluation, the chromosome is de-
coded, forming the brain of an individual
(i.e. a simulated robot) that is allowed to
move in the environment, performing vari-
ous actions based on the implemented be-
haviors.

While the stationary part of the environ-
ment (e.g. the walls and the stationary ob-
stacles) remain the same in all runs, see
Fig. 3, the environment also contains mov-
ing obstacles. At initialization, the moving
obstacles are always placed at pre-specified

Fig. 4. Flow chart for the evolutionary algo-
rithm.

initial positions, and with a pre-specified
heading. However, the wandering behavior
executed by moving obstacles (B2.3) con-
tains a random element, meaning that their
motion will never be the same for different
tests.

Thus, in order to reduce the effects
of stochastic noise caused by the non-
deterministic character of the motion of the
moving obstacles, the evaluation of an in-
dividual is made using several (Ne) copies
of the individual. In principle, it would be
possible e.g. to run the same individual Ne

times, using different starting conditions.
Here, however, a slightly different proce-
dure has been used, in which Ne exact
copies of the same individual are evaluated
at once, in the same environment but with
different starting position and heading for
each copy. Both the starting position and
the heading are pre-specified and identical
for all individuals. Furthermore, the Ne ro-
bots that are evaluated simultaneously are
not able to see each other, and collisions
between robots are also turned off, even
though the robots can, of course, collide
with moving and stationary obstacles.

9

Fig. 5. Flow chart for the evaluation of indi-
viduals.

A given evaluation lasts for T time steps
of length δt, unless a robot collides with an
obstacle or a wall, or runs out of battery
energy, in which the evaluation of that par-
ticular robot is terminated, while the other
Ne − 1 robots are allowed to continue.

Robots consume energy according to Eq.
(8) in all but the battery charging behav-
iors (B3.x). The discharge rate is set so that
the battery is depleted in TB seconds.

The fitness of an individual is calculated
based on the distance travelled while exe-
cuting the task behavior (B1.1 or B1.2), as
described in Subsect. 5.5 below.

The settings of the various parameters in-
troduced above are given in Table 1.

Parameter Value used Unit

N 100

G 200

Ne 10

T 2,000

δt 20 ms

cE 0.25 s−1

TB 4 s

cC 1 s−1

tc 1.0 s

Table 1
The settings used for the simulation parame-
ters introduced in Subsects. 5.1, 5.2, and 5.5.
Note that the units for cE and cC are given
as s−1, since the energy variable E has been
made dimensionless.

5.3 Noise

The presence of noise is an inescapble fact
of any realistic environment, and must also
be included in simulations (8), in order to
generate results that can be transferred to
a real robot. In the simulations presented
here, the motion of the moving obsta-
cles contains a non-deterministic element,
which was added to prevent the evolving
robots from exploiting the peculiarities of
any particular obstacle motion.

However, there are other sources of noise
as well. In particular, real sensors are al-
ways noisy, and thus, in the simulations
presented here, 5% uniformly distributed
noise was added to the sensory signals at
each time step.

10

5.4 Utility function implementation

Once the individual behaviors have been
defined, the evolution of the behavioral
organizer can begin. The aim of the UM
method is to find correct utility functions,
i.e. functions such that the behavioral se-
lection provides the desired result. In prin-
ciple, any functional form can be allowed
for the utility functions. However, in prac-
tice (and as will be shown below), it is
often sufficient to make an ansatz for the
utility functions and to limit the search to
parametric optimization.

In this study, the utility functions are de-
fined by polynomial functions of degree P .
As an example, consider a utility function
Ui that depends on a sensor value σ, the
battery energy E, and an internal abstract
variable x. For e.g. P = 2, the ansatz be-
comes

Ui = ai,000 + ai,100σ + ai,010E + ai,001x +

+ ai,200σ
2 + ai,020E

2 + ai,002x
2 +

+ ai,110σE + ai,101σx + ai,011Ex, (10)

where the ai,jkl are constants that are to be
determined by the EA.

In this study the external variables are
taken as combinations of the readings
S0, S1, . . . , S7 of the sensors. More specifi-
cally, four external variables are defined as

σ1 =
1

2
(S0 + S1) , (11)

σ2 =
1

2
(S2 + S3) , (12)

σ3 =
1

2
(S4 + S5) , (13)

σ4 =
1

2
(S6 + S7) (14)

The battery level E is the only internal
physical variable. One abstract variable is
defined for each behavior (B1, B2, B3, and
B4).

The variation of the internal abstract vari-
able must also be specified. In principle, the
variable can be any function of sensor vari-
ables and behavior time. However, for the
purposes of this paper, the ansatz

xi =

bi,1 + bi,2e
−|bi,3|ti If Bi is active ,

0 Otherwise,
(15)

where bi,j are constants will be used for each
abstract variable xi. The behavior time ti

increases linearly with (global) time if be-
havior i is active, and is zero otherwise.
Furthermore the abstract variable xi is ex-
actly zero when the associated behavior is
inactive.

The constants ai,jkl and bi,j are encoded in
the chromosomes used by the EA, using
real-number encoding, i.e. with one gene
per variable.

The polynomials used in this paper are of
second degree, i.e. P = 2. In general, the
number of coefficients in a second-degree
polynomial equals 1 + N + N(N + 1)/2,
where N is the number of variables. Fur-
thermore, for each behavior i, three addi-
tional parameters are needed to determine
the variation of the internal abstract vari-
able i. Thus, for nB behaviors, the total
chromosome length will be

L = nB

(

4 +
3N

2
+

N2

2

)

. (16)

In the case considered here, nB = 4, and
there are six variables in each polynomial
(σ1, σ2, σ3, σ4, E, and xi). Thus, L = 124.

11

5.5 Fitness calculation procedure

The fitness of an individual is based on
a combination of the fitness values fi ob-
tained for several (Ne) evaluated robots
with identical brains (see above).

For each evaluation, the fitness fi is defined
simply as the distance travelled while exe-
cuting the task behavior. Thus, there will
be an incentive for the EA to maximize the
fraction of time during which the task be-
havior is executed, but also to make sure
that the auxiliary behaviors are sometimes
activated, in order to avoid collisions and
battery depletion.

The combination of the results of several
evaluations can be made in a variety of
ways, of which two have been tried in this
paper, namely the average fitness (fitness
measure I), according to

f I =
1

Ne

Ne
∑

i=1

fi, (17)

and the minimum fitness (fitness measure
II), according to

f II = minifi. (18)

The motivation for the second fitness mea-
sure (11) is that it forces the EA to avoid
even occasional failures.

6 Behavioral organization

As described previously the function of the
robotic brain is to select behaviors ade-
quately during its execution in such a way

that the robot completes the simulation
with highest possible fitness.

The overall goal for the robot is to execute
the task behavior in an environment with
stationary and moving obstacles. Collision
with an obstacle or depletion of the battery
results in a premature termination of the
robot.

In the case considered here, the evolution-
ary optimization procedure faces a large
(124-dimensional) search space. Thus, as a
first step, the ability of the UM method to
find satisfactory solutions at all should be
investigated.

Hence, the results from a basic run, re-
ferred to as Run (a) and involving a specific
quartet of behaviors (namely B1.1, B2.1,
B3.1, and B4.1) are presented first, followed
by a detailed analysis of the evolved be-
havioral organizer. Next, the generality of
the method is investigated, by evolving the
same overall task, using all 16 distinct com-
binations of the four behaviors (for each
of which two different implementations are
provided, as discussed in Sect. 4). A com-
plete list of the runs performed is given in
Table 2.

6.1 Basic properties

Before Run (a) was carried out, a few
shorter test runs were carried out in order
to select an appropriate fitness measure.
In the problem considered here, it turned
out that f II, as defined above, did not give
very good results: Due to the strong pun-
ishment of bad individuals with this fitness
measure, the EA often got stuck at low
fitness values. However, with f I, based on
the average performance of an individual,

12

Fig. 6. A snapshot of the arena in which the
simulated robots were evaluated. Small dots
indicate a trail taken by a robot. The square
and cross icons indicate a depleted battery
and a collision, respectively.

25 50 75 100 125 150 175 200
g

0.1

0.2

0.3

0.4

0.5

f
i
t
n
e
s
s

Fig. 7. The fitness of the best individual plot-
ted as a function of generation, for Run (a)

a steady increase in fitness was seen. Thus,
f I was selected for this problem, and the
number of evaluations, Ne, was set to 10.

Of course, by itself, the fitness measure says
very little about the ability of the robot to
solve its task, since there is no clear bench-
mark against which to compare the fitness
measure.

One possible way of assessing the perfor-
mance of an evolving population of robots

50 100 150 200
g

0.15

0.2

0.25

0.3

0.35

0.4

0.45

fitness

Fig. 8. Average performance and standard de-
viation for the best individual in generations
10, 25, 50, 100, and 200, taken over 100 re-e-
valuations.

is to study the fraction of runs in which
robots successfully completed their task.
However, at least for the runs presented
here, this approach turned out to be rather
unsuccessful: during Run (a), the percent-
age of robots (in the population) surviv-
ing the whole length of the simulation rose
from 54% in the first generation to 77% in
the final generation. However, during re-
evaluations of the best individual in each
generation, the fraction of successful indi-
viduals stayed almost constant, at around
70%. The rise in survival percentage during
Run (a) can be attributed to the gradual
elimination of bad individuals. By contrast,
for each generation, the best individual is
apparently able to avoid collisions and bat-
tery depletion, even though, in early gener-
ations, this is achieved that the price of not
spending much time in the task behavior.

Thus, one must instead simply observe the
robots in action, in order to judge their
performance, and thereby form an associ-
ation between performance and fitness. In
the case considered here, it was found that
a fitness of 0.4 or above generally implied
that the robot performed well.

The variation of the maximum fitness (de-
termined according to fitness measure f I)

13

0 1 2 3 4
Time

-0.5

0

0.5

1

1.5

U
t
i
l
i
t
y

Fig. 9. U1 (top curve) and U3 in the absence of
sensory input, plotted for the best individual
in Run (a).

0 1 2 3 4
Time

-1

-0.5

0

0.5

1

U
t
i
l
i
t
y

Fig. 10. U1 (top curve at t = 0) and U3 in a
case with weak (and constant) sensory input,
plotted for the best individual in Run (a).

over Run (a) is shown in Fig 7.

As is evident from the figure, the fitness in-
creases rapidly over the first 50 generations.
In the final 150 generations only a weak in-
creasing trend can be discerned. Thus, for
the evaluation of generality properties (see
below), 200 generations was deemed suffi-
cient.

Fig. 8 shows the average and standard
deviation of the fitness obtained when re-
evaluating the best individual from gener-
ations 10, 25, 50, 100, and 200. The figure
shows a rising trend in re-evaluation fit-
ness, but it also illustrates a large spread
in the performance of any given individ-
ual, when evaluated in different circum-
stances. Each individual was re-evaluated

100 times, starting from a random position
and a random heading.

The UM method provides utility functions
which will determine the action of the ro-
bot for any values of the state variables.
Thus, once the utility functions have been
evolved, it is possible to study what actions
the robot would take in any situation. Some
examples, taken from the best individual
of Run (a) will now be given. In principle,
each utility function depends on six vari-
ables. However, the variation (in time) of
the abstract internal variables is given by
Eq. (15), and the variation of the energy
level is also known for each behavior. Thus,
the utility functions can all be expressed
as functions of σ1, σ2, σ3, σ4, and t (time).
Fig. 9 shows the variation of U1 and U3 in
the absence of sensory input, starting from
a situation with a full battery at t = 0,
and with B1 as the active behavior. Note
that U3 rises as the battery is discharged.
However, U3 does not quite reach U1 before
the battery is depleted (at t = 4 s). This is
so, since the robotic brain was evolved in
a cluttered environment, in which it rarely
happens that all sensors are silent.

Indeed, in Fig. 10, U1 and U3 are again
plotted as functions of time, this time in a
slightly artificial case with a constant sen-
sory input of σ1 = σ2 = 0.25. In this case,
as in other cases with realistic (varying)
sensory input levels, U3 reaches and over-
takes U1 at around t = 3.8 s, thus activat-
ing the charging behavior. The jump in U3,
caused by the activation of B3, is not shown
in the figure.

Some typical examples of the operation of
the utility functions are shown in Figs. 11,
12, and 13.

Fig 11, taken from a re-evaluation of the

14

20 22 24 26 28 30 32
time

-1

-0.5

0

0.5

1

1.5

u
t
i
l
i
t
y

Fig. 11. The variation in utility for re-evaluation of the best individual in Run (a). The plot
shows the basic, cyclic pattern of execution of B1 and B3, occasionally interrupted by obstacle
avoidance or robot scouting. U1 is drawn as a thick solid line, U2 as a dotted line, U3 as a thin
solid line, and U4 as a dashed line.

best individual from Run (a) shows the typ-
ical cycle exhibited by highly evolved ro-
bots: the robot executes B1 (thick solid
line), as much as possible, but with regu-
lar interruptions for battery charging (thin
solid line), and more irregular interruptions
caused by the presence of obstacles in the
environment. Note the repression of U3 at
the end of each recharging cycle (occurring
as a result of setting the corresponding in-
ternal abstract variable x3 to zero when ex-
iting B3), and the gradual rise in utility for
B3 as the battery energy is depleted.

Fig. 12, taken from the same re-evaluation,
shows a typical behavior exhibited before
the robot begins recharging its batteries: at
around time t = 2.0 s, the robot scouting
behavior (B4) is activated, and together
with the briefly activated B2, makes sure
that the risk for collision is low. Next,
around t = 2.5 s, the robot activates the

charging behavior, which remains active
for around 1.5 s. After recharging the bat-
teries, the robot resumes operation in B1.

Incidentally, the fact that the robot uses
B4 at all, may be somewhat be surprising,
given that it is equipped with rear sensors
that can be used for backward sensing, even
without activating B4. However, even with
the rear sensors, the robot does not have
full coverage in all directions (as is seen e.g.
in Fig. 3). Thus, B4 is needed in order to as-
certain that no moving obstacles are com-
ing in from directions in which the robot is
blind.

A prime example of an emergency behavior
is shown in Fig. 13. Here, robot completes a
recharging cycle at around t = 20.5 s, and
begins executing B1. However, the robot is
almost instantly interrupted by the pres-
ence of an obstacle that triggers the activa-

15

2 2.5 3 3.5 4
time

-1

-0.5

0

0.5

1

1.5
u
t
i
l
i
t
y

Fig. 12. Activation of B4 at t ≈ 2.0 s., followed
by activation of B3 at t ≈ 2.5 s. U1 is drawn
as a thick solid line, U2 as a dotted line, U3 as
a thin solid line, and U4 as a dashed line.

20.5 21 21.5 22 22.5 23
time

-1

-0.5

0

0.5

1

1.5

u
t
i
l
i
t
y

Fig. 13. Activation of the auxiliary behaviors
B2 and B4 as a result of the detection of an
obstacle. Note how the execution of the task
behavior B1 is repeatedly interrupted to save
the robot from a collision. U1 is drawn as a
thick solid line, U2 as a dotted line, U3 as a
thin solid line, and U4 as a dashed line.

tion of B4 and B2 between t = 20.7 s and
t = 21.0 s. At this point, the robot attempts
to resume its activities in B1, but is again
interrupted at t = 21.35 s, and spends the
next 0.35 s on evasive actions, before finally
finding a more peaceful situation, allowing
it to continue with B1 until the batteries
are nearly depleted, at around t = 23 s.

6.2 Generality properties

Here, all the remaining 15 combinations of
task and auxiliary behaviors were investi-

gated. The evolution setup is the same as
for the previous investigation, and all runs
lasted for a total of 200 generations.

The results from these runs are summa-
rized in Table 2, which shows that, in al-
most all cases, the fitness threshold of 0.4
was reached, regardless of the specific im-
plementations used for the behaviors.

This is promising from the point of view of
the behavioral organization method. How-
ever, in order to make a stronger claim
regarding the performance of the UM
method, one must first investigate the re-
sults obtained when re-evaluating the best
individuals from each run in previously
unseen situations.

Table 3 shows the results of carrying out
100 re-evaluations of the best individual in
the final generation of each run. In every re-
evaluation, the robot was placed in a ran-
dom position and with a random heading.

From Table 3 is is evident that there is
a rather large scatter in the performance
of individuals when placed in unfamiliar
situations (i.e. random starting positions).
However, it is also clear that those individ-
uals whose fitness values far exceeded the
threshold during evolution perform quite
well during re-evaluations, reaching a suc-
cess rate of up to 74%.

The fact that, for these runs, the re-
evaluation success rate, p, correlates well
with f200 in Table 3 shows that the pro-
cedure of evaluating each individual 10
times (during evolution) is sufficient to ob-
tain reliable results, in the sense that the
average re-evaluation performance can be
estimated based on f200. By contrast, if
the number of evaluations had been insuf-
ficient, one would expect a much less clear

16

Run Behaviors g0.4 f last5 max f

(a) B1.1, B2.1, B3.1, B4.1 114 0.4076 0.4183

(b) B1.2, B2.1, B3.1, B4.1 185 0.4064 0.4475

(c) B1.1, B2.2, B3.1, B4.1 − 0.3371 0.3765

(d) B1.2, B2.2, B3.1, B4.1 49 0.4545 0.4643

(e) B1.1, B2.1, B3.2, B4.1 114 0.4463 0.4614

(f) B1.2, B2.1, B3.2, B4.1 87 0.4300 0.4962

(g) B1.1, B2.2, B3.2, B4.1 − 0.3359 0.3621

(h) B1.2, B2.2, B3.2, B4.1 13 0.5367 0.5734

(i) B1.1, B2.1, B3.1, B4.2 83 0.4361 0.4473

(j) B1.2, B2.1, B3.1, B4.2 33 0.5404 0.5681

(k) B1.1, B2.2, B3.1, B4.2 105 0.4672 0.4713

(l) B1.2, B2.2, B3.1, B4.2 40 0.5533 0.5673

(m) B1.1, B2.1, B3.2, B4.2 49 0.4792 0.4935

(n) B1.2, B2.1, B3.2, B4.2 55 0.4544 0.5000

(o) B1.1, B2.2, B3.2, B4.2 67 0.4585 0.4667

(p) B1.2, B2.2, B3.2, B4.2 56 0.5391 0.5812

Table 2
The names of the runs, and the specific behaviors used for each run, are given in the first two
columns. The third column shows the first generation in which the fitness of the best individual
exceeded 0.4. The fourth column shows the average fitness of the best individuals in the last five
generations of each run. The maximum fitness attained is given in the rightmost column. Note:
Run (n) was accidentally terminated after 100 generations.

correlation between p and f200.

7 Discussion and conclusion

The main conclusion that can be drawn
from the analysis above is that the UM
method is generally able to select ade-
quately between many different behaviors
to produce a desired overall behavior for a
robot. Indeed, in 18 out of 20 runs, with
different combinations of behaviors, the

fitness threshold was reached. In this con-
text it is also important to note that the
individual behaviors were in no way opti-
mized for subsequent inclusion in a behav-
ioral organizer. Instead, each constituent
behavior was written as a completely sep-
arate unit. Thus, the UM method is able
to use off-the-shelf behaviors that have not
been specifically adapted to the problem
at hand.

Another important conclusion is that the
UM method may sometimes choose not to

17

Run f200 fr± STD. p

(a) 0.4070 0.3178 ± 0.1391 0.36

(b) 0.4295 0.3095 ± 0.1845 0.51

(c) 0.3732 0.2640 ± 0.1502 0.23

(d) 0.4573 0.3400 ± 0.1738 0.54

(e) 0.4422 0.3317 ± 0.1607 0.49

(f) 0.4203 0.3403 ± 0.1504 0.47

(g) 0.3153 0.1973 ± 0.1700 0.20

(h) 0.5375 0.3630 ± 0.2103 0.56

(i) 0.4356 0.3819 ± 0.1030 0.57

(j) 0.5681 0.4536 ± 0.1761 0.74

(k) 0.4663 0.3715 ± 0.1421 0.62

(l) 0.5583 0.4289 ± 0.1774 0.70

(m) 0.4838 0.3611 ± 0.1652 0.59

(n) 0.5988 0.4021 ± 0.1773 0.63

(o) 0.4578 0.3618 ± 0.1418 0.54

(p) 0.5356 0.4269 ± 0.1954 0.71

Table 3
The second column gives the fitness of the
best individual in the final generation of each
run, and the third column shows the average
and standard deviation of the fitness values
obtained over 100 re-evaluations of the same
individual. The fourth column shows the frac-
tion p of re-evaluations for which the fitness
threshold 0.40 was reached. Note: the results
for Run (n) refer to generation 100.

make use of the available behaviors in the
way originally intended by the designer of
those behaviors. A prime example, per-
taining to the best individual of Run (a)
is its procedure for obstacle avoidance: If
an obstacle is detected, the behavioral or-
ganizer was intended to select B2, obstacle
avoidance. However, at least for certain
sensory input combinations, U2 never ex-

ceeds U1, regardless of the strength of the
sensory input. How, then, does the robot
avoid collisions? It turns out that the ro-
bot instead activates B4, robot scouting,
which evidently also can function as obsta-
cle avoidance of sorts.

The use of behaviors (for a given purpose)
can also vary from case to case. Thus, for
example, a strong reading on σ1 will acti-
vate B4, whereas a strong reading on σ3

will activate B2 (figure not shown), in both
cases to avoid obstacles. This is also evi-
dent from Figs. 11, 12, and 13, where the
robot forms an effective obstacle avoidance
behavior by combining B2 and B4, usually
beginning with B4 and then briefly and in-
termittently activating B2.

The fact that the UM method is able to
use behaviors in a different way than that
intended by the designer, suggests a proce-
dure in which one would start with a rather
small set of behaviors, and only add further
behaviors if the UM method turned out to
be unable to solve the overall task using the
given behavioral repertoire.

The re-evaluation analyses above show,
however, that not even the best evolved
individuals are able to generalize fully to
novel situations. A possible remedy, cur-
rently under investigation, is to subject
each robot to a set of difficult special sit-
uations (e.g. particularly difficult obstacle
configurations), in addition to its normal
motion in the arena, and to set a fitness
value based both on the performance in
the special situations and in the ordinary
evaluation. Possibly, a co-evolutionary
procedure could be used, in which a popu-
lation of difficult special situations would
evolve together with a population of ro-
botic brains, and would be given fitness
values based on their ability to reduce the

18

performance of the robotic brains.

However, as was shown in Table 3, the re-
evaluation results correlate quite well with
the fitness values obtained during evolu-
tion, at least if a sufficiently large number
of evaluations are used for each individ-
ual, making it quite easy to judge the re-
evaluation performance of a given individ-
ual.

Finally, even though the UM method was
able to reach the fitness threshold for most
runs, the results from Tables 2 and 3 sug-
gest that the selection of specific imple-
mentations of behaviors is both important
and non-trivial. In particular, the large
difference in re-evaluation performance
(ranging from 20% success rate to 74%)
indicates that the selection should be done
with care. Thus, the following procedure
is recommended: first, one should start by
defining two (or more) implementations
for each behavior. Next, a behavioral orga-
nizer should be generated for each combi-
nation of behaviors. Finally, the behavioral
repertoire that gives the highest value of p,
i.e. the re-evaluation success rate, should
be selected. As a selection criterion, the
re-evaluation success rate is preferred to
the original fitness of the individual. In the
particular case considered here, those two
quantities correlated quite well, but this
may not always be the case.

References

[1] R. A. Brooks, A robust layered con-
trol system for a mobile robot, Robot-
ics and Autonomous Systems 2 (1986)
14–23.

[2] M. Wahde, A method for behavioural
organization for autonomous robots
based on evolutionary optimization of

utility functions, J. Systems and Con-
trol Engineering 217 (4) (2003) 249–
258, part I.

[3] J. Pettersson, M. Wahde, Application
of the utility manifold method for be-
havioral organization in a locomotion
task, IEEE Trans. Ev. Comp., Sub-
mitted.

[4] M. Wahde, An Introduction to Adap-
tive Algorithms and Intelligent Ma-
chines, 2:nd ed., Chalmers, 2004.

[5] D. McFarland, Animal Behavior, Ad-
dison Wesley Longman, 1993.

[6] D. McFarland, E. Spier, Basic cy-
cles, utility, and opportunism in self-
sufficient robots, Robotics and Au-
tonomous Systems 20 (1997) 179–190.

[7] D. McFarland, T. Bösser, Intelligent
Behavior in Aninals and Robots, MIT
Press, 1993.

[8] N. Jakobi, P. Husbands, I. Harvey,
Noise and the reality gap: The use
of simulation in evolutionary robot-
ics, Lecture Notes in Computer Sci-
ence 929 (1995) 704–720.

[9] B. Kim, P. Tsiotras, Controller for
unicycle-type wheeled robots: Theo-
retical results and experimental vali-
dation, IEEE Transactions on Robot-
ics and Automation 18 (3).

[10] T. Back, D. B. Fogel, Z. Michalewicz
(Eds.), Handbook of Evolutionary
Computation, Institute of Physics
Publishing and Oxford University,
1997.

[11] J. Savage, E. Marquez, J. Pettersson,
N. Trygg, A. Petersson, M. Wahde,
Optimization of waypoint-guided po-
tential field navigation using evolu-
tionary algorithms, in: Proceedings
of the 2004 IEEE/RSJ International
Conference on Intelligent Robots and
Systems (IROS2004), 2004.

19

Paper V

Construction of a low-cost, general purpose bipedal
robot

Technical report
Chalmers University of Technology, 2004

Construction of a low-cost, general purpose bipedal

robot

Hans Sandholt

Department of

Machine and Vehicle Systems

Chalmers University of Technology

Göteborg, Sweden

E-mail: hans.sandholt@me.chalmers.se

Abstract

The construction of a small (0.98 m tall,
7 kg heavy) general-purpose bipedal ro-
bot is introduced and described in some
detail. The current design comprises 15
degrees of freedom with external power
supply and control. The robot is toler-
ant to shocks due to falling, overload, and
joint motion exceeding actuation range.

1 Introduction

In recent years, many bipedal robots
have been introduced both in acad-
emia [12, 13, 15] and in industry [8, 9,
10, 11]. For a brief review, see e.g. [19].
The robots developed in industry, e.g.
Hondas’s Asimo robot [8] and Sony’s
Qrio robot [9] are indeed very impres-
sive. However, the development of these
robots been associated with very high
costs, far beyond the financial means of
most research groups. In academia, it

is often necessary to concentrate on low-
cost systems, which are likely e.g. to
be less shock-tolerant than their com-
mercial counterparts. The aim of the
project described in this paper has been
to build a low-cost bipedal robot capa-
ble of withstanding shocks resulting, for
example, from a fall. The robot, shown
in Fig. 1, is intended to be used in con-
nection with research related to behav-
ioral organization [18, 2] during locomo-
tion (and other tasks) of behavior-based
robots [1]. Clearly, in any robot intended
for studies of bipedal walking, the body
parts needed for locomotion, i.e. the legs,
as well as their actuation and control, are
of fundamental importance, and will be
the main topic of this report.

1.1 Background

It is predicted that service robots, han-
dling routine duties for people, will be a
necessity in the near future, if the econ-
omy is to develop as desired [7]. Such

1

Construction of a low-cost, general purpose bipedal robot 2

duties could, for example, include do-
mestic services, surveillance, and trans-
portation. These service robots must be
able to work in environments designed
for people. i.e. essentially all constructed
environments, such as offices, factories,
and homes. For this reason, it has
been suggested [14, 15] that such robots
should be humanoids, i.e. robots having
a human-like shape. In addition, it ap-
pears that humanoid robots will be easier
to accept socially1 than non-humanoid
robots [6], since, for example, commu-
nication with such robots can be based
partly on body language.

General acceptance of robots in society
is essential, if they are to have the large
positive impact on world economy, as is
intended and hoped for.

2 Construction details

Developing a humanoid is a grand chal-
lenge. Several design issues must be
solved, many of which are intercon-
nected. Developing such a robot directly,
in one step, is difficult. Thus, a bottom-
up approach, in which subsystems are
first developed and then assembled to
form the complete robot, is more feasi-
ble.

In the following section, the construc-
tion of the robot is described in some
detail, starting with a description of the
mechanics. Next, the actuators, sensors,
and power systems are described, and the
section is concluded with a brief descrip-
tion of the low-level digital control of the
robot.

1The matter of social acceptance has been
a key issue in the development of Honda’s hu-
manoid ASIMO [6].

Figure 1: The mechanically assembled
bipedal robot, measuring 0.98 m and 7
kg in length and weight, respectively.

2.1 Mechanics

The proportions of the lower body of the
robot are similar to those of a child2 mea-
suring 1.05 m. The length of principal
body parts developed thus far are given
in Table 1.

Each leg is controlled using 6 degrees-
of-freedom (DOFs), two in the ankle,
one in the knee, and three in the hip.
The joint between the spine and pelvis is
controlled using 3 DOFs. A blueprint of

2The proportions are essentially the same as
Leonardo Da Vinci (1453-1519) derived in stud-
ies of the human body.

Construction of a low-cost, general purpose bipedal robot 3

(a) Front view of drawing of the bipedal robot. (b) Side view of
drawing of the
bipedal robot.

Figure 2: Blueprint of the assembled body parts of the bipedal robot, measuring 524
mm in height (excluding the rod representing the spine, which is not shown in the
figure) and 361 mm in width. The robot has 12 degrees-of-freedom (DOF) in this
configuration. An additional three DOFs, not shown, have been added to the joint
between the spine and pelvis, in order to move the upper body.

the completely assembled bipedal robot
is shown in Fig. 2. In addition to the
parts shown in the figure, a simple rod
has been connected to the spine joint of
the robot, making the total height equal
to 0.98 m.

The metal skeletal parts were manu-
factured from rectangular aluminum pro-
files measuring 40×80×2.5 mm. Using
such a profile gives high strength, low
weight, and protective housing for the
installed servo motors. Each part was
milled according to its specific function

as given by the blueprint.

There are two types of joints on the
robot. The first, a two-sided hinge joint,
called type I, is used in all but two cases
in a leg. The second joint type, called
type II, based on an axial and radial
bearing supported shaft, is found in the
sagittal and transversal actuators in the
hip. Both joint types are shown in Fig. 3.

All joints are equipped with Teflonr

slide bearings from Nomo Kullager
AB [3]. The use of such bearings re-
duces the weight and cost significantly,

Construction of a low-cost, general purpose bipedal robot 4

(a) View with all parts present.

Type II

Type I

(b) View with all housings removed, showing
type I and II joints.

Figure 3: Detailed view of the right hip. Observe the compact assembly in the pelvis,
showing that, with this actuator configuration, the width of the robot is stipulated
by the size of the servos.

Body part Length [m]
Ankle height 0.085
Lower leg 0.165
Upper leg 0.250
Pelvis width 0.230

Table 1: Dimensions of the bipedal ro-
bot. Measures are taken from ground to
joint, or joint to joint.

compared to roller bearings, while main-
taining robustness to wear and shock. In
addition, the use of a slide bearing gives
low static friction.

The width of the robot was primarily
determined by the size of the actuators,
as shown in Figs. 2 and 3(b). A narrower
hip would require a different type of ac-
tuator or a different design altogether.

2.2 Actuators

All DOFs are actuated using standard
HS-805BB+ RC-servo motors [5]. The
maximum speed and torque obtained

from this servo are approximately 120o/s
and 2.4 Nm at 6V operation, respec-
tively. However, the standard HS-
805BB+ servo motor does not provide a
reading of the actuator position. Thus,
the servos were modified in order to
make it possible to extract such readings.
This issue is discussed further in Subsect.
2.3.1 below.

The position of the servo motor wheel
is set using a pulse-width modu-
lated [16] (PWM) signal, shown in
Fig. 5(a) and controlled internally us-
ing an analog proportional controller (P-
controller). The P-controller is an on-off
controller (i.e. giving either full current
or no current) where the duration of the
applied power is proportional to the er-
ror between the set value and the actual
value, shown in Fig. 6.

2.3 Sensors

Two kinds of readings are currently ex-
tracted for controlling the bipedal robot,

Construction of a low-cost, general purpose bipedal robot 5

1 2 3 4 201 2 21 22

0.9 ms 2.1 ms

t [ms]

(a) The period time of the servo controlling
PWM signal is 20 ms. The duty time of
the PWM signal is between 0.9 and 2.1 ms,
representing minimum and maximum posi-
tion, respectively.

1 2 3 4 5
time @msD

1

2

3

4

5

6
@VD

(b) Measured servo PWM signal (black line)
and sampled position signal (gray line).
The first 1.45 ms of the black line is the
generated PWM signal while the curve-
forms (both black and gray) between 1.6
and 4.0 ms are cross-talk originating from
the internal analog controller in the servo.

Figure 5: PWM and position signal for the servo motors.

Figure 4: Wire soldered to the servo PCB
for sampling of the position signal.

namely the position of, and the current
to, each actuator.

2.3.1 Position measurement

The printed circuit board (PCB), shown
in Fig. 4 has been fitted with a wire for
direct sampling of the position signal,

which is read from a potentiometer at-
tached to the PCB. However, the signal
is subjected to two sources of noise, ran-
dom noise and controller induced noise.
The latter type, shown in Fig. 5(b),
severely disturbs the position reading.
However, this kind of noise is predictable
and therefore manageable if signal sam-
pling occurs before the noise is added. It
is essential to sample before the addition
of the noise since the length of the noise
signal depends on the position error of
the servo. The sampled signal ranges be-
tween 0.46 and 2.0 V and is amplified to
0 to 5 V.

2.3.2 Measure servo load

The current to the servo is measured over
a 0.05 Ω shunt resistor and is then am-
plified. Since the controller is an on-off
controller, the current is integrated us-
ing an operational amplifier based inte-
grator. Sampling the state of the inte-
grator gives the load on the servo. The

Construction of a low-cost, general purpose bipedal robot 6

2 4 6 8 10 12
time @msD

1

2

3

4

5

6
@VD

(a) Low load on servo.

2 4 6 8 10 12
time @msD

1

2

3

4

5

6
@VD

(b) High load on servo.

Figure 6: Measured current to servo. The gray line shows the PWM signal, including
the cross-talk, while the black line shows the measured and amplified potential over
the shunt resistor. Integration of the potential over time gives a correct measurement
of the load.

PWM and current related to two differ-
ent load cases are shown in Fig. 6. In
the case where the error is zero, i.e. the
set position is the same as the read posi-
tion, no disturbance originating from the
controller is found.

2.4 Power

Each servo requires, at the most, 3.5A
at 6.4V resulting in a peak current of the
bipedal robot of 15 × 3.5 = 52.5 A. Since
the servos are running at 6.4 V and the
electronics at 5 V, two separate power
supplies are needed. The current needed
for the electronics is less than 100 mA.

For autonomous operation the robot
must, of course, be equipped with an on-
board power supply such as e.g. batter-
ies or fuel cells. However, in the present
design, external power supplies are used.

2.5 Low-level control

The robot is equipped with a low-level
controller, capable of handling 32 chan-
nels of software controlled PWMs for the

servos, and sampling 128 AD-channels, 8
bits each, at a rate of 50 Hz.

Communication between the low-level
controller and PC is currently imple-
mented using an RS2323 serial line at
115 kbaud. The data rates needed are
20 kbaud downstream, i.e. from the PC
to the robot, and 80 kbaud upstream.

The controller is implemented on a
PIC16F874A microcontroller from Mi-
crochip [4], operating at 20 MHz. Gen-
erating 32 channels with PWM signals
simultaneously is not possible using the
PIC16F874A processor. Instead a time-
sharing system is implemented where
groups of eight PWM channels and 32
AD channels are administrated simulta-
neously, together with the related RS232
communication. A time-sharing and se-
quence diagram is found in Fig. 7. Each
group contains eight PWM channels and
four sub-groups with eight AD channels

3RS232 defines the electrical interface and
data coding in the serial communication line and
was defined by the Electronic Industries Alliance
(EIA) in the 1960s. RS means Recommended

standard and 232 is a serial number for this rec-
ommended standard.

Construction of a low-cost, general purpose bipedal robot 7

Figure 7: Timing and sequence diagram for two groups of software generated PWM
signals and sampling of AD-channels.

each, and is executed for 5 ms. The
AD-channels related to the servo group
are sampled in advance, thus avoiding
noise originating from the servo motor
controller. While generating the PWM
signals, the CPU is fully occupied, and
therefore no AD sampling or communi-
cation can be handled. After the PWM
signal generation, auxiliary channels are
sampled. The sampling frequency of
the auxiliary AD channels is limited by
the RS232 communication speed. Sam-
pling eight 8-bit AD-channels takes 0.16
ms, while communicating the result takes
0.87 ms.

3 Cost-related issues

An important constraint on the devel-
opment of the bipedal robot introduced
here, was the limited budget In order
to minimize costs, standard components

were selected, implying that some mod-
ifications had to be made, as described
e.g. in Subsect. 2.3.1 above. A list of
component costs, measured in EUR, is
shown in Table 2.

Note that the table only lists the cost
of the components, and thus neglects the
cost of development and assembly, which
far exceeded the component cost. How-
ever, given the finished blueprint, addi-
tional copies of the robot can be assem-
bled quite rapidly.

4 Discussion

In this paper, the main steps of the con-
struction of a low-cost bipedal robot have
been described. The parts of the robot
needed for the purpose of research on bal-
ancing and walking (i.e. the legs) have
been completed, with a total component
cost of less than 1,000 EUR.

Construction of a low-cost, general purpose bipedal robot 8

Component Amount Unit cost [Euro] Subtotal cost [Euro]
HS-805BB+ 15 55 825
Aluminum 1 30 30
Fastening devices 1 10 10
Electronics 1 50 50
Total cost 915

Table 2: An overview of component costs for the robot.

Care has been taken to make the robot
as shock-tolerant as possible, by placing
sensitive parts in shielded locations in the
metal skeleton, and by using slide bear-
ings.

In its current state, the robot allows
manual setting of the actuator positions.
In addition, it is possible to read the posi-
tion and load of each actuator. The pre-
sented bipedal robot is at present time
still under development and full control-
lability has yet to be implemented.

The next step will be to install pres-
sure sensors under the feet and develop a
closed-loop control for setting and keep-
ing postures. At a later phase, ac-
celerometers and gyros will be intro-
duced, and the weight of the robot will
be reduced through removal of excessive
material in the skeletal parts. It is also
the intention to construct an actuated
upper body for the robot, to replace the
simple rod currently used.

Once completed, the robot will be used
in research on behavioral organization,
i.e. the selection of appropriate behav-
iors in different situations. For example,
a bipedal robot must not only be able
walk along a path. It must also be able
to avoid collisions with suddenly appear-
ing obstacles, and must also be able to
find and use a charging station at regu-
lar intervals.

In addition to the development of the
bipedal robot, a specialized simulator
for multi-body systems has been devel-
oped [17], and is currently being used in
connection with evolutionary algorithms
for developing balancing, gaits, and be-
havioral organizers for various behaviors
that are to be implemented in the robot.

References

[1] Arkin, R.C. (1998) Behavior-based
robotics, MIT Press

[2] Pirjanian, P. (1999) Behavior co-
ordination mechanisms – state-of-
the-art, Technical Report IRIS-99-
375, Institute of Robotics and Intel-
ligent Systems, University of South-
ern California, Los Angeles

[3] Nomo bearing, www.nomo.se

[4] Microchip Technology Inc,
www.microchip.com

[5] Hitec RCD Inc, www.hitecrcd.com

[6] Lance Ulanoff (2003) ASIMO Ro-
bot to Tour U.S., PC Magazine,
http://www.pcmag.com

[7] United Nations (2003), World Ro-
botics 2003, ISBN: 92-1-101059-4

Construction of a low-cost, general purpose bipedal robot 9

[8] world.honda.com/ASIMO/

[9] www.sony.net/SonyInfo/QRIO/

[10] www.zmp.co.jp/

[11] www.automation.fujitsu.com/en/

[12] www.phys.waseda.ac.jp/shalab/index-
e.html

[13] www.is.aist.go.jp/humanoid/

[14] Brooks, R. (1996), Prospect for
Human Level Intelligence for Hu-
manoid Robots, In: Proc. of the 1 th
Int. Symp. on Humanoid Robots,
(HURO-96), Tokyo, Japan, 1996

[15] MIT Humanoid Robotics group,
www.ai.mit.edu/projects/humanoid-
robotics-group/

[16] Michael Barr (2003), Introduction
to Pulse Width Modulation (PWM),
O’Reilly, www.oreillynet.com (2004-
10-14)

[17] Pettersson, J. (2003), Generating
Motor Behaviors for Bipedal Robots
Using Biologically Inspired Compu-
tation Methods, Licentiate Thesis,
Chalmers University of Technology

[18] Wahde, M. (2003), A method for
behavioural organization for au-
tonomous robots based on evolu-
tionary optimization of utility func-
tions., J. Systems and Control En-
gineering, Vol. 217 Part I., pp. 249-
258

[19] Wahde, M. and Pettersson, J.
(2002) A brief review of bipedal ro-
botics research, In: Proc. of the
8th UK Mechatronics Forum Inter-
national Conference (Mechatronics
2002), pp. 480-488

